YAU’S GRADIENT ESTIMATES ON ALEXANDROV SPACES
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ABsTRACT. In this paper, we establish a Bochner type formula on Alexandrov spaces with
Ricci curvature bounded below. Yau’s gradient estimate for harmonic functions is also ob-
tained on Alexandrov spaces.

1. INTRODUCTION

The study of harmonic functions on Riemannian manifolds has been one of the basic topic
in geometric analysis. Yau in [50] and Cheng—Yau in [10] proved the following well known
gradient estimate for harmonic functions on smooth manifolds (see also [48]).

Theorem 1.1. (Yau [50], Cheng—Yau [10]) Let M" be an n-dimensional complete noncom-
pact Riemannian manifold with Ricci curvature bounded from below by —K, (K > 0). Then
there exists a constant C,, depending only on n, such that every positive harmonic function u
on M" satisfies

1
[Vlogu| < C,( VK + I_?)
in any ball B,(R).

A direct consequence of the gradient estimate is the Yau’s Liouville theorem which s-
tates a positive harmonic function on a complete Riemannian manifold of nonnegative Ricci
curvature must be constant.

The main purpose of this paper is to extend the Yau’s estimate to Alexandrov spaces.
Roughly speaking, an Alexandrov space with curvature bounded below is a length space X
with the property that any geodesic triangle in X is “fatter” than the corresponding one in the
associated model space. The seminal paper [6] and the 10th chapter in the book [2] provide
introductions to Alexandrov geometry.

Alexandrov spaces (with curvature bounded below) generalize successfully the notion
of lower bounds of sectional curvature from Riemannian manifolds to metric spaces. In
the last few years, several notions for the Ricci curvature bounded below on general met-
ric spaces appeared. Sturm [45] and Lott—Villani [28, 29], independently, introduced a so
called curvature-dimension condition on metric measure spaces, denoted by CD(K, n). The
curvature-dimension condition implies a generalized Brunn—Minkowski inequality (hence
also Bishop—Gromov comparison and Bonnet—-Myer’s theorem) and a Poincaré inequality
(see [45, 28, 29]). Meanwhile, Sturm [45] and Ohta [31] introduced a measure contraction
property, denoted by MCP(K,n), which is a slight modification of a property introduced
earlier by Sturm in [46] and in a similar form by Kuwae and Shioya in [23, 24]. The con-
dition MCP(K, n) also implies Bishop—Gromov comparison, Bonnet-Myer’s theorem and a
Poincaré inequality (see [45, 31]).

In the framework of Alexandrov spaces, Kuwae—Shioya in [22] introduced an infinites-

imal version of the Bishop—Gromov comparison condition, denoted by BG(K,n). On an
1
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n—dimensional Alexandrov space with its Hausdorff measure, the condition BG(K, n) is e-
quivalent to MCP(K, n) (see [22]). Under the condition BG(0,n), Kuwae—Shioya in [22]
proved a topological splitting theorem of Cheeger—Gromoll type. In [51], the authors intro-
duced a notion of “Ricci curvature has a lower bound K™, denoted by Ric > K, by averaging
the second variation of arc-length (see [37]). On an n-dimensional Alexandrov space M,
the condition Ric > K implies that M (equipped its Hausdorff measure) satisfies CD(K, n)
and BG(K, n) (see [38] and Appendix in [51]). Therefore, Bishop—Gromov comparison and a
Poincaré inequality hold on Alexandrov spaces with Ricci curvature bounded below. Further-
more, under this Ricci curvature condition, the authors in [51] proved an isometric splitting
theorem of Cheeger—Gromoll type and the maximal diameter theorem of Cheng type. Re-
mark that all of these generalized notions of Ricci curvature bounded below are equivalent to
the classical one on smooth Riemannian manifolds.

Let M be an Alexandrov space. In [33], Ostu—Shioya established a C!-structure and a
corresponding C°-Riemannian structure on the set of regular points of M. Perelman in [35]
extended it to a DC-structure and a corresponding BVg)C—Riemannian structure. By applying
this DC!-structure, Kuwae—Machigashira—Shioya in [19] introduced a canonical Dirichlet
form on M. Under a DC' coordinate system and written the BVIOOC—Riemannian metric by
(&ij), a harmonic functions u is a solution of the equation

(1.1) > 0i(Vzgdu) =0
ij=1

in the sense of distribution, where g = det(g;;) and (g") is the inverse matrix of (g i)- By
adapting the standard Nash—Moser iteration argument, one knows that a harmonic function
must be locally Holder continuous. More generally, in a metric space with a doubling mea-
sure and a Poincaré inequality for upper gradient, the same regularity assertion still holds for
Cheeger-harmonic functions, (see [8, 18] for the details).

The classical Bernstein trick in PDE’s implies that any harmonic function on smooth Rie-
mannian manifolds is actually locally Lipschitz continuous. In the language of differential
geometry, one can use Bochner formula to bound the gradient of a harmonic function on
smooth manifolds. The well known Bochner formula states that for any C* function « on a
smooth n-dimensional Riemannian manifold, there holds

(1.2) AlVul? = 2|V?ul? + 2(Vu, VAu) + 2Ric(Vu, Vu).

But for singular spaces (including Alexandrov spaces), one meets serious difficulty to study
the Lipschitz continuity of harmonic function. Firstly, due to the lacking of the notion of
second order derivatives, the Bernstein trick does not work directly on singular spaces. Next
one notes the singular set might be dense in an Alexandrov space. When one considers the
partial differential equation (1.1) on an Alexandrov space, the coefficients \/ggij might be not
well defined and not continuous on a dense subset. It seems that all PDE’s approaches fail to
give the Lipschitz continuity for the (weak) solutions of (1.1).

The first result for the Lipschitz continuity of harmonic functions on Alexandrov spaces
was announced by Petrunin in [41]. In [40], Petrunin developed an argument based on the
second variation formula of arc-length and Hamitlon—Jacobi shift, and sketched a proof to the
Lipschitz continuity of harmonic functions on Alexandrov spaces with nonnegative curvature,
which is announced in [41]. In the present paper, a detailed exposition of Petrunin’s proof
is contained in Proposition 5.3 below. Furthermore, we will prove the Lipschitz continuity
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of solutions of general Poisson equation, see Corollary 5.5 below. In [21], Koskela—Rajala—
Shanmugalingam proved that the same regularity of Cheeger-harmonic functions on metric
measure spaces, which supports an Ahlfors regular measure, a Poincaré inequality and a
certain heat kernel condition. In the same paper, they gave an example to show that, on a
general metric metric supported a doubling measure and a Poincaré inequality, a harmonic
function might fail to be Lipschitz continuous. In [52], based on the Lipschitz continuity of
harmonic functions and a representation of heat kernel in [19], we proved that every solution
of heat equation on an Alexandrov space must be Lipschitz continuous. Independently, in
[11], by applying the contraction property of gradient flow of the relative entropy in L>—
Wasserstein space, Gigli-Kuwada—Ohta also obtained the Lipschitz continuity of solutions
of heat equation on Alexandrov spaces.

Yau’s gradient estimate in the above Theorem 1.1 is an improvement of the classical Bern-
stein gradient estimate. To extend Yau’s estimates to Alexandrov spaces, let us recall what
is its proof in smooth case. Consider a positive harmonic function # on an n-dimensional
Riemannian manifold. By applying Bochner formula (1.2) to log u, one has

AQ > %QZ —-2(Vlogu,VQ) - 2KQ,

where O = |Vlogul®. Let ¢ be a cut-off function. By applying maximum principle to the
smooth function ¢Q, one can get the desired gradient estimate in Theorem 1.1. In this proof,
it is crucial to exist the positive quadratic term %QZ on the RHS of the above inequality.

Now let us consider an n-dimensional Alexandrov space M with Ric > —K. In [11],
Gigli—-Kuwada—Ohta proved a weak form of the I';-condition

AIVul?> > 2(Vu,VAu) - 2K|Vu|*, forall ue D(A)N W'(M).

This is a weak version of Bochner formula. If we use the formula to logu for a positive
harmonic function u, then

AQ > —2(Vlogu,VQ) - 2KQ,

where Q = |V log u|*. Unfortunately, this does not suffice to derive the Yau’s estimate because
the positive term %QZ vanishes. The first result in this paper is the following Bochner type
formula which keeps the desired positive quadratic term.

Theorem 1.2. Let M be an n-dimensional Alexandrov space with Ricci curvature bounded
from below by —K, and Q be a bounded domain in M. Let f(x,s) : QX [0,+c0) — R be a
Lipschitz function and satisfy the following:

(a) there exists a zero measure set N C Q such that for all s > 0, the functions f(-, s)
are differentiable at any x € Q\N;

(b) the function f(x,-) is of class C' for all x € Q and the function %(x, s) is continuous,
non-positive on Q X [0, +c0).

Suppose that u is Lipschitz on Q and

- f (Vu, V) dvol = f ¢ - f(x,|Vul*)vol
Q Q

for all Lipschitz function ¢ with compact support in Q.
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Then we have |Vul* € Wllo’cz(Q) and

- f (Ve IVul?) dvol
Q
2 2
>2 f ¢ (M +(Vu, Vf(x, [VuP)) = KIVul?)dvol
Q n

for all Lipschitz function ¢ > 0 with compact support in Q, provided |Vu| is lower semi-
continuous at almost all x € Q (That is, there exists a representative of |Vul|, which is lower
semi-continuous at almost all x € Q.).

Instead of the maximum principle argument in the above proof of Theorem 1.1, we will
adapt a Nash—Moser iteration method to establish the following Yau’s gradient estimate, the
second result of this paper.

Theorem 1.3. Let M be an n-dimensional Alexandrov space with Ricci curvature bounded
Jrom below by —K (K > 0), and let Q be a bounded domain in M. Then there exists a constant
C = C(n, VKdiam(Q)) such that every positive harmonic function u on Q satisfies

1
max |Vlogu| < C(\/f+ E)

xeB,(®)
for any ball B,(R) C Q. If K = 0, the constant C depends only on n.

We also obtain a global version of the above gradient estimate.

Theorem 1.4. Let M be as above and u be a positive harmonic function on M. Then we have
[Vlogu| < Cpx
for some constant C,, x depending only on n, K.

The paper is organized as follows. In Section 2, we will provide some necessary materials

for calculus, Sobolev spaces and Ricci curvature on Alexandrov spaces. In Section 3, we will
investigate a further property of Perelman’s concave functions. Poisson equations and mean
value inequality on Alexandrov spaces will be discussed in Section 4. Bochner type formula
will be established in Section 5. In the last section, we will prove Yau’s gradient estimates on
Alexandrov spaces.
Acknowledgements. We are grateful to Prof. Petrunin for his patient explanation on his
manuscript [40]. We also would like to thank Dr. Bobo Hua for his careful reading on the
first version of this paper. He told us a gap in the previous proof of Proposition 5.3. The
second author is partially supported by NSFC 10831008.

2. PRELIMINARIES

2.1. Alexandrov spaces. Let (X, |- -|) be a metric space. A rectifiable curve y connecting
two points p, g is called a geodesic if its length is equal to |pg| and it has unit speed. A metric
space X is called a geodesic space if every pair points p,g € X can be connected by some
geodesic.

Let k € R and / € N. Denote by Mf{ the simply connected, [-dimensional space form of
constant sectional curvature k. Given three points p, g, r in a geodesic space X, we can take
a comparison triangle Apgr in the model spaces M]% such that |pg| = |pgql, |1gr] = |gr| and
|¥p| = |rp|. If k > 0, we add assumption |pq| + |gr| + |rp| < 27/ Vk. Angles kaqr 1= /pgr are
called comparison angles.
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A geodesic space X is called an Alexandrov space (of locally curvature bounded below) if
it satisfies the following properties:

(1) it is locally compact;

(ii) for any point x € X there exists a neighborhood U, of x and a real number « such that,
for any four different points p, a, b, ¢ in U,, we have

Leaph + L bpc + Zcpa < 2.

The Hausdorft dimension of an Alexandrov space is always an integer. Let M be an n-
dimensional Alexandrov space, we denote by vol the n-dimensional Hausdorff measure of
M. Let p € M, given two geodesics y(¢) and o (s) with y(0) = 0(0) = p, the angle

£y' ()’ (0) := Sljgozky(t)pU(S)

is well defined. We denote by Z;, the set of equivalence classes of geodesic y(f) with y(0) = p,
where y(7) is equivalent to o(s) if 2y’(0)0”’(0) = 0. The completion of metric space (¥/, /) is
called the space of directions at p, denoted by X,. The tangent cone at p, T, is the Euclidean
cone over X,. For two tangent vectors u,v € T, their “scalar product” is defined by (see
Section 1 in [39])

1
(u,vy := §<|u|2 + P = Juv?).

For each point x # p, the symbol T, denotes the direction at p corresponding to some
geodesic px. We refer to the seminar paper [6] or the text book [2] for the details.

Let p € M. Given a direction ¢ € X, there does possibly not exists geodesic y(?) starting
at p with y’(0) = £. To overcome the difficulty, it is shown in [36] that for any p € M and any
direction ¢ € X, there exists a quasi-geodesic vy : [0, +c0) — M with y = p and y'(0) = &.
(see also Section 5 of [39]).

Let M be an n-dimensional Alexandrov space and p € M. Denote by ([33])

W, = {x e M\{p} | there exists y € M such that y # x and |py| = |px| + |xyl}.

According to [33], the set W), has full measure in X. For each x € W), the direction T jf, is
uniquely determined, since any geodesic in M does not branch ([6]). Recall that the map
logp : W, — T is defined by logp(x) = |px| Tf, (see [39]). We denote by

W, = logp(Wp) cTp.

The map log, : W), — #,, is one-to-one. After Petrunin in [37], the exponential map exp,, :
T, — M is defined as follows. expp(o) = p and for any v € T),\{o}, expp(v) is a point on
some quasi-geodesic of length |v| starting point p along direction v/[v| € Z,. If the quasi-
geodesic is not unique, we fix some one of them as the definition of exp,(v). Then exp,, |z,
is the inverse map of log,,, and hence exp, |y, : W, — W), is one-to-one. If M has curvature
> k on B,(R), then exponential map

exp, : B(RYN W), C Ty —> M

is an non-expending map ([6]), where T; is the k-cone over X, and o is the vertex of 7.

A point p in an n—dimesional Alexandrov space M is called to be regular if its tangent
cone T, is isometric to Euclidean space R" with standard metric. A point p € M is called a
singular point if it is not regular. Denote by § js the set of singular points of M. It is shown
(in Section 10 of [6]) that the Hausdorff dimension of S, is < n — 1 (see [6, 33]). Remark
that the singular set S s is possibly dense in M (see [33]). It is known that M\S y; is convex
[37]. Let p be a regular point in M, for any € > 0 there is a neighborhood B, (r) which is
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bi-Lipschitz onto an open domain in R"” with bi-Lipschitz constant 1 + € (see Theorem 9.4 of
[6]). Namely, there exists a map F from B,(r) onto an open domain in R" such that

lF(x) = Fy)ll
|yl
A (generalized) C L_structure on M\S j; is established in [33] as the following sense: there

is an open covering {U,} of an open set containing M\S »s, and a family of homeomorphism
¢o : Uy = Oy C R" such thatif U, N Ug # @, then

¢a 0 b5 1 dp(Uy N Up) = ¢a(Uq N Up)

is C! on ¢p((Usy N Up)\S m). A corresponding C°-Riemannian metric g on M\S y is intro-
duced in [33]. In [35], this C'-structure and the corresponding C%-Riemannian metric has
been extended to be a DC!-structure and the corresponding BVS)C—Riemannian metric. More-
over, we have the following:

(1) The distance function on M\S j; induced from g coincides with the original one of
M ([33)]);

(2) The Riemannian measure on M\S s coincides with the Haudorff measure of M, that
is, under a coordinate system (U, ¢), the metric g = (g;;), we have

@.1) dvol(x) = \/det(g(@(x)dx' A -+ A dx"

for all x € U\S ps (Section 7 in [33]).
A point p is called a smooth point if it is regular and there exists a coordinate system (U, ¢)
around p such that

(2.2) gij(#(x)) — 6;51 = o(|px]),

where (g;;) is the corresponding Riemannian metric (see [33]) near p and (¢;;) is the identity
n X n matrix. the set of smooth points has full measure [35].

1+e)7' < <l+e YV x,y € By(r), x #y.

Lemma 2.1. Let p € M be a smooth point. We have

dvol(x) B
(2.3) o |=om,  vveBmnw,
where x = exp,,(v), and
(2.4) H"(By(r) N W) 2 H"(Bo(r)) - (1 = o(r))

where H" is n-dimensional Hausdorf{f measure on T ),.

Proof. Let (U, $) be a coordinate system such that ¢(p) = 0 and B,(r) C U. For each

veB,(r)N W, Ty,
dvol(x) = /det[g;i(¢p(x)]dx' A --- A dx",

where x = exp,(v). Since p is regular, T), is isometric to R". We obtain that

dH"(v) = dH"(0) = dx' A -+ A dX"

dvol(x)
dH"(v) 1= /detlgij(¢(x)] - 1.

Now the estimate (2.3) follows from this and the equation (2.2).
Now we want to show (2.4).

forall v e T),. We get
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Equation (2.2) implies that (see [35]) for any x,y € B,(r) C U,
|yl = lig(x) = pI| = 0(r).

In particular, the map ¢ : U — R” satisfies

¢(Bp(r)) D By(r — o(rz)).

On one hand, from (2.2), we have

vol(B,(r)) = f Jdet(gidx' A -+ A dx"
! #(Bp(r) !

> H"(¢(B,(1)) - (1 = o(r)) = H'(Bo(r — 0(r*))) - (1 — o(r))
= H"(B,(r)) - (1 = o(r)).

(2.5)

On the other hand, because exp), : B,(RyNn¥, C T’; — M is an non-expending map ([6]),
where T;f is the k-cone over X, and o is the vertex of T,, we have

exp,, B,R)NW,CcT, > M
is a Lipschitz map with Lipschitz constant 1 + O(r?). Hence we get
H"(B,(r) N #;,) - (1 + O(r%)) > vol(B,(r)).
Therefore, by combining with equation (2.5), we have
H"(Bo(r) N #p) > H'(Bo(r) - (1 = 0(™)) - (1 = o(r)) = H*(Bo(r) - (1 = o(r)).
This is the desired estimate (2.4). ]
Remark 2.2. If M is a C2-Riemannian manifold, then for sufficiently small r > 0, we have

dvol(x)
dH"(v)
Let M be an Alexandrov space without boundary and € € M be an open set. A locally

Lipschitz function f : Q — R is called to be A-concave ([39]) if for all geodesics y(¢) in €,
the function

=00, VveBcT, and x=exp,m.

foy()—A-1%)2
is concave. A function f : Q — R is called to be semi-concave if for any x € Q, there
exists a neighborhood of U, > x and a number A, € R such that f|y, is A,-concave. In fact,
it was shown that the term “geodesic” in the definition can be replaced by “quasigeodesic”
([36, 39]). Given a semi-concave function f : M — R, its differential d,,f and gradient
V,f are well-defined for each point p € M (see Section 1 in [39] for the basic properties of
semi-concave functions).

From now on, we always consider Alexandrov spaces without boundary.

Given a semi-concave function f : M — R, a point p is called a f-regular point if p is
smooth, d, f is a linear map on T, (= R") and there exists a quadratic form H,,f on T, such
that

1
(2.6) f@) = fp) +dpf(1y) - lxpl + SHp f(T3. 1) - Il + o(Ipxl?)

for any direction T;,. We denote by Regy the set of all f-regular points in M. According to
[35], Regy has full measure in M.
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Lemma 2.3. Let f be a semi-concave function on M and p € M. Then we have

nr
@) 1, , (0= sodvolcn = 5 f dyfiene o0,
where J% fdvol = vo+(B) fB fdvol. Furthermore, if we add to assume that p € Regy, then
B nr’ )
(2.8) Ji " (100 = fp))avol) = 72 Jg Hp &0 + o),
Proof. According to Theorem 10.8 in [6], we have
dvol(exp,(v)) vol(By(r))
(29) dH—"(v) =1+ 0(1), Hn(BO(r)) =1+ 0(1)

Similar as in the proof of equation (2.4), we have
Vol(Bo(r) N #p) > H"(Bo(r)) - (1 = o(1)).
Since f(x) — f(p) = dpf(T}) - Ipxl + o(Ipx]), we get
f () = £(p))dvol(x)
By(r)

(2.10)
- f (dpf ) + o(WD)(1 + o(1)dH" (V).
B,,(r)ﬂ%

On the other hand, from (2.9), we have
| f dp fOVVAH" ()] < O) - H' (Bo(r)\ W) < 0(r™*)).
Bo(r\¥),
By combining this and (2.10), we obtain

H"(B,
Ji()(f(x)—f(p))dvol(x): (Bo(r)

vol(B,(r) Jg, )

dp f(V)dH"(v) + o(r)
_ Jf dp fOAH" (1 + 0(1)) + o(r)
By(r)
= JC dp f(V)dH"(v) + o(r)
By(r)

nr

- Jg d, fE)E + o).

T n+1

This is equation (2.7).
Now we want to prove (2.8). Assume that p is a f-regular point. From (2.6) and Lemma
2.1, we have

f () = £(p))dvol(x)

@2.11) Br®) |

= f (dpf(v) + Epr(v, V) + 0(|v|2)) - (1 + o(r))dH"(v).
B,,(r)ﬂ%

Using Lemma 2.1 again, we have

|jz; N, dpfW)AH"| < O(r) - H'(B,(r)\#,) = O(r) - o(r) - H"(B,(r)) = o(r"*?).
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Noticing that fB » d,f(v)dH" = 0, we get

(2.12) f d,f(vV)dH" = 0(rn+2),
B,(nNn¥)
Similarly, we have
(2.13) f Hpf(v,v)dH" = H,f(v,v)dH" + o(r"™*3).
Ba(r)ﬂ”ﬁ/p Bo(r)

From (2.11)—(2.13) and Lemma 2.1, we have

_ H'(By(r)
fB |, T = fp)avoled = e

JC H,f(v,v)dH" + o(r?)

B,(r)

- Jf H,fv,v)dH"(1 + o(r)) + o(r?)
B,(r)

nr2

2
TORS] Jg Hf (€. £)dE + o).

This is the desired (2.8). m|

Given a continuous function g defined on B,(d¢), where ¢y is a sufficiently small positive

number, we have
d
f gdvol = — gdvol
OB, (r) dr Jg, )
for almost all r € (0, dp).

Lemma 2.3’ Let f be a semi-concave function on M and p € M. Assume 0y is a sufficiently
small positive number. Then we have, for almost all r € (0, 6p),

(2.14) JL;B . () = f(p))dvol(x) = nr - JE d, f(&)dé + o(r).

Furthermore, if we add to assume that p € Regy, then we have, for almost all r € (0, 6y),

(2.15) JC
IB,(

2
) (0 = f(p))dvol(x) = 5 - Jg Hy f(€.)dE + o(r?).

U P
2.2. Sobolev spaces. Several different notions of Sobolev spaces have been established,
see[8, 19, 43, 20, 24]1. They coincide each other on Alexandrov spaces.

Let M be an n-dimensional Alexandrov space and let Q2 be a bounded open domain in M.
Given u € C(Q). At a point p € Q, the pointwise Lipschitz constant ([8]) and subgradient
norm ([30]) of u at x are defined by:

Lipu(x) := lim sup —If(x) —fO and |V ul(x) := lim sup —(f(x) — SO, s
y—ox xy] y—ox |yl
where a, = max{a, 0}. Clearly, |V u|(x) < Lipu(x). It was shown in [30] for a locally Lips-
chitz function u on Q,
|V~ u|(x) = Lipu(x)

n [8, 20, 43, 24], Sobolev spaces are defined on metric measure spaces supporting a doubling property
and a Poincaré inequality. Since Q is bounded, it satisfies a doubling property and supports a weakly Poincaré
inequality [19].
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for almost all x € Q2.

Let x € Q be a regular point, We say that a function u is differentiable at x, if there exist
a vector in T, (= R"), denoted by Vu(x), such that for all geodesic y(¢) : [0,€) — Q with
v(0) = x we have

(2.16) u(y(t)) = u(x) + t - (Vu(x),y’ (0)) + o(2).

Thanks to Rademacher theorem, which was proved by Cheeger [8] in the framework of gen-
eral metric measure spaces with a doubling measure and a Poincaré inequality for upper
gradients and was proved by Bertrand [3] in Alexandrov space via a simply argument, a lo-
cally Lipschitz function u is differentiable almost everywhere in M. (see also [32].) Hence
the vector Vu(x) is well defined almost everywhere in M.

Remark that any semi-concave function f is locally Lipschitz. The differential of u at
any point x, d.u, is well-defined.(see Section 1 in [39].) The gradient V,u is defined as the
maximal value point of du : B,(1) c T, = R.

Proposition 2.4. Let u be a semi-concave function on an open domain Q C M. Then for any
x € Q\S y, we have
IVyul < V7 ul(x).
Moreover, if u is differentiable at x, we have
[Vl = [V7ul(x) = Lipu(x) = [Vu(x)|.

Proof. Without loss of generality, we can assume that |V,u| > 0. (Otherwise, we are done.)
Since x is regular, there exists direction —V,u. Take a sequence of point {y;}°7, such that

J=1
. . ; V.u
limy;=x and lim =2,
j=oo jo [V ul

By semi-concavity of u, we have
u(y)) = u(x) < byl (Vo 1Y) + Ay P12, j=1,2.0
for some A € R. Hence

(Vaury) < HOEOD.

x|

Letting j — oo, we conclude |V u| < [V~ u|(x).
Let us prove the second assertion. We need only to show Lipu(x) < |Vu(x)| and [Vu(x)| <
|V.u|. Since u is differentiable at x, we have

u(y) = u(x) = xyl - (Vu(x), 75) + o(lxyl)
for all y near x. Consequently,
Ju(y) = w0l = eyl 1 (V) 5) |+ oeyl) < 1oyl - [Vu(ol + o(lxy).

This implies that Lipu(x) < |Vu(x)|.
Finally, let us show [Vu(x)| < |V,u|. Indeed, combining the differentiability and semi-
concavity of u, we have

ey - (Vau), 1) + o(lxyl) = () = u(x) < byl - (Voe, 1) + Aley?/2

lxyil/2,  j=12,--

2See Remark 2.27 in [30] and its proof.
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for all y near x. Without loss of generality, we can assume that |Vu(x)| > 0. Take y such that
direction 1% arbitrarily close to Vu(x)/|Vu(x)|. We get

IVu()l* < Ve, Vu(x)) < [Vl - [Vu(x)l.
This is |V,u| < |[Vu(x)|. O

According to this Proposition 2.4, we will not distinguish between two notations Vu and
Vu(x) for any semi-concave function u.

We denote by Lip;,(€2) the set of locally Lipschitz continuous functions on €, and by
Lipo(Q) the set of Lipschitz continuous functions on  with compact support in €. For any
1 < p < 400 and u € Lipj,(Q), its WHP(Q)-norm is defined by

lullwrrqy = llullr@) + IILipullir@)-
Sobolev spaces W!P(Q) is defined by the closure of the set

{u € Llploc(Q)| “I/tllwl,Z(Q) < +OO},

under W'?(Q)-norm. Spaces Wé’p (€2) is defined by the closure of Lipg(£2) under whr(Q)-
norm. (This coincides with the definition in [8], see Theorem 4.24 in [8].) We say a func-
tion u € Wlla’f Q) if u € WhP(Q') for every open subset Q' € Q. According to Kuwae—
Machigashira—Shioya [19] (see also Theorem 4.47 in [8]), the “derivative” Vu is well-defined
for all u € WHP(Q) with 1 < p < oo. Cheeger in Theorem 4.48 of [8] proved that WLP(Q) is
reflexive forany 1 < p < oo.

2.3. Ricci curvature. For an Alexandrov space, several different definitions of “Ricci cur-
vature having lower bounds by K have been given (see Introduction).

Here, let us recall the definition of lower bounds of Ricci curvature on Alexandrov space
in [51].

Let M be an n-dimensional Alexandrov space. According to Section 7 in [6], if p is an
interior point of a geodesic vy, then the tangent cone T, can be isometrically split into

T,=L,xR-vy, v=_h1.
We set
Ap,={ée€Ll,: ¢ =1}

Definition 2.5. Let o(¢) : (=¢,£) — M be a geodesic and {gy()(&)}-¢<i<¢ be a family of
functions on Ay such that g, is continuous on Ay for each ¢ € (—¢,¢). We say that
the family {gy«)(€)}-¢<i<¢ satisfies Condition (RC) on o if for any two points g1, g2 € o and
any sequence {Hj}j'il with §; — 0 as j — oo, there exists an isometry T : X, — X, and a
subsequence {0;} of {6;} such that

lexpy, (6,;118), exp,,(6;LTE)
<lg1gal + (b = 1) (E,Y') - 6;

(2.17) (h = h)?* 84D lq19l ,
+( 2g14al : 6 Grheb+h)-(1-€y))- 6]
+ 0((5?)

forany /;,l, > Oand any £ € X,.
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If M has curvature bounded below by ko (for some ky € R), then by Theorem 1.1 of
[37] (or see Theorem 20.2.1 of [1]), the family of functions {g,)(£) = ko}—¢<i<¢ satisfies
Condition (RC) on o. In particular, if a family {g,(;(€)}-¢</<¢ satisfies Condition (RC), then
the family {g,)(€) V ko}—¢<i<¢ satisfies Condition (RC) too.

Definition 2.6. Lety : [0,a) — M be a geodesic. We say that M has Ricci curvature bounded
below by K along v, if for any € > 0 and any 0 < f9 < a, there exists £ = {(ty,€) > 0
and a family of continuous functions {g,)(&)}sy—¢<r<i+¢ ON Ay such that the family satisfies
Condition (RC) on ¥|,—¢, 1p+¢) and

(2.18) (n=1)- f &(é)dé > K — €, Vi e (to— L t0 +0),
Ay
where f, 24(€) = 7ixy Jy, 8(E)dE.
We say that M has Ricci curvature bounded below by K, denoted by Ric(M) > K, if each
point x € M has a neighborhood U, such that M has Ricci curvature bounded below by K
along every geodesic y in U,.

Remark 2.7. Let M be an n-dimensional Alexandrov space with curvature > k. Let y :
[0,a) — M be any geodesic. By [37], the family of functions {gy;(£) := k}o<i<q satisfies
Condition (RC) on y. According to the Definition 2.6, we know that M has Ricci curvature
bounded from below by (n — 1)k along y. Because of the arbitrariness of geodesic y, M has
Ricci curvature bounded from below by (n — 1)k.

Let M be an n-dimensional Alexandrov space M having Ricci curvature > K. In [38]
and Appendix of [51], it is shown that metric measure space (M,d, vol) satisfies Sturm—
Lott—Villani curvature-dimension condition CD(K, n), and hence measure contraction prop-
erty MCP(K, n) (see [45, 31], since Alexandrov spaces are non-branching) and infinitesimal
Bishop-Gromov condition BG(K, n) ([22], this is equivalent to MCP(K, n) on Alexandrov
spaces). Consequently, M satisfies a corresponding Bishop—Gromov volume comparison
theorem [45, 22] and a corresponding Laplacian comparison in sense of distribution [22].

3. PERELMAN’S CONCAVE FUNCTIONS

Let M be an Alexandrov space and x € M. In [34], Perelman constructed a strictly concave
function on a neighborhood of x. This implies that there exists a convex neighborhood for
each point in M. In this section, we will investigate a further property of Perelman’s concave
functions.

In this section, we always assume that M has curvature bounded from below by k (for
some k € R).

Let f: Q ¢ M — R be a semi-concave function and x € Q. Recall that a vector vy € T is
said to be a supporting vector of f at x (see [39]) if

dif(&) < —(vs, &) forall £ € Z,.

The set of supporting vectors of f at x is a non-empty convex set (see Lemma 1.3.7 of [39]).
For a distance function f = dist,, by the first variant formula (see, for example, [2]), any
direction 1% is a supporting vector of f at x # p.

Proposition 3.1. Let f: Q C M — R be a semi-concave function and x € Q. Then we have

fz Ay fE)dE < 0.
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Furthermore, if f is a distance function f = dist,, and x # p, the *“ =" holds implies that
% is uniquely determined and maxges, 1€, 15 | = 7.

Proof. Let v, be a support vector of f at x, then

dif(é) < —(vs, &), VYEEX,.

Without loss of generality, we can assume vy # 0. (If vy = 0, then d, f(£) < 0. We are done.)
Setting 179 = I% € X,, we have

dif(&) < =(vs, &) = =|vy| - cos(lmo. &) V& € Xy

Denote D = maxges, |€, 1mol. By using co-area formula, we have

D
ri= [ duf@ds < v [ costiméhdg = - fo cos - Aoy,

where A(?) = vol,—2({& € Zy & |, mol = 1}).
If D<n/2,then <O.
We consider the case D > m/2. Since X, has curvature > 1, by Bishop—Gromov compari-
son, we have
vol,_»2(dB,(m —t) c S 1)

A=) < AW = 9B, &)

= A(t)

for any ¢ < /2. Hence

I /2 D
— < —f cost- A(t)dt —f cost - A(t)dt
0 b

<
[vsl 2

/2 D
< - f cost - A(mr — tdt — f cost- A(t)dt
0 b

/2
T
= f cost-A(t)dt < 0.
D

Moreover, if I = 0, then D = 7.
If f = dist,, then v, can be chosen as any direction 4. When I = 0, we have

3.1 d.f©) =-(1h.¢), Véex,

and

max ¢, ™l=n
The left-hand side of (3.1) does not depend on the choice of direction 1¢. This implies that
1% is determined uniquely. O

Lemma 3.2. Given any n € N and any constant C > 0, we can find 6y = 6o(C, n) satisfying
the following property: for any n-dimensional Alexandrov spaces X" with curvature > 1, if

there exist 0 < 6 < 6y and points {p j}?’: | C X" such that

(3.2) lpipjl > 6 @ #)), N:=#pj}>C-o™"

and

3.3) rad(p;) := m%x Ipjgl =nm foreach 1< j<N,
gex”

then X" is isometric to S".
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Proof. We use an induction argument with respect to the dimension n. When n = 1, we take
80(C, 1) = C/3. Then for each 1-dimensional Alexandrov space X' satisfying the assumption
of the Lemma must contain at least three different points py, p» and p3 with rad(p;) = n,
i =1,2,3. Hence X! is isometric to S'. _

Now we assume that the Lemma holds for dimension n — 1. That is, for any C, there exists
60(6 ,n — 1) such that any (n — 1)-dimensional Alexandrov space satisfying the condition of
the Lemma must be isometric to S"~!.

We want to prove the Lemma for dimension n. Fix any constant C > 0 and let

. (10 C -

(3.4) 0(Cyn) = mln{§ '50(Er -(10/8)' ™", n = 1), 1.

Let X" be an n—dimensional Alexandrov space with curvature > 1. Suppose that there
exists 0 < § < 9p(C, n) and a set of points { pa}g=l C X" such that they satisfy (3.2) and (3.3).

Let g1 € X" be the point that |p;qi| = n. Then X" is a suspension over some (n — 1)-
dimensional Alexandrov space A of curvature > 1 and with vertex p; and ¢q;, denoted by
X" = §(A). We divide X" into pieces Ay, Az, -+ , Ay, ---, Ajas

/s
0/10
where [a] is the integer such that [a] < a < [a] + 1. Then there exists some piece, say A,
such that

Aj={xeT: (/10) 1< lxpil < 6/10)-(+ 1)}, 0<I<Ti=[——],

N N <) C
> > —-
+1 7 10m/6 + 1 1x

1-n

(3.5) Ni = #(A, 0 {pj)i) > =
Notice that
AjUAy C B (6/2) and AjUA; | C B, (6/2),

we have o ¢ {1,2,1-1,1}.

We denote the points A;, N {p(,}g:l as (x;, t,-)?ill CSA)(=2",wherex;e Aand O < t; <
for 1 < i < Nj. Let ; be the geodesic pi(x;,t)q1 and p; = y; N 0B, ((lp + 1) - §/10). By
triangle inequality, we have

_ 8
(3.6) pipjl > 15 - o

Applying cosine law, we have
cos([pip;l) = cos(Ip1pil) - cos(Ip1p;l) + sin(lp1pil) - sin(lp1p;1) - cos(lxix;)

for each i # j. Since |p1pil = |p1pjl, we get

(3.7) Ixix;| > [pipjl.

By the assumption (3.3), there exist points (£, ;) € " ( = S(A)) such that
|G, 1), (K 1) = 7

for each 1 < i < Nj. By using the cosine law again, we have

—1 = cos(|(x;, t;)(X;, ;)|) = cost; - cosf; + sint; - sin f; - cos(|x;%;])

= cos(t; + ;) + sint; - sinf; - (cos(|x; ;) + 1)
> cos(t; + 1).

By combining with 0 < #;,; < mr, we deduce

(3.8) |xix;] =7 and ¢+ =m.
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By the induction assumption and (3.4)—(3.8), we know A is isometric to S"-!. Hence X" is
isometric to S”. o

Lemma 3.3. (Perelman’s concave function.) Let p € M. There exists a constant r; > 0
and a function h : B,(r1) — R satisfying:

(i) his (—1)—concave;

(ii)  his 2-Lipschitz, that is, h is Lipschitz continuous with a Lipschitz constant 2;

(iii)  for each x € B,(ry), we have

(3.9 f dh()dé < 0.
R
Moreover, if ““ = holds, then x is regular.

Proof. Letus recall Perelman’s construction in [34]. Fix a small ry > 0 and choose a maximal
set of points {qa}g:] C 0Bj(rp) with LG pqg > 6 for a # B, where ¢ is an arbitrarily (but
fixed) small positive number 6 < rg. By Bishop—Gromov volume comparison, there exists a

constant C, which is independent of ¢, such that
(3.10) N>C;- 6.

Consider the function
1 &
h(y) = — - N
) N ;:1 #(gayl)

on By(r;) with 0 < r| < %ro, where ¢(¢) is a real function with ¢’(f) = 1 for t < rg — 6,
¢’ (t)y=1/2fort = rp+6and ¢”(t) = —1/(46) fort € (ro — 8, rg + 9).

The assertions (i) and (ii) have been proved for some positive constant r; < rg in [34], (see
also [15] for more details). The assertion (iii) is implicitly claimed in Petrunin’s manuscript
[40]. Here we provide a proof as follows.

Let x be a point near p. It is clear that (3.9) follows from Proposition 3.1 and the above
construction of 4. Thus we only need to consider the case of

(3.11) f dh(&)dé = 0.
Iy
We want to show that x is a regular point.
From Zq.pqp > anpqﬁ > ¢ for @ # f and the lower semi-continuity of angles (see
Proposition 2.8.1 in [6]), we can assume Zq,xqg > 6/2 for @ # . Proposition 3.1 and (3.11)
imply that

f d,disty, (£)dé = 0 foreach 1<a<N.

X

Using Proposition 3.1 again, we have

(3.12) Ifngxl 19 & =n foreach 1<a<N.

X

From Lemma 3.2 and the arbitrarily small property of ¢, the combination of (3.10) and (3.12)
implies that X, is isometric to S"~!. Hence x is regular. O
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4. POISSON EQUATIONS AND MEAN VALUE INEQUALITY

4.1. Poisson equations. Let M be an n-dimensional Alexandrov space and Q be a bounded
domain in M. In [19], the canonical Dirichlet form & : Wé’Z(Q) X Wé’z(Q) — R s defined by

Eu,v) = f (Vu,Vvydvol  for u,v € Wy (€.
o)
Given a function u € WIIO’CZ(Q), we define a functional .Z;, on Lipy(QQ) by

L) = — fg (Vu,Veydvol, V¢ € Lipy(Q).

When a function u is A-concave, Petrunin in [38] proved that .Z, is signed Radon measure.
Furthermore, if we write its Lebesgue’s decomposition as

4.1) %, = Au-vol + A'u,

then A’u < 0 and

4.2) Au(p) = nf Hyu(é,6)dé <n- A
5,

for almost all points p € M, where H,u is the Perelman’s Hessian (see (2.6) or [35]).
Nevertheless, to study harmonic functions on Alexandrov spaces, we can not restrict our
attention only on semi-concave functions. We have to consider the functional ., for general
functions in W.2(Q).
Let f e L*(Q)and u € Wllo’g(Q). If the functional .%, satisfies

L) > f fodvol — (or  Zu(¢) < f fodvol)
Q Q

for all nonnegative ¢ € Lipy(Q2), then, according to [13], the functional .Z, is a signed Radon
measure. In this case, u is said to be a subsolution (supersolution, resp.) of Poisson equation

%, = f-vol.

Equivalently, u € W;&CZ(Q) is subsolution of .Z, = f-vol if and only if it is a local minimizer
of the energy

W)= | (Vv +2fv)dvol
QI

in the set of functions v such that u > v and u — v are in WS’Q(Q’) for every fixed Q' € Q. It
is known (see for example [25]) that every continuous subsolution of .%;, = 0 on Q satisfies
Maximum Principle, which states that

max u < maxu
X€EB x€OB

for any ball B € Q.

A function u is a (weak) solution of Poisson equation .Z, = f - vol on Q if it is both a
subsolution and a supersolution of the equation. In particular, a (weak) solution of .%;, = 0 is
called a harmonic function.

Now remark that u is a (weak) solution of Poisson equation .Z;, = f - vol if and only if .Z,
is a signed Radon measure and its Lebesgue’s decomposition .%;, = Au - vol + A’u satisfies

Au=f and A’u=0.
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Given a function f € L*(Q) and g € W'?(Q), we can solve Dirichlet problem of the
equation

u = gla.

Indeed, by Sobolev compact embedding theorem (see [14, 19]) and a standard argument (see,
for example, [12]), it is known that the solution of Dirichlet problem exists and is unique in
WL2(Q). (see, for example, Theorem 7.12 and Theorem 7.14 in [8].) Furthermore, if we add
the assumption f € L® with s > n/2, then the solution is locally Holder continuous in € (see
[18, 19]).

{.zu = f - vol

resp.) on Q, if it satisfies the following comparison property: for every open subset Q' € Q,
we have

Definition 4.1. A functionu € C (Q)OWZIO’?(Q) is called a A-superharmonic (or A-subharmonic,

u < u, (or u > u,resp.),
where u is the (unique) solution of the equation .%% = A - vol in Q" with boundary value u = u
on 0QY'.
In particular, a O-superharmonic (or, O-subharmonic, resp.) function is simply said a su-
perharmonic (or, subharmonic, resp.) function.

In partial differential equation theory, this definition is related to the notion of viscosity
solution (see [7]).

According to the maximum principle, we know that a continuous supersolution of .%;, = 0
must be a superharmonic function. Notice that the converse is not true in general metric mea-
sure space (see [16]). Nevertheless, we will prove a semi-concave superharmonic function
on M must be a supersolution of .Z}, = 0 (see Corollary 4.6 below).

4.2. Mean value inequality for solutions of Poisson equations. Let u € W'2(Q) such that
%, is a signed Radon measure on Q and A € Q be an open set. We define a functional 7, 4
on W'2(A) by

4.3) Loa($) = f (Vu, Vg dvol + f ¢d.%,.
A A

Remark 4.2. () If ¢1, ¢, € W12(A) and o1 —¢o € Wé’z(A), then, by the definition of .Z;,, we

have I, 4(¢1) = Lia(¢2).
(ii) If M is a smooth manifold and A is smooth, then 1, 4(¢) = fA div(¢Vu)dvol.

Lemma 4.3. Let 0 < ry < Ry and w(x) = ¢(|px|) satisfy £, > 0 on some neighbor-
hood of B,(Ro)\B,(ro), where ¢ € CQ(R). Consider a function v € Wl’z(Bp(Ro)\Bp(ro)) N
L (B(p, Ro)\B(p, 1y)). Then for almost all r, R € (ry, Ry), we have

Lya(v) = ¢'(R) vdvol — ¢’ (r) vdvol,
OB,(R) OB, (r)

where A = B,(R)\B(r).

Proof. Since .Z,, is a signed Radon measure, we have .Z,,(B,(Ro)\B,(ro)) < +co. Hence, for
almost all r, R € (ro, Ro), £,(Aj\A) — O as j — oo, where A; = B,(R + %)\Bp(r - ;). Now
let us fix such r and R. '



18 HUI-CHUN ZHANG AND XI-PING ZHU
Letv; =v-ni(px]) € Wé’z(D), where D = B,(Ro)\B(rp) and

1 if te[rR]

joa=n+1 if relr—1r]

ir) =
D= m Ryl i re [R.R+ 1]
0 if ze(—oo,r—§)u(1e+§,oo).
By the definitions of /,, 4(v) and .Z,,, we have
(44)  Loa() = f (Vw. Vv;) dvol — f (Vw. Vv;) dvol + f vidL, - v,dZL,
D D\A D D\A

=- f v(Vw, Vn;) dvol — f nj (Vw, Vv) dvol — f v,d%L,
D\A D\A D\A
= —J1 - Jz - ]3.

Notice that

|J2|<f [Vw| - [Vvldvol and |J3] < Z,(A)\A) - VL=(p),
Aj\A

Hence we have J, —» O0and J3 — 0 as j — oo.

4.5) Ji = j-f vgo'dvol—j-f vg'dvol.
B, (D\B,(r=1/ ) Bp(R+1/ D\Bp(R)

The assumption v € L*(D) implies the function A(¢) = fB o vdvol is Lipschitz continuous
P
in (rg, Rp). Indeed, for each ry < s <t < Ry,

|h(f) — h(s)| < f [vldvol < [v|ze - vol(B,(H)\Bp(s)) < ¢ - (1" — 5"),
Bp(D\Bp(s)

where constant ¢ depends only on Ry, n and the lower bounds of curvature on B, (Rp). Then
h(t) is differentiable almost all ¢ € (rg, Rg). By co-area formula, we have

H(t) = f vdvol
0B, (1)
for almost all ¢ € (g, Ro).

Without loss of generality, we may assume that r and R are differentiable points of function
h. Now

al vavol — /() - (1)~ h(r = 1/)
By (N\Bp(r=1/))

< f max |¢”’| - [v|dvol — 0
By(m\B,(r-1/j)

as j — oo. The similar estimate also holds for j ﬁg ®) ¢'vdvol. Therefore,
P

p(R+1/)\B
lim Jy = lim ¢'(r) - j(hr) = hr = 1/)) = lim @' (R) - J(hR +1/)) = h(R))
= ¢ (1) = ¢ RN (R).

By combining this and (4.4), we get the desired assertion. O



YAU’S GRADIENT ESTIMATES 19

If M has Ric > (n— 1)k, then for a distance function dist,(x) := |px|, Laplacian comparison
(see Theorem 1.1 and Corollary 5.9 in [22]) asserts that .dep is a signed Radon measure and

Liist, < (n—1) - coty odist, - vol on M\{p}.
Moreover, G(x) := ¢x(|px|) is defined on M\{p} and
Zs>0  on M\{p},

where ¢(r) is the real value function such that ¢ o dist, is the Green function on M with
singular point o. That is, if n > 3,

— ; * 1-n
6 0 = o [ s
where w,_; = vol(S*!) and
sin( Vkr)/ Vk k>0
sp(t) =<t k=0

sinh(V—kr)/ V=k k< 0.

If n = 2, the function ¢, can be given similarly.
By applying the Lemma 4.3 to function G, we have the following mean value inequality
for nonnegative supersolution of Poisson equation.

Proposition 4.4. Let M be an n—dimensional Alexandrov space with Ric 2 (n — 1)k and Q
be a bounded domain in M. Assume that f € L*(Q) and u is a continuous, nonnegative
supersolution of Poisson equation £, = f - vol on Q. Then for any ball B,(R) € Q, we have

vol(zp)( 1
H""1(8B,(R) C T¥) Jos, k)

<m-2)- Gfdvol — (n—-2) - ¢r(R) f fdvol,

BL(R) B,(R)

“4.7) udvol — u(p))

Wp—1

where B;(R) = B,(R)\{p} and Té is the k-cone over X, (see [2] p. 354).

Proof. For simplicity, we only give a proof for the case n > 3. A slight modification of the
argument will prove the case n = 2.

Case 1: Assume that u is a solution of %, = f - vol.

Let G(x) = ¢r(|px|), where the real function ¢ is chosen such that ¢;(lox|) is the Green
function on M with singular point at o. Then, by Laplacian comparison theorem (see [22]
or [51]), the signed Radon measure .4 is nonnegative on M\{p}.

Since u is continuous on B, (R), the function h(s) = pr ) udvol is Lipschitz. From Lemma

4.3, we have
I a(u) = ¢p (1) - W' (1) — ¢ (s) - W' (s)

for almost all s,7 € (0, R) with s < t, where A = B,,(1)\B,(s). By the definition of supersolu-
tion of Poisson equation, we have

I(;,A(u)—lu,A(G)zfud.iﬂg—deZu>—fodvol.
A A A
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On the other hand, letting
Gx) if s<|px<t
G(x) =) if |pxl >1
or(s) if |px| <,

we have

f (VG, Vuy = f (V(G - (1)), Vu) - f (V(G = ¢(s)), Vu)
A B,(0) B, (s)

= _de-Zt + ¢k(t)f dfu - ¢k(s)f dgu
A B,(1) B,(s)
Hence, by .%Z, = f - vol,

1,4(G) = ¢i(1) ()f dvol — ¢i(s) fdvol.
B,(t

P Bp(s)

If we set

Y(1) = (1) - ' (1) = (1) fdvol,

By(7)
then the function

Y(T) + f G fdvol
B}, (1)

is nondecreasing with respect to 7 (for almost all 7 € (0, R)). Indeed, for almost all s < ¢,
w(t) + f Gfdvol —y(s) — f Gfdvol = Ig a(u) — 1, 4(G) + fodvol > 0.
By(1) Bi(s) A

Thus by

) 1 1 vol(Z,) 1
’ H=— 1-n f) - = — . P : ’
¢ (1) S (1) (1 — 2)w,1 n-2 w,-1 H"(dB,(t) C T’;)

we have
GO (1) — Bi(0) fdvol + f G fvol > lim (y(s) + f G fdvol)
B,(1) Bj(1) 50 Bj(s)
1 VolZ))
- ——u(p)
n—2 Wy
By combining this and 4’ (s) = f&B - udvol a.e. in (0, R), we obtain that (4.7) holds for almost
)4

all r € (0O, R).

By combining the Bishop—Gromov inequality on spheres (see [2] or Lemma 3.2 of [22]),
the assumption u > 0 and the continuity of u, we have

4.8) lim inf f udvol > f udvol.
=R JoB,(r) dB,(R)

Therefore, we get the desired result for this case.

Case 2: u is a supersolution of .£, = f - vol.

For each R > 0, let u be a solution of .%;; = f-vol on B,(R) with boundary value condition
u = uon dB,(r). Since .Z5;_, > 0, by maximal principle, we get u(p) < u(p). Therefore, by
applying Case 1 to u, we get the desired estimate. O
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Corollary 4.5. Let M, Q, u and f be as above. If p is a Lebesgue point of f, i.e.,
4.9) fdvol = f(p) + o(1),
B,(R)

then

1 f (P) 2
1< R7).
H @B R) Tf,f) . u(x)dvol < u(p) + — + o(R%)

Proof. By using (4.7), we have
1

4.10 dvol — - R
10 H"1(8B,(R) c T¥) Jas, ) udvol = u(p) < (n=2): 1(2;7) oR).
where
o(R) = f G fdvol — ¢r(R) fdvol
B(R) By(R)
f [ aer-am f [
OB,(s) OB,(s)
Hence, by (4.9), we have
J (R = ~dR) fB fdvol
_ vol(Z,) fo “l(ndr - vol(B,(R)) favol
(I’l - 2)‘”}1 1 n I(R) H”(B(,(R) c T;:l) By(R)
1z R
= Vol (= +0o(R) - (1+o(1))-(f(p)+o(1))
(n—=2)wp-1 n
B vol(Z,)
= P R+ o)
Hence, noting that p(0) = 0, we get
3 vol(Z,) 2 )
(4.11) pR) = 0= Do 2)wn_1f(p) R” + o(R").
Therefore, the desired result follows from (4.10) and (4.11). |

Corollary 4.6. Let M be an n-dimensional Alexandrov space with Ric > (n — 1)k and Q be a
bounded domain in M. Let u be a semi-concave function on Q and f € L*(Q). Then u is a
supersolution of £, = f - vol provided it satisfies the property: for each point p € Reg, and
every sufficiently small ball B,(R) € Q, we have

4.12) ugr —u <0,

where the function ug is the (unique) solution of Dirichlet problem :
L, = f - vol in B,(R)
UR = U on 0B,(R).

In particular, a semi-concave superharmonic function must be a supersolution of the e-
quation £, = 0.
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Proof. Since the singular part of .%,, is non-positive, we need only to consider its absolutely
continuous part Au - vol.

Fix a point p € Reg, such that (4.2) holds and p is a Lebesgue point of f. Since the set of
such points has full measure in {2, we need only to show that Au(p) < f(p).

We set

gr(x) = u(x) — min wup(x) and gr(x) =ur(x) — min wug(x).
x€B,(R) XEBp(R)

Then ggr < gg and gRIaB (R < gRI[,»Bp(R) Noting that the functions gg is nonnegative and
%5, = [ -vol. By Corollary 4.5 and p is regular, we have

@y [ w= T H 08w < Th- @) + 2
B,(R) B,(R)

f (p)

f(p) 2, O(Rz))

< gr(p)- H'" "' (@B,(R) C T}) + =—=R"™" - w,_1 + o®").

On the other hand, since p € Regg,, from (2.15) and (4. 2) we have

AgR(P)
2n

(4.14) fa ( )gR = gr(p) - VOl(@B,(R)) + — =R’ - vol(3B,(R)) + o(R"")
B,(R

for almost all R € (0, 6p), where g is a small positive number. Because p is a smooth point,
Lemma 2.1 implies
4.15) H" Y (8B,(R) C T;) — vol(dB,(R)) = o(R")

for almost all R € (0, 6p).
Now we want to show ggr(p) = O(R). Noticing that (4.12) and the fact that u is locally
Lipshitz (since u is semi-concave), we have

0<gr(p) =u(p)— min ug(x)+ min ur(x) — min wug(x)
x€0B,(R) x€0B,(R) x€B,(R)

4.16 — L~
( ) < CiR+ min ugr(x) — min ug(x).
x€0B,(R) x€B,(R)

Since R is sufficiently small, there exists the Perelman concave function 4 on B,(2R) given
in Lemma 3.3. We have

Lrelflpoh < Lig = Ifllre <
Hence, by applying maximal principle, we have for any point x € B,(R),
UR(x) + || fl=h(x) > min_(ip(x) + || fll=h(x))
x€0B,(R)

> min_ug(x) +||fll~= min_A(x).
x€0B)(R) x€0B,(R)

Since & is Lipschitz continuous, this implies that

min_ug(x) — ug(x) < [|fllz=(h(x) = min_h(x)) < C2R
x€0B,(R) x€0B,(R)

for any point x € B,(R). The combination of this and (4.16) implies

(4.17) gr(p) = O(R).
By combining (4.13)—(4.15) and (4.17), we have
PSR R ol @By (R ~ Loy 1R < OGR) - olR") + o(R™) = o™
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for almost all R € (0, 6p). Hence, Aggr(p) < f(p). Therefore, Au(p) < f(p), and the proof of
the corollary is completed. O

4.3. Harmonic measure. In this subsection, we basically follow Petrunin in [40] to consider
harmonic measure.

Lemma 4.7. (Petrunin [40]) Let M be an n—dimensional Alexandrov space with Ric >
(n — Dk and Q be a bounded domain in M. If u is a nonnegative harmonic function on €,
then for any ball B,(R) € Q, we have

@.18) u(p) > !

> — udvol.
vol(Z,) - 537 (R) JaB,®)

Proof. By the definition, u is harmonic if and only if it is a solution of equation .Z}, = 0. Now
the result follows from (4.7) with f = 0. |

Consider an n-dimensional Alexandrov space M and a ball B,(R) C M. In order to define
a new measure v, g on B,(R), according to [13], we need only to define a positive functional
on Lipo(B,(R)).

Now fix a nonnegative function ¢ € Lipo(B,(R)). First we define a function i : (0,R) — R
as follows: for each r € (0, R), define

u(r) := uy(p),

where u, is the (unique) solution of Dirichlet problem ., = 0 in B,(r) with boundary value
u =@ ondBy(r).

Lemma 4.8. There exists R > 0 such that u(r) is continuous in (0, R).

Proof. From Lemma 11.2 in [6], we know that there exists R > 0 such that, for all x €
B,(R)\{p}, we can find a point x; satisfying

- 99
— > .
/pXx] > 100ﬂ and |pxi| = 2|px|

In particular, this implies, for each r € (0, R), that B,,(r) satisfies an exterior ball condition
in the following sense: there exists C > 0 and 69 > O such that for all x € dB,(r) and
0 < 6 < 6o, the set By(6)\B,(r) contains a ball with radius Cé. Indeed, we can choose
X in geodesic xx; with |[xxp| = 6/3 (with 6 < r/10). The monotonicity of comparison
angles says that Zpxx, > Zpxx; > %ﬂ'. This concludes |px;| > |px| + 6/6. Therefore,
B.,(6/6) C Bx(6)\B,(r).

Since ¢ is Lipschitz continuous on B,(r), Bjorn in [5] (see Remark 2.15 in [5]) proved that

u, is Holder continuous on B, (r).
For any 0 < r| < rp, < R, by using maximum principle, we have

r) —u(r)| < max |u,(x) —u,(x)] = max X) — Uy, (x)|.
|u(ry) — pu(r2)| xeaBP(rl)l r () = tpy (X)) xeaBpm)l(’O() r (0

By combining with the Holder continuity of ¢ and u,,, we have that |u(r;) — p(r2)] — O as
ry —r; — 0%. Hence u(r) is continuous. O

Remark 4.9. If p is a regular point, then the constant R given in Lemma 4.8 can be chosen
uniformly in a neighborhood of p.
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Indeed, there exists a neighborhood of p, B,(Ry) and a bi-Lipschitz homeomorphism F
mapping B, (Ro) to an open domain of R" with bi-Lipschitz constant < 1/100. Then for each
ball B,(r) C B,(Ry/4) with r < Ro/4 and x € dB,(r), let X € R" such that

W F(x)| = |[F(@F(x)] and |[x'F(g)l = |F(@)F(x)| + |F(x)x'| = 2|F(@)F (x),

we have

e 99 ) 99 \2 ) 101
gF ' () > —=|F(@)x'| > 2(—) |xql ~ and  |¥F)|<(—

2
100 100 o) el
Hence, it is easy check that B,(r) satisfies an exterior ball condition as above (the similar way
as above). Therefore, the constant R in Lemma 4.8 can be choose Ry/4 for all g € B,(Ro/4).

Now we can define the functional v, r by

R
fo sy Lu(rydr

fOR sz_ldr ‘
From Lemma 4.7, we have u, > 0, and v, r(¢) > 0. Hence, it provides a Radon measure on
B,(R). Moreover, it is a probability measure and by (4.18),

Vp,R(‘;D) =

S vol
R~ — — ;.
H"(B,(R) C T%)

Let u be a harmonic function on Q. Then for any ball B,(R) € Q, we have

(4.19) V.

(4.20) u(p) = f u(x)dvp g.
B,(R)

The following strong maximum principle was proved in an abstract framework of Dirichlet
form by Kuwae in [25] and Kuwae—Machiyashira—Shioya in [19]. In metric spaces support-
ing a doubling measure and a Poincaré inequality, it was proved by Kinnunen—Shanmugalingan
in [18]. Here, by (4.20), we give a short proof in Alexandrov spaces.

Corollary 4.10. (Strong Maximum Principle) Let u be a subharmonic function on a bound-
ed and connected open domain €. Suppose there exists a point p € CQ for which u(p) =
SUp cq U. Then u is constant.

Proof. Firstly, we consider u is harmonic. By (4.19)—(4.20) and that v, ¢ is a probability
measure, we have u(x) = u(p) in some neighborhood B,(R). Hence the set {x € Q : u(x) =
u(p)} is open. On the other hand, the continuity of u implies that the set is close. Therefore,
itis Q and u is a constant in Q.

If u is a subharmonic function, the result follows from the definition of subharmonic and
the above harmonic case. O

The following lemma appeared in [40] (Page 4). In this lemma, Petrunin constructed an
auxiliary function, which is similar to Perelman’s concave function.

Lemma 4.11. (Petrunin [40]) For any point p € M, there exists a neighborhood B,(r;)
and a function hy : B,(r2) — R satisfying:

(i) ho(p)=0;

(ii)) 2, = 1-volon B,(r);

(iii) there are 0 < ¢ < C < oo such that

¢ |px? < ho(x) < C - |px.
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Proof. A sketched proof was given in [40]. For the completeness, we present a detailed proof
as follows.

Without loss of generality, we may assume M has curvature > —1 on a neighborhood of p.
Fix a small real number r > 0 and set

a+btr " + 12 t<r
é() =
0 t>r,

where a = —#rz and b = ﬁrn.
Take a minimal set of points {q(,}g:l such that |pg,| = r and minj<,<n 2(&, TZ‘Y < 7/10 for
each direction ¢ € X,. Consider
N
ho(x) = ) ha
a=1

where h, = ¢(|qqx]). Clearly, ho(p) = 0. Bishop—Gromov volume comparison of X, implies
that N < c(n), for some constant depending only on the dimension #.

Fix any small 0 < 6 < r. For each x € B,(6)\{p}, there is some g, such that (T, TZ"
) < n/10. When § is small, the comparison angle Zxq,p is small. Then Zg,xp > %n. This
implies that |V,dist,, | > 1/ V2, when § is sufficiently small.

Fix any @. Since the function —A, is semi-concave near p, the singular part of .}, is
nonnegative. We only need to consider the absolutely continuous part Ah,. By Laplacian
comparison theorem (see [51] or [22]) and a direct computation, we have Ah,(x) > —C¢ a.e.
in B,(6) and Ah,(x) > n—C¢ at almost all points x with |V dist, | > 1/ V2, where C denoted
the various positive constants depending only on n and r. Indeed, since r — 6 < |gox| < 7+,

Aho(x) = ¢' (o)) - Adisty, (x) + " (Igax)Vdisty,

n

= 2lgqxl - (1 -

) Adisty, (x) + 2(1 + (n— 1)

) (Tq_xl| + Clgax)
a

|V dist,, |
IGaxl" Iqaxl") B

rl’l

lgox|"

> 2lgaxl- (1 -
" 2
+2(1+(n—1)—) - |V,dist,,|

( IqQXI") e

B
> —Cy— +2n - |Vydisty, .
r

On the other hand, at the points x where Z(77, TZ“) < /10 and |px| < |pgql/10, we have
r—|pxl < |gox| <7 —|px|/2.
Hence, by applying ¢’(r) = 0 and 2n < ¢”(¢) < 2n - 2" for all r/2 <t < r, it is easy to check
that there exists two positive number ¢, C; depending only on »n and r such that
c1 - Ipaf® < ha(x) = @(lgax]) < Ci - |paf?

if r — |px| < |gox| <7 —|pxl/2.
Therefore, we have (since for each x € B,(6)\{p}, there is some g, such that Ah,(x) >
n—Cd.)
Ahg>n—-N-Cé on By(9)
and
c1 - |pal® < ha(x) = ¢lgaxl) < N - C1 - |paf.
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By N < c(n) for some constant c(n) depending only on the dimension 7, if 6 < (C - ¢!, the
function A satisfies all of conditions in the lemma. |

Remark 4.12. If p is a regular point, then the constant r, given in Lemma 4.11 can be chosen
uniformly in a neighborhood of p. Indeed, in this case, there exists a neighborhood of p
which is bi-Lipschitz homeomorphic to an open domain of R with an bi-Lipschitz constant
close to 1. The constant r and ¢ in the above proof can be chosen to have a lower bound
depending only on the bi-Lipschitz constant.

Proposition 4.13. (Petrunin [40])  Given any p € Q and A > 0, there exists constants R,
and c(p, A) such that, for any u € WH(Q) N C(Q) satisfing £, < A - vol on Q, we have

4.21) f udvy g < u(p) +c(p, ) - R*
B,(R)

for any ball B,(R) € Q with 0 < R < R, where the constant c(p,1) = 0if 1 =0.

Proof. This proposition was given by Petrunin in [40] (Page. 5). For completeness, we give
a detailed proof as follows.

Case 1: 1=0.

For each r € (0, R), let u, be the harmonic function on B, (r) with boundary value u, = u
on dB,(r). Then Z,—,, < 0and (u—u,)lyp,) = 0. By applying maximum principle, we know
that u — u, > 0 on B,(r). That is, by the definition of u(r), u(r) < u(p). Therefore, by the

definition of v, g, we have
f udvy g < u(p).
By(R)
Case 2: 1> 0.

Let hg be the function given in Lemma 4.11, we have .Z,_y,, < 0 on B,(r2), where r; is
the constant given in Lemma 4.11. Hence, we can use the case above for function u — Ahy.
This gives us, by Lemma 4.11,

u(p) = u(p) — Aho(p) > f

(u = Ahg)dvy g > f udv,g —C -1+ R?
B,(R)

By(R)

for all 0 < R < rp, where C is the constant given in Lemma 4.11. O

Remark 4.14. 1f p is regular, according to Remark 4.9 and Remark 4.12, the constant R, can
be chosen uniformly in a neighborhood of p.

The following lemma is similar as one appeared in [40] (Page. 10).

Lemma 4.15. (Petrunin [40])  Let h be the Perelman concave function given in Lemma 3.3
on a neighborhood U C M. Assume that f is a semi-concave function defined on U. And
suppose that u € wh2(U)n C(U) satisfies £, < A-vol on U for some constant A € R.

We assume that point x* € U is a minimal point of function u + f + h, then x* has to be
regular. Moreover, f is differentiable at x* (in sense of Taylor expansion (2.16)).

Proof. Without loss of generality, we may assume that 4 > 0. In the proof, we denote
B,+(R) (c U) by Bg. From the minimum property of x*, we have

(4.22) f (u+f+hdvyr > u(x") + f(x*) + h(x").

Bg
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By Proposition 4.13, we get
(4.23) f udvpg < u(x*) + cR?
Bg

for some constant ¢ = ¢(p, A) :and for all sufficiently small R.
On the other hand, setting 4 = f + h, we have

_ _ - - vol

424 = h(x* — R(x* -
(4.24) fB R hdv,g = h(x*) + fB R(h h(x ))d(v,,,R Hn(B,k,(R)))
N — h— h(x* 1
F R Jp MO

= h(xX*) + J, + Ja,
where Bj(R) is the ball in T}.

Because i = f + h is a Lipschitz function and H‘,'f()gf(’;g)) =1+ o(1), we have
vol vol(Bg)
(4.25) 1711 < O(R) - f 1d(vpr = —————) = OR)- (1 - —
Bk H"(B,(R)) vol(B,(R))
Since h = f + h is semi-concave, according to equation (2.7), we have

B vol(B,(R))

> HBYR) Jb

_ vol(Bg) ( nR

 H"(BY(R))

_ ”le Ay FE)E + o(R)
e

n+

(h — h(x*))dvol

(4.26) JC deh(E)dé + o(R))

n+1 P

By combining (4.22)—(4.26), we have

"R JC dh(E)dE + o(R) + cR® > 0.
5

n+1

By combining with Proposition 3.1,
fz de hE)de = fE dy fE)E + fz de h@)dé <0,
we have 4
fz dy () = fz Ao h@)dE = 0.

Then by using Lemma 3.3 (iii), we conclude that x* is regular.
Next we want to show that f is differentiable at x*.
Since x* is regular, we have

J, weroa= [ @rodw=o
Hence
Jo s -eromue= | aerede=o
On the other hand, by the definition of V,- f (see Section 1.3 of [39]), we have
dy f(&) < (Ve f, 6) Ve

) = o(R).

27
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The combination of above two equation, we have

de f(§) =(Vuf.§)  VEEZy.

Combining with the fact x* is regular, we get that f is differentiable at x™. O

We now follow Petrunin in [40] to introduce a perturbation argument. Let u € W'-2(D) N
C(D) satisfy %, < A - vol on a bounded domain D. Suppose that xq is the unique min-
imum point of # on D and u(xp) < minegp u. Suppose also that xq is regular and g =
(g1, &2, -+ gu) : D — R" is a coordinate system around xq such that g satisfies the fol-
lowing:

(i) g is an almost isometry from D to g(D) c R" (see [6]). Namely, there exists a suffi-
ciently small number dg > 0 such that

Ig(x) — g0l
|xyl
(ii) all of the coordinate functions g;, 1 < j < n, are concave ([34]).

Then there exists € > 0 such that, for each vector V = (v',v2,--- ,v") € R* with W/| < € for
all 1 < j < n, the function

1| < 8y, forall x,yeD, x#y;

GV, x) :==u(x) +V-g(x)

has a minimum point in the interior of D, where - is the Euclidean inner product of R" and
Vg = S, vig ().
Let
U ={VeR": W|<e, | <j<n cR.
We define p : % — D by setting p(V) to be one of minimum point of G(V, x). Note that the
map p might be not uniquely defined.

The following was given by Petrunin in [40] (Page 8). For the completeness, a detailed
proof is given here.

Lemma 4.16. (Petrunin [40]) Let u, xg, {g j};f: , and p be as above. There exists some
€ € (0, &) and 6 > O such that

(4.27) W)W 26-IIV-WI  VV,We%".

where

Ut ={V=vy ) eR": 0<1/ <e forall 1< j<n).

In particular, for arbitrary € € (0, €), the image p(% ) has nonzero Hausdorff measure.

Proof. Without loss of generality, we can assume that 4 > 0.

Since x is a regular point, according to Remark 4.14, the mean value inequality in Propo-
sition 4.13 holds uniformly on some neighborhood of xy. Namely, there exists neighbor-
hood U,, > x¢ and two constants Ry, co such that for any w € WL2(D) n C(D) satisfying
%, < A-vol, we have

(4.28) f wdvyr < w(g) +co - R
B,(R

forall g € Uy, and all R € (0, Ry).
Noting that G(V, x) = u(x) + V - g converges to u as V — 0, and that x¢ is the uniquely
minimal value point of u(x), we can conclude that p(V) converges to xy as V — 0. Hence,
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there exists a positive number € > 0 such that p(V) € U,, provided V = !, ,v") satisfies
[v/| < e for all 1 € j < n. From now on, we fix such € and let

U ={V=,va-,vm)eR": 0<1/ <€ forall 1<j<n).

Let V, W € % . Denote by p := p(V) and p := p(W). That means
G(V,p) <G(V,x) and G(W,p) < G(W,x)
for any x € D. Hence, we have

(4.29) W=V)-g(0) = (W=V)-g(x) = GW,p) - G(V,p) - GW, x) + G(V, x)
<GV, x)-G(V,p)
<SGV, x) - GV, p).

Notice that v/ > 0 and g ;j are concave for 1 < j < n. We know that G(V, x) = u(x) + V - g(x)
also satisfies -Z5(v,x) < 4 - vol. By the mean value inequality (4.28), we have

(4.30) R ER e
By(R)

for any 0 < R < Ry. We denote ¢, := max{¢, 0} for a function ¢. It is clear that (¢ + a); <
¢+ +|al for any a € R. By combining this and the assumption that g is an almost isometry, we
have

f (W=V)-glp)-(W-V)-g(x),dvpr
By(R)

< fB (W=V)-g()—(W=V)-gx),dvpr

,(R)
+|(W=V)-glp)—(W-V)-g(p)
< f (W=V)-g(p) = (W-=V)-g(x)),dv,r
B,(R)
+llg(o) — g@Il - IW = V||

< fB ® (W =V)-g(@) — (W=V)-gx)),dvpr +c1 - lopl - W = VI,

(4.31)

where constant ¢; depends only on Jy.
Consider the set

R
K:={XeR"| 7 <IIX - gl <

(S R="

1
» (X =g(p) - (W=V) < =5 lIX = gl - IV - WIi}.

In fact, K is a trunked cone in R" with vertex g(p), central direction —W + V + g(p), cone
angle % and radius from § to %.



30 HUI-CHUN ZHANG AND XI-PING ZHU

Since K C Bg(,)(R/2) and g is an almost isometry with ¢ sufficiently small, it is obvious
that g‘l(K) C B,(R). Hence, we have

f (W=-V)-g(0) - (W=V)-g(x), dvpr
By(R)

> f (W= V) (5(0) - 8()), dvo
(4.32) g

1
> 2IW - VIl f l2(0) - gOlldvz
g 1K)

R _
> 2 IW = VIl vk(g L(K)).

By the estimate (4.18) and that g is §p-almost isometry, we have

vol(g~!(K))

4. K> —2 2 >
(433) sl K0 > o e 7

for some constant c¢; depending only on ¢ and the dimension #n, the lower bound k of curva-
ture.
By combining (4.29)—(4.33), we obtain

(&) -R
W = VI < etlopl - IW = VI + coR?

forany 0 < R < Ry. We set

(4.34) N="2 0
coRo
Since ||V — W|| < ne, we get
, - lV-W]|
R = ——— < Ry/10.
10cy - N of
Then we have
2 2
R’ L EV=WR,1
. ||V =W| = ||V =W| = coR* = - — .
c1 - lopl - IV = W] IV = Wil - co ey (5~ Tom)

Now the desired estimate (4.27) follows from the choice of
2

(4.35) S = “
' " 400c - ci N’
Therefore, the proof of this lemma is completed. ]

5. HAMILTON—JACOBI SEMIGROUP AND BOCHNER TYPE FORMULA

5.1. Hamilton—Jacobi semigroup. Let M be an n-dimensional Alexandrov space and 2 be
a bounded domain of M. Given a continuous and bounded function # on Q, the Hamilton—
Jacobi semigroup is defined by

|X)’|2}

Quu(x) = inf u(y) + ==

t>0
2 g

and Qou(x) := u(x). Clearly, Q;u is semi-concave for any ¢t > 0, since u(y) + | - y|2 /(2¢) is
semi-concave, for each y € Q. In particular, Q,u is locally Lipschitz for any ¢ > 0.
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If |xy| > V4t||u||z~, then

|xyl?
u(y) + 2_1‘ > u(y) + 2|ullze = llullze.

On the other hand, Q;u(x) < u(x) < ||u||z~. We conclude that

. |yl
Qu(x)= _inf Ju(y) + —1,
' yeBx(C)mQ{ 2t }
where C = v4tu||~. Therefore, for any Q' € Q, there exists 7 = £, ||ul|.~) such that
. |yl
(5.1) Quu(x) = min {u(» + = |

forall xe @’ and0 <7< 1.
For convenience, we always set u, := Q,u in this section.
The following was shown in [30] in framework of length spaces.

Lemma 5.1. (Lott—Villani [30]) (i) For each x € ', we have inf u < u;(x) < u(x);
(ii) limy o+ u; = u in C(QY);
(iii) For any t, s > 0 and any x € ', we have

(52) 0 < 1(X) — () < % . Lip%u;,

where Lipu, is the Lipschitz constant of u; on Q' (see [8] for this notation.);
(iv) For any t > 0 and almost all x € Q’, we have

(5.3) lim Urs(X) = ur(X) _ _IVMz(X)I2
) s—0+ t 2 '

The following lemma is similar to Lemma 3.5 in [3].

Lemma 5.2. Lett > 0. Assume u, is differentiable at x € Q. Then there exists a unique point
y € Q such that

|yl
(5.4) (%) = u(y) + 2L
t
Furthermore, the direction T, is determined uniquely and
(5.5) lxyl- Ty= =t - Vuy(x).

Proof. Now fix a regular point x. We choose arbitrarily y such that (5.4) holds. Taking any
geodesic y(s) : [0, €) —» M with y(0) = x, by the definition of u, and (5.4), we have

by ol
2t 2t

If x =y, we have Vi, (x) = 0. Hence equation (5.5) holds.
If x # y, by using the differentiability of ; at x and the first variant formula, we have

(5.7 ur(y(5)) = u(x) + daa(y'(0)) - s + 0(s)

and

(5.6) ur(y(s)) — u(x) <

by®F ol ol

5.8 <
(5-8) 2t 2t t

(15 7(0)) - s+ o(s)
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for any direction 7>, from x to y. By combining (5.6)—(5.8), we have

dany O) < -2 (1 0)

for all geodesic y with y(0) = x. For each ¢ € X, we take a sequence geodesics () starting
from x such that y’(0) converges to &. Then we have

(5.9) dau® < -2 (1)

forall £ € X,.
Since u, is differentiable at x, we know that the direction —¢ exists and d u(—¢) = —d u(¢).
By replacing £ by —¢ in the above inequality, we obtain

Vuy(x) = —@ -

The left-hand side does not depend on the choices of point y and direction of 7%. This gives
the desired assertion. m|

For each t > 0, we define amap F, : Q" — Q by F;(x) to be one of point such that
|XF t(x)l
2t

(5.10) u(x) = u(F(x) +
According to the Lemma 5.2 and Rademacher theorem ([8, 3]), we have, for almost all x € ',
(5.11) [xF(x)| =t [Vu,(x)|.

By Lemma 5.2 again, F; is continuous at x, where u; is differentiable (since the point y
satisfying (5.4) is unique). Then F; is measurable.

In [40], Petrunin sketched a proof of his key Lemma, which states that, on an Alexandrov
space with nonnegative curvature, u, is superharmonic on Q' for each r > 0 provided u is
supersolution of .Z), = 0 on Q. The following proposition is an extension.

Proposition 5.3. Let M be an n-dimensional Alexandrov space with Ric > —K and Q be a
bounded domain of M. Assume thatu € W 2(Q)NC(Q), f € L™(Q) is upper semi-continuous
for almost all x € Q and

Z, < f-vol

in the sense of measure. Then, for any Q' € Q, these exists some to > 0 such that for all
0 <t < ty, we have

n(a — 1)2

(5.12) &Ly <|foF+ (a +a+ 1)|Vu,*] - vol

on QY forall a > 0.

Proof. We divide the proof into the following four steps.
Step 1. Setting up a contradiction argument.

Since, for almost all x € Q, f is upper semi-continuous and |xF,(x)| = #Vu,(x)|, it is
sufficient to prove that there exists some ¢y > 0 such that for all 0 < ¢ < ty, we have

12
(5.13) a- %, <[ sup f(z)+u

K
+ (@ +a+1)- |xF(x)P +6] - vol
ZEBFt(x)(O) t 3t

on Q' foralla > 0andall 8 > 0.
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Foreacht> 0,a > 0and 8 > 0, we set

2
(5.14) a* wiap(x) = sup  f(z)+ ma- 17, (a +a+ 1) [xFi(x)l* +6.
Z€BF,(0(0) !

Foreacht > 0, a > 0 and 0 > 0, since u, is semi-concave, |Vi;| € L*(Q") and hence,
we have w;,¢9 € L™(Q’). Noting that u, is semi-concave again, it is sufficient to prove that
u, satisfies the corresponding comparison property in Corollary 4.6 for all sufficiently small
t>0.

Let us argue by contradiction. Suppose that there exists a sequences of #; — 0" as j — oo,
a sequence a; > 0 and a sequence 6; > 0 satisfying the following: for each #; ,a; and 6;, we
can find p; and R; > 0 with a;R; + R; — 0" and B, (R;) € €', such that the corresponding
comparison property in Corollary 4.6 is false. That is, if the function v; is the solution of
equation

Ly, = Wi a9, - VOl
in By (R;) with boundary value v; = —u;; on 9B, (R;), then the function u;, + v; has a mini-
mum pomt in the interior of B, J(R)) and
xeg,l,lge )(u[ +vj) < m;r%R (u,J +Vvj).
We call this case that u;; + v; has a strict minimum in the interior of B (R)).

Since Q' is bounded, we can assume that some subsequence of {p ]} converges to a limit
point p.. Denote the subsequence by {p J}]:1 again. So we can choose a convex neighbor-
hood U € Q of p., and a Perelman concave function 4 on U given in Lemma 3.3. Since u is
bounded, by |[xF ()P < 4t|ull =), we have [xF;,(x)] — 0 as j — oo uniformly on Q’. Now
we fix some j* so large that

Bpj* (aj*Rj* + Rj*) U BF’,‘* (pj*)(aj*Rj»« + Rj*) cU
and Fy,(x) € U forall x € B, .(aj-Rj + Rj).

Step 2. Perturbing the functions to achieve the minimums at smooth points.

From now on, we omit the index j* to simplify the notations.

Let x| be a minimum of u, + v in the interior of B, (R). Because / is 2—Lipschitz on U, for
any sufficiently small positive number ¢, the function

u; + v+ eh

also achieves a strict minimum at some point X in the interior of B,(R). Noting that u; is semi-
concave and wy, ¢ is bounded and %, < —wy ¢ - vol, according to Lemma 4.15, we know X
is regular and that u, is differentiable at X. Now we fix such a sufficiently small ¢.

On the other hand, according to the condition Ric > —K and Laplacian comparison (see
[51] or [22]), we have .,%mz < c(n, K, diamQ). Thus, by the fact & is (—1)-concave, we can
choose some sufficiently small positive number €, such that

Lenreyaip < 0.
Setting vo = v + €h + e(’)lxilz, we have that the function
w+vo=u, +v+eh+ e(’)lx)'cl2
achieves a unique minimum at x and
Ly =4+ 2, ohrellxil? S L, = —Wiap - Vol
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Consider function

_ |yl
H(x,y) = vo(x) + u(y) + R (x,y) € QX Q.
Then it achieves a unigue strict minimum at (X, F;(X)) € B,(R) x U. Indeed,

|XF (%)

2t
Since x is a regular point and u, is differentiable at X, by Lemma 5.2, the point pair (X, F;(X))
is the unique minimum of H in B,(R) x U.

H(x,y) 2 u(x) + vo(x) > uy(X) + vo(X) = u(Fy(¥)) + +vo(%) = H(X, Fi(X)).

Applying the fact that % is 2-Lipschitz on U, we know that, for any sufficiently small
positive number €,

2
Hi(x,y) :=vi(x) + ui(y) + %

also achieves its a strict minimum in the interior of B,(R) X U, where
vi(x) = vo(x) + €1(x) and  ui(y) = u(y) + €1ha(y).

Let (x*,y*) denote one of minimal point of H.
By the condition Ric > —K and Laplacian comparison (see [51] or [22]), we have

Lwp < c(n, K,diamQ) and ,%yy*|2 < c(n, K, diamQ).

Since )
|xy"|
Hi(x,y") = vo(x) + u1 (%) + o
is continuous and w; 4 ¢ is bounded, we know that

c(n, K, diamQ)
o < (- i e T <A
v0+u|(y*)+"‘y2,'2 (—Wiap + o )-vol < A-vol

+ €] h(x)

on Bj(R) for some constant A € R and H;(x,y") has a minimum at x*. By Lemma 4.15, we
know that x* is regular. The point y* is also regular, by the boundness of f and the same
argument.

Let v2(x) = vi(x) + e)xx*|?> and ur(y) = u1(y) + e|yy*|*> with any positive number €. Then

2
Hy(x,y) := va(x) + uz(y) + %
achieves a unique minimum point (x*, y*).

Since (x*, y*) is regular in M X M, now we choose one almost orthogonal coordinate system
near x* by concave functions g1, g2, - -+ , &, and another almost orthogonal coordinate system
near y* by concave functions g1, gn+2,* -+ » &2, Using Lemma 4.16, there exist arbitrarily
small positive numbers by, b, - - , by, such that

n 2n
Ho(x,3) + ) bigi() + ) bigi(y)
i=1 i=n+1
achieves a minimal point (x°,y”) near point (x*,y*), where (x°,y”) satisfies the following
properties:
(1) x() ;é y();
(2) x?1is adisty-regular point and y° is a dist.-regular point (hence, they are smooth);
04,0

(3) geodesic x°y° can be extended beyond x° and y°;
(4) y°is aLebesgue point of f;
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(5) x?isaLebesgue point of wy,;

(6) x°is aLebesgue point of A(Ixy”lz) and y° is a Lebesgue point of A(lx”ylz),
where A(lxy°?) (or A(Ix°y|?)) is density of absolutely continuous part of Lyop (Or Lo
resp.).

Indeed, let A be the set of points satisfying all of conditions (1)—(6) above. It is easy to
check that H2"((Bp(R) X U)\A) = 0. By applying Lemma 4.16, we can find desired (x°, y°).

Set

Y2

n 2n
B =@+ ) big(®)  and () =wO)+ ) bigi).
i=1 i=n+1
Then
oyl?

H3(x,y) = v3() + u3(0) + —-~

has a minimal value at (x°, y°).

Step 3. Ricci curvature and second variation of arc-length.

Lety : [0,5] — U be a geodesic with x°,y° € y\{y(0), ¥(5)}. Put x* = y(z,) and y° = y(z,)
with 0 <7, <1, < 5. Assume that some neighborhood of y has curvature > ko, for some ko €
R. For each 7 € (0, 5), the tangent cone T, can be split isometrically into Ty = R X L.
We denote

Aypy = Zy N Ly = {€ € Zyp) ' (€7y) =0}

Fix an arbitrarily small positive number e3. According the definition of M having Ricci
curvature > —K along geodesic y (see Definition 2.6), for each 1y € [z,,1,], there exists an
open neighborhood 1;, > fy and a family functions {g)’(l)}f€1z0 such that {g)’(l)}f€1z0 satisfies
Condition (RC) and

(5.15) n-1)- f gy@OdE> -K -5, Viel,.
Ay

It is shown in [51] that
(5.16) lgy] < C, Yt el

for some constant C depends only on the distance |x°y(0)|, [y’y(5)|, |/;,| and the lower bound
ko of curvature on some neighborhood of y. For completeness, we recall its proof as follows.
Since the family {57(1) = ko} satisfies Condition (RC) (see Remark 2.7), we can assume that

&y(r) = ko. Otherwise, we replace gy() by gy() V ko. On the other hand, for any g1, q> € I I,
with |g1q2| > |I;]/2, letting isometry T : X, — X,, and sequence 6; be in the definition
of Condition (RC) (see Definition 2.5), by applying equation (2.17) with [y = [, = 1 and
(&,7") =0, we have

lexp,, (6j€) exp,,(6,TE)| < lq14al = 84,€) - lq1qal - 53/2 + 0(57).

By the concavity of distance functions dist, ) and dist,s, we get
[7(0) exp,, (6] < [¥(0) g1l + Cry yoye) - 67
and

Y(5) exp,, (5;TE| < (3 qal + Crg y(srye) - 67-
Combining with triangle inequality

|expg, (06) exp,, (6;TE)N > [y(0) y(5) = [¥(0) exp,, (6,6 - [v(5) exp,, ;T
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we can obtain

2
841() < ——— (Cho yo)x| + Croly@ye) < 777 * (Coo y0)0l + Chg.ly(wye)-
lg142] 17|
All of such neighborhood I, forms an open covering of [y, #y]. Then there exists a sub-
covering Iy, Ip, - -+ , Is. Now we divide [z, #,] into N-equal part by
X0 = X%, X1, Xyttt XN = XN
We can assume that any pair of adjacent x,,, X,,+; lying into some same /,, a € {1,2,---,S}.

By Condition (RC), we can find a sequence {6} and an isometry T : X, — X, such that
equation (2.17) holds. Next, we can find a further subsequence {01 ;} C {0;} and an isometry
an isometry 7 : X, — ZX,, such that equation (2.17) holds. After a finite steps of these
procedures, we get a subsequence {oy_1;j} C -+ C {01;} C {0;} and a family isometries
Ty :Zy, — Z,., such that, foreachm =0,1,...,N -1,

Xm+1
lexp,, (On-1.jl1.méEm)s €XPy,  (ON-1,jl2.mTmém)|
<|xXpXme1] + (IZ,m - ll,m) <§m’ )") : 5N—1,j

((llm - lZ,m)2 _ gxm(é‘:;) X Xm+1l
2|xmxm+1| 6

B+ i o + )
(1= Emy'Y) 00y
+0(0y_1 ;)

for any [y, b, > 0 and any &, € Xy,
Denote the isometry 7' : £, — X0 by

T:TN_1 O-"OT1 OT().
It is can be extend naturally to an isometry 7' : Ty — Tyo.
We fix a > 0 and

am:%-(l—a)+a, m=0,1,--- ,N—1.

We have a,, > 0, and ap = a,ay = 1.
To simplify notations, we put {6;} = {6ny-1,;} and denote

W:{veTxO|ave7/xa and Tv e W}

Claim 1: We have

f (Iexp.o(an) expy (T — x°y°*)dH" ()
B, ()0 W

(5.17) < Wl e
n+2) /
+0(87?).

2 (K +63)- |xoy0|2
3n

(a-a

-(a2+a+1))
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By applying Condition (RC), we have

|eXme(5jam - bém), eXme+1(5jam+1 D&m+1)|
4 ,
<y T @ne1 = an) - b(EY) -6
N : (am - am+l)2 _ gxm(é:;) : f

Ll 20 6N
(1-¢&v)) -6
+0(57)

2 2
@yt am - apm + am+1))

for any b € [0, 1] and any & € X, where £ = |xoxy| = |x°y°| and

Em:=TmoTy-10---0Toé.

Hence, by combining the triangle inequality, we have

lexp,,(6jao - bE), exp,, (d ay - DEN)I

2 2
(@, + am - Ay + am+1))

N-1
< > lexpy,, (8jam - bém), expy,,., (O jamet - bmin)l
m=0
<C+(ay —ao) (€. Y b+ 6
e NZ‘ (Mo~ R S G R
L 20 6N

(1=¢&v))- 6

+ 0(53)

for any b € [0, 1]. This is, by setting v = b¢,

(5.18)

| exp . (0;av), e:xpyo((Sij)l2 - Ixoyol2

2 =-a)(v,y)-8;+ (1 —a)* (n,y) - &

—_

N—
— 3N

(WP =y )- 65
+0(67)

for any vector v € B,(1) C Ty,.
Let .7 j(v) be the function defined on B,(1) C T, by

Fi(v) = |expy(d;av), expyo((Sij)l2 .

g, (&) - £
(N am = a1 = FES e (ap, + - e + )

—20-(1-a) (v, ¥y 8;— (1 —a (v.y/')* - 63

N-1 1L 2
8xn(&n) - €

- z :(N (am _am+1)2 —2mom
3N

m=0

(P = )?) - 6.

2 2
(ay, +am - a1 + am+1))

37
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For any v € B,(1), we rewrite (5.18) as

lim sup .%(v)/67 < 0.

]—)OO

Next, we will prove that .7 ;(v)/ 6? has a uniformly upper bound on B,(1). Take the mid-
point z of x° and y°. By the semi-concavity of distance function dist,, we have

|z expy(d; - av)| < |z2x°| —a{v,y") 6 + Ciy jxoye| - 65
and
|z expyo (8 - Tv)| < |zy’| +{Tv,¥") 6 + Ciy jxoye| - 63.
By applying triangle inequality, we get
lexp,o(8; - av) expyo(8; - T < [x%Y°| + (1 = @) (v, ¥') 6 + 2Ciy proye) - 67
Hence
| exp (8 - av) expyo(8; - TP =[xy <20 (1= a)(v,y')6; + (4C* + (1 - a)’) - 67.

By combining with the boundness of g, (i.e., equation (5.16)), we conclude that .7 ;(v)/ 65 <
C.
Now, by applying Fatou’s Lemma, we have

F; F;
lim sup f ! EV) dH"(v) < f lim sup ‘/SV) dH"(v) < 0.
j—oo B,(1) 6] By(1) j—ooo 6]

That is,

f (Iexpo(6;av). expo(8; TV = [x*y’I*)dH" (v)
By(1)

<20-(1-a) v,y YdH"(v) - §; + (1 —a)zf (.Y dH"(v) - 6°
B,y (1) B,y(1)

N-1
+ > (N @ = ame)- f (WP = (v,y)? JaH" () - &5
(5.19) m=0 B,(1)
N-1

2 2
- Z(am + Ay Apy1 + a4, )
m=0

e (o8 - P a3
By(1)
+0(57).
Since x° is regular, we have

f v,y )ydH"(v) = 0,
B,(1)

N2 1 f 2
v, dH"(v) = - VI*dH"(v) =
L0(1)< v n Jp, n(n+2)

Wp-1

and

2 7\2 n _ u 2 n _ (n - 1)(,4)”_1
Lo(l)(lvl My )dH ) = - fBﬂ(]) V|*dH" (v) = ETYO
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where w,_; = Vol(S"™).
By equation (5.15), and denoting &, = (&;;,,6) C X, the spherical suspension over A, , we
have

[ ente- (e - 6y Jar e

Xm

f (1 = cos? O)gs, (EDH" ()

Xm

:f f sin” g, (&5) - sin”2 0dH"(£5)d6
0 Ay,

_ f " sin” 6d6 f g EDAH™(EL)
0 X

m

g -K-¢€ K+e

. 3 3

> f sin” 6d0 - Wpy = — Wy—1-
0 n—1 n

Hence, we have

f g, &n) - (M = (v, 7)) )aH" ()

B,(1)

1
fo r fz 2en&n) - (Enl® = € ¥')? ) - P dH" &)y

2 "2 n—1
n+2 Lxm gxm('frt) : (l‘fml - <§m77 > )dH (fm)

K+ e
— Wy—
nn+2) !

Putting these into (5.19), and combining with a1 — a,, = 1%“ we have

f (1exp,o(8jav), expyo(8;TV)* = X7y )dH" (v)
B,(1)
Wn-1 2
nn+2) /7
(n = Dwy-1 52
nn+2) J

<(1-a)

N-1
DU(RTETEE % @+ - e + )
+0(67)
Wi
== )2 n(nn+12) 5
(n= Dot o NZI (= ? CE+e) G- afn)
nn+2) J o N AN(n—-1) a1 — anm
+0(57)

(K + &)
3n

_ Wp-1 62 ((1 _a)z +

w2 (@ +a+ 1)) + 0(6?).
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By setn = vd;, we have

[ (1expetan. expornl - by P)arra
(5.20) 50D

2
C()n_l 2+n 2 g (K + 63)
< Lo (1 = e Ca
iy 5 (00—
Since x? and y° are smooth, by (2.4) in Lemma 2.1, we have

Hn(Br)(dj)\W) = 0(57“).

(a*+a+ 1)) +0(8"?).

On the other hand, by triangle inequality, we have
|| exp o (an), exp,o(T)* - 1x°y°P|
< (lexpyo(an), expyo(Tn)l +1x°y°)) - (alnl + [T7)
< Co;
for all y € B,(0;).
Now the desired estimate (5.17) in Claim 1 follows from above two inequalities and equa-
tion (5.20).

Step 4. Integral version of maximum principle.
Let us recall that in Step 2, the point pair (x°, y°) is a minimum of H3(x,y) on B,(R) x U.
Then we have

0

N

f (H3(exp.o(an), expyo(Tm) — Hs(x",y))dH" (m)
B,(nny
= [ (a(exptam) - v atrap
B,(rn¥
(5:21) b [ (e ) = wo")a )
B,(nn¥W

dH"(n)

N f | exp o (an) exp o (T)I* =[xy
B,(nnW 2t
= 1(r) + L(r) + I(r),

where # ={veTy |ave#w and Tve W)
By the condition Ric > —K and Laplacian comparison (see [51] or [22]), we have

Lvop < c(n, K,diamQ) and  Zj0p < c(n, K, diamQ).

Claim 2: We have
—€1 +C- € —Wia(x?)

(5.22) L(r) < T a* - a1 + o(r"?)
and
—e1+c-e+ O
(5.23) L(r) < — e i z)f Y on 1 + o)
for all small » > 0, where ¢ = c¢(n, K, diamQ).
Let

xy°|? ond ﬁ:|xy0|2

a(x) = v3(x) + 7 7
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Since x° is a smooth point, by Lemma 2.1, we have
f (a(exp,o(am) - a(x*))dH" ()
Bo(NNWso
— f (@(x) — a(x)(1 + o(r)dvol(x).
Bo(ar)

Note that a(x) — @(x°) > 0 and

L 2, < (- € +c(n, K, diamQ) - &) - vol + £,
<

(—Wiap — €1 +c- &) vol,

fa_a(ﬂ) = $,3 +°% < (—Wt’a,g—él +c-e +Aﬂ) - vol.

Since x° is a Lebesgue point of —w, , ¢ + AB, by Corollary 4.5, we get

f (a(x) — a(x?))dvol(x)
0Bo(s)

“Wraog(X)—€ +c e+ ¢ _
< Wi, ,H(X ) 612 C:€ Aﬂ('x ) . S2 . Hn l(@B’;(s)) + O(rn+1)
n

for all 0 < s < ar. By combining with the fact that x° is regular, we have

f (a(x) — a(x?))dvol(x)
Bo(ar)

“Wiao(x?) — € + - e + AB(X?)

TS Wn—t - (@r)"? + o(r"*?).

S

Therefore, we obtain (since a(x) — a(x’) = 0,)

f (a/( exp,.(an)) — a/(x”))dH "(m)
B,(r\n¥

(5.24) < f (a( exp,.(an)) — a(x”))dH”(n)
BN W o
< “Wiap(X) — €1+ c @+ ABKT) @ - W P+ 0P,
2n(n + 2)

On the other hand, since 8 is Lipschitz (since it is semi-concave) and equation (2.4)

H'"(B,(M\W) = o(r"*"),

we have

e . 012 0,,0(2
f (I Xp,o (amy’l”  1x%y° )dHn(n)
Bo(r)N W 2t 2t

- f (B(exp . (an)) — B(x))dH" (1)) + o(r"*2).
By (nNN#so

41
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Since x° € Regg, by applying equation (2.3) in Lemma 2.1, the Lipschitz continuity of 8 and
Lemma 2.3, we get

f (B(expyo(am) — B(x*))dH" (1)
By(#so

=a" (B(x) — B(x°))dvol + o(r*?)
Byo(ar)

_ M8,

n+2 n+2
= -a” - Wy + .
i1 2) a” - Wy_1r o(r'™)

By combining above two equalities, we have

lexpyo(am)y’?  |x°y°P
(5.25) tfﬁ - dH" (1))
mew( 21 21 JaH"
O AB(XY)

@ a1 "+ 0(F).

T 2n(n+2)

Therefore, the desired estimate (5.22) follows from equations (5.24), (5.25) and v3 = a — 8.
The estimate for (5.23) is similar. Let

[xoy[?
21

By a similar argument to (5.24) and (5.25), we have, for all small r > 0,

|xoy[?

aw) = uz(y) + and =

[ (@exporay -a0m)arran
B,(nn¥

fO%) — e +c- e+ ABG) en o 2en
< Wy +
2n(n +2) W17+ 07
and
lexpyo(TMx°? |x0y0 )2 AB(®
f ( p} _ |x y | )dHn(T]) — ﬁ(y ) . a)n_lrn+2 + O(I"n+2)_
B,(NNYW 2t 2t 2n(n + 2)

Thus the combination of these two estimates and u3(y) = @ —Eimplies (5.23). The proof of
Claim 2 is finished.
By combining (5.21) and Claim 1 (5.17), Claim 2 (5.22)- (5.23), we have

2 0 0 2
2 4 Wiae(X)  fG0)  (a-1)
(@+1) m o
. [(K + &)|x%y°|?
6nt

—€ tC- n+2
[ |-

(1+a+a)]- 6% +0(8"?) >0
for all j € N. Thus,
2 0 0 2
—€+tCc-€ , as-wiae(x?)  fG°)  (a-1)
———= (@ +1)- + +
PR 2n 2n 2

N (K + &)x°y°?
6nt

(1+a+d®)>0.
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Combining with the definition of function w; 49, (5.14), we have

—€1 +ce Jr(a2+a+1)

(5.26) 0<(@+1) (K + &)xy°]? = KIx’F(x*)]%)

2n 6nt
1 0
S s @) - f00) - o
N 2€Br,0)(6) 2n

In Step 2, we have known that (X, F;(X)) is the unique minimum point of H(x,y). Because
H3(x,y) converges to H(x,y) as €], & and bj, 1 < j < 2n, tend to 0*, we know that (x°,y”)
converges to (X, F/(¥)), as €, & and bj, 1 < j < 2n, tend to 0*.

On the other hand, because X is regular and x” converges to X as €1, & and bj, 1 < j < 2n,
tend to 0%, functions

|x()y|2

up) + =

converges to function
|xy?
u(y) + 7
as €,e and bj, 1 < j < 2n, tend to 0*. F;(x°) is a minimum of u(y) + IX°y?/(28). u; is
differentiable at X (see Step 2). So Fy(X) is the unique minimum point of u(y) + IXy2/(20).
Therefore, F;(x°) converges to F(¥) as €], & and bj, 1 < j < 2n, tend to 0*.
Hence, when we choose €, and bj, 1 < j < 2n sufficiently small, we have that
[y F;(x?)] < 6. This implies

Y € Brey®) and  |Ixy°] - [xF,(x°)]| < 6.
Now we can choose €], €2 and €3 so small that

—€] + cer +(a2+“+1)

0

2 0,02 0 oN[2

+1 K+ - K|x°F < —

(a+1) o ont (K + &)|x"y’ X’ F(x”)[%) T

and y € Br,x)(6). This contradicts to (5.26). Therefore we have completed the proof of the
proposition. O

Lemma 5.4. Let Q be a bounded open domain in an n-dimensional Alexandrov space. As-
sume that a W'(Q)-function u satisfies £, > f - vol for some f € L*(Q). Then, for any
Q' € Q, we have

sup u < Cllullziq) + Cllfllz=()

xeQ)’

where the constant C depending on lower bounds of curvature, Q, and €'.

Proof. If f = 0 and u > 0, this lemma has been shown in Theorem 8.2 of [4] for any metric
measure space supporting a doubling property and a weak Poincaré inequality. According to
volume comparison and Theorem 7.2 of [19], it holds for Alexandrov spaces.
On the other hand, according to Lemma 6.4 of [4] (see also Lemma 3.10 of [17]), we know
that u, is also a subsolution of ., = 0, that is .Z},, > 0.
Therefore, if f = 0, we have
sup u < sup uy < Cllullpiq) < Cllullpiq)-
xeQ)/ xeQ)
In fact, the proof in [4] works for general f € L*(Q). In the following, we give a simple
argument for the general case on Alexandrov spaces.
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For each p € Q, we choose a Perelman concave function 4 defined on some neighborhood
B,(r,), which is given in Lemma 3.3, such that —1 < / < 0. Then we have

Luflimh > (f + 1 fll=@) - vol > 0 on By(r).
Applying the above estimate (in case f = 0), we have

sup u < sup (u—|lfllze@h) < Cllu =1 flle=@hllLi s,
By(rp/2) By(rp/2)

< Cliullzis, i,y + Cllfllze@) - VOI(By(rp)).

Since Q' is compact, there is finite such balls B,,(r;) such that above estimate hold on each
B),(r;) and that Q" C U;B,,(r;/2). Therefore, we have

supu < Cllullyi gy + Cllfllz=@ - vol(Q).
Q/

The proof of the lemma is finished. O

In [40, 41], by using his key Lemma, Petrunin proved that any harmonic function on an
Alexandrov space with nonnegative curvature is locally Lipschitz continuous. Very recently,
this Lipschitz continuity result on compact Alexandrov spaces was also obtained by Gigli—
Kuwada—Ohta in [11] via probability method. We can now establish the locally Lipschitz
continuity for solutions of general Poisson equations.

Corollary 5.5. Let M be an n-dimensional Alexandrov space and Q be a bounded domain of
M. Assume that u satisfies £, = f-vol on Q and f € Lip(Q). Then u is locally Lipschitz
COntinuous.

Proof. Since Q is bounded, we may assume that M has Ricci curvature > —K on Q with
some K > 0.

By applying Lemma 5.4 to both %, = f - vol and .Z_,, = —f - vol, we can conclude that
u € L*(Q) for any Q" € Q. Without loss of generality, we may assume

-1<ux<0

on Q. Otherwise, we replace u by (u — supg, u)/(supg, u — infoy u).
Fix any open subset Q; € Q' and let (u;)o«<7 be its Hamilton—Jacobi semigroup defined
on ;. By Lemma 5.1, we know

—1<Mt<0

onQq, forall0 <<t
By Proposition 5.3, there is fp > 0 such that (5.12) holds for all # € (0, ) and all a > 0.
By putting a = 1 in (5.12), we have

L <(fo Fr+ KtlVu,[*) -vol, VO <t<t

on Q;.
Set

K=K+1 and D;(x) =
forall 0 <t < fo(< 1). Then we have

0<® < Kef, 1 <exp(—Ktuy) < ef
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and, for each € (0, ty),
g(pl = —I_( eXp(—Ktu,) . (Dgut - ktlvullz) : VOl
~K exp(~Ktu;) - (f o F; + Kt|Vu,* — Kt|Vu,?) - vol

—K exp(—=Ktuy) - || fllz=(q) - vol
—C - vol

(5.27)

vV VvV WV

in sense of measure on ;. Here and in the following, C will denote various positive constants
that do not depend on ¢ (while they might depend on K, 7y, Q,Q;, Q, Q3, ||fllz~) and the
Lipshitz constant of f, Lipf, on Q).

By applying Caccioppoli inequality (see Proposition 7.1 of [4],) (or by choosing test func-
tion @, for some suitable cut-off ¢ on 1), we have

VDl 20y < Cll@I2q,) < C

for any open subset Q; € Q.
Noting that —Ku, > 0 and

|V®,| = K exp(—Ktu,)|Vu,| > K|Vuy|,
we have

(5.28) IVl 2, < C.

By using inequalities exp(—Ktu;) < eKand |1 —e” + y-e’| < C-y*/2 forany 0 < y < Kto.
we have, for each 7 € (0,#y) and x € Q,

|@r5(x) — Dy(x)| < |exp( — K@t + $)urs) =1 exp (= Ktupy) = 1 |

t+s t
+’exp(—l_(tut+s)—l exp (— Ktu,) — 1|

t t
(5.29) exp(=t' Kuy ) (=K )t — exp(—t' Kuyy ) + 1
< s+ max |

ISUSt+s t)?
+ Klures — ugl - max exp(—Kta)
U s SASUy

< CS + CluH_S - u,|

forall0 < s <ty —t.
By applying Dominated convergence theorem, (5.28), (5.29) and Lemma 5.1(iii-iv), we
have

a" @ -®
194l () = lim supf Beasl®) = DD 41
(0))

E S0+ N
. |ttrrs — Uyl
< Cvol(€),) + C lim sup ———dvol
s—0t JQ, s

C
= Cvol() + — | |Vul?dvol < C.
2 Jo,

This implies that
(5.30) 1Dl L1,y < 1Pl + Ct—1)
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forany 0 < ' < t < tq. Since 0 < @, < KeX and lim,_o+ @, (x) = —Ku(x), we have
lim || Dyl 10, = —Ku)dvol.
Jim 1D |21 () Qz( )

By combining with (5.30), we have

@, + Ku 1 .
f = dvol = ~ (@l — lim (1@l < C.
0 ! t Voot !

On the other hand, for each ¢ € (0, #g), since f is Lipschitz and
IXF ()] = 1|V, ()],
for almost all x € Q;, we have
Lo, +ku = —K exp(-Ktu) (%, — Kt|Vu|*) - vol + K f - vol

~Kexp(-Ktu;) - (£, — Kt|Vu,[* — f) - vol
- Kf - (exp(=Ktu;) — 1) - vol
—K exp(=Ktuy) - (f o Fy + Kt|Vu,|* — Kt|Vu,|> - f) - vol
- Kf - (exp(=Ktu;) — 1) - vol
~K exp(~Ktuy) - (Lipf - [xF,(x)] = fVu?) - vol = Ct - || fllp=(g - vol
—K exp(=Ktu;) - t - (Lipf - [Vutr| = [Vur/?) - vol = Ct - || fll=(@ - vol
Lip’f

4

\%

WV

> -Ct - (

> —Ct - vol

+ | fllz=(e) - vol

in sense of measure on Q,. Note that ®, + Ku > —Ku, + Ku > 0 (since Lemma 5.1(i)).
According to Lemma 5.4, we get

K ®; + Ku
| <a= p ||LI<QZ)+C:CfQ
2

for any open subset Q3 € Q. Hence, we have (since ®; > —Ku;,)

®d,+K
TR vol+C < C

—u+u - O+ Ku
<K! <

t t

on 3, for each f € (0, tp).
Therefore, by the definition of u,, we obtain

eyl
u(x) <u(x) + Ct <uly) + — = + Ct

for all x,y € Q3 and ¢ € (0, #p). Now fix x and y in Q3 such that |xy| < #y. By choosing ¢ = |xy],
we get
u(x) —u(y) < Clxyl.
Hence, by replacing x and y, we have
lu(x) — u(y)l < Clxy|, for all |xy| < 1.
This implies that u is Lipschitz continuous on €)3.

By the arbitrariness of Q3 € Q) € Q; € Q" € Q, we get that u is locally Lipschitz
continuous on £, and complete the proof. O
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5.2. Bochner’s type formula. Bochner formula is one of important tools in differential ge-
ometry. In this subsection, we will extend it to Alexandrov space with Ricci curvature bound-
ed below.

Lemma 5.6. Let u € Lip(Q) with Lipschitz constant Lipu, and let u; is its Hamilton—Jacobi
semigroup defined on Q' € Q, for 0 < t < 1. Then we have the following properties:
(i) Foranyt >0, we have

(5.31) IV7ul(F;(x)) < [Vu(x)] < Lipu(F;(x))
for almost all x € Q/, where F; is defined in (5.10).

In particular, the Lipschitz constant of u;, Lipu, < Lipu;
(ii) For almost all x € Q', we have

(5.32) Jim 20 =4

t—0*

1
—§|Vu(x)|2.

Furthermore, for each sequence t; converging to 0%, we have

lim Vu,(x) = Vu(x)
l‘j—>OJr ’

for almost all x € Q.

Proof. (i) Lipschitz function u; is differentiable at almost all point x € Q’. For such a point
x, we firstly prove [V~ u|(F(x)) < [Vu(x)|.

Assume [V™u|(F(x)) > 0. (If not, we are done.) This implies y := F,(x) # x. Indeed, if
F(x) = x, we have

|xz)?
u(x) < u(z) + o

for all z € Q. Hence (u(x) — u(z)), < |xz|*/(2t). This concludes |V~ ul(F/(x)) = 0.

Take a sequence of points y; converging to y such that

. u(y) —u(y))
lim ——————
oy il
Let x; be points in geodesic xy such that |xx;| = [yy,|. By

= [V ul(y).

b oyl
u(xj) < uy;) + % and  u(x) = u(y) + >
we have
1
-39 wx7) = ) < uvy) = ) + 2y = b,

Since u;, is differentiable at x,
i) = () = Lyl - (Vi (), 77 ) + o).
Triangle inequality implies
iy il < eyl + lyyjl =[xyl + [xx;| = |xyl.
Therefore, by combining with (5.33), we have
u(y) = u(y)) < —lxxjl - (Vi (). 1) + o)) < x| - Vi ()] + olxx)
= [yyjl - IVu(x)] + o(lxx;)).
Letting y; — y, this implies [V™u|(y) < [Vu,(x)|.
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Now let us prove |Vu,(x)| < Lipu(F,(x)) at a point x, where u is differentiable. Assume
|Vu,(x)| > 0. (If not, we are done.) This implies y := F,(x) # x. Indeed, If y = x, we have

2 2
u/(2) < u(x) + % = u,(x) + % Vzed.

On the other hand, u; is differentiable at x,
u(2) = ur(x) + (Vu(x), 15) - 1xzl + o(|xz)).
Hence, we obtain
(Vi (), %) < |xzl/(21) + o(1)

for all z near x. Hence |Vu,(x)| = 0.
Let the sequence x; € Q' converge to x and

(5.34) lim (Vuy(x), 17} = Vi ()]
xj—>x
Take y; be points in geodesic xy with |yy;| = |xx;|. By triangle inequality, we have

|xyl < lxx; + |xy;l = [yy;l + |xy;l = |xyl.

Combining with

|2 2
u(xj) < u(y;) + % and  ,(x) = u(y) + %
we have
(5.35) ur(x;) — ur(x) < uly;) — u(y) < lu(y;) —u@).

Since u, is differentiable at x,
u(x)) = (%) = (Vi (), 177} - x| + o(ex ).
Hence, by combining with (5.34), (5.35) and |x;x| = [y;y], we get

V() < Tim sup 12—

< Lipu(y).
yj—y |yyj|

The assertion (i) is proved.

(i1) The equation (5.32) was proved by Lott—Villani in [30] (see also Theorem 30.30 in [49]).

Now let us prove the second assertion. The functions u and u;; are Lipschitz on Q’. Then
they are differentiable at almost all point x € Q’. For such a point x, according to (5.5) in
Lemma 5.2, we have, for each z;,

oy, Vg, ()1

utj(x) = u(}’t,-) + 2t] = u(}’tj) + t] B >

where y;, is the (unique) point such that (5.4) holds, and

u(yiy) = u(x) + x| (Vu(o), 1) + o(ty) = u(x) = 1 (Va(x), Vi (1)) + o(t).

The combination of above two equation and (5.32) implies that

Vuy ()2 IVu(x)?
2 )=- '

tjli—>r{)1+ ( - <VM(X)’ Vl/ttj(_x)> + ‘
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This is
,jli_% ('V”(x)|2 =2 (Vu(x), lelz_/(x)> + |Vu,j(x)|2) =0,

which implies
lim Vu,;.(x) = Vu(x).
Ij—>0+ J

Now the proof of this lemma is completed. O
Now we have the following Bochner type formula.

Theorem 5.7 (Bochner type formula). Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by —K and Q be a bounded domain in M. Let f(x,s) :
Q X [0, +c0) — R be a Lipschitz function and satisfy the following:

(a) there exists a zero measure set N C Q such that for all s > 0, the functions f(-, s)
are differentiable at any x € Q\N;

(b)  the function f(x,-) is of class C' for all x € Q and the function g—f(x, s) is continuous,
non-positive on Q X [0, +0c0).

Suppose that u € Lip(Q) and

L, = f(x,|Vul?) - vol.
Then we have |Vul* € W-2(Q) and

2 2
(5.36) Lap > Z(M + (Vi Vf(x,[Vul)) = KIVul?) - vol

in sense of measure on Q, provided |Vu| is lower semi-continuous at almost all x € Q, namely,
there exists a representative of |Vu| which is lower semi-continuous at almost all x € Q.

Proof. Recalling the pointwise Lipschitz constant Lipu of u in Section 2.2, we defined a
function

g(x) = max{Lipzu, IVu(x)Iz}, Y xeQ.
Noting that the fact Lipu = |Vu| for almost all x € Q, we have g = |Vu|? for almost all x € Q,
and hence

L= f(x, g(x)) - vol

in sense of measure on Q.

The function g is lower semi-continuous at almost all x € Q. Indeed, by the definition of
g, we have g(x) > [Vu(x)* at any x € Q. On the other hand, g(x) = [Vu(x)? at almost all
x € Q. Combining with the fact that |Vu| is lower semi-continuous at almost all x € Q, we
can get the desired lower semi-continuity of g at almost all x € Q.

The combination of the assumption g—f < 0 and the lower semi-continuity of g at almost
everywhere in Q implies that f = f(x, g(x)) is upper semi-continuous at almost all x € Q.

Fix any open subset Q" € Q. Let u, be Hamilton—Jacobi semigroup of u, defined on Q’and
let F; be the map defined in (5.10). By applying Proposition 5.3, there exists some fy > 0
such that for each ¢ € (0, 7y), we have

-1)? Kt
- %, < [foF,+ @+ ?(a2+a+ 1)|Vu,|2] -vol

for all @ > 0. Hence, the absolutely continuous part Ay, satisfies

132
a - Auy(x) < f o Fy(x) + M + K’(a2 +a+ DVu(x)f

3
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for all @ > 0 and almost all x € Q’. By setting

K

D = -ZVu,*
and 5
n n n
A = —Aui(x) + 7T tD, A= - tD, Az = foFix)+ 7T tD,
we can rewrite this equation as
Al -d>+Ay-a+A3>0

for all @ > 0 and almost all x € Q’.
By taking a = 1, we have

(5.37) Auy(x) < f o Fi(x) = 3tD.
Because u is in Lipschitz, by Lemma 5.6(i), we have
IDI = K| - [Vul/3 < |K| - Lipu/3, g <Lip’u,

and then f = f(x, g(x)) is bounded.
The combination of equation (5.37) and the boundedness of D, f implies that A; > 0 and

Aj < 0, when ¢ is sufficiently small. By choosing a = —ZATzl, we obtain

3
(5.38) (Aug(x) = f o Fi(x)) - (; —tD) < =Auy(x) - f o Fy(x) = 3nD + thDz.
Therefore,

(by writing f = f(x, g(x)) and f o F, = f o F,(x) = f(Fi(x), g 0 Fi(x)).)
A () = f(x,8(x) _ (n=D)f o Fy = f)ft = f - f o F; = 3nD + 32D /4

t n—t*D+tfoF,
foF—f f*+3nD +f2—f2oF, s 312D?
t A A 4A
_ o Fi— fF), Vu)P) | (0, IVuOP) = f f> + 30D
t t A
2= PE VP | E, Vu(P) = 2o Fr 32D
A A 4A
_ SE,VuOP) = f f? = fAE, VuF)  f2 + 30D
t A A
1 o Fy+ f(Fi(x), [Vu,(x)?
+(f o Fo= f(F0. Vi) - (5 - fohit 7 ))
. 3°D?
4A

for almost all x € Q’, where
A=n—-1*D+1tfoF,
From Lemma 5.6(i) and the definition of function g, we have
g o Fy(x) > Lip?u(Fy(x)) > |Vu,(x)|>, ae., xe .

Combining with the assumption % < 0, we have, for almast all x € Q’,

fo Fr— f(F/(x), IVu(x)?) = f(F(x), g © F(x)) = f(Fi(x), [Vu(x)]*) < 0.
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On the other hand, by the boundedness of D and f, we have

NS

A=n—1D+tfoF, >

when ¢ is sufficiently small. By combining with the boundedness of f, we have

1 foFi+ f(Fi(x), [Vu(x)P) S0
t A -

when ¢ is sufficiently small.
When ¢ is sufficiently small, by using ‘A > n/2 and the boundedness of D again, we have

Aw(x) = [ 8(0) _ fF), IVuOP) = f | f2 = FAF), Vi)
t - t A
2
_ 43D,
A

C-t

Here and in the following in this proof, C will denote various positive constants that do not

depend on ¢.
Note that .Z),, < Ay, - vol and %), = f - vol. The above inequality implies that

1

_Dgu,—u
t
2y _ 2 _ 2 2 2
< [f(Fz(X), V) — f | f7 = [TF), Vue)F) [~ +3nD +C 1] vol
t A A
in sense of measure on €.
Fix arbitrary 0 < ¢ € Lipo(Q’). We have
2y _
(5.39) %zu,—mb) < f ¢ - (f (Fio). lvft(x)l )=/ )dvol
Q/

) 2
[ Lo LEONGWR)
o A

2
D
—f ¢-%dvol+Ctsup|¢|

= 11(t) + I(t) — I3(t) + Ctsup|g|.

We want to take limit in above inequality. So we have to estimate the limits of 1,(r), I>(¢)

and I3(1), as r — 07.
Since for almost all x € 0,

g = Lipu(x) = [Vu(x)|,
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we have
2y _
L) = f ¢f(Ft(x)>|Vut(xi|) f(x, g(x) vl
Q/
_ ¢f(F,<x>, |Vut(x>|2t) — f(x, IVu(x)P) ol
Q/
(5.40) B F(Fi), Vu(x)?) = f(Fi(x), [Vu(x)l?)
= @ ” dvol
Q/

JFi(x), IVu)l?) = f(x, [Vu)?)
, o} p dvo

1
= J1(0) + Ja2(0).

In order to calculate lim,_,¢+ J1(¢), we need the following:
Claim: For any Q; € (0, there exists constant C > 0 such that

L |V(”f t_ ”)|2dvol <C
1

for all ¢ € (0, 7).

Proof of the Claim. For each t € (0, tp), by combining equation (5.37) and semi-concavity of
u;, we have

F —
L < (g + K|Vu,|2) -vol

= (f(Ff(x)’g ° Fi(x)) - f(x, 8)
t

(5.41)

+ Kqutlz) -vol

in sense of measure on {’. Noting that g—{ < 0, and that, for almost all x € Q’,
g o Fi(x) > Lip"u(Fi(x)) > [Vu, (0P, g(x) = [Vu(x)P,
(see Lemma 5.6(i)) we have, for each ¢ € (0, 1),
JFi(), IVu(0)1?) = f(x, [Vul)
t
lxF ()] + |IVa® = [Vul?|

t

Vu,? = |Vul?
<(2Lipf.|| il = [Vul?|

L < ( + K|Vut|2) -vol

< (2Lipf + K|Vu,*) - vol

+2Lipf - [Vu,| + K|Vu,*) - vol
because |xF;(x)| = ¢ - |Vu,(x)| for a.e. x € Q' (see (5.11))
IVuus* = [Vul?
C- g +

<

C)-Vol

because [Vu,(x)| < Lipu (see Lemma5.6(i))

= (c- <v(”’ t_ ”),V(u, + u)> +C)- vol
Uy — u

t

<(c-|v( )|+c)-vol

in sense of measure on €.
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Since u; — u < 0, according to Caccioppoli inequality, Theorem 7.1 in [4] (or by choosing
test function —¢(u, — u)/t for some suitable nonnegative cut-off ¢ on Q’), for any Q; € ',
there exists positive constant C, independent of ¢, such that

(5.42) f|v ”f_”  dvol < cf(

On the other hand, for almost all x € ', according Eq. (2.6) in [29], we have

) dvol + C.

jux) — u ()| _ Lip’u
t S22
Consequently,

f (u, t_ u)zdvol <C.
Q

The desired estimate follows from the combination of this and (5.42). Now the proof of the
Claim is finished. O

Let us continue the proof of Theorem 5.7.

Let Q; = suppg € Q'. By combining (5.32), above Claim and reflexivity of W'2(Q) (see
Theorem 4.48 of [8]), we can conclude the following facts:

(i)  u,; converges (strongly) to u in W2(Q) ast — 0*;

(ii) there exists some sequence #; converging to 0%, such that (u,, —u)/t; converges weak-
ly to —[Vul>/2 in W'2(Q)), as t; — 0*.

Let us estimate J;(¢). For each r € (0, tp),
f ¢f(Ft(x), Vi, (0)1?) = f(Fi(x), [Vu(x)?)
t
ST D IVu(0)?) = f(F(x), IVu())
Q’ Vi[> = |Vul?

_ fg ,¢.Z—J;(Ft(x),s,) <V(u,+u) V( . )>dvol

for some s; between |Vu,(x)|* and |Vu(x)|?.
Let #; be the sequence coming from above fact (ii). According to Lemma 5.6(ii),

lim Vi, (x)] = [Vu(x)]
lj—)0+

Ji(®) = dvol

<V(ut + 1), V(u

L u)> dvol

for almost all x € Q’, combining with the continuity of 2—}; we get
.0 0
tjh—g)l*' a;];(th(x)a stj) = 6_{()‘:, |VM(X)|2)
On the other hand, by the above facts (i), (ii) and the boundedness of

Lipf,

[ )] <

we have

—|Vul?
t}i_)r{)l+ Jl(lj)=f ¢ - —f(x IVul?) - <2Vu, V( |2M| )>dvol

(5.43)
¢ - —f(x, [Vul?) - <Vu, VIVu|2> dvol.
Q as
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Let us calculate the limit J>(z;), where the sequence comes from above fact (ii).
For each 7 € (0, tp), if x € Q"\N and u, is differentiable at point x, by Lemma 5.2, we have

FF), Vu) = fx, [Vux)P)
= P () (V1 IVu()), 157Y) + o(xF(x)l)
= —t - (V1f(x, [Vu()P), Vuy(x)) + o(|xF(x)])

where V| f(x, s) means the differential of function f(-, s) at point x (see eqution (2.16)). For
the sequence ¢}, the combination of this, equation (5.11) and Lemma 5.6(ii)

lim Vu,(x) = Vu(x)
l‘j—>0+

implies that
 fFL (0, Vu)P) = f(x, [Vu()P)
lim

l_,‘—>0+ tj

= <V1f(x, IVu(x)[?), VM(X)>

for almost all x € Q’. Note that
FEL 00, [Vu(0)P) = fOx, [Vu(0l?) leFy ()l
& t | < Lipf- —== < Lipf - Lipu
J J
for almost everywhere in Q’. Dominated Convergence Theorem concludes that

S(Fi,(x), IVu(0)?) = f(x, [Vu(x)?)
¢ dvo

(%4 Zj

1

lim J>(¢;) = lim
lj—>0+ tj—)0+

=- f ¢ (V1f(x, IVu(x)P), Vu(x)) dvol.
Q/
By combining with equation (5.40) and (5.43), we have
lim 7;(¢tj) < lim Ji(¢; i -
Jog, 16 < fig, 16+ Jim, (e

0
(5.44) =- f K2 <Vu, 6—f<x, Vul) - VIVul® + Vi f(x, |Vu<x)|2>>dvol

= f ,¢-<Vu, V£ (x, IVul?)) dvol.

Let us calculate limtj._>0 I(t) for the sequence t; — 0" coming from the above fact (ii).
From Lemma 5.6(ii),

Jim Va0 = [Vu()f = g(x)
J—>

at almost all x € Q’. Combining with the Lipschitz continuity of f(x, s) and A > n/2 for
sufficiently small ¢, we have

_ SHF 0,1V [P = f2(x, 8(x)
lim =0
l‘j—>OJr ﬂ

at almost all x € Q’. On the other hand, using that A > n/2 again (when ¢ is sufficiently
small) and that f is bounded, we have

FA(F (0, [Vuy *) = f2(x, g(x))
A

< C, foralmostall xeQ', j=1,2,---,
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for some constant C. Dominated Convergence Theorem concludes that

_ZF.X,VM.Z—}—ZX’ X
(5.45) lim by = tim [ - (F1y(20), [Vur ) + f(x, g(x))
tf_)0+ fj—)0+ o ﬂ

dvol = 0.

Let us calculate lim,, o /3(7;) for the sequence 7; coming from above fact (ii).
According to Lemma 5.6 (i) and (ii), we get

IVuy,| < Lipu  and lir{)l Vi, | = |Vul.
tj—! +
By combining with the boundedness of D and f, and applying Dominated Convergence The-
orem, we conclude that
% — nK|Vul? J
A

ol.

2 _ 2
vol = ¢f (x,g(X))n nK|Vul .

lim f3(¢)) =
tjl—>l}’)14r 3( j) Q’¢

By the fact that
g(x) = Lipu = |Vul
for almost everywhere in ', we get

2 \v, 2
(5.46) lim (tj) = f ¢(M — K|Vul*)dvol.
t;j—0* Q n
By applying above Claim again,

U, — U Vul?
t]t — _% weakly in W'(Q)),
J

as t; — 0. By combining the definition of Zu,i—m (see the first paragraph of Section 4.1.) we
have '

.1 L Uy —U\\ 1 2
(5.47) tjh_%h t—jzu,j_u(@_ —tjlgg+ fg , <V¢, v( - )>_ 3 fg , (Ve VIVul*) dvol.

J
The combination of equations (5.39) and (5.44)—(5.47) shows that, for any ¢ € Lipo()),

% f (V6. VIVul*) dvol

2 2
<= [ ol (Tuvsen wup) + ZETD kv avol
Q n

The desired result follows from this and the definition of Z{y,.. Now the proof of Theorem
5.7 is completed. O

If f(x,s) = f(x), then we can remove the technical condition that |Vu| is lower semi-
continuous at almost everywhere in Q. That is,

Corollary 5.8. Let M be an n-dimensional Alexandrov space with Ricci curvature bounded
from below by —K and Q be a domain in M. Assume function f € Lip(Q) and u € W'*(Q)
satisfying
%, = f-vol.
Then we have |Vul?* € WI’Z(Q) and |Vu| is lower semi-continuous on Q. Consequencely,

loc
we get
2

Dgﬁvulz > 2(% + <Vl/t, Vf) - K|Vu|2)dvol

in sense of measure on €.



56 HUI-CHUN ZHANG AND XI-PING ZHU

Proof. At first, by Corollary 5.5, we conclude that u € Lip;,(Q2). Fix any Q* € Q. Then
u € Lip(QQ*) and f(x, s) = f(x) satisfies the condition (a), (b) on Q* in Theorem 5.7.

Let us recall that in the proof of Theorem 5.7, the technique condition that |Vu| is low-
er semi-continuous (with % < 0) is only used to ensure the upper semi-continuity of f =
f(x, g(x)) on Q* so that Proposition 5.3 is applicable. Now, since f(x) is Lipschitz, Proposi-
tion 5.3 still works for equation

%, = f-vol.

Using the same notations as in the above proof (with f(x, s) = f(x)) of Theorem 5.7, we
get the corresponding equation

L < (fOF—t_f + KIVuzlz) -vol = (f—(Ft(x)) G
t t t

+ K|Vu,?) - vol
in sense of measure on any ' € Q, (see equation (5.41) in the proof of the above Claim).
Then, we get, by (5.11), |[xF(x)| = {|Vu,(x)| at almost all x € Q*,

F
Lua < (Liprt(X)' + K|Vut|2) -vol = (Lipf- |Vu,| + K|V”t|2) -vol

< C-vol (because |Vu,| < Lipu.)

(5.48)

in sense of measure on Q’. Here and in the following, C denotes various positive constants
independent of ¢.

The same argument as in the proof of above Claim, we obtain that the W!2-norm of
is uniformly bounded on any Q; € Q’. Hence there exists a suquence #; — 0" such that

Up—u

Us, — u Vul?
’-/t — _% weakly in W'(Q)),
J

as t; — 0*. Combining with (5.48), we have [Vul* € W,*(Q;) and
D%Vulz > -2C - vol
in sense of measure on Q;.
By setting
w = |Vul* + 2C,
we have w > 2C and
Z, > -2C -vol = —w - vol.
Consider the product space M x R (with directly product metric) and the function v(x,?) :
Q'XR — Ras
v(x, t) 1= w(x) - e
Then v satisfies .%, > 0 in Q; x R. Hence it has a lower semi-continuous representative (see
Theorem 5.1 in [16]). Therefore, w is lower semi-continuous on ;. So does |Vu|.
Because of the arbitrariness of Q; € Q' € Q* € Q, we obtain that [Vu|® € WIIO’S(Q) and
|[Vu| is lower semi-continuous on Q.

It is easy to check that f(x, s) = f(x) satisfies the condition (a), (b) on Q in Theorem 5.7
(since f is Lipschitz and df/ds = 0.). We can apply Theorem 5.7 to equation

£, = f-vol

and conclude the last assertion of the corollary. O
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As a direct application of the Bochner type formula, we have the following Lichnerowicz
estimate, which was earlier obtained by Lott—Villani in [29] by a different method. Further
applications have been given in [42].

Corollary 5.9. Let M be an n-dimensional Alexandrov space with Ricci curvature bounded
below by a positive constant n — 1. Then we have

fquI%lvol?nf u>dvol
M M

forallu e WL2(M) with fM udvol = 0.

Proof. Let u be a first eigenfunction and A; be the first eigenvalue. It is clear that 4; > 0 and
u(x)e VA is a harmonic function on M X R. According to Corollary 5.5, we know that u is
locally Lipschitz continuous.

(Generalized) Bonnet—Myers’ theorem implies that M is compact (see Corollary 2.6 in
[45]). By using the Bochner type formula Corollary 5.8 to equation

Z, = -Au,

and choosing test function ¢ = 1, we get the desired estimate immediately. O

6. GRADIENT ESTIMATES FOR HARMONIC FUNCTIONS

Let Q be a bounded domain of an n-dimensional Alexandrov space with Ricci curvature
>-Kand K > 0.
In the section, we always assume that u is a positive harmonic function on Q. According

to Corollary 5.8, we know that |Vu| is lower semi-continuous in € and |Vul? € Wllo’f(Q).

Remark 6.1. In the previous version of this paper, by using some complicated pointwise
C!-estimate of elliptic equation (see, for example, [7, 27]), we can actually show that [Vu|
is continuous at almost all in Q. Nevertheless, in this new version, we avoid using this
continuity result.

Now, let us prove the following estimate.

Lemma 6.2. Let M be an n-dimensional Alexandrov space with Ricci curvature > —K and
K > 0. Suppose that u is a positive harmonic function in B,(2R). Then we have

8 s
(6.1) 1Q0Lss, a0 < (21K + =)« (vol(B,(2R)

for s > 2n + 4, where Q = |V log ul*.
Proof. Since u > 0 in B,(2R), setting v = log u, then we have
L, =—|Vv]> - vol = —Q - vol.

For simplicity, we denote B,(2R) by Bag.
Let /(x) be a nonnegative Lipschitz function with support in Byg. By choosing test func-
tion ¥>*Q*? and using the Bochner type formula (5.36) to v (with function f(x,s) = —s,
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which satisfies the condition (a) and (b) in Theorem 5.7), we get

(6.2) - f (V0. V(™ Q' %)) dvol
Bag
2
> | y*Qdvol =2 | y*Q 2 (Vv,VQ)dvol
n B2R BZR
-2K | y¢*0* ldvol
Bag
Hence we have
2
(6.3) = > Q%dvol - 2K | ¢ 0 dvol
n Bor Byr
<-2s | IOV, Vyydvol
Bag
—(s=2) YO 3IVOPdvol +2 | w0 2 (Vv, VQ) dvol
Bor Bog

=S-11—(S—2)'12+I3.

We now estimate /;, I and /3. By Cauchy—Schwarz inequality, we have

1
hi<3 f > Q* 3|V OPdvol + 2 f 0 1y 2 |Vy|*dvol.
Bog 2

Bag
and
1
L<n | v*0 3\ VQPdvol + - ¥ Q*dvol,
Bog n Bag
By combining with (6.3), we obtain

1
— | y*Q%dvol -2K | ¢ Q' 'dvol
n Bog Bag

< (E —(s=2)+ n) L+2s [ Q7P Vyldvol.
2 Bog

If we choose s > 2n + 4, then we can drop the first term in RHS.
Set
1
T= ( wszsdvol) *.
B

Then by K > 0 and Holder inequality, we have

1 1
lﬁzsdvol) ey 2s(f IVlMZSa’VOl) ot

s
T
—< ZK(
n Bog Bog

Therefore, when we choose ¢ such that ¢y = 1 on Bg, ¢ = 0 outside Bk and |V¢/| < 2/R, we
get the desired estimate (6.1). |

Corollary 6.3. Let u be a positive harmonic function on an n—dimensional complete non-
compact Alexandrov space with Ricci curvature > —K and K > 0. Then we have

[Vlogu| < Cp k.
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Proof. Without loss of generality, we may assume K > 0. From Lemma 6.2 above, setting
s = R? for R large enough, we have

IV log u?| 2 20K + 8n) - (Vol(Bp(ZR)))R%.

ey S
According to Bishop—Gromov volume comparison theorem (see [22] or [45]), we have
vol(B,(2R)) < H"(B,(2R) C M},,_;)) < C1e%,

where constants both C; and C;, depend only on n and K. Combining above two inequalities,
we get

1V 10g 4| 12 gy < G- €1/ %,

Letting R — oo, we obtain the desired result. O

In order to get a local L™ estimate of [V logul, let us recall the local version of Sobolev
inequality.
Let D = D(Q) be a doubling constant on €, i.e., we have

vol(B,(2R)) < 27 - vol(B,(R))

for all balls B,(2R) € Q. According to Bishop—Gromov volume comparison, it is known that
if M has nonnegative Ricci curvature, the constant D can be chosen D = n. For the general
case, if M has Ric > —K for some K > 0, then the constant can be chosen to depend on n and
VK - diam(€2), where diam(€2) is the diameter of Q. Here and in the following, without loss
of generality, we always assume that the doubling constant D > 3.

Let Cp = Cp(Q2) be a (weak) Poincaré constant on €, i.e., we have

f lo — gop,Rlzdvol <Cp- R?. f |V<p|2dvol
Bp(R) B,(2R)

for all balls B,(2R) € Q and ¢ € W'2(Q), where YpR = J%) ®) ¢dvol. By Bishop—Gromov
volume comparison and Cheeger—Colding’s segment inequéllity, it is known that if M has
nonnegative Ricci curvature, the constant Cp can be chosen to depend only on n. For the
general case, if M has Ric > —K for some K > 0, then the constant can be chosen to depend
onnand VK - diam(Q).

It is well known that the doubling property and a Poincaré inequality imply a Sobolev

inequality in length spaces (see, for example [44, 47, 14]). Explicitly, there exists a constant
Cs = Cs(€2), which depends only on D and Cp, such that

2D D=2 R?
(6.4) f le|p=2dvol) * < Cg - ——e— - f (IVgl> + R - p*)dvol
( B,(R) ) vol(B,(R)*'P Jp 2r)
for all balls B,(2R) € Q and ¢ € W,*(Q).
Now by combining Lemma 6.2 and the standard Nash—-Moser iteration method, we can get
the following local estimate.

Theorem 6.4. Let M be an n-dimensional Alexandrov space with Ric > —K, for some K >
0. Suppose that Q C M is a bounded open domain. Then there exists a constant C =
C(n, VKdiam(Q)) such that

1
Vi <C-(VK+ =
xeg;?éz)l og u ( R)

for all positive harmonic function u on Q and B,(2R) € Q.
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If K = 0, the constant C = C(n).

Proof. Let v and Q be as in the above Lemma 6.2. We choose test function ¥>Q*~!, where
Y has support in ball Bz := B,(R). By using the Bochner type formula (5.36) to function v
(with function f(x, s) = —s), we have

(6.5) % y?O dvol <2 | PO (Y, VQ)dvol =2 | wQ* ' (Vy, VQ) dvol
Bgr Bgr Br

—(s—1) f W2 Q2 |IVOIPdvol + 2K | y*Q*dvol.
Bgr Br
Note that
2 ,
2 | ¢?0 ' (Vv,VQ)dvol < 1 WO AV OPdvol + = | y*Q°|Vv|Pdvol
Bg 2 Bg n Jpg
and

2 | wO (Y, V) dvol < | y*Q 2 VOPPdvol + | Qf|Vy|*dvol.
Bgr Br Bg

By combining with (6.5), we get
_H_n 2 )5-21v 2 St 2 2 s
(6.6) (s—2-2) Y Q7 IVQ|“dvol Q°|Vyl“dvol + 2K Y=Q*dvol.
2 Br Br Br

Taking s > 2n + 4, then s -2 —n/2 > s/2. Let § < p < p’ < R. Choose i such that y(x) = 1
if x € B,(p), y(x) = 0if x ¢ B,(p") and |[Vy/| < 2/(p" — p), Then by (6.4) and (6.6), we have

1/6 1 8s
0%avol) " < (o7 - 25K + — + ———)) - Q’dvol,
( B,(0) ) ( RZ (P' _p)z ) B,(0')
where 6 = D/(D — 2) and
RZ
6.7 o =Cy —————.
©.7) S Vol(B,(R))/D

Let ly be an integer such that 6 > 2n + 4. Taking s; = 0, pr = R(1/2 + 172" with I > Iy, we
have

1 g 1 2-6-4%2
log /i1 —log Ji < - log (o - (20'K + o T)),
where
1/s;
Ji= Q%dvol) =0l :
( Bp(P]) ) L (B[)(PI))

Hence, we have

N S 33(46)!
IOng—longo <1()ng{.29_l+29—l.10g(2911{+ }(32 ))

1=l 1=l

o 33
<07 . log /P + Z 67 - (1-1og(46) + log(K + ﬁ))-
1=l

On the other hand, by Lemma 6.2, we have

8nol

=)+ 07 log vol(B,(2R)).

log Jj, < log(2nkK +
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Hence, we obtain
8nolo
R2

+log(40) - > 1-67 + log(K + =) >
I=ly 1=l

(6.8) log Jo < log(2nkK + ) + 07(log vol(B,(2R)) + log 7 ”/?)

From (6.7) and (6.8), we have

lo

8no D _, 2
log Jos < log(2nK + =) + 0 "log (4CsR?)

+log@0)- » 107 +log(K +25) > 67"
I=ly I=ly

lo

8nb
< lOg(ZnK + F

Taking [y such that 8% < 8n, we get

D
)+ 39—’0 log (4Cs (KR? + 33)) + C(8, lo).

64n? )
log Jos < log(2nK + —5-) + C(n, VKdiam(Q)).
This gives the desired result. |

The gradient estimate shows that any sublinear growth harmonic function on an Alexan-
drdov space with nonnegative Ricci curvture must be a constant. Explicitly, we have the
following.

Corollary 6.5. Let M be an n-dimensional complete non-compact Alexandrov space with
nonnegative Ricci curvature. Assume that u is harmonic function on M. If

SUPyeB,(r) |u(x)]
m—— =
r—00 r

for some p € M, then u is a constant.
Proof. Clearly, for any g € M, we still have

SUP e, (r) ()]
lim ———— =
r—00 r

Letu, = sup, B,(r) lu(x)|. Then 2u, — u is a positive harmonic on B,(r), unless u is identically
zero. By Theorem 6.4, we have

SqueB,,(r)(zu_r —u) 3u,

[Vu(g)l < C(n) < C(n)T.

Letting r — oo, we get |Vu(q)| = 0. This completes the proof. O

As another application of the gradient estimate, we have the following mean value prop-
erty, by using Cheeger—Colding—Minicozzi’s argument in [9]. In smooth case, it was first
proved by Peter Li in [26] via a parabolic method.

Corollary 6.6. Let M be an n-dimensional complete non-compact Alexandrov space with
nonnegative Ricci curvature. Suppose that u is a bounded superharmonic function on M.
Then

lim udvol = inf u.
r—oo 9B, (r)
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Proof. Without loss of generality, we can assume that inf u# = 0.

Fix any € > 0, Then there exists some R(€) such that infg gy u < € for all R > R(e). For
any R > 4R(e), we consider the harmonic function Az on B),(R) with boundary value hg = u
on dB,(R). By maximum principle and the gradient estimate of 4z, we have

sup hg < C(n)- inf hg < C(n)-e.
B,(R/2) B,(R/2)

On the other hand, from the monotonicity of rln. faB o hgdvol on (0, R), (see the proof
P
of Proposition 4.4), we have

f hrdvol < C(n) hgdvol.
dB,(R) 0B,(R/2)
Then we get
f udvol = f hrdvol < C(n) - € - vol(0B,(R/2)).
dB,(R) 0B,(R)

Therefore, the desired result follows from Bishop—Gromov volume comparison and the arbi-
trariness of €. o
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