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Abstract. In this paper, we extend the sharp lower bounds of spectal gap, due to Chen-
Wang [12, 13], Bakry-Qian [6] and Andrews-Clutterbuck [5], from smooth Riemannian
manifolds to general metric measure spaces with Riemannian curvature-dimension con-
dition RCD∗(K,N).

1. introduction

Let (X, d,m) be a compact metric measure space. Given a Lipschitz function f : X →
R, its point-wise Lipschitz constant Lipf(x) is defined as

Lipf(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

.

In this paper, we are concerned with the spectral gap

λ1(X) := inf
{∫

X(Lipf)2dm∫
X f

2dm
: f ∈ Lip(X)\{0} and

∫
X
fdm = 0

}
, (1.1)

where Lip(X) is the space of Lipschitz functions on X.
When M is a compact smooth Riemannian manifold without boundary (or with a con-

vex boundary ∂M), the study of the lower bounds of the first eigenvalue λ1 of the Laplace-
Beltrami operator ∆ has a long history. See for example, Lichnerowicz [27], Cheeger [10],
Li-Yau [26], and so on. For an overview the reader is referred to the introduction of
[7, 6, 25] and Chapter 3 in book [35], and references therein. In particular the following
comparison theorem for λ1 has been established by Chen-Wang [12, 13], Bakry-Qian [6]
and Andrews-Clutterbuck [5] independently, via three different methods.

Theorem 1.1 (Chen-Wang [12, 13], Bakry-Qian [6], Andrews-Clutterbuck [5]). Let M
be an N -dimensional compact Riemannian manifold without boundary (or with a convex
boundary). Suppose that the Ricci curvature Ric(M) > K and that the diameter 6 d. Let
λ1 be the first (non-zero) eigenvalue (with Neumann boundary condition if the boundary
is not empty). Then

λ1(M) > λ̂(K,N, d)

where λ̂(K,N, d) denotes the first non-zero Neumann eigenvalue of the following one-
dimensional model:

v′′(x)− (N − 1)T (x)v′(x) = −λv(x) x ∈ (−d
2
,
d

2
), v′(−d

2
) = v′(

d

2
) = 0

and

T (x) =


√

K
N−1 tan(

√
K
N−1x) if K > 0,√

−K
N−1 tanh(

√
−K
N−1x) if K < 0.

1
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This comparison Theorem 1.1 implies the classical Lichnerowicz estimate [27] for K =
n− 1 and also Zhong-Yang’s estimate [42] for K = 0. Some lower bounds of the spectral
gaps have been extended to singular spaces. In [36], Shioya discussed spectral gaps in
Riemannian orbifolds. In [31], Petrunin proved the Linchnerowiz estimate for Alexandrov
spaces with curvature > 1 in the sense of Alexandrov. Recently, Theorem 1.1 has been
extended to Alexandrov spaces in [32] using a notion of generalized lower Ricci curvature
bounds in [41], and by Wang-Xia [40] to Finsler manifolds.

In the last few years, several notions of “the generalized Ricci curvature bounded be-
low” on general metric spaces have been introduced. Sturm [38, 39] and Lott-Villani [28],
independently, introduced a so-called curvature-dimension condition, denoted by CD, on
metric measure spaces via optimal transportation. A refinement of this notion is given in
Ambrosio-Gigli-Savaré [3], which is called Riemannian curvature-dimension condition, de-
noted by RCD∗. Recently, in two remarkable works, Ambrosio-Gigli-Savaré [1] and Erbar-
Kuwada-Sturm [16], they proved the equivalence of the Riemannian curvature-dimension

condition and of the Bochner formular of Bakry-Émery via an abstract Γ2-calculus, de-
noted by BE. Notice that in the case where M is a (compact) Riemannian manifold.
Given two numbers K ∈ R and N > 1, M satisfying the Riemannian curvature-dimension
condition RCD∗(K,N) is equivalent to that the Ricci curvature Ric(M) > K and the
dimension dim 6 N .

We will consider the spectral gap on metric measure spaces under a suitable Riemannian
curvature-dimension condition. Lott-Villani [29] and Erbar-Kuwada-Sturm [16] extended
Linchnerowicz’s estimate to metric measure spaces with CD(K,N) or RCD∗(K,N) for
K > 0 and 1 6 N <∞.

In this paper, we will extend Theorem 1.1 to general metric measure spaces. Precisely,
we have the following theorem.

Theorem 1.2. Let K ∈ R, 1 6 N < ∞ and d > 0. Let (X, d,m) be a compact metric
measure space satisfying the Riemannian curvature-dimension condition RCD∗(K,N) and
the diameter 6 d. Then the spectral gap λ1(X) has the following lower bound

λ1(X) > λ̂(K,N, d), (1.2)

where λ̂(K,N, d) is given in Theorem 1.1.

Our proof of Theorem 1.2 relies on the self-improvement of regularity under the Rie-
mannian curvature-dimension condition (Theorem 2.6) and a version of maximum prin-
ciple, which is similar to the classical maximum principle for C2-functions on manifolds
(see Proposition 3.1 and Remark 3.2).

Remark 1.3. (1) When N > 1 and K = N − 1, the above Theorem 1.2 implies that

λ1(X) >
N

1− cosN (d/2)
.

In particular, this gives that if λ1(X) = N , then d = π. The combination of this and
the maximal diameter theorem in [22] implies an Obata-type rigidity theorem for general
metric measure spaces, which is also proved in [23] by Ketterer, independently.

(2) Very recently Cavalletti and Mondino [8, 9] use a different method to establish a
further generalization of this result. They prove the same sharp spectral gap estimates
(and some other sharp isoperimetric and functional inequalities) for non-branching CD-
spaces.
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2. Preliminaries

In this section, we recall some basic notions and the calculus on metric measure spaces.
For our purpose in this paper, we will focus only on the case of compact spaces. Let (X, d)
be a compact metric space, and let m be a Radon measure with supp(m) = X.

2.1. Riemannian curvature-dimension condition RCD∗(K,N).
Let (X, d,m) be a compact metric measure space. The Cheeger energy is given in [2]

from the relaxation in L2(X,m) of the point-wise Lipschitz constant of Lipschitz functions.
That is, given a function f ∈ L2(X,m), the Cheeger energy of f is defined [2] by

Ch(f) := inf
{

lim inf
j→∞

1

2

∫
X

(Lipfj)
2dm

}
,

where the infimum is taken over all sequences of Lipschitz functions {fj} converging to f
in L2(X,m). If Ch(f) < ∞, then there is a (unique) so-called minimal relaxed gradient
|Df |w such that

Ch(f) =
1

2

∫
X
|Df |2wdm.

The domain of Ch in L2(X,m), D(Ch), is a Banach space with norm
√
‖f‖2

L2 + ‖|Df |w‖2L2 .

Definition 2.1. ([2]) A metric measure space (X, d,m) is called infinitesimally Hilbertian
if the associated Cheeger energy Ch is a quadratic form.

Let (X, d,m) be an infinitesimally Hilbertian space. It is proved in [3] that the scalar
product

Γ(f, g) := lim
ε→0+

|D(f + εg)|2w − |Df |2w
2ε

f, g ∈ D(Ch)

exists in L1(X,m). In the following we denote by V the Hilbert space D(Ch) with the
scalar product

(f, g)V :=

∫
X

(
fg + Γ(f, g)

)
dm.

The quadratic form Ch canonically induces a symmetric, regular, strongly local Dirichlet
form (Ch,V). The regular property of (Ch,V) comes from that X is always assumed to be
compact. Moreover, for any f, g ∈ V, Γ(f, g) provides an explicit expression of the Carré
du champ of the Dirichlet form (Ch,V). The associated energy measure of f is absolutely
continuous with respect to m with density Γ(f) = |Df |2w.

Denote by (Ht)t>0 and ∆ the associated Markov semigroup in L2(X,m) and its genera-
tor respectively. Since X is compact, according to [33], the RCD∗(K,N) condition implies
that (X, d,m) supports a global Poincaré inequality. Moreover, the operator (−∆)−1 is
a compact operator. Then the spectral theorem gives that the λ1(X) in (1.1) is the first
non-zero eigenvalue of −∆. (See, for example, [15].)

We adopt the notations given in [4]:

DV(∆) :=
{
f ∈ V : ∆f ∈ V

}
and, for every p ∈ [1,∞],

DLp(∆) :=
{
f ∈ V ∩ Lp(X,m) : ∆f ∈ L2 ∩ Lp(X,m)

}
.
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Definition 2.2. ([4, 16]) Let K ∈ R and N > 1. An infinitesimally Hilbertian space
(X, d,m) is said to satisfy the condition BE(K,N) if the associated Dirichlet form (Ch,V)
satisfies ∫

X

(1

2
Γ(f)∆φ− Γ(f,∆f)φ

)
dm > K

∫
X

Γ(f)φdm+
1

N

∫
X

(∆f)2φdm

for all f ∈ DV(∆) and all nonnegative φ ∈ DL∞(∆).

According to [4, 16], the Riemannian curvature-dimension condition RCD∗(K,N) is

equivalent to the corresponding Bakry-Émery condition BE(K,N) with a slight regularity.
We shall use the following definition for RCD∗(K,N) (Notice that X is always assumed
to be compact in the paper).

Definition 2.3. ([4, 16]), Let K ∈ R and N > 1. A compact, infinitesimally Hilbertian
geodesic space (X, d,m) is said to satisfy the RCD∗(K,N)-condition (or metric BE(K,N)
condition) if it satisfies BE(K,N) and that every f ∈ V with ‖Γ(f)‖L∞ 6 1 has a 1-
Lipschitz representative.

Recall that a (locally) compact metric (X, d) is a geodesic space if the distance between
any two points in X can be realized as the length of some curve connecting them. Notice
that if (X, d,m) satisfies RCD∗(K,N) condition then d = dCh, where dCh is the induced
metric by the Dirichlet form (Ch,V). For any f ∈ V with Γ(f) ∈ L∞(X,m), we always
identify f with its Lipschitz representative. Moreover, Htf , Ht(|∇f |2w) and ∆Htf have
continuous representatives (see Proposition 4.4 of [16]).

2.2. The self-improvement of regularity on RCD∗(K,N)-spaces.
Let K ∈ R and 1 6 N < ∞, and let (X, d,m) be a compact metric measure space

satisfying the RCD∗(K,N) condition.
Let us recall an extension of the generator ∆ of (Ch,V), which is introduced in [4, 34].

Denote by V′ the set of continuous linear functionals ` : V → R, and V′+ denotes the set
of positive linear functionals ` ∈ V′ such that `(ϕ) > 0 for all ϕ ∈ V with ϕ > 0 m-a.e.
in X. An important characterization of functionals in V′+ is that, for each ` ∈ V′+ there
exists a unique corresponding Radon measure µ` on X such that

`(ϕ) =

∫
X
ϕ̃dµ` ∀ϕ ∈ V,

where ϕ̃ is a quasi continuous representative of ϕ. Denote by

M∞ :=
{
f ∈ V ∩ L∞(X,m) : ∃ µ such that − E(f, ϕ) =

∫
X
ϕ̃dµ ∀ϕ ∈ V

}
,

where µ = µ+ − µ− with µ+, µ− ∈ V′+. When a function f ∈ M∞, we set ∆∗f := µ, and

denote its Lebesgue decomposition w.r.t m as ∆∗f = ∆abf ·m + ∆sf . It is clear that if
f ∈ D(∆) ∩ L∞(X,m) then f ∈M∞ and ∆∗f = ∆f ·m.

Lemma 2.4. Let K ∈ R and N > 1, and let (X, d,m) be a compact metric measure space
satisfying RCD∗(K,N) condition.
(i) (Chain rule, [34, Lemma 3.2]) If g ∈ D(∆) ∩ Lip(X) and φ ∈ C2(R) with φ(0) = 0,
then we have

φ ◦ g ∈ D(∆) ∩ Lip(X) and ∆(φ ◦ g) = φ′ ◦ g ·∆g + φ′′ ◦ g · Γ(g);

(ii) (Leibniz rule, [34, Corollary 2.7]) If g1 ∈M∞ and g2 ∈ D(∆)∩Lip(X), then we have

g1 · g2 ∈M∞ and ∆∗(g1 · g2) = g2 ·∆∗g1 + g1 ·∆g2 ·m+ 2Γ(g1, g2) ·m.
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Remark 2.5. We can take φ ∈ C2(R) without the restriction φ(0) = 0 in the Chain rule.
This comes from the fact that 1 ∈ D(∆) and ∆1 = 0, because X is assumed to be compact.

The following self-improvement of regularity is given in Lemma 3.2 of [34]. (See also
Theorem 2.7 of [17]).

Theorem 2.6. ([34, 17]) Let K ∈ R and 1 6 N < ∞, and let (X, d,m) be a compact
metric measure space satisfying RCD∗(K,N) condition. If f ∈ DV(∆)∩Lip(X), then we
have Γ(f) ∈M∞ and

1

2
∆∗Γ(f)− Γ(f,∆f) ·m > KΓ(f) ·m+

1

N
(∆f)2 ·m. (2.1)

A crucial fact, which is implied by the above inequality, is that the singular part of
∆∗Γ(f) has a correct sign: ∆sΓ(f) is non-negative.

Using the same trick as in the proof of Bakry-Qian [6, Thm 6] and [34, Thm 3.4],
one can prove the following Corollary of Theorem 2.6 (see [21, Lemma 2.3] for a detailed
proof):

Corollary 2.7. Let K ∈ R and 1 6 N < ∞, and let (X, d,m) be a compact metric
measure space satisfying RCD∗(K,N) condition. If f ∈ DV(∆) ∩ Lip(X), then ∆sf > 0
and the following holds m-a.e. on {x ∈ X : Γ(f)(x) 6= 0},(

1

2
∆abΓ(f)− Γ(f,∆f)−KΓ(f)− 1

N
(∆f)2

)
>

N

N − 1

(
∆f

N
− Γ(f,Γ(f))

2Γ(f)

)2

. (2.2)

For κ ∈ R and θ > 0 we denote the function

sκ(θ) =


1√
κ

sin(
√
κθ), κ > 0,

θ, κ = 0,
1√
−κ sinh(

√
−κθ), κ < 0.

Proposition 2.8 (Bishop-Gromov inequality, [18, 39]). For each x0 ∈ X and 0 < r <

R 6 π
√

(N − 1)/(K ∨ 0), we have

m(Br(x0))

m(BR(x0))
>

∫ r
0 s K

N−1
(t)N−1dt∫ R

0 s K
N−1

(t)N−1dt
. (2.3)

Proof. By Corollary of 1.5 in [18], (X, d,m) satisfies MCP (K,N) condition. The desired
Bishop-Gromov inequality (2.3) holds on MCP (K,N)-spaces by Remark 5.3 of [39]. �

We need also the following mean value inequality in [30]. See also Lemma 2.1 of [14].

Lemma 2.9. [30, Lemma 3.4] Let f ∈ D(∆) be a non-negative, continuous function with
∆f 6 c0 m-a.e.. Then there exists a constant C(K,N, diamX) such that the following
holds:

−
∫
Br(x)

fdm 6 C(f(x) + c0r
2). (2.4)

At last, we need the following Sobolev inequality, whose proof is similar to that of
Theorem 13.1 of [19]. For the reader’s convenience, we include a proof here.

Lemma 2.10. Let E ⊂ X be an m-measurable subset with m(E) > 0. Then there exist

constants ν > 2 and C̃S which depend only on K, N , X and E, such that for any f ∈ V
with f = 0 m-a.e. in E, the following Sobolev inequality holds:

‖f‖Lν(X) 6 C̃S

(∫
X

Γ(f)dm

) 1
2

. (2.5)



6 YIN JIANG AND HUI-CHUN ZHANG

Proof. The above Bishop-Gromov inequality (2.3) implies the doubling property; and
by Theorem 2.1 of [33], a Poincaré inequality holds. These two ingredients imply the
following Sobolev inequality by Theorem 9.7 of [19]: there exist constants ν > 2 and
CS > 0, depending on K, N and diamX, such that for all f ∈ V,(

−
∫
X
|f −−

∫
X
f |ν
) 1
ν

6 CS

(
−
∫
X

Γ(f)dm

) 1
2

, (2.6)

where −
∫
X Γ(f) := 1

m(X)

∫
X Γ(f)dm.

Note that −
∫
X f is a constant and that f = 0 on E, thus we have ‖f − −

∫
X f‖Lν(E) =

(m(E))
1
ν · |−
∫
X f | and

‖−
∫
X f‖Lν(X) = m(X)

1
ν |−
∫
X f |

=
(
m(X)
m(E)

) 1
ν ‖f − −

∫
X f‖Lν(E)

6
(
m(X)
m(E)

) 1
ν ‖f − −

∫
X f‖Lν(X).

Then, by Minkowski inequality, we have

‖f‖Lν(X) 6 ‖f − −
∫
X f‖Lν(X) + ‖−

∫
X f‖Lν(X)

6
[
1 + (m(X)

m(E) )
1
ν

]
‖f − −

∫
X f‖Lν(X)

(2.6)

6
[
1 + (m(X)

m(E) )
1
ν

]
· CSm(X)

1
ν
− 1

2
(∫
X Γ(f)dm

) 1
2 .

Let C̃S = CSm(X)
1
ν
− 1

2

[
1 + m(X)

m(E) )
1
ν

]
, thus we have completed the proof. �

3. eigenvalue estimate for RCD∗(K,N)-spaces

Let K ∈ R and 1 6 N < ∞, and let (X, d,m) be a compact RCD∗(K,N)-space. We
need a version of maximum principle on X as follows.

Proposition 3.1. Let u ∈ M∞ and let ε0 > 0. If the measure ∆∗u satisfies that the
singular part ∆su > 0 on X and that the absolutely continuous part

∆abu > C1 · u− C2 ·
√

Γ(u) m−a.e. on {x : u(x) > ε0} (3.1)

holds for some positive constants C1 and C2 (they may depend on ε0). Then u 6 ε0 m-a.e.
on X.

Remark 3.2. If X is a smooth Riemannian manifold, and if u is a C2-function, then the
Proposition 3.1 is a corollary of the classical maximum principle. In fact, if the assertion
is false in this case, we assume that u achieves its maximum at point p, where u(p) > ε0.
By using the maximum principle on C2-functions, we have

∆u(p) 6 0 and Γ(u)(p) = 0.

Hence, by (3.1), we have u(p) 6 0. This contradicts to u(p) > ε0.
In the setting of metric measure spaces, we need a new argument.

Proof of Proposition 3.1. Since u ∈ L∞(X,m), we have supX u < ∞, where supX u =
inf{l : (u− l)+ = 0,m−a.e. in X}.

Let us argue by contradiction. Suppose that ε0 < supX u.
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Take any constant k ∈ [ε0, supX u) and set φk = (u − k)+. Then φk ∈ V. Since the
singular part ∆su > 0, we have

−
∫
X Γ(u, φk) dm =

∫
X φ̃kd∆∗u

>
∫
X φ̃k∆

abudm
=
∫
{x:u(x)>k} φk∆

abudm
(3.1)

> −C2

∫
Xk
φk
√

Γ(u)dm

> −C2

(∫
Xk
φk

2
) 1

2
(∫

Xk
Γ(u)

) 1
2
,

where Xk := {x : Γ(u) 6= 0} ∩ {x : u(x) > k}.
By the truncation property in [37] and Γ(u, φk) = Γ(u) = Γ(φk) m-a.e. in Xk, we have∫

X
Γ(u, φk) =

∫
Xk

Γ(u, φk) =

∫
Xk

Γ(u) =

∫
Xk

Γ(φk).

The combination of the above two equations implies that∫
Xk

Γ(φk) 6 C
2
2

∫
Xk

φk
2. (3.2)

Now we claim that there exists a constant k0 ∈ [ε0, supX u) such that

m({x : u(x) < k0}) > 0. (3.3)

Suppose that (3.3) fails for any k ∈ [ε0, supX u). That is, m({x : u(x) < k}) = 0 for any
k ∈ [ε0, supX u). Letting k tend to supX u, we get m({x : u(x) < supX u}) = 0. Thus
u = supX u m-a.e. in X. Now, we have ∆∗u = 0 and Γ(u) = 0 m-a.e. in X. This
contradicts (3.1) and proves the claim.

Fix such a constant k0 ∈ [ε0, supX u) such that (3.3) holds. Denote E = {x : u(x) < k0}.
For all k ∈ (k0, supX u), we have φk = 0 m-a.e. in E. By applying Lemma 2.10, we
conclude that

‖φk‖Lν(X) 6 C̃S

(∫
X

Γ(φk)dm

) 1
2

, ∀k ∈ (k0, supXu). (3.4)

We shall show that m(Xk) > 0 for all k ∈ (k0, supXu). Fix any k ∈ (k0, supXu), the
set {x : u(x) > k} has positive measure, because k < supX u. Hence, ‖φk‖Lν(X) > 0. By
using (3.4), we get m({x : Γ(φk) 6= 0}) > 0. Note that

Γ(φk) =

{
Γ(u) m−a.e. in {x : u(x) > k}
0 m−a.e. in {x : u(x) 6 k},

we have {x : Γ(φk) 6= 0} ⊂ Xk up to a zero measure set. Thus, we get m(Xk) > m({x :
Γ(φk) 6= 0}) > 0.

On the other hand, we have

‖φk‖L2(Xk) 6 ‖φk‖Lν(Xk) · (m(Xk))
1/2−1/ν 6 ‖φk‖Lν(X) · (m(Xk))

1/2−1/ν

6 C̃S ·
(∫

Xk

Γ(φk)dm
)1/2

(m(Xk))
1/2−1/ν

(3.2)

6 C̃S · C2 · ‖φk‖L2(Xk)(m(Xk))
1/2−1/ν ,

where we have used that {x : Γ(φk) 6= 0} ⊂ Xk up to a zero measure set again. Note that
m(Xk) > 0, hence ‖φk‖L2(Xk) 6= 0, for all k ∈ (k0, supXu), there is a constant C > 0, such



8 YIN JIANG AND HUI-CHUN ZHANG

that m(Xk) > C for all k0 6 k < supX u. Recall that Xk = {x : Γ(u) 6= 0}∩{x : u(x) > k},
by letting k → supX u, we have

m({x : Γ(u) 6= 0} ∩ {u = sup
X
u}) > C.

This contradicts the fact that Γ(u) = 0 a.e. in {u = supX u} (see Proposition 2.22 of [11]),
and proves the proposition. �

Let us recall the one-dimensional model operators LR,l in [6]. Given R ∈ R and l > 1,
the one-dimensional models LR,l are defined as follows: let L = R/(l − 1),

(1) If R > 0, LR,l defined on (−π/2
√
L, π/2

√
L) by

LR,lv(x) = v′′(x)− (l − 1)
√
L tan(

√
Lx)v′(x);

(2) If R < 0, LR,l defined on (−∞,∞) by

LR,lv(x) = v′′(x)− (l − 1)
√
−L tanh(

√
−Lx)v′(x);

(3) If R = 0, LR,l defined on (−∞,∞) by

LR,lv(x) = v′′(x).

Next we will apply Corollary 2.7 to eigenfunctions and prove the following comparison
theorem on the gradient of the eigenfunctions, which is an extension of Kröger’s compar-
ison result in [24].

Theorem 3.3. Let (X, d,m) be a compact RCD∗(K,N)-space, and let λ1 be the first
eigenvalue on X. Let l ∈ R and l > N , and let f be an eigenfunction with respect to λ1.

Suppose λ1 > max
{

0, lKl−1

}
. Let v be a Neumann eigenfunction of LK,l with respect to the

same eigenvalue λ1 on some interval. If [min f,max f ] ⊂ [min v,max v], then

Γ(f) 6 (v′ ◦ v−1)2(f) m-a.e..

Proof. Without loss of generality, we may assume that [min f,max f ] ⊂ (min v,max v).
Denote by T (x) the function such that

LK,l(v) = v′′ − Tv.

As in Corollary 3 in section 4 of [6], we can choose a smooth bounded function h1 on
[min f,max f ] such that

h′1 < min{Q1(h1), Q2(h1)},
where Q1, Q2 are given by following

Q1(h1) := −(h1 − T )

(
h1 −

2l

l − 1
T +

2λ1v

v′

)
,

Q2(h1) := −h1
(

l − 2

2(l − 1)
h1 − T +

λ1v

v′

)
.

We can then take a smooth function g on [min f,max f ], g 6 0 and g′ = −h1
v′ ◦ v

−1.
According to [3, Theorem 6.5] (see also [20, Theorem 1.1]), we have that f is Lipschitz

continuous. Notice that ∆f = −λ1f ∈ V. Hence f ∈ DV(∆) ∩ Lip(X).
Now define a function F on X by

ψ(f)F = Γ(f)− φ(f),
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where ψ(f) := e−g(f) and φ(f) := (v′ ◦ v−1)2(f). Since f ∈ DV(∆) ∩ Lip(X), by
Theorem 2.6, we have Γ(f) ∈ M∞. According to Lemma 2.4 and Remark 2.5, we have
ψ(f), φ(f) ∈ D(∆) ∩ Lip(X) and F ∈M∞. Moreover

∆∗F =
1

ψ
∆∗Γ +

1

ψ

(
− 2Γ(ψ,F )−∆ψF −∆φ

)
·m,

where and in the sequel, we denote by Γ = Γ(f) and φ = φ(f), ψ = ψ(f). By using
Theorem 2.6 again, we have ∆sF > 0 on X and

∆abF =
1

ψ

(
∆abΓ− 2Γ(ψ, F )−∆ψF −∆φ

)
m−a.e. in X.

Since l > N , the (X, d,m) satisfies also RCD∗(K, l) condition. Applying inequality
(2.2) to f and using ∆f = −λ1f , we have, for m-a.e. x ∈ {x : Γ(x) > 0},

∆abΓ > −2λ1Γ +
2λ1

2

l
f2 + 2KΓ +

2l

l − 1

(
λ1f

l
+

Γ(f,Γ)

2Γ

)2

.

Fix arbitrarily a constant ε0 > 0. We want to show F 6 ε0 m-a.e. in X.
Since F 6 eg · Γ 6 Γ, we have {x : F (x) > ε0} ⊂ {x : Γ(x) > 0}. Following the

argument from line 29 on page 1182 to line 10 on page 1183 of [32], we get:

∆abF > ψT1 · F 2 + T2 · F + T3Γ(f, F ) m−a.e. on {x : F (x) > ε0}, (3.5)

where

v′
2
T1 = Q2(h1)− h′1, T2 = Q1(h1)− h′1,

and

T3 =
2l

l − 1

(
−g
′

2
+

1

2Γ

(
2λ1f

l
+ φ′ + φg′

))
+ 2g′.

Note that both T1 and T2 are positive, Γ is bounded on X and T3 is bounded on {x :
F (x) > ε0}. It follows from (3.5) that

∆abF > c1 · F − c2 ·
√

Γ(F ) a.e. on {x : F (x) > ε0} (3.6)

for some constant c2 > 0 and c1 = mins∈[min f,max f ] T2(s) > 0. By combining with ∆sF > 0
on X and Proposition 3.1, we conclude that F 6 ε0 m-a.e. in X.

At last, by the arbitrariness of ε0, we have F 6 0 m-a.e. in X. This completes the
proof of Theorem 3.3. �

Let vR,l be the solution of the equation

LR,lv = −λ1v

with initial value v(a) = −1 and v′(a) = 0, where

a =

{
− π

2
√
R/(l−1)

if R > 0,

0 if R 6 0.

We denote

b = inf{x > a : v′R,l(x) = 0}
and

mR,l = vR,l(b)

Note that vR,l is non-decreasing on [a, b].
Next we show the following comparison theorem on the maximum of eigenfunctions.
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Theorem 3.4. Let (X, d,m) be a compact RCD∗(K,N)-space, and let f be an eigenfunc-
tion with respect to the first eigenvalue λ1 on X. Suppose min f = −1,max f 6 1. Then
we have

max f > mK,N .

Proof. We argue by contradiction. Suppose max f < mK,N . Since mK,l is continuous on
l, we can find some real number l > N such that

max f 6 mK,l and λ1 > max{0, lK
l − 1

}.

Then following the proof of Proposition 5 in [6], we obtain that the ratio

R(s) = −
∫
X f1{f6v(s)}dm

ρ(s)v′(s)

is increasing on [a, v−1(0)] and decreasing on [v−1(0), b], where the function ρ is

ρ(s) :=

 cosl−1(
√
Ls) if L > 0

sl−1 if L = 0

sinhl−1(
√
−Ls) if L < 0

and L = K/(l − 1). It follows that for any s ∈ [a, v−1(−1/2)], since v(s) 6 −1
2 , we have

m({f 6 v(s)}) 6 −2

∫
X
f1{f6v(s)}dm 6 2Cρ(s)v′(s), (3.7)

where C = R(v−1(0)).
Take p ∈ X with f(p) = −1. By

f − f(p) > 0, and ∆(f − f(p)) = −λ1f 6 λ1
The mean value inequality (2.4) implies that

−
∫
Br(p)

(f − f(p))dm 6 Cλ1r
2

for all r > 0 such that Br(x) ⊂ X. Denote C1 = Cλ1. Let A(r) = {f − f(p) >
2C1r

2} ∩Bp(r). Then

m(A(r))

m(Bp(r))
6

∫
Br(p)

(f − f(p))dm

2C1r2m(Br(p))
6

1

2
.

Hence
1
2m(Br(p)) 6 m(Br(p)\A(r))

6 m({f − f(p) 6 2C1r
2})

= m({f 6 −1 + 2C1r
2}).

By using (3.7) and following the argument from line 1 on Page 1186 to line 3 on page 1187
of [32], one can get that there exists a constant C2 > 0 such that

m(Bp(r)) 6 C2r
l

for all sufficiently small r > 0.
Fix r0 > 0. By Bishop-Gromov inequality (2.3), we have

m(Bp(r)) >
m(Bp(r0))∫ r0

0 s K
N−1

(t)N−1dt

∫ r

0
s K
N−1

(t)N−1dt > C3r
N
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for any 0 < r < r0. The combination of the above two inequalities implies that C2r
l−N >

C3 holds for any sufficiently small r. Hence, we have l 6 N , which contradicts to the
assumption l > N . Therefore, the Proof of Theorem 3.4 is finished. �

Now we are in the position to prove the main result—Theorem 1.2.

Proof of Theorem 1.2. Let λ1 and f denote respectively the first non-zero eigenvalue and
a corresponding eigenfunction with min f = −1 and max f 6 1. By Theorem 4.22 of [16],
we have λ1 > NK/(N − 1) if K > 0 and N > 1. Now fix any R < K, we have

λ1 > max

{
NR

N − 1
, 0

}
.

Then we may use the results of Section 6 and Section 3 of [6], we can find an interval [a, b]
such that the one-dimensional model operator LR,N has the first Neumann eigenvalue λ1
and a corresponding eigenfunction v with v(a) = min v = −1 and v(b) = max v = max f.
By Theorem 13 in Section 7 of [6], we have

λ1 > λ̂(R,N, b− a), (3.8)

where λ̂(R,N, b− a) is the first non-zero Neumann eigenvalue of LR,N on the symmetric

interval (− b−a
2 , b−a2 ). Note that f is continuous, we take two points x and y in X such

that f(x) = −1 and f(y) = max f . Let g = v−1 ◦ f , then g(x) = a, g(y) = b and, by
Theorem 3.3, Γ(g) 6 1 m-a.e. in X. Hence, we have

b− a = g(y)− g(x) 6 d(x, y) 6 max
z1,z2∈X

d(z1, z2) := d,

where d is the diameter of X. Together with (3.8) and the fact that the function λ̂(R,N, s)
decreases with s, we conclude

λ1 > λ̂(R,N, d).

By the arbitrariness of R, we finally prove the theorem. �

Acknowledgements. The second author is partially supported by NSFC 11571374.

References
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[33] T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var.

& PDE, 44(3-4) (2012), 477–494.
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