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1 Introduction

Let M and N be two smooth Riemannian manifolds. There is a natural concept of the energy functional

for C1-maps between M and N . The local minimizers (or more general critical points) of such an energy

functional are called harmonic maps. Regularity of harmonic maps is an important topic in the field of

geometric analysis. If dimM = 2, the regularity of energy minimizing harmonic maps was established by

Morrey [34]. If dimM > 3, a beautiful regularity theory was established by Schoen and Uhlenbeck [36,37],

and in a somewhat different context, by Giaquinta and Giusti [14, 15] (and by Hildebrandt et al. [19]

when the image of the map is contained in a convex ball of N).

In 1975, Yau [43] established a seminal interior gradient estimate for harmonic functions on Riemanian

manifolds with Ricci curvature bounded below. In 1980, Cheng [4] generalized the Yau’s gradient estimate

to harmonic maps.

Theorem 1.1 (See [4]). Let M and N be complete Riemannian manifolds such that M has Ricci

curvature RicM > −K, K > 0, and that N is simply-connected and is having non-positive sectional

curvature. Let f : M → N be a harmonic map. Assume that f(Ba(x0)) ⊂ Bb(y0) for some x0 ∈ M ,

y0 ∈ N and some a, b > 0. Then we have

sup
Ba/2(x0)

|∇f |2 6 Cn · b
4

a4
·max

{
Ka4

b2
,
a2(1 +Ka2)

b2
,
a2

b2

}
, (1.1)

where Cn is a constant depending only on n = dim(M).
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In particular, when K = 0, this implies a Liouville theorem: If f is bounded, then it is a constant map.

Choi [5] further extended Cheng’s work [4] as the following theorem.

Theorem 1.2 (See [5]). Let M and N be complete Riemannian manifolds such that M has Ricci

curvature RicM > −K, K > 0, and that N has sectional curvature secN 6 κ, κ > 0. Let f : M → N be a

harmonic map. Assume that f(M) ⊂ Bb(y0) lies inside the cut locus of y0 ∈ N and some b < π/(2
√
κ).

Then |∇f | is bounded by a constant depending only on n,K, κ and b. If, furthermore, K = 0, then f is

a constant map.

It is well known from [19, 22] that the radius b < π/(2
√
κ) is sharp. Without the restriction that the

image of u is contained in a ball with radius π/(2
√
κ), a harmonic map might not be even continuous.

1.1 Yau’s gradient estimates for harmonic maps into metric spaces

The purpose of this paper is to extend the Yau’s gradient estimate to harmonic maps into singular metric

spaces.

In the seminal work of Gromov and Schoen [16], they initiated to study harmonic maps into singular

spaces. A general theory of harmonic maps between singular spaces was developed by Korevaar and

Schoen [28], Jost [23,25] and Lin [30], independently.

If u is a map from a domain Ω ⊂ M of the Riemannian manifold to an arbitrarily metric space (X, dX),

which is unnecessary to be embedded into a Euclidean space, Korevaar and Schoen [28] introduced an

intrinsic approach to generalize the concept of the energy of u. Given a map u ∈ L2(Ω, X), for each

ϵ > 0, the approximating energy Eu
ϵ is defined as a functional on C0(Ω):

Eu
ϵ (ϕ) :=

∫
Ω

ϕ(x)euϵ (x)dvg(x),

where ϕ ∈ C0(Ω), the space of continuous functions compactly supported on Ω, and euϵ is approximating

energy density defined by

euϵ (x) :=
n(n+ 2)

ωn−1 · ϵn

∫
Bϵ(x)∩Ω

d2X(u(x), u(y))

ϵ2
dvg(y),

where ωn−1 is the volume of (n− 1)-sphere Sn−1 with the standard metric. In [28], Korevaar and Schoen

proved that

lim
ϵ→0+

Eu
ϵ (ϕ) = Eu(ϕ)

for some positive functional Eu(ϕ) on C0(Ω). The limit functional Eu is called the energy (functional)

of u. By the Riesz representation theorem, the non-negative functional Eu is a Radon measure on Ω.

Moreover, Korevaar and Schoen [28] proved that the measure is absolutely continuous respect to the

Riemannian volume volg. Denote eu := dEu

dvolg
, the energy density of u. For a smooth map f between two

smooth Riemannian manifolds, we have ef = const · |∇f |2.
The (local) minimizing maps, in the sense of calculus of variations, of such an energy functional Eu

are called harmonic maps.

If (X, dX) is a locally compact Riemannian simplicial complex with (globally) non-positive curvature in

the sense of Alexandrov, Gromov and Schoen [16] established the local Lipschitz regularity for harmonic

maps from Ω to X. Korevaar and Schoen [28] extended to the case where X is a general CAT (0)-space,

a metric space with non-positive curvature in the sense of Alexandrov. A further extension was given by

Serbinowski [39]. Let us put these regularity results together as follows.

Theorem 1.3 (See [28, Theorem 2.4.6] and [39, Corollary 2.18]). Let Ω ⊂ M be a bounded domain

(with smooth boundary) of a Riemannian manifold (M, g) and let (X, dX) be a CAT (κ)-space for some

κ > 0. Suppose that u : Ω → X is a harmonic map. Assume that the image of u is contained in a

ball with radius ρ < π/(2
√
κ). Here and in the sequel, if κ = 0, we always understand π/(2

√
κ) = +∞.



Zhang H-C et al. Sci China Math 3

Then u is locally Lipschitz continuous in Ω. Moreover, for any ball BR(o) ⊂⊂ Ω, it holds the following

Bernstein-type gradient estimate:

sup
BR/2(o)

eu 6 C −
∫
BR(o)

eudvg, (1.2)

where the constant C depends on n = dim(M), R, the injectivity radius of o, π/(2
√
κ) − ρ, and the

C1-norm of metric coefficients g on BR(o). Here and in the sequel, −
∫
E
:= 1

volg(E)

∫
E

denotes the average

integral over the measurable set E.

In the last two decades, many regularity results have been obtained for (energy minimizing) harmonic

maps into or between singular spaces (see, for example, [3,9,12,21,24,25,28,42], and [1,7,8,17,30,31,45]

and so on).

For the case when the domain Ω has non-negative sectional curvature and the target X is a CAT (0)-

simplicial complex, Chen [3] showed that the constant C in (1.2) depends only on n. When the target X

is a general CAT (0)-space, Jost [26] gave an approach to deduce an explicit bound of the constant in (1.2)

in terms of the sectional curvature of M , n and R. Other quantitative Lipschitz estimates of u were also

given in [7, 8].

In [26, Section 6, p. 167], Jost proposed an open problem, in the case when the target X is a CAT (0)-

space, to ask if the supBR/2(o)
eu can be dominated by a constant depending only on the lower bound for

the Ricci curvature of M , the dimension of M , and the energy of u. Furthermore, a natural problem was

arisen from the combination of the Jost’s problem and the Cheng’s work [4] to ask if a Yau-type interior

gradient estimate holds for the harmonic map into a CAT (0)-space. The first result in this paper answers

this problem affirmatively.

Theorem 1.4. Let Ω be a bounded domain (with smooth boundary) of an n-dimensional Riemannian

manifold (M, g) with RicM > −K for some K > 0, and let (X, dX) be a CAT (0)-space. Suppose that

u : Ω → X is a harmonic map. Given any ball BR(x0) with B2R(x0) ⊂⊂ Ω, if u(BR(x0)) ⊂ Bρ(Q0) for

some Q0 ∈ X and some ρ > 0, then we have

sup
BR/2(x0)

Lipu 6 Cn,
√
KR · ρ

R
,

where Lipu is the pointwise Lipschitz constant given by

Lipu(x) := lim sup
y→x

dX(u(x), u(y))

d(x, y)
,

and where d(x, y) is the distance with respect to the Riemannian metric g on M , and Cn,
√
KR is a constant

depending only on n and
√
KR.

Remark 1.5. (1) It is clear from the definitions of eu and Lipu that eu(x) 6 (n + 2)Lip2u(x) for

almost all x ∈ Ω.

(2) By the fact ∆d2X(u(x), u(x0)) > 2eu > 0 (see [25] or Lemma 2.6), it is well known that the

supx∈BR/2(x0) d
2
X(u(x), u(x0)) can be dominated by Cn,

√
KRR

2 · −
∫
BR(x0)

eudvg (see, for example, (2.7)).

So, by choosing Q0 = u(x0), Theorem 1.4 implies that

sup
BR/2(x0)

Lipu 6 Cn,
√
KR

(
−
∫
BR(x0)

eudvg

)1/2

. (1.3)

It answers the Jost’s problem (see [26, Section 6]) affirmatively. Recently, (1.3) was used by Sidler and

Wenger [40] to find the harmonic quasi-isometric maps into Gromov hyperbolic CAT (0)-spaces.

As an immediate application of Theorem 1.4, by letting R → ∞, we have the following Liouville

theorem (see [41, Theorem 1.4] and [20, Theorem 1.2] for several other Liouville theorems).

Corollary 1.6. Let (M, g) be an n-dimensional complete non-compact Riemannian manifold with non-

negative Ricci curvature, and let (X, dX) be a CAT (0)-space. Let u : M → X be a harmonic map. If u
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satisfies sub-linear growth

lim inf
R→∞

supy∈BR(x0) dX(u(y), Q0)

R
= 0

for some Q0 ∈ X, then u must be a constant map.

For the case when the target space has curvature less than or equal to κ for some κ > 0, we have the

following gradient estimate.

Theorem 1.7. Let Ω be a bounded domain (with smooth boundary) of an n-dimensional Riemannian

manifold (M, g) with RicM > −K for some K > 0, and let (X, dX) be a CAT (κ)-space, κ > 0. Suppose

that u : Ω → X is a harmonic map with the image u(Ω) ⊂ Bρ(Q0) for some Q0 ∈ X and ρ < π/(2
√
κ).

Then we have

sup
BR/2(x0)

Lipu 6
Cn,

√
KR,π/(2

√
κ)−ρ

R
,

where Cn,
√
KR,π/(2

√
κ)−ρ is a constant depending only on n,

√
KR and π/(2

√
κ)− ρ.

This implies the following Liouville theorem, by letting R → ∞.

Corollary 1.8. Let (M, g) be an n-dimensional complete non-compact Riemannian manifold with non-

negative Ricci curvature, and let (X, dX) be a CAT (1)-space. Let u : M → X be a harmonic map. If

u(M) ⊂ Bρ(Q0) for some Q0 ∈ X and ρ < π/2, then u must be a constant map.

Remark 1.9. If u(M) ⊂ Bπ/2(Q0) and if d2X(Q0, u(x)) ∈ L1(M), then the same conclusion, u is a

constant map, has been proved recently by Freidin and Zhang [11].

1.2 A sharp Bochner inequality for the harmonic maps into metric spaces

Cheng’s argument in [4] is based on the classical Bochner formula of Eells and Sampson, i.e., for a smooth

harmonic map u between two Riemannian manifolds M and N , it holds that

1

2
|∇u|2 = |d∇u|2 +RicM (∇u,∇u)− ⟨RN (u∗eα, u∗eβ)u∗eα, u∗eβ⟩

> |∇|∇u||2 −K|∇u|2 − κ|∇u|4, (1.4)

where the Ricci curvature of M is bounded below by −K and the sectional curvature of N is bounded

above by κ. It is clear that the classical Bochner formula relies heavily on the smoothness of the target

space X (requiring to have at least second order derivatives).

For harmonic maps into singular spaces, it is a basic problem to deduce a Bochner type formula. For

the case when the domain Ω has non-negative sectional curvature and the target X is a non-positively

curved simplicial complex, Chen [3] used the method in [16] to show that eu is a sub-harmonic function

on Ω. In [28], Korevaar and Schoen developed a finite difference technique to prove the following weak

form of the Bochner type inequality: there exists a constant C, depending on the C1-norm of g, such

that ∫
Ω

eu(∆η + C|∇η|+ Cη)dvg > 0

for all η ∈ C∞
0 (Ω). Korevaar-Schoen’s method in [28] has been extended by Serbinowski [39] to the case

when the target space is of CAT (κ) for any κ > 0. Mese [32] showed that ∆eu > −2κe2u, in the sense

of distributions, for a harmonic map from a flat domain to a CAT (κ)-space. Recently, Freidin [10] and

Freidin and Zhang [11] improved the method in [16] to deduce the following Bochner type inequality for

a harmonic map from a Riemannian manifold into a CAT (κ)-space:

1

2
∆eu > −Keu − κe2u, (1.5)

in the sense of distributions.

Recalling the arguments of Cheng [4] and Choi [5], the key intergradient is the positive term |∇|∇u||2
on the right-hand side of (1.4). The Bochner inequality (1.5) is not enough to get Theorems 1.4 and 1.7.

In this paper, we will establish a generalized Bochner inequality keeping such a positive term as follows.
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Theorem 1.10. Let Ω be a smooth domain of an n-dimensional Riemannian manifold (M, g) with

RicM > −K for some K > 0, and let (X, dX) be a CAT (κ)-space for some κ > 0. Suppose that the map

u : Ω → X is harmonic and that its image u(Ω) is contained in a ball Bρ ⊂ X with radius ρ < π
2
√
κ
if

κ > 0.

Then Lipu is in W 1,2
loc (Ω) ∩ L∞

loc(Ω) and satisfies the following:

1

2
∆Lip2u > |∇Lipu|2 −K · Lip2u− κeu · Lip2u (1.6)

in the sense of distributions.

1.3 The outline of the proof of the Bochner inequality

In the following, we give an outline of the proof of Theorem 1.10. First, by the chain rule, one easily

checks that (1.6) is equivalent to

∆Lipu > −K · Lipu− κeu · Lipu (1.7)

in the sense of distributions. We will first show that, for any q ∈ (1, 2],

∆(Lipqu/q) > −K · Lipqu− κeu · Lipqu (1.7q)

in the sense of distributions, and then we check the limit as q → 1 to get (1.7).

The proof of (1.7q) is inspired by the classical Hamilton-Jocabi flow. Recall that the classical Hamilton-

Jacobi equation, given a function f :

∂v(x, t)

∂t
= −|∇v(x, t)|2

with v(x, 0) = f(x), has a solution (by the Hopf-Lax formula)

Htf(x) := inf
y∈BR

{
d2(x, y)

2t
+ f(y)

}
, t > 0.

The difference of “time t” to the Hamilton-Jacobi flow Htf(x) at t = 0 gives the gradient −|∇f(x)|2,
i.e., as t → 0+,

Htf(x)− f(x)

t
→ −|∇f(x)|2.

This suggests to study the Hamilton-Jacobi flow Htf(x) for the gradient estimates of f .

In order to obtain (1.7q), we introduce a family of functions (ft)t>0 by: on a fixed ball BR := BR(o)

with B2R ⊂⊂ Ω, for any q ∈ (1, 2],

ft(x) := inf
y∈B2R

{
dp(x, y)

ptp−1
− ϕ(dX(u(x), u(y)))

}
, ∀x ∈ BR, ∀ t > 0, (1.8)

where p = q/(q − 1) and ϕ : [0, 1/10] → R is a suitable smooth convex function with ϕ(0) = 0 and

ϕ′(0) = 1.

It is easy to check that, for any x ∈ BR and any sufficiently small t, the “inf ” of (1.8) can be realized

by some point yt,x ∈ B2R. The set of all such points is denoted by St(x). Then we put

Lt(x) := min
yt,x∈St(x)

d(x, yt,x) and Dt(x) :=
Lp
t (x)

ptp−1
− ft(x). (1.9)

The proof of (1.7q) contains two parts. Without loss of generality, we may assume κ = 1. Firstly, we

shall show that, for any given ε > 0, ft satisfies an elliptic inequality

∆ft(x) 6
K

tp−1
· Lp

t (x) + (1 + ε) · eu(x)Dt(x) (1.10)
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on BR, for any sufficiently small t > 0, in the sense of distributions. Secondly, we want to show that, for

almost all x ∈ BR,

lim
t→0

ft
t
= −1

q
Lipqu, lim

t→0+

Lt

t
= Lipq/pu, lim

t→0+

Dt

t
= Lipqu. (1.11)

The combination of (1.10) and (1.11) will yield the inequality (1.7q).

In order to prove (1.11), we recall a generalized Rademacher theorem in [27]. Let f : Ω → X be a

Lipschitz map. Kirchheim [27] proved for almost all x ∈ Ω, that there exists a semi-norm, denoted by

mdfx and called metric differential, such that

dX(f(expx(tξ)), f(x))− t ·mdfx(ξ) = o(t),

for all ξ ∈ Sn−1 ⊂ TxM . By using this result, one can deduce a representative of point-wise Lipschitz

constant of f : for almost all x ∈ Ω,

Lipf(x) := max
ξ∈Sn−1

mdfx(ξ).

This suffices to show (1.11) (see Lemmas 2.10 and 4.4 for the details).

Now, we explain the proof of (1.10), which is inspired by the recent work [45] of the first and the third

authors. For simplicity, we assume RicM > 0. We need to show that

∆ft(x) 6 (1 + ε)eu(x)Dt(x) + θ

for sufficiently small t > 0 and any θ > 0 in the sense of distributions. It is a local property. Then we

need only to consider the case when R is small. We argue by contradictions. Suppose that it fails, by

the maximum principle, we have that there exists a domain U and a positive number θ0 such that ft − v

achieves a strict minimum in U , where v is the solution of the Dirichlet problem

∆v = (1 + ε)eu(x)Dt(x) + θ0 in U, v = ft on ∂U.

From the construction of ft, we know that the function

H(x, y) :=
dp(x, y)

ptp−1
− F (x, y)− v(x)

has a minimum in U ×BR, where F (x, y) := ϕ(dX(u(x), u(y))). We denote one of these minimum points

by (x̄, ȳ).

Let T : Tx̄M → TȳM be the parallel transportation from x̄ to ȳ. We want to consider the asymptotic

behavior of the average

−
∫
Bϵ(0)

H(expx̄(η), expȳ(Tη))dη

as ϵ → 0. According to RicM > 0, by integrating the second variation of arc-length over Bϵ(0), we have

that

−
∫
Bϵ(0)

(dp(expx̄(η), expȳ(Tη))− dp(x̄, ȳ))dη 6 o(ϵ2). (1.12)

Notice that ∆v = (1 + ε)eu(x)Dt(x) + θ0 implies that v is smooth near x̄, it follows that

−−
∫
Bϵ(0)

(v(expx̄(η))− v(x̄))dη 6 − 1

2(n+ 2)
[(1 + ε)eu(x̄)Dt(x̄) + θ0] · ϵ2 + o(ϵ2). (1.13)

Thus, we only need to show an asymptotic mean value inequality that

−−
∫
Bϵ(0)

(F (expx̄(η), expȳ(Tη))− F (x̄, ȳ))dη 6 1 + ε

2(n+ 2)
eu(x̄)Dt(x̄) · ϵ2 + o(ϵ2). (1.14)
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Indeed, once one has proved (1.14), the combination of (1.12)–(1.14) contradicts the fact that H(x, y)

has a minimum at (x̄, ȳ), and hence it follows (1.10).

In order to show (1.14), we need to choose a suitable function ϕ(s) in (1.8). In the simplest case that

κ = 0 and p = q = 2, we can choose directly ϕ(s) = s, as in [45].

In the case of κ = 1 (and general q ∈ (1, 2]), the definition of CAT (1) suggests us to choose ϕ(s) =

2 sin(s/2). However, this is not convex for small s > 0. An exact relation in CAT (1)-spaces, Lemma 2.4,

suggests us to perturb 2 sin(s/2) to

ϕ(s) = 2 sin(s/2) + 4 sin2(s/2).

Fortunately, this is convex for small s > 0.

Given any a, b ∈ R with a, b > 0, and fixing any q ∈ Ω, Q ∈ X, we define a function near q by

wa,b,Q,q(x) := a · d2X(u(x), u(q)) + b · cos(dX(u(x), Q)).

Since (X, dX) has curvature 6 1, by combining that euϵ converge to eu as ϵ → 0 and the fact

∆ cos(dX(u(x), Q)) 6 − cos(dX(u(x), Q)) · eu(x),

we will be able to deduce that, for almost all q, an asymptotic mean value inequality for wa,b,Q,q holds

(for some subsequence ϵj → 0, see Lemma 3.3 for the explicit statements).

On the other hand, the assumption (X, dX) having curvature less than or equal to 1 implies also

that, for any q1 and q2, the function wa2,b,Qm,q1 + wa1,b,Qm,q2 touches −F (·, ·) by above at (q1, q2) for

some suitable constants a1, a2, b > 0, where Qm is the mid-point of u(q1) and u(q2) (the details is

given in Lemma 2.4). Therefore, we conclude that an asymptotic mean value inequality for −F (·, ·)
at almost all (q1, q2) holds (see (4.12) and Lemma 3.3 for the explicit formulas). First, let us assume

briefly that it holds the mentioned asymptotic mean value inequality for −F (·, ·) at (x̄, ȳ). Then we

conclude (1.14) in this case. The primary issue is that there is no reason we can assume that it holds

the asymptotic mean value inequality for −F (·, ·) at (x̄, ȳ). In this case, we will perturb the function

H(x, y) to H1(x, y) := H(x, y) + γδ(x, y) by a smooth function γδ(x, y), which is arbitrarily small up to

two order derivatives, such that the mentioned asymptotic mean value inequality for −F (·, ·) holds at

one of minimum of H1(x, y). This argument of perturbation can be ensured by a generalized Jensen’s

lemma in the theory of viscosity solutions of second order partial differential equations.

2 Preliminaries

2.1 Energy and Sobolev spaces of maps into metric spaces

Let Ω be a bounded open domain of an n-dimensional smooth Riemannian manifold (M, g), and let

(X, dX) be a complete metric space. We will write

|xy| := d(x, y), ∀x, y ∈ M.

Several equivalent notions of the Sobolev space for maps into metric spaces have been introduced in

[18, 25, 28, 29, 35]. Fix any p ∈ [1,∞). A Borel measurable map u : Ω → X is said to be in the space

Lp(Ω, X) if it has separable range and, for some (hence, for all) P ∈ X,∫
Ω

dpX(u(x), P )dvg(x) < ∞.

We equip with a distance in Lp(Ω, X) by

dpLp(u, v) :=

∫
Ω

dpX(u(x), v(x))dvg(x), ∀u, v ∈ Lp(Ω, X).
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Denote by C0(Ω) the set of continuous functions compactly supported on Ω. Given p ∈ [1,∞) and a

map u ∈ Lp(Ω, X), for each ϵ > 0, the approximating energy Eu
p,ϵ is defined as a functional on C0(Ω):

Eu
p,ϵ(ϕ) :=

∫
Ω

ϕ(x)eup,ϵ(x)dvg(x), ∀ϕ ∈ C0(Ω),

where the approximating energy density is defined by

eup,ϵ(x) = eup,ϵ,g(x) :=
n+ p

cn,p · ϵn

∫
Bϵ(x)∩Ω

dpX(u(x), u(y))

ϵp
dvg(y),

and the constant cn,p =
∫
Sn−1 |x1|pσ(dx), and σ is the canonical Riemannian volume on Sn−1. In par-

ticular, cn,2 = ωn−1/n, where ωn−1 is the volume of (n− 1)-sphere Sn−1 with standard metric. Next, a

map u ∈ Lp(Ω, X) is said to be in W 1,p(Ω, X) if the energy satisfies Eu
p < ∞, where

Eu
p := sup

ϕ∈C0(Ω),06ϕ61

(
lim sup

ϵ→0
Eu

p,ϵ(ϕ)
)
.

If 1 < p < ∞ and u ∈ W 1,p(Ω, X), it was proved in [28] that, for each ϕ ∈ C0(Ω), the limit

Eu
p (ϕ) := lim

ϵ→0+
Eu

p,ϵ(ϕ)

exists (called p-th energy functional of u), and that Eu
p is absolutely continuous with respect to the

Riemannian volume volg. Denote the density by eu,p ∈ L1
loc(Ω). Moreover, from [28, Lemma 1.4.2], there

exists a constant C > 0, independent of ϵ such that

Eu
p,ϵ(ϕ) 6 Eu

p

(
Cϵϕ+ max

y∈Bϵ(x)
|ϕ(y)− ϕ(x)|

)
for any sufficiently small ϵ > 0. Thus, by the Dunfold-Pettis theorem, it implies that

eup,ϵ → eu,p in L1
loc(Ω), as ϵ → 0.

For the special case p = 2, we write eu := eu,2 and Eu := Eu
2 for any u ∈ W 1,2(Ω, X). We summarize

some main properties of W 1,2(Ω, X), which can be found in [28,29].

Proposition 2.1. Let u ∈ W 1,2(Ω, X).

(1) (Lower semi-continuity) For any sequence uj → u in L2(Ω, X) as j → ∞, we have

Eu(ϕ) 6 lim inf
j→∞

Euj (ϕ), ∀ 0 6 ϕ ∈ C0(Ω).

(2) (Equivalence for X = R) If X = R, the above space W 1,2(Ω,R) is equivalent to the usual Sobolev

space W 1,2(Ω).

(3) (Weak Poincaré inequality, see, for example, [29, Theorem 4.2]) For any ball BR(q) with B6R(q)

⊂⊂ Ω, there exists a constant Cn,K,R > 0 such that the following holds: for any z ∈ BR(q) and any

r ∈ (0, R/2), we have∫
Br(z)

∫
Br(z)

d2X(u(x), u(y))dvg(x)dvg(y) 6 Cn,K,R · rn+2 ·
∫
B6r(z)

eu(x)dvg(x). (2.1)

Remark 2.2. By a rescaling argument, one can easily improve the constant Cn,K,R in (2.1) to a

constant Cn,KR2 depending only on n and KR2. Indeed, let us consider the rescaling the metric on M

by gR := R−2g. Then we have RicgR > −KR2 and dvgR = R−ndvg. By the definition of eup,ϵ,g, we get

eup,R−1ϵ,gR
= Rp · eup,ϵ,g. Therefore, by the definition of eu,p, the Poincaré constant in (2.1) is invariant

with respect to the rescaling g 7→ gR.
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2.2 CAT (κ)-spaces

Let us review firstly the concept of spaces with curvature bounded above (globally) in the sense of

Alexandrov.

Definition 2.3 (See, for example, [2, 9]). A geodesic space (X, dX) is called to be globally curvature

bounded above by κ in the sense of Alexandrov, for some κ ∈ R, denoted by CAT (κ), if the following

comparison property holds: Given any triangle △PQR ⊂ X such that

dX(P,Q) + dX(Q,R) + dX(R,P ) < 2π/
√
κ

if κ > 0 and point S ∈ QR with

dX(Q,S) = dX(R,S) =
1

2
dX(Q,R),

then there exists a comparison triangle △P̄ Q̄R̄ in the simply connected 2-dimensional space form S2κ with

standard metric with sectional curvature equal κ and the point S̄ ∈ Q̄R̄ with

dS2κ(Q̄, S̄) = dS2κ(R̄, S̄) =
1

2
dS2κ(Q̄, R̄)

such that

dX(P, S) 6 dS2κ(P̄ , S̄).

It is obvious that (X, dX) is a CAT (κ)-space if and only if the rescaled space (X,
√
κ ·dX) is a CAT (1)-

space, for any κ > 0.

We need a lemma, which follows from [28, Corollary 2.1.3].

Lemma 2.4. Let (X, dX) be an CAT (1) space. Take any ordered sequence {P,Q,R, S} ⊂ X, and let

point Qm be the mid-point of QR. we denote the distance dX(A,B) abbreviatedly by dAB . Then, for any

0 6 α 6 1 and β > 0, we have

1− α

2

((
2 sin

dQR

2

)2

−
(
2 sin

dPS

2

)2)
+ α

(
2 sin

dQR

2

)(
2 sin

dQR

2
− 2 sin

dPS

2

)
6

[
1− 1− α

2

(
1− 1

β

)](
2 sin

dPQ

2

)2

+ 2 cos
dQR

2
(cos dPQm − cos dQQm)

+

[
1− 1− α

2
(1− β)

](
2 sin

dRS

2

)2

+ 2 cos
dQR

2
(cos dSQm − cos dRQm). (2.2)

Proof. Consider the embedding X into the cone C(X) with the cone metric | · · |C . Then C(X) has

non-positive curvature in the sense of Alexandrov. Denote

P̄ = (P, 1), Q̄ = (Q, 1), S̄ = (S, 1), R̄ = (R, 1) and Q̄m = (Qm, 1).

It is clear that the midpoint of Q̄ and R̄ in C(X) is

T̄ =

(
Qm, cos

dQR

2

)
.

From the equation (2.1v) in [28, Corollary 2.1.3] (by taking t = 1/2 there), we get, for each α ∈ [0, 1],

that

|T̄ P̄ |2C + |T̄ S̄|2C 6 |P̄ Q̄|2C + |R̄S̄|2C +
1

2
(|S̄P̄ |2C − |Q̄R̄|2C) +

1

2
|Q̄R̄|2C

− 1

2
(α(|S̄P̄ |C − |Q̄R̄|C)2 + (1− α)(|R̄S̄|C − |P̄ Q̄|C)2).

Notice that |Q̄R̄|C = 2|T̄ Q̄|C = 2|T̄ R̄|C and that

(|S̄P̄ |2C − |Q̄R̄|2C)− α(|S̄P̄ |C − |Q̄R̄|C)2 = (1− α)(|S̄P̄ |2C − |Q̄R̄|2C) + 2α|Q̄R̄|C(|S̄P̄ |C − |Q̄R̄|C).
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Therefore, we obtain

1− α

2
(|Q̄R̄|2C − |S̄P̄ |2C) + α|Q̄R̄|C(|Q̄R̄|C − |S̄P̄ |C)

6 |P̄ Q̄|2C + |T̄ Q̄|2C − |T̄ P̄ |2C + |S̄R̄|2C + |T̄ R̄|2C − |T̄ S̄|2C

− 1− α

2
(|R̄S̄|C − |P̄ Q̄|C)2

6 |P̄ Q̄|2C + |T̄ Q̄|2C − |T̄ P̄ |2C + |S̄R̄|2C + |T̄ R̄|2C − |T̄ S̄|2C

− 1− α

2

(
|R̄S̄|2C + |P̄ Q̄|2C − β|R̄S̄|2C − 1

β
|P̄ Q̄|2C

)
= |P̄ Q̄|2C

(
1− 1− α

2

(
1− 1

β

))
+ |T̄ Q̄|2C − |T̄ P̄ |2C

+ |S̄R̄|2C
(
1− 1− α

2
(1− β)

)
+ |T̄ R̄|2C − |T̄ S̄|2C (2.3)

for any β > 0, where we have used 2|R̄S̄|C · |P̄ Q̄|C 6 β|R̄S̄|2C + 1
β |P̄ Q̄|2C . By recalling the definition of

the cone metric | · · |C , we have

|Q̄R̄|C = 2 sin
dQR

2
, |S̄P̄ |C = 2 sin

dSP

2
,

|P̄ Q̄|C = 2 sin
dPQ

2
, |R̄S̄|C = 2 sin

dRS

2
,

|T̄ Q̄|C = |T̄ R̄|C =
|Q̄R̄|C

2
= sin

dQR

2

and (by noticing that |OT̄ |C = cos
dQR

2 )

|T̄ P̄ |2C = 1 + cos2
dQR

2
− 2 cos

dQR

2
cos dPQm ,

|T̄ S̄|2C = 1 + cos2
dQR

2
− 2 cos

dQR

2
cos dSQm .

Then

|T̄ Q̄|2C − |T̄ P̄ |2C = sin2
dQR

2
− 1− cos2

dQR

2
+ 2 cos

dQR

2
cos dPQm

= 2 cos
dQR

2

(
cos dPQm − cos

dQR

2

)
= 2 cos

dQR

2
(cos dPQm − cos dQQm),

where we have used dQQm =
dQR

2 . Similarly, we have

|T̄ R̄|2C − |T̄ S̄|2C = 2 cos
dQR

2
(cos dSQm − cos dRQm).

Therefore, the combination of these and the estimate (2.3) implies the desired (2.2). The proof is

completed.

2.3 Harmonic maps

In the following, we always assume that Ω is a bounded domain in an n-dimensional smooth Riemannian

manifold (M, g) with RicM > −K for some K > 0 and that (X, dX) is a CAT (κ) space for some κ > 0.

Given any ϕ ∈ W 1,2(Ω, X), we set

W 1,2
ϕ (Ω, X) := {u ∈ W 1,2(Ω, X) : dX(u(x), ϕ(x)) ∈ W 1,2

0 (Ω)}.
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By using the variation method, it was proved in [25,30] that there exists a unique u ∈ W 1,2
ϕ (Ω, X) which

is a minimizer of energy Eu
2 in W 1,2

ϕ (Ω, X), i.e., the energy Eu := Eu
2 = Eu

2 (Ω) of u satisfies

Eu = inf
w
{Ew : w ∈ W 1,2

ϕ (Ω, X)}.

Such an energy minimizing map is called a harmonic map.

The basic existence and regularity were given by Korevaar and Schoen [28] for κ 6 0 and by

Serbinowski [39] for κ > 0. We state their regularity result in the case κ > 0 (see also [33, Theorem 2.3]).

Theorem 2.5 (See [28, 39]). Let u be a harmonic map from Ω to X. Assume that its image u(Ω) is

contained in a ball Bρ ⊂ X with radius ρ < π
2
√
κ
if κ > 0. Then u is locally Lipschitz continuous in the

interior of Ω. (Note that the local Lipschitz constant of u near a point x ∈ Ω depends on the C1-norm of

metric g near x.)

We need also the following property.

Lemma 2.6 (See [39, Proposition 1.17] and [13, Lemma 2]). Let κ > 0. Assume that its image u(Ω)

is contained in a ball Bρ(P ) ⊂ X with radius ρ < π
2
√
κ
. Then the function fP (x) := cos(

√
κ ·dX(u(x), P ))

satisfies fP ∈ W 1,2(Ω) and

∆fP 6 −κ · fP · eu (2.4)

in the sense of distributions. If κ = 0, then for any P ∈ X we have ∆d2X(P, u(x)) > 2eu in the sense of

distributions.

Recall that

Lipu(x) = lim sup
y→x

dX(u(x), u(y))

|xy|
= lim sup

r→0
sup

y∈Bx(r)

dX(u(x), u(y))

r
.

The above lemma implies the following point-wise estimates, which is a corollary of the mean value

inequality for subharmonic functions.

Corollary 2.7. Let u be a harmonic map from Ω to X. Assume that its image u(Ω) is contained in a

ball Bρ ⊂ X with radius ρ < π
2
√
κ
if κ > 0. Then there exists a constant C = C(n,

√
KR) depending only

on n and
√
KR such that: for any ball BR with B2R ⊂⊂ Ω, we have

Lip2u(x) 6 C · eu(x), for almost all x ∈ BR/6.

Proof. For the case κ = 0, this is Theorem 5.5 in [45]. We need only to show the assertion for the case

κ > 0. Without loss of the generality, we can assume κ = 1 in this case. The argument is similar to the

proof of Theorem 5.5 in [45].

(i) Fix any z with B2R(z) ⊂⊂ Ω. From the continuity of u, there exists a small neighborhood O of z

such that diamu(O) < π/2 and O ⊂ BR(z), where diamu(O) is the diameter of u(O).

By using Lemma 2.6 and the fact that |∇dX(u(x), P )| 6 eu for any fixed P ∈ X, it is easy to check

that ∆dX(u(x), u(y0)) > 0 on O for any fixed y0 ∈ O, in the sense of distributions. Let ∆(2) be the

Laplace-Beltrami operator on M ×M , the product manifold (with the product metric and the product

measure). Consider the function ρu := dX(u(x), u(y)) on O ×O. Hence, we obtain

∆(2)ρu(x, y) > 0 on O ×O (2.5)

in the sense of distributions (see the step (iii) in the proof of [45, Proposition 5.4] for the details).

From the mean value inequality for subharmonic functions on O × O (see [38, Theorem 6.2 of

Chapter II]), we conclude that, for any ball Br((z1, z2)) with B2r((z1, z2)) ⊂⊂ O ×O,

sup
(x,y)∈Br((z1,z2))

ρ2u(x, y) 6 C12
C2(1+

√
Kr) · −

∫
B2r((z1,z2))

ρ2u(x, y)dvg(x)dvg(y)

6 C3(n,
√
KR) · −

∫
B2r((z1,z2))

ρ2u(x, y)dvg(x)dvg(y), (2.6)
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where the constants C1 and C2 depend only on n, and C3(n,
√
KR) = C12

C2(1+
√
KR).

(ii) Since B2r((z, z)) ⊂ B2r(z) × B2r(z), the Poincaré inequality for W 1,2(Ω, X)-maps (see [29], and

also Proposition 2.1(3) and Remark 2.2) states that the right-hand side of (2.6) for z1 = z2 = z can be

dominated by C4(n,
√
KR) · rn+2

∫
B12r(z)

eu(x)dvg(x). Therefore, we have

sup
y∈Br(z)

ρ2u(z, y)

r2
6 sup

(x,y)∈Br((z,z))

ρ2u(x, y)

r2

6 C3C4 ·
rn · vol(Bz(12r))

vol(B2r((z, z)) ⊂ Ω× Ω)
−
∫
B12r(z)

eu(x)dvg(x)

6 C5(n,
√
KR) · −

∫
B12r(z)

eu(x)dvg(x), (2.7)

where we have used Bishop-Gromov inequality and vol(B2r((z, z))) > vol2(Br(z)).

Notice that limr→0 −
∫
B12r(z)

eu(x)dvg(x) = eu(z) for almost all z ∈ BR/6 and that

Lipu(z) = lim sup
r→0

sup
y∈Br(z)

ρu(y, z)/r.

By letting r → 0 in (2.7), it follows the desired estimate.

2.4 Generalized Rademacher theorem for Lipschitz maps

Let Ω be a bounded domain of an n-dimensional Riemannian manifold (M, g). Recall that the classical

Rademacher theorem states that any Lipschitz function f : Ω → R is differentiable at almost all x ∈ Ω.

For our purpose, we have to consider the differentiability of maps into a metric space (X, dX). Let

us recall the notion of metric differential for maps from Ω into a metric space, which was introduced by

Kirchheim [27].

Definition 2.8. We say that a map f : Ω → X is metrically differentiable at x0 if there exists a

semi-norm ∥ · ∥x0 in Tx0M := Rn such that

dX(f(expx0
(tξ)), f(x0))− t · ∥ξ∥x0 = o(t),

for all ξ ∈ Sn−1 ⊂ Tx0M . This semi-norm will be called the metric differential and be denoted by mdfx0 .

The following generalized Rademacher’s theorem for maps was given in [27].

Theorem 2.9 (See [27]). Any Lipschitz map f : Ω → X is metrically differentiable at almost all x ∈ Ω.

If a Lipschitz continuous map f : Ω → X is metrically differentiable at x, we put

Gf (x) := max
ξ∈Sn−1

mdfx(ξ). (2.8)

Lemma 2.10. Let f : Ω → X be a Lipschitz function. If f is metrically differentiable at x, then we

have

Gf (x) = Lipf(x). (2.9)

Proof. From the definition of Gf (x), it is clear that Gf (x) 6 Lipf(x).

For the converse, we choose a sequence of points {yj := expx(tjξj)}∞j=1 ⊂ Ω such that limj→∞ tj = 0,

|ξj | = 1, and

Lipf(x) = lim
j→∞

dX(f(yj), f(x))

tj
.

Since f is metrically differentiable at x, we have

dX(f(yj), f(x)) = mdfx(ξj) · tj + o(tj),

From the definition of Gf (x), we have

Lipf(x) = lim
j→∞

mdfx(ξj) 6 Gf (x).

The proof is completed.
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3 An asymptotic mean value inequality

We will consider some asymptotic behaviors of harmonic maps from a domain of the smooth Riemannian

manifold to a CAT (1)-space. Let us begin with the following mean value property, which is similar to

Proposition 2.1 of Chapter I in [38].

Lemma 3.1. Let (M, g) be an n-dimensional Riemannian manifold with RicM > −K for some K ∈ R.
Suppose that f is a Lipschitz function on an open subset Ω ⊂ M , f > 0, and ∆f 6 g ∈ L1

loc(Ω) in the

sense of distributions. Then for any p ∈ Ω and R > 0 with BR(p) ⊂⊂ Ω,

1

AK(R)

∫
∂BR(p)

f 6 f(p) +

∫ R

0

∫
Br(p)

g(x)dvg(x)

AK(r)
dr, (3.1)

where AK(r) is the area of a geodesic sphere of radius r in the simply connected space form of constant

curvature −K/(n− 1).

Proof. Since ∆f 6 g, we have by the divergence theorem that∫
Br(p)

g(x)dvg(x) >
∫
Br(p)

∆fdvg =

∫
∂Br(p)

∂f

∂r

=
∂

∂r

∫
∂Br(p)

f −
∫
∂Br(p)

Hf, (3.2)

where 0 < r < R, and H is the mean curvature of ∂Br(p) with resect to ∂/∂r. The standard comparison

theorem asserts that

H(x) 6 (n− 1) cotK(r) =
A′

K(r)

AK(r)
, ∀x ∈ ∂Br(p).

Therefore, it follows from (3.2) and the assumption f > 0 that∫
Br(p)

g(x)dvg(x)

AK(r)
> ∂

∂r

∫
∂Br(p)

f

AK(r)
.

Notice that limr→0

∫
∂Br(p)

f

AK(r) = f(p). Integrating both sides of the above inequality with respect to r over

(0, R), we conclude that (3.1) holds.

Now we consider the case that f needs not to be non-negative.

Corollary 3.2. Let (M, g) be an n-dimensional Riemannian manifold with RicM > −K for some

K ∈ R. Suppose that f is a Lipschitz function on an open subset Ω ⊂ M , and ∆f 6 g ∈ L1
loc(Ω) in the

sense of distributions. Then for any p ∈ Ω and R > 0 with BR(p) ⊂⊂ Ω,

1

VK(R)

∫
BR(p)

(f(x)− f(p))dvg(x)

6 R · LipBR(p)f ·
(
1− vol(BR(p))

VK(R)

)
+

1

VK(R)

∫ R

0

AK(r)

∫ r

0

∫
Bs(p)

g(x)dvg(x)

AK(s)
dsdr, (3.3)

where VK(r) is the is the volume of a geodesic ball of radius r in the space form of constant curvature

−K/(n− 1), and

LipBR(p)f := sup
x,y∈BR(p)

|f(x)− f(y)|
|xy|

.

In particular, if p is a Lebesgue point of g, then the following asymptotic mean value inequality holds:

1

VK(R)

∫
BR(p)

(f(x)− f(p))dvg(x) 6
g(p)

2(n+ 2)
·R2 + o(R2) as R → 0. (3.4)
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Proof. We consider the function h(x) := f(x) − f(p). By applying Lemma 3.1 to the non-negative

function

hr(x) := h(x)− inf
y∈Br(p)

h(y)

on Br(p), 0 < r < R, we have

1

AK(r)

∫
∂Br(p)

hr 6 hr(p) +GK(r) = − inf
y∈Br(p)

h(y) +GK(r),

where

GK(r) :=

∫ r

0

∫
Bs(p)

g(x)dvg(x)

AK(s)
ds.

Denote A(r) := voln−1(∂Br(P ) ⊂ M). We get∫
∂Br(p)

h 6 − inf
y∈Br(p)

h(y) · (AK(r)−A(r)) +GK(r) ·AK(r).

Remark that h(p) = 0 and LipBr(p)h 6 LipBR(p)h = LipBR(p)f , so we have

− inf
y∈Br(p)

h(y) 6 − inf
y∈BR(p)

h(y) 6 R · LipBR(p)f.

The above two inequalities imply∫
∂Br(p)

h 6 R · LipBR(p)f · (AK(r)−A(r)) +GK(r) ·AK(r),

where we have used the Bishop inequality A(r) 6 AK(r) for all r ∈ (0, R). Integrating both sides of the

above inequality with respect to r over (0, R), and then dividing by VK(R), we get (3.3).

Suppose that p is a Lebesgue point of g, i.e.,

lim
R→0

−
∫
BR(p)

g(x)dvg(x) = g(p). (3.5)

Notice that
vol(BR(p))

VK(R)
= 1 +O(R2) as R → 0. (3.6)

It follows that

R · LipBR(p)f ·
(
1− vol(BR(p))

VK(R)

)
= O(R3) as R → 0

and that
1

VK(R)

∫
BR(p)

g(x)dvg(x) = g(p) + o(1) as R → 0.

Thus, by a direct calculation (noticing that AK(t) = ωn−1 · tn−1 +O(tn) as t → 0), we get

1

VK(R)

∫ R

0

AK(r)

∫ r

0

∫
Bs(p)

g(x)dvg(x)

AK(s)
dsdr

=
1

VK(R)

∫ R

0

AK(r)

∫ r

0

VK(s) · (g(p) + o(1))

AK(s)
dsdr

=
1

VK(R)

∫ R

0

AK(r)

∫ r

0

s

n
(1 + o(1))(g(p) + o(1))dsdr

=
g(p)

2(n+ 2)
·R2 + o(R2)

as R → 0. The proof is finished.
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At last in this section, we want to use the above asymptotic mean value inequality to harmonic maps

to a metric space with curvature bounded above.

Lemma 3.3. Let Ω be a bounded domain in an n-dimensional smooth Riemannian manifold (M, g)

and that (X, dX) is a CAT (1)-space. Suppose that u is a harmonic map from Ω to X. Given any a, b ∈ R
with a, b > 0, and any q ∈ Ω, Q ∈ X, we put

wa,b,Q,q(x) := a · d2X(u(x), u(q)) + b · cos(dX(u(x), Q)). (3.7)

Then there exist a sequence {ϵj}j∈N with ϵj → 0 as j → ∞ and a subset N ⊂ Ω with zero measure

such that ∫
Bϵj

(0)

[wa,b,P,x0(expx0
(η))− wa,b,P,x0(x0)]dη

6 (2a− b · cos(dX(u(x0), P )))
ωn−1

2n(n+ 2)
· eu(x0) · ϵn+2

j + o(ϵn+2
j ) (3.8)

for any x0 ∈ Ω\N and for any P ∈ X such that the image u(Ω) is contained in a ball Bρ(P ) ⊂ X with

radius ρ < π
2 , and for every a, b > 0.

Proof. Recall that eu2,ϵ → eu in L1
loc(Ω) as ϵ → 0. Therefore, there exists a sequence {ϵj}j∈N with

ϵj → 0 as j → ∞ such that

lim
j→∞

eu2,ϵj (x0) = eu(x0) for almost all x0 ∈ Ω.

By the definition of the approximating energy density, it follows that∫
Bϵj

(x0)

d2X(u(x), u(x0))dvg(x) =
ωn−1

n(n+ 2)
· eu(x0) · ϵn+2

j + o(ϵn+2
j )

for almost all points x0 ∈ Ω. On the other hand, we have by Lemma 2.6 and Corollary 3.2 that∫
Bϵj

(x0)

[cos(dX(u(x), P ))− cos(dX(u(x0), P ))]dvg(x)

6 VK(ϵj) ·
[
− cos(dX(u(x0), P ))

2(n+ 2)
· eu(x0) · ϵ2j + o(ϵ2j )

]
= −cos(dX(u(x0), P )) · ωn−1

2n(n+ 2)
· eu(x0) · ϵn+2

j + o(ϵn+2
j )

for all Lebesgue points x0 of eu, and for all P ∈ X such that the image u(Ω) is contained in a ball

Bρ(P ) ⊂ X with radius ρ < π
2 . Here, we have used that VK(ϵj) =

ωn−1

n · ϵnj + o(ϵnj ). Thus, for almost all

x0 ∈ Ω, we have ∫
Bϵj

(x0)

[wa,b,P,x0(x)− wa,b,P,x0(x0)]dvg(x)

6 (2a− b · cos(dX(u(x0), P )))
ωn−1

2n(n+ 2)
· eu(x0) · ϵn+2

j + o(ϵn+2
j ) (3.9)

and any P ∈ X, and for every a, b ∈ R with b > 0.

At last, we consider the exponential map expx0
: Bϵj (0) ⊂ Rn → Bϵj (x0). It is well known

dvg
dη

= 1 + o(ϵj).
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Thus, for any general Lipschitz function h, we have, as r → 0,∫
Br(0)

(h(expx0
(η))− h(x0))dη

6
∫
Br(x0)

(h(x)− h(x0))(1 + o(r))dvg(x)

6
∫
Br(x0)

(h(x)− h(x0))dvg(x) + o(r) ·
∫
Br(x0)

|h(x)− h(x0)|dvg(x)

6
∫
Br(x0)

(h(x)− h(x0))dvg(x) + o(r) ·O(r) ·O(rn).

By using this to wa,b,P,x0 and combining with (3.9), we obtain (3.8).

4 The Bochner inequality for harmonic maps into CAT (κ)-spaces

Let Ω be a bounded domain in an n-dimensional smooth Riemannian (M, g) with RicM > −K for some

K > 0, and let (X, dX) be a complete CAT (κ)-space for some κ > 0.

In this section, we always assume that u : Ω → X is a harmonic map with the image Im(u) containing

in a ball Bρ(Q0) ⊂ Y with ρ < π/(2
√
κ). From Theorem 2.5, we know that u is local Lipschitz continuous

on Ω.

4.1 Auxiliary functions

In this subsection, we will introduce a family of auxiliary functions.

Fix p ∈ (1,∞) and a ball BR(o) such that B2R(o) ⊂⊂ Ω. Denote by BR := BR(o) and by

ℓ0 := LipB2R
u = sup

x,y∈B2R,x ̸=y

dX(u(x), u(y))

|xy|
< ∞.

We introduce a family of auxiliary functions ft(x) on BR as follows: for any t > 0, we define

ft(x) := inf
y∈B2R

{
|xy|p

ptp−1
− F (x, y)

}
, x ∈ BR, (4.1)

where

F (x, y) := 2 sin
dX(u(x), u(y))

2
+ 4 sin2

dX(u(x), u(y))

2
.

It is clear that F (x, y) 6 6 and that (by taking y = x)

0 > ft(x) > −6. (4.2)

For any 0 < t < t∗(:= (Rp/6p)1/(p−1)), it is clear that the “inf” of (4.1) can be achieved, i.e., for any

x ∈ BR,

St(x) :=

{
y ∈ B2R

∣∣∣∣ ft(x) = |xy|p

ptp−1
− F (x, y)

}
̸= ∅.

Since F (x, ·) is continuous on B2R, it follows that St(x) is close. Fix any small t ∈ (0, t∗). We define two

functions on BR,

Lt(x) := min
y∈St(x)

|xy| and Dt(x) :=
Lp
t (x)

ptp−1
− ft(x). (4.3)

We give some basic properties of these functions.

Lemma 4.1. For any t ∈ (0, t∗), we have the following properties:

(1) ft is Lipschitz continuous on BR;

(2) both Lt and Dt are lower semi-continuous on BR;

(3) there exists a constant C = C(p, ℓ0, κ) > 0 such that, for any t ∈ (0, t∗),

Lt 6 Ct, Dt 6 Ct and − ft 6 Ct on BR.
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Proof. (1) Take any x1, x2 ∈ BR. From the definition of ft, we by choosing some y2 ∈ St(x2) have that

ft(x1)− ft(x2) 6
|x1y2|p − |x2y2|p

ptp−1
− (F (x1, y2)− F (x2, y2)).

Noticing that both | · · |p and F (·, ·) are Lipschitz, we conclude that there exists some constant Ct > 0

such that ft(x1)− ft(x2) 6 Ct|x1x2|, i.e., ft is Lipschitz continuous.

(2) From the definition of Lt, we know that Lt is lower semi-continuous. By using that ft is continuous,

we get that Dt is also lower semi-continuous.

(3) We take some yt ∈ St(x) such that Lt(x) = |xyt|. We have

Dt(x) =
Lp
t (x)

ptp−1
− ft(x) = F (x, yt) 6 dX(u(x), u(yt)) + d2X(u(x), u(yt))

6 (1 + π/
√
κ) · dX(u(x), u(yt)) 6 (1 + π/

√
κ) · ℓ0 · Lt(x)

:= C1(ℓ0, κ)Lt(x), (4.4)

where we have used

dX(u(x), u(yt)) 6 dX(u(x), Q0) + dX(Q0, u(yt)) < π/
√
κ.

Noticing that ft 6 0, we get Dt > Lp
t (x)

ptp−1 . By combining with (4.4), we have

Lt 6 (p · C1)
1/(p−1) · t := C2(p, ℓ0, κ) · t.

By using (4.4) again, we get Dt 6 C1C2 · t. At last, ft = Lp
t /(pt

p−1)−Dt > −Dt > −C1C2 · t. The proof

is finished.

The main result in this subsection is the following elliptic inequality for ft.

Proposition 4.2. Assume that κ = 1, p ∈ [2,∞) and diam(u(B2R)) < π/2, where diam(u(B2R)) is

the diameter of the u(B2R). Given any ε > 0, we have that, for any t > 0 sufficiently small, the inequality

holds

∆ft(x) 6
K

tp−1
· Lp

t (x) + (1 + ε) · eu(x)Dt(x) on BR, (4.5)

in the sense of distributions.

In order to prove this lemma, we need the following lemma.

Lemma 4.3 (Perturbation lemma). Let U ⊂ M be a convex domain of M and let h ∈ W 1,2(U)∩C(U)

satisfy ∆h 6 λ on U for some constant λ ∈ R. Assume that the point x̂ ∈ U is one of minimum points

of the function h on U . Assume a subset A ⊂ U has full measure.

Then for any r, δ > 0 sufficiently small, (they are smaller than a constant δ0 depending on the bounds

of sectional curvature on U ,) there exists a smooth function ϕ on a neighborhood of x̂, Br0(x̂), such that

h+ ϕ has a local minimum point in Br(x̂) ∩A and that

|ϕ|+ |∇ϕ|+ |Hess(ϕ)| 6 δ, ∀x ∈ Br0(x̂).

Proof. This comes from a slight extension of the classical Jensen’s lemma [6, Lemma A.3]. We will

give the details of the proof in Appendix A.

Proof of Proposition 4.2. Denote ρ0 := diam(u(B2R)). It suffices to prove the following claim.

Claim. There exists t̄ = t̄(p, ε, t∗, π/2− ρ0) such that for each t ∈ (0, t̄), the function ft(·) satisfies

∆ft(x) 6
K

tp−1
· Lp

t (x) + (1 + ε)eu(x)Dt(x) + θ on BR

for any θ ∈ (0, 1), in the sense of distributions.
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We shall prove this claim by a contradiction argument. Suppose that the claim fails for some sufficiently

small t ∈ (0, t∗) and some θ0 ∈ (0, 1). According to the maximum principle, there exists a domain

U ⊂⊂ BR such that the function ft(·)− v(·) satisfies

min
x∈U

(ft(x)− v(x)) < 0 = min
x∈∂U

(ft(x)− v(x)),

where v is the (unique) solution of the Dirichlet problem∆v =
K

tp−1
· Lp

t (x) + (1 + ε)eu(x)Dt(x) + θ0 in U,

v = ft on ∂U.

This means that ft(·)− v(·) has a strict minimum in the interior of U .

Let us define a function H(x, y) on U ×B2R, by

H(x, y) :=
|xy|p

ptp−1
− F (u(x), u(y))− v(x).

Let x̄ ∈ U be a minimum of ft(·) − v on U , and let ȳ := yt(x̄) ∈ St(x̄) such that Lt(x̄) = |x̄ȳ|. By the

definition of ft, we conclude that H(x, y) has a minimum at (x̄, ȳ).

Let A ⊂ U ×B2R be the set of all points (xo, yo) ∈ U ×B2R satisfying the following two properties:

(1) xo ̸= yo, and xo ̸∈ N , yo ̸∈ N , where the set N is given as in Lemma 3.3;

(2) the point xo is a Lebesgue point of K
tp−1 · Lp

t (x) + (1 + ε)eu(x)Dt(x).

It is clear that (U ×B2R)\A has zero measure.

Noting that the function f(t) = 2 sin t + 4 sin2 t satisfies f ′(t) > 0, f ′′(t) > 0 for t < π/6 and (see the

proof of Corollary 2.7)

∆(2)dX(u(x), u(y)) > 0,

we have ∆(2)F (x, y) > 0, where ∆(2) is the Laplace-Beltrami operator on the product manifold

M × M . The Laplacian comparison theorem on the product space M × M implies that ∆(2)(|xy|2)
6 Cn,K,diam(U) for some constant Cn,K,diam(U) > 0. By using the assumption p > 2, we obtain

∆(2)(|xy|p) 6 Cn,K,p,diam(U). Then, by Lemma 4.3, we conclude that, for any sufficiently small δ > 0,

there exists a smooth function γδ(x, y) such that |γδ|+ |∇γδ|+ |Hessγδ| 6 δ and that the function

H1(x, y) = H(x, y) + γδ(x, y) =
|xy|p

ptp−1
− F (u(x), u(y))− v(x) + γδ(x, y)

has a minimal point (xo, yo) ∈ A with

d2X×X((x̄, ȳ), (xo, yo)) = |x̄xo|2 + |ȳyo|2 < δ2. (4.6)

Let σ : [0, |xoyo|] → M be a shortest geodesic with σ(0) = xo and σ(|xoyo|) = yo and let Tσ(t) :

TxoM → Tσ(t)M be the parallel transport along σ(t). Denote by T := Tyo . We want to consider the

asymptotic behavior of

I(εj) :=

∫
Bεj

(0)⊂TxoM=Rn

[H1(expxo(η), expyo(Tη))−H1(x
o, yo)]dη

=: I1(εj)− I2(εj)− I3(εj) + I4(εj), (4.7)

where the sequence {εj} is given in Lemma 3.3 and

I1(εj) :=
1

ptp−1
·
∫
Bεj

(0)

(| expxo(η) expyo(Tη)|p − |xoyo|p)dη,

I2(εj) :=

∫
Bεj

(0)

(F (expxo(η), expyo(Tη))− F (xo, yo))dη,

I3(εj) :=

∫
Bεj

(0)

(v(expxo(η))− v(xo))dHn(η),

I4(εj) :=

∫
Bεj

(0)

(γδ(expxo(η), expyo(Tη)))− γδ(x
o, yo)dη.
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The minimal property of point (xo, yo) implies that

I(εj) > 0. (4.8)

We need to estimate I1, I2, I3 and I4.

(i) The estimate of I1 and I4.

Let T be the parallel transportation, the first and the second variation of arc-length implies that

| expxo(η) expyo(Tη)| − |xoyo| 6 ϵ2

2

∫ |xoyo|

0

−R(σ′(t), Tγ(t)η, σ
′(t), Tγ(t)η)dt+ o(ϵ2)

for all η ∈ Bϵ(0), where R(·, ·, ·, ·) is the Riemannian curvature tensor. By taking ϵ = εj and using the

fact that a 6 b+ δ implies ap 6 bp + pδbp−1 + o(δ) as δ → 0, and then integrating over Bεj(0) we obtain

I1(εj) 6
1

ptp−1
· pK · ωn−1

2n(n+ 2)
· |xoyo|p · εn+2

j + o(εn+2
j ) (4.9)

for any j ∈ N, where we have used Ric(σ′, σ′) > −K and Fatou’s lemma (since | expxo(η) expyo(Tη)| −
|xoyo| 6 Cϵ2 for some constant C depending on the sectional curvature on B10|xoyo|(x

o)).

Since γδ is smooth and that |Hessγδ| 6 δ, it is easy to check that

I4(εj) 6 C(n) · δ · εn+2
j + o(εn+2

j ), (4.10)

for any j ∈ N, and for some constant C(n) > 0.

(ii) The estimate of I2.

We put

P = u(expxo(η)), Q = u(xo), W = u(yo) and S = u(expyo(Tη)),

and

l0 := 2 sin
dQW

2
, l1 := 2 cos

dQW

2
, α =

1

1 + 2l0
∈ (0, 1). (4.11)

Denote the midpoint of Q and W by Qm. Note that 1−α
2 = α · l0. Then, by Lemma 2.4 we have that for

any β > 0,

αl0 · (F (xo, yo)− F (expxo(η), expyo(Tη)))

= αl0

((
2 sin

dQR

2

)2

−
(
2 sin

dPS

2

)2)
+ αl0

(
2 sin

dQR

2
− 2 sin

dPS

2

)
6

[
1− 1− α

2

(
1− 1

β

)](
2 sin

dPQ

2

)2

+ l1 · (cos dPQm − cos dQQm)

+

[
1− 1− α

2
(1− β)

](
2 sin

dRS

2

)2

+ l1 · (cos dSQm − cos dRQm)

6 [wa1,b,Qm,xo(expxo(η))− wa1,b,Qm,xo(xo)]

+ [wa2,b,Qm,yo(expyo(Tη))− wa2,b,Qm,yo(yo)], (4.12)

where the function wa,b,Qm,xo is given in Lemma 3.3 with the constants

a1 := 1− 1− α

2

(
1− 1

β

)
, b := l1, a2 := 1− 1− α

2
(1− β), (4.13)

and we have used 2 sin(t/2) 6 t for any t ∈ (0, π). From ρ0 = diam(u(B2R)) we have

u(B2R) ⊂ Bρ0
(u(x0)) ∩Bρ0

(u(y0)).

By the assumption ρ0 < π/2 and that X is a CAT (1)-space, we obtain

u(B2R) ⊂ Bρ0(Qm).
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By integrating over Bεj (x
o), Lemma 3.3 implies that

αl0 ·
∫
Bεj

(xo)

(F (xo, yo)− F (expxo(η), expyo(Tη)))dη

6 [2a1 − b · cos(dX(u(xo), Qm))] · ωn−1 · eu(xo)

2n(n+ 2)
· ϵn+2

j

+ [2a2 − b · cos(dX(u(yo), Qm))] · ωn−1 · eu(yo)
2n(n+ 2)

· ϵn+2
j + o(ϵn+2

j ).

Noticing that cos dX(Qm, u(xo)) = l1/2 and that 1− l21/4 = l20/4, we choose β such that

a2 =
l21
4

(
⇔ β = 1− l0(1 + 2l0)

4

)
, (4.14)

where we have used α = 1/(1 + 2l0). Notice that β > 0 provided l0 6 1. Then we have

−I2(εj) =

∫
Bεj

(0)

(F (xo, yo)− F (expxo(η), expyo(Tη)))dη

6 a1 − l21/4

αl0
· ωn−1eu(x

o)

n(n+ 2)
· ϵn+2

j ++o(εn+2
j ). (4.15)

From 1− β = l0
4α and 1

α = 1 + 2l0, we have, if l0 6 ε/6, that

a1 − l21/4

αl0
=

1− 1−α
2 (1− 1

β )− l21/4

αl0

= l0(1 + 2l0)

(
1

4
+

1

4− l0(1 + 2l0)

)
6 l0

2
(1 + ε).

When both t and δ are small enough, the combination of (4.6) and Lemma 4.1(3) implies that l0 6 ε/6.

Therefore, we by (4.15) get that

−I2(εj) 6 (1 + ε)
l0
2
· ωn−1

n(n+ 2)
eu(x

o) · εn+2
j + o(εn+2

j ).

(iii) The estimate of I3.

By Corollary 3.2 and the definition of v, we have

−I3(εj) 6
(
−K

tp−1
· Lp

t (x
o)− (1 + ε)eu(x

o)Dt(x
o)− θ0

)
· ωn−1

2n(n+ 2)
· εn+2

j + o(εn+2
j ).

By combining these estimates for I1, I2, I3 and I4, we have

K

tp−1
(|xoyo|p − Lp

t (x
o)) + (1 + ε)eu(x

o)

(
2 sin

dX(u(xo), u(yo))

2
−Dt(x

o)

)
− θ0 + C(n)

2n(n+ 2)

ωn−1
δ > 0. (4.16)

Equation (4.6) implies that (xo, yo) converge to (x̄, ȳ) as δ → 0. We by the lower semi-continuity of Lt

and Dt have that

lim inf
δ→0

Lt(x
o) > Lt(x̄) = lim

δ→0
|xoyo|

and

lim inf
δ→0

Dt(x
o) > Dt(x̄) = F (x̄, ȳ) = lim

δ→0
2 sin

dX(u(xo), u(yo))

2
.

A contradiction appears in (4.16) when we take δ → 0 (noticing that K > 0). The proof is finished.
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4.2 The Bochner inequality

We will prove Theorem 1.10 in this subsection.

Let p ∈ (1,∞) and let ft be the auxiliary functions defined as in (4.1) in the previous subsection, on

a ball BR with B2R ⊂⊂ Ω.

Lemma 4.4. (i) Let q ∈ (1,∞) with 1/q + 1/p = 1. For any x ∈ BR, we have

lim inf
t→0

ft(x)

t
> −1

q
Lipqu(x). (4.17)

(ii) If u is metrically differentiable at x, then we have

lim
t→0+

ft(x)

t
= −Gq

u(x)

q
(4.18)

and

lim
t→0+

Lt(x)

t
= Gq/p

u (x), lim
t→0+

Dt(x)

t
= Gq

u(x). (4.19)

Proof. (i) By the basic inequality ap/p− ab > −bq/q for any a, b ∈ R, we have

1

p
· |xy|

p

tp
− F (x, y)

t
> −1

q

(
F (x, y)

|xy|

)q

, ∀x, y ∈ B2R.

Taking yt ∈ St(x) with |xyt| = Lt(x), we obtain from the definition of ft that

lim inf
t→0

ft
t
> −1

q
lim sup
yt→x

(
F (x, yt)

|xyt|

)q

= −1

q
lim sup

t→0

(
Dt(x)

Lt(x)

)q

> −1

q
Lipqu(x), (4.20)

where we have used limy→x F (x, y)/dX(u(x), u(y)) = 1. This proves (4.17).

(ii) Let u be metrically differentiable at x. Take a unit vector ξ ∈ TxM such that

Gu(x) = mdux(ξ).

For each small t > 0, we put yt,x := expx(tG
q/p
u · ξ). Then

|xyt,x| = t ·Gq/p
u (x)

and

dX(u(x), u(yt,x)) = |xyt,x| ·mdux(ξ) + o(|xyt,x|)

= t ·Gq/p+1
u (x) + o(t) = t ·Gq

u(x) + o(t),

as t → 0. Thus, by the definition of ft, we obtain

ft(x)

t
6 |xyt,x|p

ptp
− F (x, yt,x)

t
=

Gq
u(x)

p
−Gq

u(x) + o(1) = −Gq
u(x)

q
+ o(1),

as t → 0, i.e.,

lim sup
t→0+

ft(x)

t
6 −Gq

u(x)

q
. (4.21)

Recall that Gu(x) = Lipu(x) by Lemma 2.10. The combination of (4.17) and (4.21) yields (4.18).

Combining (4.18) and (4.20) gives

lim sup
t→0

(
Dt(x)

Lt(x)

)q

= Lipqu(x).



22 Zhang H-C et al. Sci China Math

On the other hand, notice that

−ft(x)

t
= −Lp

t (x)

ptp
+

Dt(x)

Lt(x)
· Lt(x)

t
6 1

q

(
Dt(x)

Lt(x)

)q

.

Thus, we get

lim inf
t→0

Dt(x)

Lt(x)
> Lipu(x).

Therefore, we obtain

lim
t→0

Dt(x)

Lt(x)
= Lipu(x).

By using ft/t =
Lp

t

ptp − Dt

Lt
· Lt

t again, it follows

lim
t→0

Lt(x)

t
= Lip

1
p−1u(x) = Lipq/pu(x),

and then

lim
t→0

Dt(x)

t
= Lip1+q/pu(x) = Lipqu(x).

The proof is finished.

Now we are in the place to prove Theorem 1.10.

Proof of Theorem 1.10. We have known that Lip ∈ L∞
loc(Ω) from Theorem 1.3. By a rescaling argument

of the target space, we can assume that (X, dX) is a CAT (1)-space. In this case, since Lipu = Gu for

almost all x ∈ Ω, we need to prove Gu ∈ W 1,2
loc (Ω) and that

∆Gu > −KGu − eu ·Gu (4.22)

on Ω, in the sense of distributions. It suffices to show that: for any o ∈ Ω, there exists a neighborhood

BR(o) with B2R(o) ⊂ Ω such that Gu ∈ W 1,2
loc (BR(o)) and that (4.22) holds on BR(o), in the sense of

distributions.

Since u is continuous (from Theorem 2.5), for any o ∈ Ω, there exists a neighborhood BR(o) such that

Image(u(B2R(o))) ⊂ Bπ/4(u(o)). In particular, the triangle inequality yields diamu(B2R(o)) < π/2. Fix

such a neighborhood BR = BR(o).

Fix any p ∈ [2,∞). From Lemma 4.1(3), we get ∆ft/t 6 Cℓ0 on B3R/2 for any t ∈ (0, t∗), where the

constant Cℓ0 is uniformly with respect to t ∈ (0, t∗). By combining Lemma 4.4 and Proposition 4.2, we

have, for any ε > 0 that Gq
u/q ∈ W 1,2

loc (B3R/2) and that

∆(Gq
u/q) > −KGq

u − (1 + ε) · eu ·Gq
u

on B3R/2, in the sense of distributions, where q = p/(p − 1) ∈ (1, 2]. From the arbitrariness of ε, we

conclude that

∆(Gq
u/q) > −KGq

u − eu ·Gq
u (4.23)

on B3R/2, in the sense of distributions, where q = p/(p− 1) ∈ (1, 2].

In order to take the limit of (4.23) as q → 1, we want to show that the energies ∥∇(Gq
u/q)∥L2(BR)

are bounded uniformly with respect to q. By the local Lipschitz continuity of u, there exists a constant

C1 > 1 such that Gu, eu 6 C1 on B3R/2. Hence, we have

∆(Gq
u/q) > −K · Cq

1 − Cq+1
1 > −K · C2

1 − C3
1

on B3R/2, in the sense of distributions, where we have used K > 0 and q ∈ (1, 2]. By applying the

Caccioppoli inequality, we conclude that the energies ∥∇(Gq
u/q)∥L2(BR) are bounded uniformly. Hence,

there exists a sequence {qj}j∈N with qj ∈ (1, 2] and qj ↘ 1 such that ∆(G
qj
u /qj) ⇀ ∆Gu. Now, by letting

qj → 1 in (4.23), we conclude that Gu ∈ W 1,2(BR) and (4.22). The proof is finished.
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5 Yau’s gradient estimates

We will continue to assume that Ω is a smooth domain of an n-dimensional Riemannian manifold (M, g)

with Ric > −K for some K > 0, and that (X, dX) is a CAT (κ)-space for some κ > 0. Let u be a

harmonic map from Ω to X. Assume that its image u(Ω) ⊂ X is contained in a ball with radius < π
2
√
κ
.

When the target space has non-positive curvature, we have the following a consequence of the Bochner

inequality (see Theorem 1.10).

Lemma 5.1. Let κ = 0. Suppose that B2R(x0) ⊂⊂ Ω and that u(BR(x0)) ⊂ Bρ(Q0) for some ρ > 0

and Q0 ∈ X. We put

h = 2ρ2 − d2X(Q0, u(x)) and F =
Lipu

h
.

Then F ∈ W 1,2 ∩ L∞(BR(x0)) and

∆F + 2 ⟨∇F,∇ log h⟩ > Cρ2 · F 3 −K · F (5.1)

in the sense of distributions, where C = Cn,
√
KR.

Proof. From Theorem 1.10, we have Lipu ∈ W 1,2∩L∞(BR(x0)). Noticing that h is Lipschitz continuous

and h > ρ2, we obtain F ∈ W 1,2 ∩ L∞(BR(x0)).

By applying the chain rule to Lipu = hF , we have

h ·∆F + 2 ⟨∇F,∇h⟩+ F ·∆h = ∆Lipu.

Multiplying both sides of this inequality by h−1 and substituting (1.7) and then −∆h > 2eu (see

Lemma 2.6), we get

∆F + 2 ⟨∇F,∇ log h⟩ = −F · ∆h

h
+

∆Lipu

h
> F · 2eu

h
−KF (5.2)

in the sense of distributions. As Corollary 2.7, we have

∆F + 2 ⟨∇F ,∇ log h⟩ > Cn,
√
KR

F

h
· Lip2u−KF = Cn,

√
KRhF

3 −KF

> Cn,
√
KR · ρ2 · F 3 −KF,

where we have used h > ρ2 again. The proof is finished.

Similarly, in the case of where the target is a CAT (1)-space, we have the following property.

Lemma 5.2. Let κ = 1. Suppose that B2R(x0) ⊂⊂ Ω and that u(BR(x0)) ⊂ Bρ(Q0) for some ρ < π/2

and Q0 ∈ X. We put ρ0 = ρ+π/2
2 = ρ+ π/2−ρ

2 and

h1 = cos dX(Q0, u(x))− cos ρ0 and F =
Lipu

h1
.

Then F ∈ W 1,2 ∩ L∞(BR(x0)) and

∆F + 2 ⟨∇F ,∇ log h1⟩ > C ′ · F 3 −KF (5.3)

in the sense of distributions, where C ′ = C ′(n,
√
KR, π/2 − ρ) is a constant depending on n,

√
KR and

π/2− ρ.

Proof. It is easy to see that h1 is Lipschitz continuous and

h1 > cos ρ− cos ρ0 =: C ′
1 > 0

for some positive number C ′
1 depends only on π/2− ρ. From Lemma 2.6, we have

−∆h1 > cos d2X(Q0, u(x)) · eu > cos ρ · eu.

For the rest of the proof, by a similar argument to that in Lemma 5.1, we have

∆F + 2 ⟨∇F ,∇ log h1⟩ > Cn,
√
KR · C ′

1 · cos ρ · F 3 −KF (5.4)

in the sense of distributions.
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In general, the function Lipu is not smooth, even may not be continuous. It is difficult to employ

the argument in [4] directly. So we will use the following the approximating version of the maximum

principle.

Theorem 5.3 (See [44, Theorem 1.4]). Let f(x) ∈ W 1,2
loc ∩ L∞

loc(Ω) such that ∆f is a signed Radon

measure with ∆singf > 0, where ∆f = ∆acf · volg + ∆singf is the Radon-Nikodym decomposition with

respect to volg. Suppose that f achieves one of its strict maximum in Ω in the sense that: there exists a

neighborhood U ⊂⊂ Ω such that

sup
U

f > sup
Ω\U

f.

Then, given any w ∈ W 1,2(Ω) ∩ L∞(Ω), there exists a sequence of points {xj}j∈N ⊂ U such that they

are the approximate continuity points of ∆acf and ⟨∇f,∇w⟩, and that

f(xj) > sup
Ω

f − 1/j and ∆acf(xj) + ⟨∇f,∇w⟩ (xj) 6 1/j.

Here and in the sequel, supU f means ess-supUf .

Proof. It was proved in [44] in the setting of metric measure spaces with generalized Ricci curvature

bounded from below. In particular, it holds for Riemannian manifolds with Ricci curvature bounded

from below (with the Riemannian measure).

The proofs of Theorems 1.4 and 1.7 are both based on the following lemma.

Lemma 5.4. Let BR(x0) ⊂ Ω and let F ∈ W 1,2
loc ∩ L∞

loc(BR(x0)) be a non-negative function. Assume

that F satisfies

∆F + ⟨∇F,∇v⟩ > a1F
3 − a2F, (5.5)

in the sense of distributions, where v ∈ W 1,2
loc ∩ L∞

loc(BR(x0)) such that |∇v| 6 a3F , and the constants

a1, a3 > 0 and a2 > 0. Then there exists a constant Cn,
√
KR such that

sup
BR/2(x0)

F 2 6 2a2
a1

+
Cn,

√
KR

R2

(
1

a1
+

a23
a21

)
.

Proof. Fix any a small number δ such that 0 < δ < 1
2

supBR/2
F

supB3R/4
F . Let us choose η(x) = η(r(x)) to be a

function of the distance r to the fixed point x0 with the following property that:

δ 6 η 6 1 on BR, η = 1 on BR/2, η = δ on BR\B3R/4,

and

−C1

R
6 η′(r) 6 0 and |η′′(r)| 6 C1

R2
, ∀ r ∈ (0, 3R/4)

for some universal constant C1 (which is independent of n,K and R). Then we have

|∇η| = |η′||∇r| 6 C1

R
on B3R/4, (5.6)

and, by the Laplacian comparison theorem, that

∆η = η′∆r + η′′|∇r|2 > −C1

R
(
√

(n− 1)K coth(r
√
K/(n− 1)))− C1

R2

> −C1

R

(√
(n− 1)K +

n− 1

R

)
− C1

R2
= −

C1

√
(n− 1)KR+ nC1

R2
> −C2

R2
(5.7)

on B3R/4, in the sense of distributions, where we have used that

coth(r
√
K/(n− 1)) 6 coth(R

√
K/(n− 1)) 6 1 +

1

R
√
K/(n− 1)

.
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Here and in the sequel of this proof, we denote C1, C2, C3, . . . the various constants which depend only

on n and
√
KR.

Now we put G = ηF . Then G is in W 1,2(B3R/4)∩L∞(B3R/4) and G achieves one of its strict maximum

in BR/2 in the sense of Theorem 5.3, i.e.,

∆G+ ⟨∇G,∇v⟩ = ∆η · F + 2 ⟨∇η,∇(G/η)⟩+ η ·∆F + η ⟨∇F,∇v⟩+ F ⟨∇η,∇v⟩

> ∆η · G
η

+ 2 ⟨∇ log η,∇G⟩ − 2
|∇η|2

η
· G
η

+ η(∆F + ⟨∇F,∇v⟩) + G

η
⟨∇η,∇v⟩

> −G

η

C2

R2
+ 2 ⟨∇ log η,∇G⟩ − G

η2
2C2

1

R2
+ η · (a1F 3 − a2F ) +

G

η
⟨∇η,∇v⟩ .

By setting w = v − 2 log η ∈ W 1,2(B3R/4) ∩ L∞(B3R/4) and using |∇v| 6 a3F = a3
G
η , we have

∆G+ ⟨∇G,∇w⟩ > −C2

R2

G

η
− 2C2

1

R2

G

η2
+ η(a1(G/η)3 − a2(G/η))− a3

G

η
|∇η|G

η

> −C2

R2

G

η
− 2C2

1

R2

G

η2
+ a1

G3

η2
− a2G− a3

G2

η2
C1

R

> −C2

R2

G

η

1

η
− 2C2

1

R2

G

η2
+ a1

G3

η2
− a2G

1

η2
− a3

G2

η2
C1

R

> G

η2

[
− C2

R2
− 2C2

1

R2
+ a1G

2 − a2 − a3
C1

R
G

]
,

where we have used G > 0, 1/η > 1 and a2 > 0. Let C3 := C2 + 2C2
1 . Substituting

a3C1

R
·G 6 a1

2
G2 +

1

2a1

(
a3C1

R

)2

into the above inequality, we obtain

∆G+ ⟨∇G,∇w⟩ > G

η2

[
− C3

R2
+

a1
2
G2 − a2 −

C2
1a

2
3

2a1R2

]
(5.8)

in the sense of distributions. According to Theorem 5.3, there exist a sequence of points {xj}j∈N such

that, for each j ∈ N,
Gj := G(xj) > sup

B3R/2

G− 1/j

and that
Gj

η2(xj)

[
a1
2
G2

j − a2 −
C3

R2
− C2

1a
2
3

2a1R2

]
6 1

j
.

As η > δ > 0, by letting j → ∞, we have

sup
B3R/4

G2 = lim
j→∞

G2
j 6 2a2

a1
+

2C3

a1R2
+

C2
1a

2
3

a21R
2
.

This yields

sup
BR/2

F 2 6 sup
B3R/4

G2 6 2a2
a1

+
2C3

a1R2
+

C2
1a

2
3

a21R
2
6 2a2

a1
+

C4

R2

(
1

a1
+

a23
a21

)
,

where C4 := max{2C3, C
2
1}. The proof is finished.

Now we are in the place to show the main results.

Proof of Theorem 1.4. By applying Lemma 5.4 to (5.1) in Lemma 5.1 with v = 2 log h and

a1 = C5ρ
2, a2 = K, a3 = 2ρ,
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and noticing that

|∇v| = 2
|∇h|
h

= 2
dX(Q0, u(x)) · |∇dX(Q0, u(x))|

h
6 2

ρ · Lipu
h

= 2ρF,

we conclude that, for some constants C5, C6 and C7 depending only on n and
√
KR, it holds

sup
BR/2(x0)

Lip2u

(2ρ2 − d2X(Q0, u(x)))2
6 2K

C5ρ2
+

C6

R2

(
1

C5ρ2
+

4ρ2

C2
5ρ

4

)
6 C7

ρ2

(
K +

1

R2

)
. (5.9)

This implies

sup
BR/2(x0)

Lip2u 6 C7

ρ2

(
K +

1

R2

)
· sup
BR/2(x0)

(2ρ2 − d2X(Q0, u(x)))
2

6 C7
4ρ2

R2
(KR2 + 1) = C8 ·

ρ2

R2
,

for some constant C8 depending only on n and
√
KR. The proof is finished.

Proof of Theorem 1.7. By applying Lemma 5.4 to Lemma 5.2 with v = 2 log h and noticing that

|∇v| = 2
|∇h|
h

= 2
sin dX(Q0, u(x)) · |∇dX(Q0, u(x))|

h
6 2

Lipu

h
= 2F,

and choosing

a1 = C ′
1, a2 = K, a3 = 2,

here and in the sequel of this proof, we denote C ′
1, C

′
2, C

′
3, . . . the various constants which depend only

on n,
√
KR and π/2− ρ, we conclude that

sup
BR/2(x0)

Lip2u

(cos dX(Q0, u)− cos ρ0)2
6 2K

C ′
1

+
C ′

2

R2

(
1

C ′
1

+
4

(C ′
1)

2

)
6 C ′

3

(
K +

1

R2

)
,

where ρ0 = π/4 + ρ/2. By noticing that cos(dX ◦ u)− cos ρ0 6 cos ρ, this implies

sup
BR/2(x0)

Lip2u 6 C ′
3 cos ρ

(
K +

1

R2

)
6 C ′

4

R2
.

The proof is finished.
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Appendix A A generalized Jensen’s lemma and the proof of Lemma 4.3

We need a simple lemma for symmetric matrices as follows.

Lemma A.1. Let A = (aij)n×n and B = (bij)n×n be two symmetric matrices. Assume that B is

non-negative definite, and that |aij − δij | 6 1
2n2 for any 1 6 i, j 6 n, where I = (δij)n×n is the identity

matrix. If trace(AB) 6 C for some C > 0, then we have

|detB| 6 (2C)n.

Proof. We put µ̄ = the maximum eigenvalue of B. Then by non-negative definiteness of B we have

µ̄ 6 ∥B∥ := (
∑n

i,j=1 b
2
ij)

1/2 6 √
nµ̄. Hence we have

µ̄ 6 trace(B) = trace((I −A)B) + trace(AB)

6 ∥I −A∥ · ∥B∥+ trace(AB)

6
[
n2 ·

(
1

2n2

)2]1/2
·
√
nµ̄+ C =

µ̄

2
√
n
+ C.

This implies that µ̄ 6 2C. At last, by the assumption that B is non-negative definite, we have 0 6
detB 6 µ̄n 6 (2C)n. The proof is finished.

The following lemma is a slight extension of Jensen’s lemma (see, for example, [6, Lemma A.3]).

Lemma A.2. Let U ⊂ M be a convex domain of M and let h ∈ W 1,2(U)∩C(U) satisfy ∆h 6 λ on U

for some constant λ ∈ R. Assume that the point x̂ ∈ U is a uniquely local minimum point of the function h

on U . Let {yj}16j6n be a local geodesic coordinate system around x̂. For any p = (p1, . . . , pn) ∈ Rn, we

set

hp(x) := h(x) +
n∑

i,j=1

pjyj(x).

Then for any r, δ > 0 sufficiently small, (namely, they are smaller than a constant δ0 depending on the

bounds of sectional curvature on U ,) the set

K = {x ∈ Br(x̂) : ∃ p ∈ Bδ(0) for which hp has a local minimum at x}

has positive measure, where Bδ(0) := {p ∈ Rn : ∥p∥ < δ, ∀ 1 6 j 6 n}.
Proof. Fixed any sufficiently small r, if δ is small enough, then for any p ∈ Bδ(0), there exists a local

minimum of hp lying in the interior of Br(x̂), since h has the unique minimum at x̂. We will split the

proof into two steps, as in the argument of [6, Lemma A.3].

(i) We assume for the moment that h is of C2 near x̂. Let (gij)n×n be the local Riemannian metric

around x̂ with respect to the coordinate system {yj}16j6n. There exists a number r0 > 0, depending on

the curvature on U , such that, for all 1 6 i, j, k 6 n,

|gij(x)− δij | 6
1

10n2
, |∂kgij(x)| 6 1, ∀x ∈ Br0(x̂).

Fixed any r ∈ (0, r0), it suffices to show that K has positive measure with respect to the Euclidean

measure on (Br(x̂), δij).

Now we consider the elliptic operator

Lh :=
∑

16i,j6n

∂i(aij∂jh) with aij = gij
√
det(gij).
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It is easily seen that there exists a constant C(n) such that for all x ∈ Br(x̂) and for all 1 6 i, j, k 6 n,

it holds that

|aij(x)− δij | 6
1

4n2
, |∂kaij | 6 C(n), Lh 6 C(n) · λ. (A.1)

Since Dh+ p = Dhp = 0 holds for every minimum points of hp, we have

Dh(K) ⊇ Bδ(0).

Here, Dh (and the following D2h) is the (2-order) differential of h with respect to the Euclidean metric

on Br(x̂). Moreover, for every minimum points of hp, we have that D2hp = (∂i∂jhp) is non-negative

definite and that ∑
16i,j6n

aij∂i∂jhp =
∑

16i,j6n

∂i(aij∂jhp) (since ∂jhp = 0)

= Lh+ L

( n∑
k=1

pk · xk

)
= Lh+

∑
16i,j6n

pj · ∂iaij

6 C(n) · λ+ C(n)n2δ 6 C1(n, λ),

for a constant C1 > 0. By using Lemma A.1 for B = D2hp, we have |detD2h| = |detD2hp| 6 (2C1)
n for

all x ∈ K. Thus,

Ln(Bδ(0)) 6 Ln(Dh(K)) 6
∫
K

|detD2h|dx 6 Ln(K) · (2C1)
n,

where Ln(K) is the Euclidean measure of K. This completes the proof for the smooth case.

(ii) In the general case, in which h need not be smooth, we will approximate it via heat flows. This is

the reason that we have to assume that U is convex.

Let {Pth}t>0 be the heat flow with the Neumann boundary value condition on U , with the initial data

P0h = h. It is clear that Pth is smooth for any t > 0. By maximum principle, we have

∆Pth = Pt∆h 6 λ, ∀ t > 0.

The corresponding set Kt obeys the above estimates in (i) for small t > 0. In particular, the measure

of Kt is bounded from below by a constant C(δ, λ, n) > 0 uniformly on t > 0.

At last, by using the convexity of the boundary of U and that the curvature of M is bounded on U , (in

particular, the Ricci curvature on U is bounded from below,) the Li-Yau gradient estimates for solutions of

the heat flow implies that Pth converges uniformly to h on Br(x̂) ⊂⊂ U . Notice that K ⊃ lim inft→0 Kt.

The result now follows.

Now the perturbation Lemma 4.3 is a corollary as follows.

Corollary A.3. Let U ⊂ M be a convex domain of M and let

h ∈ W 1,2(U) ∩ C(U)

satisfy ∆h 6 λ on U for some constant λ ∈ R. Assume that the point x̂ ∈ U is one of minimum points

of function h on U . Assume a subset A ⊂ U has full measure. Then for any r, δ > 0 sufficiently small,

there exists a smooth function ϕ on a neighborhood of x̂, Br0(x̂), such that h + ϕ has a local minimum

point in Br(x̂) ∩A and that

|ϕ|+ |∇ϕ|+ |Hess(ϕ)| 6 δ, ∀x ∈ Br0(x̂).

Proof. Fix any r, δ sufficiently small. We put

h1 := h+ δ|x̂x|2/(10n).
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Then h1 has a unique minimum at x̂. Since ∆h1 6 ∆h + C(n, k0) · δ by the Laplacian comparison on

M , the above lemma implies that h1 +
∑n

j=1 p
jyj has a local minimum at a point in Br(x̂)∩A and that

0 6 pj 6 δ/2, 1 6 j 6 n. Now, the function

ϕ := δ|x̂x|2/(10n) +
n∑

j=1

pjyj

is defined on a coordinate neighborhood Br0(x̂). Notice that |Hessyj | 6 C(k0) for some constant C(k0)

depending on k0, a bound of |secM | on U . This implies that

|ϕ|+ |∇ϕ|+ |Hess(ϕ)| 6 δ · C(n, k0), ∀x ∈ Br0(x̂).

The proof is finished.
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