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Abstract Let M be a complete Riemannian manifold with Riemannian volume volg and
f be a smooth function on M . A sharp upper bound estimate on the first eigenvalue of
symmetric diffusion operator � f = � − ∇ f · ∇ was given by Wu (J Math Anal Appl
361:10–18, 2010) and Wang (Ann Glob Anal Geom 37:393–402, 2010) under a condition
that finite dimensional Bakry–Émery Ricci curvature is bounded below, independently. They
propounded an open problem is whether there is some rigidity on the estimate. In this note,
we will solve this problem to obtain a splitting type theorem, which generalizes Li–Wang’s
result in Wang (J Differ Geom 58:501–534, 2001, J Differ Geom 62:143–162, 2002). For
the case that infinite dimensional Bakry–Emery Ricci curvature of M is bounded below, we
do not expect any upper bound estimate on the first eigenvalue of � f without any additional
assumption (see the example in Sect. 2). In this case, we will give a sharp upper bound esti-
mate on the first eigenvalue of � f under the additional assuption that |∇ f | is bounded. We
also obtain the rigidity result on this estimate, as another Li–Wang type splitting theorem.
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1 Introduction

Let Mn be an n-dimensional complete non-compact Riemannian manifold and λ1(Mn) be
the bottom of the spectrum of the Laplacian with respect to the metric of Mn . A classical
theorem of Cheng [3] asserts that

λ1(Mn) �
(n − 1)2

4

provided the Ricci curvature of Mn is bounded from below by RicMn � −(n −1). Li–Wang
in [4,5] studied the rigidity of the estimate and proved the following splitting type theorem
for optimal case of Cheng’s theorem:

Theorem 1.1 (Li–Wang [5]) Let Mn be a complete n-dimensional Riemannian manifold

with Ric � −(n − 1) and λ1(Mn) = (n−1)2

4 . Then either:

(1) Mn has only one end; or

(2) Mn = R × N with the warped product metric

ds2
Mn = dt2 + e2t ds2

N

where N is a compact manifold with nonnegative Ricci curvature; or

(3) if n = 3, M3 = R × N with the warped product metric

ds2
Mn = dt2 + cosh2 tds2

N

where N is a compact surface with curvature bounded below by −1.

Given a smooth metric measure space (M, g, e− f dvolg), where (M, g) is a complete
Riemannian manifold with metric g, f is a smooth real-valued function on M , and dvolg is
the Riemannian volume density on M , the (∞-dimensional) Bakry–Émery Ricci tensor on
M is defined by

Ric f (M) = Ric(M) + Hess f.

The Bakry–Émery tensor occurs naturally in many different subjects, such as diffusion pro-
cesses and Ricci flow, and so on. Let m ∈ R with m > n = dim(M), the m-dimensional
Bakry–Émery Ricci tensor is given by

Ricm
f (M) = Ric f (M) − ∇ f ⊗ ∇ f

m − n
.

It is known that the symmetric diffusion operator � f = � − ∇ f · ∇ satisfies C D(m, K )

condition in the sense of Bakry–Émery provided M has Ricm
f (M) � K g (see for example

[8]). On the other hand, from [9,12], suppose that
∫

M e− f dvolg = 1, it is known that the
metric measure space (M, g, e− f dvolg) satisfies curvature–dimension condition CD(m, K )

in the sense of Sturm–Lott–Villani if and only if Ricm
f (M) � K g. As an extension of Ricci

curvature, many classical results in Riemannian geometry asserted in terms of Ricci curvature
have been extended to the analogous ones on Bakry–Émery Ricci curvature condition. For
example, see [8] and [14] for a brief overview of these results.

Let (M, g, e− f dvolg) be a smooth metric measure space with m-dimensional Bakry–
Émery Ricci curvature bounded below by −(m − 1), the sharp upper bound of λ1(M), the
bottom of the spectrum of the diffusion operator � f , was obtained in [13] and [15] that
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λ1(M) �
(m − 1)2

4
.

They leave an open problem: whether is there some rigidity on this estimate? We will solve
this problem and prove the following:

Theorem 1.2 Let (M, g, e− f dvolg) be a smooth metric measure space with dim(M) = n �
3. Suppose that Ricm

f (M) � −(m − 1) and λ1(M) = (m−1)2

4 . Then either:

(1) M has only one end; or

(2) M = R × N with warped product metric

ds2
M = dt2 + e−2t d2

N

and f satisfies ∇∂t f = m − n, where N is a compact manifold with nonnegative Ricci
curvature.

For the case of that smooth metric measure space (M, g, e− f dvolg) with ∞-dimensional
Bakry–Émery Ricci curvature bounded below, we do not expect any upper bound of λ1(M)

without additional assumption. So we will estimate the upper bound of λ1(M) under an
additional condition |∇ f | is bounded. Explicitly, we obtain the following estimate of λ1(M)

and its rigidity:

Theorem 1.3 Let (M, g, e− f dvolg) be a smooth metric measure space with dim(M) = n �
3. Suppose that Ric f (M) � −(n − 1) and |∇ f | � A for constant A > 0. Then we have

λ1(M) �
(
n − 1 + A

)2

4
. (1.1)

Furthermore, if the equality holds, then either:

(1) M has only one end; or

(2) M = R × N with warped product metric

ds2
M = dt2 + e−2t ds2

N

and f = At, where N is a compact manifold with nonnegative Ricci curvature.

In Sect. 2, we will provide a simple example to show that λ1 is unbounded without the
assumption that |∇ f | is bounded.

The two results may be compare with ones in [6], where they consider to extend Theorem
1.1 on a Riemannian manifold with Ricci curvature bounded below and a weighted Poincaré
inequality.

After this article was finished, we have learnt Ovidiu Munteanu and JiaPing Wang’s related
work [10], where they study smooth measure spaces with nonnegative Bakry–Émery Ricci
curvature.

2 The sharp upper bound of λ1(M) in infinite dimension case

In this section, we will prove the first assertion of Theorem 1.3 and give an example to show
that the assumption |∇ f | � A is necessary.

123



324 Geom Dedicata (2012) 160:321–331

Proposition 2.1 Let (M, g, e− f dvolg) be a smooth metric measure space with dim(M) = n.
Suppose that Ric f (M) � −(n − 1)K and |∇ f | � A for two constants K � 0 and A > 0.
Then we have

λ1 �
(
(n − 1)

√
K + A

)2

4
. (2.1)

Proof Firstly, let us consider the case that K > 0.
Let Vol f (Bp(r)) = ∫

Bp(r)
e− f dvolg , the weighted (or f -)volume and VolnK (r) be the

volume of the geodesic ball with radius r in the model space Mn
K , simply connected space

form with curvature −K . By the volume comparison in [14], we have

Vol f (Bp(R)) �
Vol f (Bp(1))

VolnK (1)
· eARVolnK (R) (2.2)

for all R > 1.

On the other hand, it is well-known that (see for example [11]),

√
λ1(M) � lim

R→∞
log Vol f (Bp(R))

2R
. (2.3)

Hence, the desired estimate (2.1) follows from (2.2) and (2.3).
If K = 0, then Ric f � −(n − 1)ε for all ε > 0. Letting ε → 0+, we obtain (2.1).

Therefore, the proof is completed. �	

Next, we will give a family of smooth metric measure spaces {(M j , g j , e− f j dvolg j )}∞j=1
with dim(M j ) = n and Ric f j � 0 for all j ∈ N. But the set {λ1(M j )}∞j=1 is unbounded.

Example Let (M j , g j ) be R
n with standard metric, and let f j = j · x1 for all j ∈ N. Then

∇ f j = j · ∂

∂x1
, Hess f j = 0.

Hence the metric measure spaces (M j , g j , e− f j dvolg j ) satisfy Ric f j = 0 for all j ∈ N.

Let h j (x) = exp(
j x1
2 ). By

� f j = � − j · ∂

∂x1
,

we have

� f j h j = ∂2

∂x2
1

h j − j
∂

∂x1
h j = − j2

4
h j , ∀ j ∈ N.

The same proof of Proposition 0.4 in [5] gives that

λ1(M j ) �
j2

4
.

The above example also shows that the estimate (2.1) is optimal.
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3 Rigidity property of λ1(M)

The ingredient used in the proof of Theorem 1.1 by Li–Wang is an improved Bochner for-
mula and its metric rigidity. Under the curvature condition Ric(M) � −(n − 1), for any
nonconstant harmonic function u, then |∇u| satisfies (see [6])

|∇u|�(|∇u|) � −(n − 1)|∇u|2 + |∇(|∇u|)|2
n − 1

.

Moreover, if equality holds, then M splits into R × N with a warped product metric. Our
proof to Theorems 1.2 and 1.3 is basically along Li–Wang’s proof of Theorem 1.1. There-
fore, the main work of this paper is to extend the above improved Bochner formula and
its metric rigidity for smooth metric measure spaces (M, g, e− f dvolg) under some suitable
Bakry–Émery Ricci curvature conditions.

The following improved Bochner formula with its metric rigidity property is our main
tool to prove Theorem 1.3.

Lemma 3.1 Let (M, g, e− f dvolg) be a smooth metric measure space with dim(M) � 2.

Assume that Ric f (M) � −(n − 1) and |∇ f | � A for some constant A > 0. Suppose that u
is a non-constant solution of � f u = 0, then we have

|∇u|� f (|∇u|) ≥ 1

(1 + α)(n − 1)
|∇(|∇u|)|2 − A2

α(n − 1)
|∇u|2 − (n − 1)|∇u|2 (3.1)

for all α > 0. Moreover, if for some α0 > 0, the equality in (3.1) holds, then α0 = A
(n−1)

and
M = R ×η N with the warped product metric

ds2
M = dt2 + exp(−2t)ds2

N .

Proof By the Bochner formula of the Bakry–Émery Ricci tensor (see for example [8]) and
� f u = 0, we have

|∇u| · � f (|∇u|) = |∇2u|2 − |∇(|∇u|)|2 + Ric f (∇u,∇u). (3.2)

By choosing an orthonormal basis {e1, e2, . . . , en} such that |∇u|e1 = ∇u, and e j u = 0 for
all j �= 1, and using a Yau’s trick, we can get

|∇(|∇u|)|2 =
∑

j�1

u2
1 j (3.3)

and

|∇2u|2 − |∇(|∇u|)|2 =
∑

i �=1, j�1

u2
i j �

∑

j�2

u2
1 j + 1

n − 1
(u11 − f1u1)

2, (3.4)

where we used the equation � f u = 0. It is easy to check that

( f1u1 − u11)
2 �

u2
11

1 + α
− ( f1u1)

2

α
, ∀α > 0.

Hence, we have

|∇2u|2 − |∇(|∇u|)|2 �
1

(n − 1)(1 + α)

∑

j�1

u2
1 j − 1

(n − 1)α
( f1u1)

2. (3.5)

The desired estimate (3.1) follows from the combination of (3.2)–(3.5) and Ric f � −(n−1).
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Now, let us consider the case of equality in (3.1) for some α0 > 0. The equality in (3.1)
implies that all the inequalities above become equalities. Then we have

∇ f = f1 · e1, f1 = A;
u11 = 1 + α0

α0
Au1, u22 = · · · = unn;

ui j = 0, for all 1 � i �= j � n.

Hence, by � f u = 0, we have

Hessu =

⎛

⎜
⎜
⎜
⎜
⎝

α0+1
α0

Au1

− A
(n−1)α0

u1

. . .

− A
(n−1)α0

u1

⎞

⎟
⎟
⎟
⎟
⎠

.

Let us denote I I = (hi j ) be the second fundamental form of the level set of u and trI I be
the mean curvature of the level set of u. It is evidently to see that I I = − A

(n−1)α0
(δi j ), thus

the second fundamental form is a constant multiple of the identity matrix along each level
set of u, the splitting of the metric given by the form

ds2
M = dt2 + η2(t)ds2

N

with

(n − 1)
η′

η
= tr I I = − A

α0

We have

η(t) = exp

(

− A

α0(n − 1)
t

)

Then from � f u = 0, we have

Au1 = �u = tr I I · u1 + u11

Let g = |∇u| = u1, it becomes

tr I I · g + g1 = Ag

that is

g1

g
=

(

1 + 1

α0

)

A

so we have

g� f g = g(g11 + tr I I · g1 − Ag1) = gg11 − g2
1 ≡ 0

And by the equality in (3.1)

g� f g = 1

(1 + α0)(n − 1)
g2

1 − A2

α0(n − 1)
g2 − (n − 1)g2

We must have

α0 = A

(n − 1)
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and

η(t) = exp (−t)

thus the proof is completed. �	
Definition 3.2 An end E ⊂ M of a smooth metric measure space (M, g, e− f dvolg) is said
to be f -nonparabolic if there exists a non-constant bounded f -harmonic function on E with
finite Dirichlet energy. Otherwise, E is said to be f -parabolic.

The same proof of Lemma 1.2 in [4] gives the following lemma.

Lemma 3.3 Let (M, g, e− f dvolg) be a smooth metric measure space with λ1(M) > 0, and
let E1, E2 be two f -nonparabolic ends in M. Then there exists a non-constant bounded
f -harmonic function on M and constant C > 0 such that

∫

Bp(R)

exp
(

2
√

λ1(M)r
)
|∇u|2e− f dvolg � C R

for R sufficiently large.

This lemma provides the following upper bound estimate for λ1(M).

Lemma 3.4 Let (M, g, e− f dvol) be a smooth metric measure space with dim M = n � 3.
Assume that Ric f � −(n − 1) and |∇ f | ≤ A for some A > 0. If there exists some α > 0
such that

λ1(M) > max

{(
A + (n − 1)

2[(n − 1)(1 + α) − 1]
)2

, ρ(α)

}

,

then M must have at most one f -nonparabolic end, where

ρ(α) =
(

1 − 1

(1 + α)(n − 1)

)(

(n − 1) + A2

α(n − 1)

)

.

Proof By a contradiction argument, we can assume that M has two f -nonparabolic ends.
Let u be a f -harmonic function given in Lemma 3.3. For any α > 0, we have

� f g � −ρ(α)g,

where g = |∇u|b and b = 1 − 1
(1+α)(n−1)

.

By using Hölder inequality, we have

∫

Bp(R,2R)

g2dμ �

⎛

⎜
⎝

∫

Bp(R,2R)

exp(2r
√

λ1(M))|∇u|2dμ

⎞

⎟
⎠

b

·
⎛

⎜
⎝

∫

Bp(R,2R)

exp(−2r [(n − 1)(1 + α) − 1]√λ1(M))dμ

⎞

⎟
⎠

1−b

,

where dμ = e− f dvolg and Bp(R, 2R) = Bp(2R)\Bp(R). Since Ric f � −(n − 1) and
|∇ f | � A, by volume comparison theorem [14], we have

A(r) � eAr A−1(r),
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where A−1(r) is the area of geodesic sphere in simply connected hyperbolic space H
n . Hence,

we have
∫

Bp(R,2R)

exp(−2r [(n − 1)(1 + α) − 1]√λ1(M))dμ

�
2R∫

R

exp
[(

− 2[(n − 1)(1 + α) − 1]√λ1(M) + A + (n − 1)
)

r
]
dμ.

We can assume that
√

λ1(M) >
A + (n − 1)

2[(n − 1)(1 + α) − 1] .
By combining these inequalities and Lemma 3.3, we have

∫

Bp(R,2R)

g2dμ � C R (3.6)

for R sufficiently large.
We consider φ to be a nonnegative compactly supported function on M . Then
∫

M

|∇(gφ)|2dμ =
∫

M

|∇φ|2g2dμ +
∫

M

φ2|∇g|2dμ + 1

2

∫

M

〈∇(φ2),∇g2〉 dμ

=
∫

M

|∇φ|2g2dμ + ρ(α)

∫

M

φ2g2dμ −
∫

M

φ2g
(
� f g + ρ(α)g

)
dμ

for all α > 0. By the variational principle of λ1(M) and Lemma 3.1, we have

(
λ1(M)−ρ(α)

)
∫

M

φ2g2dμ �
∫

M

|∇φ|2g2dμ−
∫

M

φ2g
(
� f g+ρ(α)g

)
dμ�

∫

M

|∇φ|2g2dμ.

Now choose φ to satisfy φ = 1 on Bp(R), φ = 0 out Bp(2R) and |∇φ| � C · R−1. By
the L2 estimate of g (3.6), letting R → ∞, we have λ1(M) � ρ(α). This contradicts to the
assumption λ1(M) > ρ(α) and completes the proof of the lemma. �	

The same argument in the proof of Theorem 2.1 in [7] gives the following proposition.

Proposition 3.5 Let (M, g, e− f dvol) be a smooth metric measure space with dim M = n �
3. Suppose h : (0,∞) → R is a function such that

lim
r→∞ h(r) = 2a > 0.

Assume that for any point p ∈ M, and r(x) is the distance function to the point p, we have

� f r(x) � h(r(x))

in the weak sense. Assume also that M has at least one parabolic end and

λ1(M) = a2.

Then, letting γ (t) be a geodesic ray issuing from a fixed point p to infinity of the parabolic
end and letting β(x) be the Buseman function

β(x) = lim
t→∞(t − r(γ (t), x))
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with respect to γ , we have

� f β = −2a.

Now we are in the position to prove Theorem 1.3.

Proof of Theorem 1.3 The estimate (1.1) has been proved in Sect. 2. Now we consider the
case

λ1(M) = (n − 1 + A)2

4
.

We first note that
√

λ1(M) >
A+(n−1)

2[(1+α)(n−1)−1] for any α > 0 and that, for α = A
n−1 ,

λ1(M) − ρ(α) = 1

4
((n − 1) + A)2 − (n − 2 + A) = 1

4
(n − 3 + A)2 > 0,

Thus by Lemma 3.4, M has at most one f -nonparabolic end.
We can assume that M has two ends at least. Otherwise, we have done. Hence, M has

one f -parabolic end at least. Note that the Laplacian comparison theorem of Bakry–Émery
Ricci tensor asserts that (see [14])

� f r ≤ (n − 1) coth r + A → (n − 1) + A

as r → ∞. Then, by Proposition 3.5, we have

� f β = −(n − 1) − A,

where β be the Busemann function with respect to a geodesic ray issuing from a fixed point
p to infinity of a parabolic end.

From the elliptic regularity theory, we know that β is smooth. Since |∇β| = 1, M must
be R × N topologically, where N = β−1(0).

The fact |∇β| = 1 implies that β1 j = 0 for all j � 1, for an othorgonal basis {e j }n
j=1

with e1 = ∇β, and that, by the Bochner formula

0 = 1

2
� f |∇β|2 = |∇2β|2 + Ric f (∇β,∇β) + 〈∇� f β,∇β〉 =

∑

i, j�2

β2
i j + Ric f (e1, e1).

Then the second fundamental form I I and mean curvature of a level set of β satisfy |I I |2 =
|∇2β|2 = −Ric11 − f11 and H := tr I I = −2a + f1, where

a = (n − 1) + A

2
.

Note that

n − 1 ≥ −Ric11 − f11 = |I I |2 ≥ 1

n − 1
H2 = 1

n − 1

(
4a2 − 4a f1 + f 2

1

)
, (3.7)

we have

(4a2 − 4a f1 + f 2
1 ) ≤ (n − 1)2.

Using 2a = n − 1 + A, we have

2(n − 1)(A − f1) + (A − f1)
2 ≤ 0.
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By the assumption |∇ f | ≤ A, we have f1 = A, fi = 0, thus ∇ f = A∇β and all the
inequalities in (3.7) becomes equalities. In particular, we have

⎧
⎨

⎩

β1 j = 0, ∀ j = 1, . . . , n
βi j = 0, i �= j
β22 = · · · = βnn = −1.

Thus M must be R× N isometrically, and the metric is given by ds2 = dt2 +η2(t)ds2
N with

(n − 1)
η′

η
= tr I I = −(n − 1).

Hence η(t) = exp(−t).
Since M has at least two ends, we know N is compact. The Ricci nonnegativity of N

follows from Gauss equation directly. �	
At last, let us consider the case that a finite-dimensional Bakry–Émery Ricci curvature of

M is bounded below and give a proof of Theorem 1.2.
The following improved Bochner formula has been obtain by X.-D. Li in [8] (a similar

one can been found in [2]).

Lemma 3.6 Let (M, g, e− f dvol) be a smooth metric space with dim M = n � 2. Assume
that Ricm

f ≥ −(m − 1). Suppose that u is a nonconstant f -harmonic function, that is, u is a

solution of � f u = 0, then the function g = |∇u| m−2
m−1 must satisfy the following differential

inequality:

� f g � −(m − 2)g (3.8)

in the weak sense.

By suing Bakry–Qian’s volume comparison theorem [1] and the above improved Bochner
formula, the same argument for the proof of Lemma 3.4 gives the following:

Lemma 3.7 Let (M, g, e− f dvol) be a smooth metric measure space with dim M = n � 3.
Assume that Ric f � −(m − 1). If

λ1(M) > m − 2,

then M must have at most one f -nonparabolic end.

Now let us prove Theorem 1.2.

Proof of Theorem 1.2 Note that m > n � 3, hence we have (m−1)2

4 > m − 2. Assume that
M has at least two ends, then, by the same argument in the proof of Theorem 1.2, we have
M has only one f -nonparabolic end and

� f β = −(m − 1),

where β is a Busemann function with respect to a geodesic ray issuing from a fixed point p
to infinity of a parabolic end.

The fact |∇β| = 1 implies that β1 j = 0 for all j � 1, for an othorgonal basis {e j }n
j=1

with e1 = ∇β, and that, by the Bochner formula

0 = 1

2
� f |∇β|2 = |∇2β|2 + Ric f (∇β,∇β) + 〈∇� f β,∇β〉

=
∑

i, j�2

β2
i j + Ricm

f (e1, e1) + f 2
1

m − n
.
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Then the second fundamental form I I and mean curvature of a level set of β satisfy

|I I |2 = |∇2β|2 = −
(

Ricm
f

)

11
− f 2

1

m − n

and H := tr I I = −(m − 1) + f1. By combining with Ricm
f � −(m − 1) and H2 �

(n − 1)|I I |2, we have

(−m + 1 + f1)
2 � (n − 1)

(
m − 1 − f 2

1 /(m − n)
)
.

That is,

( f1 − m + n)2 � 0.

Hence, we obtain f1 = m − n and all the inequalities above become equalities. In particular,
we have I I = H

n−1 · (δi j )2�i, j�n . Note that H = −(m − 1) + f1 = 1 − n
⎧
⎨

⎩

β1 j = 0, ∀ j = 1, . . . , n
βi j = 0, i �= j
β22 = · · · = βnn = −1.

Thus M must be R× N isometrically, and the metric is given by ds2 = dt2 +η2(t)ds2
N with

(n − 1)
η′

η
= tr I I = −(n − 1).

Hence η(t) = exp(−t). �	
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