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Preface

This book is devoted to explaining how the causal action principle gives rise to the
interactions of the standard model plus gravity on the level of second-quantized fermionic
fields coupled to classical bosonic fields. It is the result of an endeavor which I was
occupied with for many years. Publishing the methods and results as a book gives me
the opportunity to present the material in a coherent and comprehensible way.

The four chapters of this book evolved differently. Chapters [I] and [2] are based on
the notes of my lecture “The fermionic projector and causal variational principles” given
at the University of Regensburg in the summer semester 2014. The intention of this
lecture was to introduce the basic concepts. Most of the material in these two chap-
ters has been published previously, as is made clear in the text by references to the
corresponding research articles. We also included exercises in order to facilitate the self-
study. Chapters however, are extended versions of three consecutive research papers
written in the years 2007-2014 (arXiv:0908.1542 [math-ph], arXiv:1211.3351 [math-ph],
arXiv:1409.2568 [math-ph]). Thus the results of these chapters are new and have not
been published elsewhere. Similarly, the appendix is formed of the appendices of the
above-mentioned papers and also contains results of original research.

The fact that Chapters originated from separate research papers is still visible in
their style. In particular, each chapter has its own short introduction, where the notation
is fixed and some important formulas are stated. Although this leads to some redundancy
and a few repetitions, I decided to leave these introductions unchanged, because they
might help the reader to revisit the prerequisites of each chapter.

We remark that, having the explicit analysis of the continuum limit in mind, the focus
of this book is on the computational side. This entails that more theoretical questions
like the existence and uniqueness of solutions of Cauchy problems or the non-perturbative
methods for constructing the fermionic projector are omitted. To the reader interested in
mathematical concepts from functional analysis and partial differential equations, we can
recommend the book “An Introduction to the Fermionic Projector and Causal Fermion
Systems” [FKT|. The intention is that the book [FKT] explains the physical ideas in a
non-technical way and introduces the mathematical background from a conceptual point
of view. It also includes the non-perturbative construction of the fermionic projector in
the presence of an external potential and introduces spinors in curved space-time. The
present book, on the other hand, focuses on getting a rigorous connection between causal
fermion systems and physical systems in Minkowski space. Here we also introduce the
mathematical tools and give all the technical and computational details needed for the
analysis of the continuum limit. With this different perspective, the two books should
complement each other and when combined should give a mathematically and physically
convincing introduction to causal fermion systems and to the analysis of the causal action
principle in the continuum limit.
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We point out that the connection to quantum field theory (in particular to second-
quantized bosonic fields) is not covered in this book. The reader interested in this direc-
tion is referred to [F17] and [F20].

I would like to thank the participants of the spring school “Causal fermion systems”
hold in Regensburg in March 2016 for their interest and feedback. Moreover, I am grateful
to David Cherney, Andreas Grotz, Christian Hainzl, Johannes Kleiner, Simone Murro,
Joel Smoller and Alexander Strohmaier for helpful discussions and valuable comments
on the manuscript. Special thanks goes to Johannes Kleiner for suggesting many of the
exercises. I would also like to thank the Max Planck Institute for Mathematics in the
Sciences in Leipzig and the Center of Mathematical Sciences and Applications at Harvard
University for hospitality while I was working on the manuscript. I am grateful to the
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CHAPTER 1

Causal Fermion Systems — An Overview

Causal fermion systems were introduced in [FGS]| as a reformulation and generaliza-
tion of the setting used in the fermionic projector approach [F7]. In the meantime, the
theory of causal fermion systems has evolved to an approach to fundamental physics. It
gives quantum mechanics, general relativity and quantum field theory as limiting cases
and is therefore a candidate for a unified physical theory. In this chapter, we introduce
the mathematical framework and give an overview of the different limiting cases. The
presentation is self-contained and includes references to the corresponding research pa-
pers. The aim is not only to convey the underlying physical picture, but also to lay
the mathematical foundations in a conceptually convincing way. This includes technical
issues like specifying the topologies on the different spaces of functions and operators,
giving a mathematical definition of an ultraviolet regularization, or specifying the maps
which identify the objects of the causal fermion system with corresponding objects in
Minkowski space. Also, we use a basis-independent notation whenever possible. The
reader interested in a non-technical introduction is referred to [FK1].

1.1. The Abstract Framework

1.1.1. Basic Definitions. For conceptual clarity, we begin with the general defini-
tions.

DEFINITION 1.1.1. (causal fermion system) Given a separable complex Hilbert
space H with scalar product (.|.)5; and a parameter n € N (the “spin dimension”), we
let § C L(H) be the set of all self-adjoint operators on H of finite rank, which (counting
multiplicities) have at most n positive and at most n negative eigenvalues. On F we are
given a positive measure p (defined on a o-algebra of subsets of F), the so-called universal
measure. We refer to (H,F, p) as a causal fermion system.

We remark that the separability of the Hilbert space (i.e. the assumption that H admits an
at most countable Hilbert space basis) is not essential and could be left out. We included
the separability assumption because it seems to cover all cases of physical interest and
is useful if one wants to work with basis representations. A simple example of a causal
fermion system is given in Exercise

As will be explained in detail in this book, a causal fermion system describes a space-
time together with all structures and objects therein (like the causal and metric structures,
spinors and interacting quantum fields). In order to single out the physically admissible
causal fermion systems, one must formulate physical equations. To this end, we impose
that the universal measure should be a minimizer of the causal action principle, which we
now introduce. For any x,y € &, the product xy is an operator of rank at most 2n. We
denote its non-trivial eigenvalues counting algebraic multiplicities by AJY,...,\3¥ € C
(more specifically, denoting the rank of zy by k < 2n, we choose A{Y, ... ,Aiy as all the

non-zero eigenvalues and set Ay%,,..., A5, = 0). We introduce the spectral weight |. |

1



2 1. CAUSAL FERMION SYSTEMS - AN OVERVIEW

of an operator as the sum of the absolute values of its eigenvalues. In particular, the
spectral weights of the operator products zy and (zy)? are defined by

2n 2n
oyl =D and @y)?] =Y N
i=1 i=1

We introduce the Lagrangian and the causal action by
1
Lagrangian: L(x,y) = ‘(azy)Q} ~ 5, |2y |? (1.1.1)
causal action: S(p) = / L(z,y) dp(x)dp(y) . (1.1.2)
FxF

The causal action principle is to minimize S by varying the universal measure under the
following constraints:

volume constraint: p(F) = const (1.1.3)
trace constraint: /tr(x) dp(z) = const (1.1.4)
F
boundedness constraint: T(p) = // lzy|? dp(x) dp(y) < C, (1.1.5)
IxF

where C' is a given parameter (and tr denotes the trace of a linear operator on ).

In order to make the causal action principle mathematically well-defined, one needs
to specify the class of measures in which to vary p. To this end, on F we consider the
topology induced by the operator norm

| A]| := sup {||Aul|sc with |lullsc =1} . (1.1.6)

In this topology, the Lagrangian as well as the integrands in (1.1.4) and (1.1.5) are
continuous. The o-algebra generated by the open sets of F consists of the so-called Borel

sets. A regular Borel measure is a measure on the Borel sets with the property that
it is continuous under approximations by compact sets from inside and by open sets
from outside (for basics see for example [Hal §52]). The right prescription is to vary p
within the class of regular Borel measures on F. In the so-called finite-dimensional
setting when X is finite-dimensional and the total volume p(&) is finite, the existence
of minimizers is proven in [F10, [F13], and the properties of minimizing measures are
analyzed in [FS|, BF].

The causal action principle is ill-posed if the total volume p(F) is finite and the Hilbert
space H is infinite-dimensional (see Exercises and . But the causal action prin-
ciple does make mathematical sense in the so-called infinite-dimensional setting when H
is infinite-dimensional and the total volume p(&F) is infinite. In this case, the volume
constraint is implemented by demanding that all variations (p(7));¢(—c,) should
for all 7,7’ € (—¢,¢) satisfy the conditions

() = ()] (F) <00 and  (p(r) = p(+))(F) = 0 (L.1.7)

(where |.| denotes the total variation of a measure; see [Hal, §28]). The existence theory
in the infinite-dimensional setting has not yet been developed. But it is known that
the Euler-Lagrange equations corresponding to the causal action principle still have a
mathematical meaning (as will be explained in below). This will make it possible
to analyze the causal action principle without restrictions on the dimension of H nor on
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the total volume. One way of getting along without an existence theory in the infinite-
dimensional setting is to take the point of view that on a fundamental physical level, the
total volume is finite and the Hilbert space H is finite-dimensional, whereas the infinite-
dimensional setting merely is a mathematical idealization needed in order to describe
systems in infinite volume involving an infinite number of quantum particles.

We finally explain the significance of the constraints. Generally speaking, the con-
straints f are needed to avoid trivial minimizers and in order for the vari-
ational principle to be well-posed. More specifically, if we dropped the constraint of
fixed total volume , the measure p = 0 would be a trivial minimizer. Without the
boundedness constraint , the loss of compactness discussed in [F13l Section 2.2]
implies that no minimizers exist (see Exercises and . If, on the other hand, we
dropped the trace constraint , a trivial minimizer could be constructed as follows:
We let = be the operator with the matrix representation

r =diag(1,...,1,-1,...,-1,0,0,...) (1.1.8)
N e e
n times n times

and choose p as a multiple of the Dirac measure supported at z. Then 7 > 0 but S = 0.

1.1.2. Space-Time and Causal Structure. A causal fermion system (H,F,p)
encodes a large amount of information. In order to recover this information, one can
for example form products of linear operators in &F, compute the eigenvalues of such
operator products and integrate expressions involving these eigenvalues with respect to
the universal measure. However, it is not obvious what all this information means. In
order to clarify the situation, we now introduce additional mathematical objects. These
objects are inherent in the sense that we only use information already encoded in the
causal fermion system.

We define space-time, denoted by M, as the support of the universal measureEl,

M :=suppp CF.

Thus the space-time points are symmetric linear operators on H. On M we consider
the topology induced by F (generated by the sup-norm on L(H)). Moreover, the
universal measure p|ys restricted to M can be regarded as a volume measure on space-
time. This makes space-time to a topological measure space. Furthermore, one has the
following notion of causality:

DEFINITION 1.1.2. (causal structure) For any z,y € &, the product zy is an operator
of rank at most 2n. We denote its non-trivial eigenvalues (counting algebraic multiplici-
ties) by A\7Y, ..., A5Y. The points x and y are called spacelike separated if all the )\;’y have
the same absolute value. They are said to be timelike separated if the )\;:y are all real and
do not all have the same absolute value. In all other cases (i.e. if the /\jx-y are not all real
and do not all have the same absolute value), the points x and y are said to be lightlike
separated.

Restricting the causal structure of F to M, we get causal relations in space-time. To
avoid confusion, we remark that in earlier papers (see [FG2|, [FGS]) a slightly different

IThe support of a measure is defined as the complement of the largest open set of measure zero, i.e.
supp p 1= ?\U{Q CF | Qis open and p(Q2) =0} .
It is by definition a closed set. This definition is illustrated in Exercise
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definition of the causal structure was used. But the modified definition used here seems
preferable.

The Lagrangian is compatible with the above notion of causality in the fol-
lowing sense. Suppose that two points z,y € F are spacelike separated. Then the
eigenvalues \;¥ all have the same absolute value. Rewriting as

2n 1 2n 1 2n 9
L=STINE = o S = 3 (I - I (1.1.9)
i=1 ij=1 ij=1

one concludes that the Lagrangian vanishes. Thus pairs of points with spacelike separa-
tion do not enter the action. This can be seen in analogy to the usual notion of causality
where points with spacelike separation cannot influence each othelﬂ This analogy is the
reason for the notion “causal” in “causal fermion system” and “causal action principle.”

The above notion of causality is symmetric in x and y, as we now explain. Since the
trace is invariant under cyclic permutations, we know that

tr ((xy)p) =1tr (sc (yz)P~1 y) = tr ((yac)p*1 yx) = tr ((ym)p) (1.1.10)

(where tr again denotes the trace of a linear operator on H). Since all our operators
have finite rank, there is a finite-dimensional subspace I of H such that xy maps I to
itself and vanishes on the orthogonal complement of I. Then the non-trivial eigenvalues
of the operator product xy are given as the zeros of the characteristic polynomial of the
restriction zy|r : I — I. The coefficients of this characteristic polynomial (like the trace,
the determinant, etc.) are symmetric polynomials in the eigenvalues and can therefore
be expressed in terms of traces of powers of xy. As a consequence, the identity
implies that the operators xy and yx have the same characteristic polynomial and are
thus isospectral. This shows that our notions of causality are indeed symmetric in the
sense that = and y are spacelike separated if and only if y and x are (and similarly for
timelike and lightlike separation). One also sees that the Lagrangian £(x,y) is symmetric
in its two arguments.

A causal fermion system also distinguishes a direction of time. To this end, we let 7,
be the orthogonal projection in H on the subspace () C 3 and introduce the functional

C: MxM-—R, Clz,y) :=itr (yamymy — Yy memy) (1.1.11)

(this functional was first stated in [FK], Section 8.5], motivated by constructions in [FG2|
Section 3.5]). Obviously, this functional is anti-symmetric in its two arguments. This
makes it possible to introduce the notions

{ y lies in the future of x if C(z,y) >0

1.1.12
y lies in the past of x if C(z,y) <O0. ( )

By distinguishing a direction of time, we get a structure similar to a causal set (see for
example [BLMS]). But in contrast to a causal set, our notion of “lies in the future
of” is not necessarily transitive. This corresponds to our physical conception that the
transitivity of the causal relations could be violated both on the cosmological scale (there
might be closed timelike curves) and on the microscopic scale (there seems no compelling
reason why the causal relations should be transitive down to the Planck scale). This
is the reason why we consider other structures (namely the universal measure and the

2For clarity, we point out that our notion of causality does allow for nonlocal correlations and entan-
glement between regions with space-like separation. This will become clear in i and 3.
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causal action principle) as being more fundamental. In our setting, causality merely is a
derived structure encoded in the causal fermion system.
In Exercise the causal structure is studied in the example of Exercise

1.1.3. The Kernel of the Fermionic Projector. The causal action principle de-
pends crucially on the eigenvalues of the operator product xy with z,y € F. For com-
puting these eigenvalues, it is convenient not to consider this operator product on the
(possibly infinite-dimensional) Hilbert space H, but instead to restrict attention to a
finite-dimensional subspace of H, chosen such that the operator product vanishes on the
orthogonal complement of this subspace. This construction leads us to the spin spaces
and to the kernel of the fermionic projector, which we now introduce. For every xz € F
we define the spin space Sy by S, = x(H); it is a subspace of H of dimension at most 2n.
For any x,y € M we define the kernel of the fermionic operator P(x,y) by

P(x,y) =1 yls, : Sy — Sz (1.1.13)

(where 7, is again the orthogonal projection on the subspace z(H) C H). Taking the
trace of in the case x = y, one finds that tr(z) = Trg, (P(x,z)), making it
possible to express the integrand of the trace constraint in terms of the kernel of
the fermionic operator. In order to also express the eigenvalues of the operator xy, we
introduce the closed chain A, as the product

Agy = P(z,y) P(y,x) : Sp — Sy (1.1.14)
Computing powers of the closed chain, one obtains
Azy = (m2y)(myz)|s, = meyzls, ,  (Azy)” = 7 (y2)’s, -

Taking the trace, one sees in particular that Trg, (A%,) = tr ((yaz)p) Repeating the argu-
ments after , one concludes that the eigenvalues of the closed chain coincide with
the non-trivial eigenvalues \{¥, ..., A\3¥ of the operator zy in Definition Therefore,
the kernel of the fermionic operator encodes the causal structure of M. The main advan-
tage of working with the kernel of the fermionic operator is that the closed chain
is a linear operator on a vector space of dimension at most 2n, making it possible to
compute the A\7Y,... \5Y as the eigenvalues of a finite matrix.
Next, it is very convenient to arrange that the kernel of the fermionic operator is
symmetric in the sense that
P(xz,y)* = P(y,x) . (1.1.15)
To this end, one chooses on the spin space S, the spin scalar product <.|.>, by
<ulv-5 = —(ulru)y (for all u,v € Sy) . (1.1.16)

Due to the factor z on the right, this definition really makes the kernel of the fermionic
operator symmetric, as is verified by the computation

<u|P(z,y) vz = —(u|z P(z,y) v)sc = —(u|zy v)s
=—(myzu|yv)y = <Py, z)u|v-y
(where v € S, and v € Sy). The spin space (Sz, <.|.>;) is an indefinite inner product of
signature (p, q) with p,q < n (for textbooks on indefinite inner product spaces see [B2}

GLR]). In this way, indefinite inner product spaces arise naturally when analyzing the

mathematical structure of the causal action principle.
The kernel of the fermionic operator as defined by ([1.1.13)) is also referred to as the
kernel of the fermionic projector, provided that suitable normalization conditions are
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satisfied. Different normalization conditions have been proposed and analyzed (see the
discussion in [FT2] Section 2.2]). More recently, it was observed in [FK2] that one
of these normalization conditions is automatically satisfied if the universal measure is
a minimizer of the causal action principle (see below). With this in mind, we no
longer need to be so careful about the normalization. For notational simplicity, we always
refer to P(z,y) as the kernel of the fermionic projector.

1.1.4. Wave Functions and Spinors. For clarity, we sometimes denote the spin
space S, at a space-time point x € M by S, M. A wave function v is defined as a function
which to every x € M associates a vector of the corresponding spin space,

Y M—H  with  ¢(x) e S;M forallze M. (1.1.17)

We now want to define what we mean by continuity of a wave function. For the notion
of continuity, we need to compare the wave function at different space-time points, being
vectors ¢(z) € S;M and ¢(y) € Sy M in different spin spaces. Using that both spin
spaces S;M and S,M are subspaces of the same Hilbert space H, an obvious idea is
to simply work with the Hilbert space norm |[¢(z) — ¥ (y)|sc. However, in view of the
factor x in the spin scalar product , it is preferable to insert a corresponding power
of the operator x. Namely, the natural norm on the spin space (S, <.|.>;) is given by

V@) 1= (@) |l (@), = | VTV E@)|

(where |z| is the absolute value of the symmetric operator x on H, and \/|z| is the square
root thereof). This leads us to defining that the wave function ¢ is continuous at x if for
every € > 0 there is > 0 such that

H\/mw(y)—\/H@b(x)HfH <e for all y € M with ||y —z| <§.

Likewise, 9 is said to be continuous on M if it continuous at every z € M. We denote
the set of continuous wave functions by C°(M,SM). Clearly, the space of continuous
wave functions is a complex vector space with pointwise operations, i.e. (ay) 4+ 8¢)(z) :=
ap(z) + Bo(x) with «, 5 € C.

It is an important observation that every vector u € H of the Hilbert space gives
rise to a unique wave function. To obtain this wave function, denoted by %, we simply
project the vector u to the corresponding spin spaces,

Ph o M — H, YU(x) = mpu € SpM . (1.1.18)
We refer to ¢* as the physical wave function of u € H. The estimate

|Visle @) = Vialv@)||, = | vislu = Vialu],
< [Vl = VT Blse <l =y + ¥

shows that ¢* is indeed continuous (for the inequality (%) see Exercise . The physical
picture is that the physical wave functions ¢* are those wave functions which are realized
in the physical system. Using a common physical notion, one could say that the vectors
in H correspond to the “occupied states” of the system, and that an occupied state u €
H is represented in space-time by the corresponding physical wave function . The
shortcoming of this notion is that an “occupied state” is defined only for free quantum
fields, whereas the physical wave functions are defined also in the interacting theory. For
this reason, we prefer not use the notion of “occupied states.”

(1.1.19)
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For a convenient notation, we also introduce the wave evaluation operator ¥ as an
operator which to every Hilbert space vector associates the corresponding physical wave
function,

U H—COM,SM),  u— ™. (1.1.20)
Evaluating at a fixed space-time point gives the mapping
U(z) : H— S M, u— P (x) .
The kernel of the fermionic projector can be expressed in terms of the wave evaluation
operator:
LemMA 1.1.3. For any x,y € M,
x=-VU(z)" V() (1.1.21)
P(z,y) = —-V(z)¥(y)". (1.1.22)

Proor. For any v € S; M and u € 3,

<0 | U(z) ury = <0 | Ty u>y L9 —(v|zu)g = ((—x)v|u)g
and thus
V(z)" = —x|s,m @ SaM — H.

Hence
\I/(ZL')* \I/(ZL') u = ‘I/(iL‘)* ng = —X wg -1'1:.18 —X U = —.CCU,
proving (|1.1.21)). Similarly, the relation (1.1.22f) follows from the computation
U(z) U(y)" =-myls, = —Pz,y).

This completes the proof. ]

The structure of the wave functions taking values in the spin spaces is rem-
iniscent of sections of a vector bundle. The only difference is that our setting is more
general in that the base space M does not need to be a manifold, and the fibres S, M do
not need to depend smoothly on the base point x. However, comparing to the setting of
spinors in Minkowski space or on a Lorentzian manifold, one important structure is miss-
ing: we have no Dirac matrices and no notion of Clifford multiplication. The following
definition is a step towards introducing these additional structures.

DEFINITION 1.1.4. (Clifford subspace) We denote the space of symmetric linear op-
erators on (Sg, <.|.>;) by Symm(S,) C L(S;). A subspace K C Symm(S,) is called
a Clifford subspace of signature (r,s) at the point x (with r,s € Ny) if the following
conditions hold:

(i) For any u,v € K, the anti-commutator {u,v} = uv + vu is a multiple of the
identity on S,.
(ii) The bilinear form (.,.) on K defined by

1
B {u,v} = (u,v) 1 for all u,v € K (1.1.23)

is non-degenerate and has signature (r, s).
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In view of the anti-commutation relations , a Clifford subspace can be regarded
as a generalization of the space spanned by the usual Dirac matrices. However, the above
definition has two shortcomings: First, there are many different Clifford subspaces, so
that there is no unique notion of Clifford multiplication. Second, we are missing the
structure of tangent vectors as well as a mapping which would associate a tangent vector
to an element of the Clifford subspace.

These shortcomings can be overcome by using either geometric or measure-theoretic
methods. In the geometric approach, one gets along with the non-uniqueness of the
Clifford subspaces by working with suitable equivalence classes. Using geometric infor-
mation encoded in the causal fermion system, one can then construct mappings between
the equivalence classes at different space-time points. This method will be outlined
in In the measure-theoretic approach, on the other hand, one uses the local form
of the universal measure with the aim of constructing a unique Clifford subspace at every
space-time point. This will be outlined in Before entering these geometric and
measure-theoretic constructions, we introduce additional structures on the space of wave
functions.

1.1.5. The Fermionic Projector on the Krein Space. The space of wave func-

tions can be endowed with an inner product and a topology. The inner product is defined
by

<lgp> = /M < (@)|d(x) = dp(z) . (1.1.24)

In order to ensure that the last integral converges, we also introduce the scalar prod-
uct ((.].) by

(wld) = /Mw(x)\ 2] $(2))sc dp(z) (1.1.25)

(where |z| is again the absolute value of the symmetric operator « on ). The one-particle
space (X, <.|.>) is defined as the space of wave functions for which the corresponding
norm ||| . ||| is finite, with the topology induced by this norm, and endowed with the inner
product <.|.>. Such an indefinite inner product space with a topology induced by an
additional scalar product is referred to as a Krein space (see for example [B2} [L]).

When working with the one-particle Krein space, one must keep in mind that the
physical wave function %" of a vector u € H does not need to be a vector in K because
the corresponding integral in may diverge. Similarly, the scalar product ((¢*|¢"))
may be infinite. One could impose conditions on the causal fermion system which ensure
that the integrals in ([1.1.24]) and are finite for all physical wave functions. Then
the mapping u — ¥* would give rise to an embedding H <« X of the Hilbert space H into
the one-particle Krein space. However, such conditions seem too restrictive and are not
really needed. Therefore, here we shall not impose any conditions on the causal fermion
systems but simply keep in mind that the physical wave functions are in general no Krein
vectors.

Despite this shortcoming, the Krein space is useful because the kernel of the fermionic
projector gives rise to an operator on X. Namely, choosing a suitable dense domain
of deﬁnitiorﬁ D(P), we can regard P(x,y) as the integral kernel of a corresponding

3For example, one may choose D(P) as the set of all vectors ¢ € X satisfying the conditions

¢::/ cp(@)dp(e) € 3 and ||| <oo.
M
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operator P,

P:DP)CK—K, (PY)a)= /M Pz, y) ¥(y) dp(y) (1.1.26)

referred to as the fermionic projector. The fermionic projector has the following two
useful properties:

» P is symmetric in the sense that <Pi|¢p> = <ip|Pp> for all ¥, ¢ € D(P):
The symmetry of the kernel of the fermionic projector (|1.1.15]) implies that

<P (z,y)P(y) [ (x) =2 = <4 (y) | P(y, ) () -y -

Integrating over x and y and applying (1.1.26)) and (|1.1.24)) gives the result.
» (—P) is positive in the sense that <u|(—P)y> > 0 for all yp € D(P):

This follows immediately from the calculation

<y|(—P)y> = — //MxM <) | P, 9) () dp(z) dp(y)
= ) emey 6w dp(o) doly) = @l 20,
M x M
where we again used ((1.1.24) and (1.1.13]) and set

b= /wa@c) dp(x) .

In Exercise [I.8 the wave functions and the Krein structure are studied in the example of
Exercise [Tl

1.1.6. Geometric Structures. A causal fermion system also encodes geometric
information on space-time. More specifically, in the paper [FG2] notions of connection
and curvature are introduced and analyzed. We now outline a few constructions from
this paper. Recall that the kernel of the fermionic projector is a mapping from
one spin space to another, thereby inducing relations between different space-time points.
The idea is to use these relations for the construction of a spin connection D, ,, being a
unitary mapping between the corresponding spin spaces,

Dyy @ Sy — Sy

(we consistently use the notation that the subscript ,, denotes an object at the point x,
whereas the additional comma ., denotes an operator which maps an object at y to an
object at x). The simplest method for constructing the spin connection would be to form

1

a polar decomposition, P(x,y) = Ag? U, and to introduce the spin connection as the
unitary part, D,, = U. However, this method is too naive, because we want the spin
connection to be compatible with a corresponding metric connection V, , which should
map Clifford subspaces at x and y (see Definition above) isometrically to each other.
A complication is that, as discussed at the end of the Clifford subspaces at x and y
are not unique. The method to bypass these problems is to work with several Clifford
subspaces and to use so-called splice maps, as we now briefly explain.

First, it is useful to restrict the freedom in choosing the Clifford subspaces with the
following construction. Recall that for any = € M, the operator (—z) on H has at
most n positive and at most n negative eigenvalues. We denote its positive and negative
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spectral subspaces by S; and S, , respectively. In view of (1.1.16]), these subspaces are
also orthogonal with respect to the spin scalar product,

Sy =SFaS; .

We introduce the Fuclidean sign operator s, as a symmetric operator on S, whose
eigenspaces corresponding to the eigenvalues +1 are the spaces S; and S, respectively.
Since s2 = 1, the span of the Euclidean sign operator is a one-dimensional Clifford sub-
space of signature (1,0). The idea is to extend s, to obtain higher-dimensional Clifford
subspaces. We thus define a Clifford extension as a Clifford subspace which contains s,.
By restricting attention to Clifford extensions, we have reduced the freedom in choosing
Clifford subspaces. However, still there is not a unique Clifford extension, even for fixed
dimension and signature. But one can define the tangent space T, as an equivalence
class of Clifford extensions; for details see [FG2| Section 3.1]. The bilinear form (.,.)
in induces a Lorentzian metric on the tangent space.

Next, for our constructions to work, we need to assume that the points x and y are
both regular and are properly timelike separated, defined as follows:

DEFINITION 1.1.5. A space-time point € M is said to be regularif x has the maximal
possible rank, i.e. dimz(H) = 2n. Otherwise, the space-time point is called singular.

In most situations of physical interest (like Dirac sea configurations to be discussed in
Sections and below), all space-time points are regular. Singular points, on the
other hand, should be regarded as exceptional points or “singularities” of space-time.

DEFINITION 1.1.6. The space-time points =,y € M are properly timelike separated if
the closed chain Ay, (1.1.14)), has a strictly positive spectrum and if all eigenspaces are
definite subspaces of (Sg, <.|.>2).

By a definite subspace of S, we mean a subspace on which the inner product <.|.>, is
either positive or negative definite.
The two following observations explain why the last definition makes sense:

» Properly timelike separation implies timelike separation (see Definition [1.1.2)):

Before entering the proof, we give a simple counter example which shows why the
assumption of definite eigenspaces in Definition is necessary for the implica-
tion to hold. Namely, if the point z is regular and A, is the identity, then the
eigenvalues \i, ..., Ao, are all strictly positive, but they are all equal.

If I C S, is a definite invariant subspace of A, then the restriction Agy|r is
a symmetric operator on the Hilbert space (I, +=<.|.>1xs), which is diagonalizable
with real eigenvalues. Moreover, the orthogonal complement I of I C S, is again
invariant. If I' is non-trivial, the restriction Agylre has at least one eigenspace.
Therefore, the assumption in Definition that all eigenspaces are definite makes
it possible to proceed inductively to conclude that the operator A, is diagonalizable
and has real eigenvalues.

If x and y are properly timelike separated, then its eigenvalues are by definition
all real and positive. Thus it remains to show that they are not all the same. If
conversely they were all the same, i.e. Ay = --- = Ao, = XA > 0, then S, would
necessarily have the maximal dimension 2n. Moreover, the fact that A, is diago-
nalizable implies that A, would be a multiple of the identity on S,. Therefore, the
spin space (S, <.|.>) would have to be definite, in contradiction to the fact that it
has signature (n,n).
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» The notion is symmetric in x and y:

Suppose that Az,u = Au with u € S, and A > 0. Then the vector w := P(y,z)u € Sy
is an eigenvector of A,, again to the eigenvalue A,

Ay w = P(y,z) P(x,y) Py, x) u
=P(y,z) Agyu=AP(y,z)u=Iw.
Moreover, the calculation
A <ulu> = <u|Azyu>- = <u| P(x,y) P(y,z) u>
= <P(y,x)u| Py, x)u> = <w|w>

shows that w is a definite vector if and only if u is. We conclude that A, has positive
eigenvalues and definite eigenspaces if and only if A, has these properties.

So far, the construction of the spin connection has been worked out only in the case of
spin dimension n = 2. Then for two regular and properly timelike separated points x,y €
M, the spin space S, can be decomposed uniquely into an orthogonal direct sum S, =
IT@ 1~ of a two-dimensional positive definite subspace I and a two-dimensional negative
definite subspace I~ of A,,. We define the directional sign operator vy, of Az, as the
unique operator on S, M such that the eigenspaces corresponding to the eigenvalues +1
are the subspaces IT.

Having the Euclidean sign operator s, and the directional sign operator v., to our
disposal, under generic assumptions one can distinguish two Clifford subspaces at the
point x: a Clifford subspace K, containing v,, and a Clifford extension K;gy) (for details
see [FG2, Lemma 3.12]). Similarly, at the point y we have a distinguished Clifford

subspace K, (which contains v,,) and a distinguished Clifford extension Kz(f). For
the construction of the spin connection D,, : S, — S; one works with the Clifford
subspaces K, and K, and demands that these are mapped to each other. More precisely,
the spin connection is uniquely characterized by the following properties (see [FG2|
Theorem 3.20]):

(i) Dy is of the form

. _1 ) 3r T T 3T
Dy y = et Ay? P(z,y)  with gy € <_ 4 _5) N (5’ Z> '
(ii) The spin connection maps the Clifford subspaces K, and Ky, to each other,
ie.
Dyo Ky Dyy = Ky -
The spin connection has the properties
Dyao = (Day)™" = (Day)” and Ay = Day Ays Dy -

All the assumptions needed for the construction of the spin connection are combined in
the notion that x and y must be spin-connectable (see [FG2l, Definition 3.17]). We remark
that in the limiting case of a Lorentzian manifold, the points z and y are spin-connectable
if they are timelike separated and sufficiently close to each other (see [FG2l Section 5]).

By composing the spin connection along a discrete “path” of space-time points, one
obtains a “parallel transport” of spinors. When doing so, it is important to keep track of
the different Clifford subspaces and to carefully transform them to each other. In order
to illustrate in an example how this works, suppose that we want to compose the spin
connection D, , with D, ,. As mentioned above, the spin connection D, , at the point z
is constructed using the Clifford subspace K.;. The spin connection D, ., however, takes
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at the same space-time point z the Clifford subspace K, as reference. This entails that

before applying D, . we must transform from the Clifford subspace K, to the Clifford

subspace K,. This is accomplished by the splice map z(ylm), being a uniquely defined

unitary transformation of S, with the property that
K., = Uéylﬂﬂ) K., (Uz(y\a?))* )
The splice map must be sandwiched between the spin connections in combinations like
Dy U¥ D, ,

In order to construct a corresponding metric connection V, ,, one uses a similar proce-
dure to relate the Clifford subspaces to corresponding Clifford extensions. More precisely,

one first unitarily transforms the Clifford extension K@(,w) to the Clifford subspace K.
Unitarily transforming with the spin connection D,, gives the Clifford subspace K,.

Finally, one unitarily transforms to the Clifford extension K,gy). Since the Clifford exten-
sions at the beginning and end are representatives of the corresponding tangent spaces,
we thus obtain an isometry
Vaey : Ty =T,
between the tangent spaces (for details see [FG2|, Section 3.4]).
In this setting, curvature is defined as usual as the holonomy of the connection. Thus
the curvature of the spin connection is given by

R(z,y,2) = UMW D, , U D, . UY D, Sy — S,

and similarly for the metric connection. In [F'G2| Sections 4 and 5] it is proven that the
above notions in fact reduce to the spinorial Levi-Civita connection and the Riemannian
curvature on a globally hyperbolic Lorentzian manifold if the causal fermion system is
constructed by regularizing solutions of the Dirac equation (similar as will explained
in the next section for the Minkowski vacuum) and removing the regularization in a
suitable way. These results show that the notions of connection and curvature defined
above indeed generalize the corresponding notions in Lorentzian spin geometry.

1.1.7. Topological Structures. From a mathematical perspective, causal fermion
systems provide a framework for non-smooth geometries or generalized “quantum ge-
ometries.” In this context, it is of interest how the topological notions on a differentiable
manifold or a spin manifold generalize to causal fermion systems. Such topological ques-
tions are analyzed in [FK], as we now briefly summarize.

By definition, space-time M is a topological space (see . Attaching to every
space-time point x € M the corresponding spin space S, gives the structure of a sheaf,
making it possible to describe the topology by sheaf cohomology. If one assumes in
addition that all space-time points are regular (see Definition , then all spin spaces
are isomorphic, giving rise to a topological vector bundle.

In order to get the connection to spinor bundles, one needs the additional structure
of Clifford multiplication. As explained in the notion of a Clifford subspace (see
Definition makes it possible to define Clifford structures at every space-time point,
but the definition is not unique and does not give the connection to tangent vectors of
the base space. In these shortcomings where bypassed by working with suitable
equivalence classes of Clifford subspaces. From the topological point of view, the basic
question is whether one can choose a representative of this equivalence class at each
space-time point in such a way that the representative depends continuously on the base
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point. This leads to the notion of a Clifford section Cf, being a continuous mapping
which to every space-time point « € M associates a corresponding Clifford subspace C/,
(for details see [FK| Section 4.1]). Choosing a Clifford section leads to the structure of
a so-called topological spinor bundle. An advantage of working with topological spinor
bundles is that no notion of differentiability is required.

If M has a differentiable structure, one would like to associate a tangent vector u €
T, M to a corresponding element of the Clifford subspace C¢,. This leads to the notion of
a spin structure v on a topological spinor bundle, being a continuous mapping which to
every x € M associates a mapping v, : T, M — Cf,. The topological obstructions for the
existence of a spin structure on a topological spinor bundle generalize the spin condition
on a spin manifold (for details see [FK| Sections 4.2 and 4.5]).

A useful analytic tool for the construction of Clifford sections are so-called tangent
cone measures (see [FK| Section 6]). These measures make it possible to analyze the
local structure of space-time in a neighborhood of a point z € M (again without any
differentiability assumptions). The tangent cone measures can be used to distinguish a
specific Clifford subspace Cf, and to relate C¢, to neighboring space-time points.

We close with two remarks. First, all the above constructions generalize to the
Riemannian setting if the definition of causal fermion systems is extended to so-called
topological fermion systems (see [FK| Definition 2.1]). We thus obtain a mathematical
framework to describe spinors on singular spaces (see [FK Sections 8 and 9] for many
examples). Second, one can introduce nontrivial topological notions even for discrete
space-times by constructing neighborhoods of M in & (using the metric structure of F
induced by the norm on the Banach space L(H)) and by studying the topology of these
neighborhoods (see [FK| Section 9.4]).

1.2. Correspondence to Minkowski Space

In order to put the abstract framework into a simple and concrete context, we now
explain how to describe Dirac spinors in Minkowski space by a causal fermion system.

1.2.1. Concepts Behind the Construction of Causal Fermion Systems. We
let (L, {.,.)) be Minkowski space (with the signature convention (+ — ——)) and dyu the
standard volume measure (thus du = d*z in a reference frame x = (2°,...,23)). We
denote the spinor space at a point x € A by S, , so that a Dirac wave function v takes
values in

Y(x) € Syl ~ C*.

The spinor space at x is endowed with an indefinite inner product of signature (2, 2), which
as in physics textbooks we denote by ¢ (where ) = 140 is the usual adjoint spinor).
Clearly, in Minkowski space one has a trivial parallel transport of spinors, making it
possible to identify the spinor spaces at different space-time points. Thus the space-time
index S, of the spinor space is added only for notational clarity.

We now consider solutions of the Dirac equation of mass m,

(iv70; —m)h = 0. (1.2.1)

For a solution ¢, the function (¢y°¢)(t,%) has the interpretation as the probability
density of the Dirac particle at time ¢ to be at the position #. The spatial integral
of this probability density is time independent (for more details in the presence of an
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external potential see Exercise [2.5)). Considering the bilinear form corresponding to this
probability integral gives the scalar product

Wlg) =27 [ @)t . (122

This scalar product is indeed independent of time and does not depend on the choice of
the reference frame. In order to ensure that the integral in is well-defined and
finite, we first consider solutions which at time ¢ are smooth and have compact support.
Taking the completion, the solution space becomes a separable Hilbert space. We note
that the factor 27 in is not quite standard, but our convention has the advantage
that many formulas become simpler.

Next, we choose H as a closed subspace of this Hilbert space with the induced scalar
product (.|.)g¢ := (.|.)|scxg¢. Clearly, H is again a separable Hilbert space. In order to
describe the vacuum (i.e. the physical system where no particles and anti-particles are
present), one chooses H as the subspace spanned by all the negative-energy solutions
(the “Dirac sea vacuum”). To describe particles or anti-particles, one includes positive-
energy solutions or leaves out negative-energy solutions, respectively. But any other
closed subspace of the solution space may be chosen as well. We remark for clarity that
in this section, we only consider the vacuum Dirac equation , so that the Dirac
particles do not interact (interacting systems will be discussed in Section below).

In order to get into the framework of causal fermion systems, to every space-time
point x € M we want to associate a linear operator F(z) € F. Once this has been
accomplished, the resulting mapping

F:al—7F (1.2.3)

can be used to introduce a measure p on F. Namely, we say that a subset Q C F is
measurable if and only if its pre-image F~1(12) is a measurable subset of 4. Moreover,
we define the measure of €2 as the space-time volume of the pre-image, p(Q) := u(F~1(Q)).
This construction is commonly used in mathematical analysis and is referred to as the
push-forward measure, denoted by
p = Fip

(see for example [B1l, Section 3.6] or Exercise (b)). Then (H, T, p) will be a causal
fermion system.

The basic idea for constructing F'(z) is to represent the inner product on the spinors
at the space-time point x in terms of the Hilbert space scalar product, i.e.

(Y| F(x)p)g = —(x)p(x) for all 1, ¢ € 3. (1.2.4)
The operator F'(x) gives information on the densities and correlations of the Dirac wave
functions at the space-time point z. It is referred to as the local correlation operator at x.
Since the spinor space at z is four-dimensional, it follows that the operator F'(z) has rank
at most four. Moreover, the fact that the spin scalar product has signature (2,2) implies
that F'(x) has at most two positive and at most two negative eigenvalues. Therefore, the
local correlation operator F'(z) is indeed an element of JF if we choose the spin dimen-
sion n = 2. However, the equation is problematic because Dirac solutions 1, ¢ € H
are in general not continuous, so that the pointwise evaluation on the right side of
makes no mathematical sense. This is the reason why we need to introduce an ultravio-
let regularization (UV regularization). Before entering the analysis, we first outline our
method and explain the physical picture in a few remarks. The mathematical construc-
tion will be given afterwards in §1.2.2]
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In order to put our constructions in the general physical context, we first note that
UV regularizations are frequently used in relativistic quantum field theory as a technical
tool to remove divergences. A common view is that the appearance of such divergences
indicates that the physical theory is incomplete and should be replaced for very small dis-
tances by another, more fundamental theory. The renormalization program is a method
to get along with standard quantum field theory by finding a way of dealing with the
divergences. The first step is the UV regularization, which is usually a set of prescriptions
which make divergent integrals finite. The next step of the renormalization program is to
show that the UV regularization can be taken out if other parameters of the theory (like
masses and coupling constants) are suitably rescaled. Conceptually, in the renormaliza-
tion program the UV regularization merely is a technical tool. All predictions of theory
should be independent of how the regularization is carried out.

In the context of causal fermion systems, however, the physical picture behind the
UV regularization is quite different. Namely, in our setting the reqularized objects are to
be considered as the fundamental physical objects. Therefore, the regularization has a
physical significance. It should describe the microscopic structure of physical space-time.

Before explaining this physical picture in more detail, we need to introduce a mi-
croscopic length scale € > 0 on which the UV regularization should come into play.
Regularization lengths are often associated to the Planck length £p ~ 1.6 - 1073° m. The
analysis of the gravitational field in this book suggests that € should be chosen even much
smaller than the Planck length (see Section and §5.4.3)). Even without entering a de-
tailed discussion of the length scales, it is clear that € will be by many orders of magnitude
smaller than most other physical length scales of the system. Therefore, it is a sensible
method to analyze the causal action principle in the asymptotics when ¢ is very small.
In order to make such an asymptotics mathematically precise, it is necessary to consider
the regularization length € as a variable parameter taking values in an interval (0, €max)-
Only for such a variable parameter, it will be possible later in this book to analyze the
asymptotics as € N\ 0.

For any € € (0, epax), similar to we shall construct a mapping F¢ : Ml — F by
suitably inserting an UV regularization into . Then we construct the corresponding
universal measure as the push-forward by F*¢, i.e.

P i=Fiu. (1.2.5)

This will give rise to a causal fermion system (H,JF, p%). We will also explain how to
identify the objects in Minkowski space with corresponding objects of the causal fermion
System:

Minkowski space causal fermion system
space-time point x € M space-time point x € M*® := supp p°
topology of topology of M*®
spinor space S spin space S, M¢
causal structure of Minkowski space | causal structure of Definition [1.1.2

With these identifications made, the structures of Minkowski space will no longer be
needed. They are encoded in the causal fermion system, and we may describe the physical
space-time exclusively by the causal fermion system. We consider the objects with UV
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regularization as described by the causal fermion system as the fundamental physical
objects.

In the following remarks we elaborate on the physical picture behind the UV reg-
ularization and explain why our setting is sufficiently general to describe the physical
situation we have in mind.

REMARK 1.2.1. (method of variable regularization) As just explained, the only
reason for considering a family of causal fermion systems is to give the asymptotics € N\ 0
a precise mathematical meaning. But from the physical point of view, a specific regular-
ization for a specific value of € should be distinguished by the fact that the corresponding
causal fermion system (H,J, p°) describes our physical space-time. We again point out
that this concept is different from standard quantum field theory, where the regulariza-
tion merely is a technical tool used in order to remove divergences. In our setting, the
regularization has a physical significance. The regularized objects are to be considered
as the fundamental physical objects, and the regularization is a method to describe the
microscopic structure of physical space-time.

This concept immediately raises the question how the “physical regularization” should
look like. Generally speaking, the regularized space-time should look like Minkowski space
down to distances of the scale . For distances smaller than &, the structure of space-time
may be completely different. The simplest method of regularizing is to “smear out” or
“mollify” all wave functions on the scale £ (this corresponds to Example below).
But it is also conceivable that space-time has a non-trivial microstructure on the scale ¢,
which cannot be guessed or extrapolated from the structures of Minkowski space. Since
experiments on the length scale € seem out of reach, it is completely unknown what the
microscopic structure of space-time is. Nevertheless, we can hope that we can get along
without knowing this micro-structure, because the detailed form of this micro-structure
might have no influence on the effective physical equations which are valid on the energy
scales accessible to experiments. More precisely, the picture is that the general structure
of the effective physical equations should be independent of the micro-structure of space-
time. Values of mass ratios or coupling constants, however, may well depend on the
micro-structure (a typical example is the gravitational constant, which is closely tied to
the Planck length, which in turn is related to ¢ as explained in Section below). In
more general terms, the unknown micro-structure of space-time should enter the effective
physical equations only by a finite (hopefully small) number of free parameters, which
can then be taken as empirical free parameters of the effective macroscopic theory.

Clearly, the above picture must be questioned and supported by mathematical results.
To this end, one needs to analyze in detail how the effective macroscopic theory depends
on the regularization. For this reason, it is not sufficient to consider a specific family of
regularizations. Instead, one must analyze a whole class of regularizations which is so
large that it covers all relevant regularization effects. This strategy is referred to as the
method of variable reqularization (for a longer explanation see [E'7, Section 4.1]). It is the
reason why in Definition below we shall only state properties of the regularization,
but we do not specify how precisely it should look like. O

REMARK 1.2.2. (sequences of finite-dimensional regularizations) The critical
reader may wonder why we consider a family of regularizations (H,F, p°) parametrized
by a continuous parameter (0, £max). Would it not be more suitable to consider instead a
sequence of causal fermion systems (Hpy, Fy, p¢) which asymptotically as £ — oo describes
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Minkowski space? A related question is why we constructed the measure p as the push-
forward of the Lebesgue measure ((1.2.5). Would it not be better to work with more
general measures such as to allow for the possibility of discrete micro-structures? The
answer to these questions is that it is no loss of generality and a simply a matter of
convenience to work with the family (H, F, p°) with € € (0, emax), as we now explain.

We first point out that we do not demand our family (H,F,p?) to be in any sense
“continuous” in the parameter €. Therefore, one can also describe a sequence (H, T, py)
simply by choosing the family p° to be piecewise constant, for example

_ 1
(4+1°

Similarly, it is no loss of generality to take p as the push-forward measure of the Lebesgue
measure because F¢(x) need not depend continuously on x € M. For example, one can
arrange a discrete space-time like a space-time lattice by choosing F*¢ as a mapping
which is piecewise constant on little cubes of Minkowski space. Clearly, this mapping
is not continuous, but it is continuous almost everywhere. Moreover, its image is a
discrete set, corresponding to a discrete micro-structure of space-time. For the method
for representing a general measure p as the push-forward of for example the Lebesgue
measure we refer the interested reader to the proof of [F13, Lemma 1.4].

The remaining question is why we may keep the Hilbert space H fixed. In particular,
we noted in that the existence of minimizers of the causal action principle has been
proven only if H is finite-dimensional. Therefore, should one not consider a filtration H; C
Ho C --- C H of H by finite-dimensional subspaces? Indeed, from the conceptual point of
view, this would be the correct way to proceed. Nevertheless, the following consideration
explains why we can just as well replace all the Hilbert spaces H; by the larger space H:
For a given causal fermion system (H, F, pg) with H, C H, by extending all operators
by zero to the orthogonal complement of H,, one obtains the so-called eztended causal
fermion system (H,F, pg). The fact that the causal fermion system was extended can
still be seen by forming the so-called effective Hilbert space as

1
p°=pr if ZSE

He = span{z(H) | = € supp p} .

Namely, for an extended causal fermion system, the effective Hilbert space still is a
subset of the original Hilbert space, H*T C H,. Moreover, the support of the extended
causal fermion system is still contained in F; C L(H;). Therefore, we do not lose any
information by extending a causal fermion system. Conversely, when analyzing a causal
fermion system, it seems preferable to always make the Hilbert space as small as possible
by taking H°f as the underlying Hilbert space.

The delicate point about extending causal fermion systems is that the causal action
principle does depend sensitively on the dimension of the underlying Hilbert space H.
More specifically, the infimum of the action is known to be strictly decreasing in the
dimension of H (see the estimates in [F10, Lemma 5.1], which apply similarly in the
more general setting of [F13]). Therefore, a minimizer p of the causal action principle
will no longer be a minimizer if the causal fermion system is extended. However, the
first order Euler-Lagrange equations (for details see below) are still satisfied for
the extended causal fermion system, and this is all we need for the analysis in this
book. Therefore, for convenience we fix the Hilbert space H and consider a family of
causal fermion systems (H, JF, pf) thereon. In order for the causal action principle to be
well-defined and for p° to be a minimizer, one should replace JH by the corresponding
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effective Hilbert space H*f, which may depend on e and should be arranged to be finite-
dimensional. For the analysis of the Euler-Lagrange equations, however, the restriction
to H is unnecessary, and it is preferable to work with the extended Hilbert space K.

O

We finally remark that the hurried reader who wants to skip the following construc-
tions may read instead the introductory section [FGS| Section 1.1] where formal consid-
erations without UV regularization are given. Moreover, a more explicit analysis of four-
dimensional Minkowski space with a particularly convenient regularization is presented
n [FG2, Section 4]. For a somewhat simpler analysis of two-dimensional Minkowski
space we refer to [FK| Section 8.2].

1.2.2. Introducing an Ultraviolet Regularization. We now enter the construc-
tion of the UV regularization. We denote the continuous Dirac wave functions (i.e. the
continuous sections of the spinor bundle, not necessarily solutions of the Dirac equa-
tion) by CO(,SA). Similarly, the smooth wave functions with compact support in a
subset K C ./ are denoted by C5°(K, SAt). For the C*-norms we use the notation

nlerrey = Y sup|9®n(x)|  for n € C§o(K, SA)

lo|<k T€

where the a are multi-indices. Here |.| is any pointwise norm on the spinor spaces
(we again identify all spinor spaces via the trivial parallel transport). Since any two
such norms can be estimated from above and below by a constant, the C*-norms corre-
sponding to different choices of the norms |.| are also equivalent. For example, one can
choose [¢|? := 9y%) similar to the integrand in the scalar product . But clearly,
other choices are possible just as well.

The UV regularization is performed most conveniently with so-called regularization
operators, which we now define.

DEFINITION 1.2.3. Consider a family of linear operators (R.) with 0 < £ < €pax
which map H to the continuous wave functions,

R H—CO,Sm) .

The family is called a family of regularization operators if the following conditions
hold:

(i) The image of every regularization operator is pointwise bounded, meaning that for
every € € (0,emax) and all © € M there is a constant ¢ > 0 such that for all u € K,

| (Reu) ()] < cllullsc - (1.2.6)

(i) The image of every regularization operator is equicontinuous almost everywhere in
the sense that for every e € (0, emax), almost all x € M and every § > 0, there is an
open neighborhood U C M of x such that for all u € H and all y € U,

|(Reou) (@) — (Reu) (y)| < 0 |lullsc - (1.2.7)

(iii) In the limit € \, 0, the family converges weakly to the identity, meaning that for
every compact subset K C M and every § > 0 there is a constant €9 > 0, such that
for all e € (0,e0), u € H and n € C(K,SAM),

| [ @) O%0) = ) (@) '] < & ullac nlen (128)
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We point out that we do not demand that the regularized wave function R.%) is again a
solution of the Dirac equation. This could be imposed (as is done in [FR2, Section 4]),
but doing so seems too restrictive for the physical applications. We also note that “almost
all” in (ii) refers to the standard volume measure dp on A .

For the mathematically interested reader we remark that the above properties (i)
and (ii) are very similar to the assumptions in the Arzela-Ascoli theorem (see for ex-
ample [D1), Section VIL5] or [Rul, Theorem 7.25]). In fact, if we replaced “almost all”
in (ii) by “all”, one could apply the Arzela-Ascoli theorem and restate the properties (i)
and (ii) equivalently by saying that taking the image :R.(B1(0)) of the unit ball in H and
restricting the resulting family of functions to any compact set K C 4, one obtains a
relatively compact subset of CO(K, SA(). Tt is remarkable that the properties (i) and (ii)
come up naturally as conditions for a sensible UV regularization, although we shall never
use compactness arguments in our proofs. Weakening “all” by “almost all” in (ii) makes
it possible to describe discrete space-times like space-time lattices, as was mentioned in
Remark [[.2.2] above.

Simple examples of regularization operators are obtained by mollifying the wave func-
tions on the scale ¢:

EXAMPLE 1.2.4. (regularization by mollification) Let h € C5°(A4,R) be a non-
negative test function with
/ h(z)d'z=1.
M

We define the operators R, for € > 0 as the convolution operators

@)= 5 [ n(*=E) utw 'y

Let us prove that the family (R.)o<c<1 is a family of regularization operators. First,

@) ) < M [ aty <M ([ il at)

g

where in the last step we used the Schwarz inequality. We now rewrite the obtained
space-time integral of |u|? with the help of Fubini’s theorem as a bounded time integral
and a spatial integral. In view of , the spatial integral can be estimated by the
Hilbert space norm. We thus obtain

/ [u(y)? d'y < C/ (@y"u) (y) d*y < C/ 3= 0t —t) fulfe.  (1:29)
K K

to
where ty and t; are chosen such that K is contained in the time strip tg < t < t;. We

conclude that "
CO
o VI(K) C (ty = to) ||ull ,

(@) <
proving (1.2.6)).
In order to derive the inequality ([1.2.7]), we begin with the estimate

@) (@)~ )] < 5 sup [n(F) = n(E2)] [ iwlaty.

3

Again applying ([1.2.9) and using that h is uniformly continuous, one obtains (|1.2.7)).
It remains to prove ([1.2.8). We first write the integral on the left as

| @) - w)@) ato = [ o) - nw) ule) d'y. (1.2.10)
W/ M
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where we set

ne(y) = = /J% n(z) h(m - y) Az

gt €
Now we use the standard estimate for convolutions

7| [ @) =) (L) '

n-(y) =n(W)l = =
[ (nto+e9) =) hz) a's| < ks | lesl hiz) s

o4
(where in the last step we used the mean value theorem). This gives rise to the estimate

me — nleoxy < celnler
where ¢ may depend on K and the choice of h, but is independent of 7. This makes it

possible to estimate (1.2.10]) by

‘/ ) = w) (@) d'a| < 2 nlor i /|u )y d'y.

Again applying (|1 , we conclude that
| / —u) (@) '] < 6 s ey VoK) /T — 1) e
proving O

Given a family of regularization operators, we can construct causal fermion systems
as follows. We fix € € (0, epax). For any x € A, we consider the bilinear form

by : HxH = C, by(u,v) = —(Rou)(z)(Rv)(z) . (1.2.11)

This bilinear form is well-defined and bounded because fR; is defined pointwise and be-
cause evaluation at x gives a linear operator of finite rank. Thus for any v € H, the
anti-linear form b,(.,v) : H — C is continuous. By the Fréchet-Riesz theorem (see for
example [Lax| Section 6.3]), there is a unique vector w € H such that b, (u,v) = (u|w)s
for all w € H. The mapping v — w is linear and bounded. We thus obtain a bounded
linear operator F¢(z) on H such that

by(u,v) = (u| F*(z)v)g for all u,v € H,

referred to as the local correlation operator. Taking into account that the inner product
on the Dirac spinors at x has signature (2,2), the local correlation operator F¢(z) is a
symmetric operator on H of rank at most four, which has at most two positive and at
most two negative eigenvalues. Finally, we introduce the universal measure p° = F: i as
the push-forward of the volume measure on 4 under the mapping F*. In this way, for
every ¢ € (0,e9) we obtain a causal fermion system (3, JF, p®) of spin dimension n = 2.

1.2.3. Correspondence of Space-Time. We now explain the connection between
points of Minkowski space and points of space-time M?® := supp p® of the corresponding
causal fermion system (H,F, p°). We begin with a general characterization of M¢.

PROPOSITION 1.2.5. For any € € (0,emax), there is a subset E C M of pu-measure
zero such that the mapping FEIJ%\E : M\ E — F is continuous. Moreover, the support
of the universal measure M¢ := supp p° is given by

L(f’f)

M® =TF(M \ E) (1.2.12)
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PROOF. In order to show continuity, we need to estimate the sup-norm | F¢(x) —
F=(y)||. We first write the expectation value of the corresponding operator by

(ul (F(z) = F(y)) v)3c = —(Re u) (2) (R v)(2) + (Re ) (y)(Re 0)(y)
= —(Ru)(2) (R v)(2) — (Re ) (y)) — ((Rew)(z) — (R u) () (Rev)(y)

giving rise to the estimate
|(u] (F*(x) — F*(y))v)s]
< (R w)(@)] [(Re v)(2) = Rev)(y)] + |(Re w)(2) — (Rew)(y)] [(Re v)(y)] -

We now estimate the resulting spinor norms with the help of properties (i) and (ii)
of Definition m First, we denote the exceptional set of u-measure zero where
does not hold by E C /(. Combining (1.2.6) and (1.2.7)), one immediately sees that every
point z € M \ F has a neighborhood U such that the boundedness property holds
uniformly on U (i.e. |[(Reu)(y)| < c||lu||gc for all y € U). We thus obtain the estimate

|(w] (F*(x) = F*(y))v)sc| < 2¢ [Jullsc [Jvllac ,

valid for all y € U and u,v € H. Hence the sup-norm is bounded by || F¢(z) — F¢(y)| <
2¢d, showing that F* is continuous on 4 \ E.

It remains to prove (1.2.12). Since u(E) = 0, the set E can be disregarded when
forming the push-forward measure. Therefore, taking into account that the support of
a measure is by definition a closed set, it suffices to show that for every z € M \ E,
the operator p := F¢(x) lies in the support of p*. Let U C F be an open neighborhood
of p. Then the continuity of F° at z implies that the preimage (F°)~1(U) is an open
subset of /. Hence the Lebesgue measure of this subset is non-zero, u((F¢)~1(U)) > 0.
By definition of the push-forward measure, it follows that p*(U) > 0. Hence every
neighborhood of p has a non-zero measure, implying that p € supp p®. This concludes
the proof. O

In order to have a convenient notation, in what follows we always identify a point in
Minkowski space with the corresponding operator of the causal fermion system,

identify z e M with Fe(z)eT. (1.2.13)

In general, this identification is not one-to-one, because the mapping F° need not be
injective. In the latter case, there are two points x,y € A such that the bilinear forms b,
and by coincide (see (1.2.11)). In other words, all correlations between regularized wave
functions coincide at the points x and y. Using a more physical language, this means
that the points x,y of Minkowski space are not distinguishable by any measurements
performed on the fermionic wave functions. We take the point of view that in such
situations, the points x and y should not be distinguished physically, and that it is
reasonable and desirable that the two points are identified in the causal fermion system
with the same space-time point F€(x) = F¢(y) € M® := supp p°. In philosophical terms,
our construction realizes the principle of the identity of indiscernibles.

We also remark that, due to the closure in , it may happen that the space-
time M¢€ contains a point z which does not lie in the image of F¢, but is merely an
accumulation point in F€(/). In this case, the corresponding bilinear form b(u,v) =
(u|zv)g¢ can be approximated with an arbitrarily small error by bilinear forms b, with = €
A . Since experiments always involve small imprecisions, we take the point of view that
it is again reasonable and desirable mathematically to include z to the space-time points.
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Generally speaking, the just-discussed cases that F*© is not injective or its image is not
closed seem mostly of academic interest. In all applications in this book, the mapping F*
will be injective and closed. In all these situations, Proposition [[.2.5] will give us a one-
to-one correspondence between points x € A and points F°(z) € M*®.

We finally note that, working with the push-forward measure , the volume
measure on space-time M¢ as defined by the universal measure dp® always agrees under
the identification with the Lebesgue measure dy on A .

1.2.4. Correspondence of Spinors and Physical Wave Functions. We pro-
ceed by explaining the connection between the spinor space S, at a point z € M of
Minkowski space and the corresponding spin space S, M C H of the causal fermion sys-
tem (where we use the identification ) This will also make it possible to get a
connection between Dirac wave functions in Minkowski space and wave functions as de-
fined in In preparation, we derive useful explicit formulas for the local correlation
operators. To this end, for any x € M we define the evaluation map €, by

e H— Sy, e = (ReY)(z) . (1.2.14)

Its adjoint is defined as usual, taking into account the corresponding inner products on
the domain and the target space, i.e.

((€2)" x|¥)sc =X (eg)  forall x € Syl .
We denote this adjoint by ¢Z,
vy = (e3)" © Sy — FH.

xT

Multiplying €S by (& gives us back the local correlation operator F€(z). Namely,

W[ F*(2) $)ac = —(Re ) (2)(Re 9) () = —(e5) (e28) = — (¥ 155 D)o
and thus
Fe(z)=—i5eg == (15)" + H—3H. (1.2.15)
The next proposition gives the desired connection between the spinor space S, # and

the corresponding spin space S; M. We first state and prove the proposition and explain
it afterwards.

PROPOSITION 1.2.6. The mapping
e ls, + SaM — Sy M is an isometric embedding .

Moreover, under this embedding, the physical wave function of a vector u at x is mapped
to the reqularized Dirac wave function at x,

e ls, V' (x) = (Reu) () . (1.2.16)
If the point x is reqular (see Definition , the inverse is given by
(e5ls,) ! = —(x]s,) 5 ¢ Sl — S M . (1.2.17)
ProOF. Let ¢, ¢ € S; M. Then
c e E\* € € o€ (1:2.15)
(%1/1) (em¢) = <¢ ’ (ez) €r ¢>3’C = <sz) | by €y >9‘f — —W | $¢>g{ = ’<1/)|¢>' .

Moreover, since the image of (5 coincides with Sy M, we know that e, vanishes on the
orthogonal complement S;- C H. Therefore,

ezls, ¥"(@) = e5ls, mTau = e u= (Reu) ().
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Finally, if = is regular,

-1 (L.2.15) -1
—(2ls.) ez elen T= (2ls,) als, = 1,
proving that the inverse of €Z|g, is indeed given by the expression in ([1.2.17]). O

This proposition makes it possible to identify the spin space S,M C H endowed
with the inner product <.|.>, with a subspace of the spinor space S, with the in-
ner product ¥¢. If the space-time point x is singular (see Definition , this is all
we can expect, because in this case the spaces S,M and S, # have different dimen-
sions and are clearly not isomorphic. As already mentioned after Definition [I.1.5] in
most situations of physical interest the point x will be regular. In this case, we even
obtain an isomorphism of S, M and S, which preserves the inner products on these
spaces. The identity ([1.2.16)) shows that, under the above identifications, the physical
wave function ¢* (as defined by (1.1.18])) goes over to the regularized Dirac wave func-
tion (R.u)(x). This shows again that the causal fermion system involves the regularized
objects. Moreover, one sees that the abstract formalism introduced in Section [1.1]indeed
gives agreement with the usual objects in Minkowski space. We remark that the above
isomorphism of S, M and S,/ also makes it possible to use unambiguously the same
notation for the corresponding inner products. Indeed, it is convenient denote the inner
product 1¢ on the Dirac spinors at a time point = € 4 by

<]z ¢ Spl x SpM — C, <Y|p=z = Vo . (1.2.18)

In order to avoid confusion, we avoided this notation so far. But from now on, we will
sometimes use it.

In the next proposition we compute the kernel of the fermionic projector P¢(z,y)
(as defined by , where the subscript € clarifies the dependence on the UV regu-
larization) in Minkowski space. Moreover, we prove that the limit € ~\, 0 exists in the
distributional sense.

PROPOSITION 1.2.7. Assume that the points © and y are regular. Then, under the
above identification of S, M with Sy M, the kernel of the fermionic projector has the
representation

Pe(x,y) = —¢€, LZ 2 Syl — Sy .
Moreover, choosing an orthonormal basis (ug) of H, the kernel of the fermionic projector
can be written as
Pe(zy) == (Reug) () (Reue) (y) - (1.2.19)
l

In the limit € \, 0, the kernel of the fermionic projector P*(x,y) converges as a

bi-distribution to the unregularized kernel defined by

P(z,y) = —> ug(x) uey) . (1.2.20)
l

More precisely, for every compact subset K C M and every § > 0, there is a constant ey >
0 such that for all € € (0,e0) and for all test wave functions n,n € C§° (K, SAM),

‘ //mm (@) (P*(2,9) = P(w,y)) ily) d'z d'y

We remark that, since H is separable, we can always choose an at most countable or-
thonormal basis (ug) of H. The inequality ([1.2.21)) is discussed in Exercise

<0 nler ey il ey - (1.2.21)
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PROOF OF PROPOSITION [1.2.71 We first note that
€ € _

-1 -1
Pi(x,y) =€, mpy (eZ]Sy) =—c;my (yls,) Ly = —€3 Ty by = —€5 Ly -

In an orthonormal basis (u),, the completeness relation yields for any spinor x € Sy.#

P(z,y) x = —eg 1y X = — Z (e; W)<W |ty X3 = — Z (ei Ug) (eg, Uy X) ,
0 0

and using (|1.2.14)) gives (|1.2.19)).
(1.2.21

In order to prove ([1.2.21]), we introduce the functionals

o, H—=C, dru = /J% n(z) (Reu)(z) dtx

and similarly without UV regularization,
¢, : H—C, (1)77“:/ n(x)u(z) diz.
M

Then the left side of ([1.2.21) can be written in the compact form

’@; ((I)%)* - o (‘I’ﬁ)

which can be estimated with the triangle inequality by

*

)

|25 (25)" — @y (24)7| < 12511 |25 — @) + |25 — @[ |25l (1.2.22)

It remains to estimate the operator norms in (1.2.22). To this end, we use prop-
erty (iii) of Definition in the following way: First, the norm of ®, can be estimated
by

1
] = [ T (o) dto < prlesio Vo) ([ futolate)
and again by applying . This gives
[Pyl < clnleoky -
Next, we use the triangle inequality together with to obtain the inequality
125} < 195 = @yl| +[|@y]| < S1nler ) + clnleoe) < 2¢nlere)

valid uniformly for all € € (0,¢0) (note that property (i) cannot be used to obtain such
a uniform estimate because we have no control on how the constant ¢ in (1.2.6)) depends

on ¢). Finally, again applying (1.2.8]), we also know that
|25, = @y < 8 Inlerx) -

Using these inequalities in (|1.2.22) gives the result. O
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1.2.5. Correspondence of the Causal Structure. We now explain how the causal
structure of Minkowski space is related to the corresponding notions of a causal fermion
system (see Definition[I.1.2]and the time direction (1.1.12))). To this end, we need to spec-
ify H as a closed subspace of the solution space of the vacuum Dirac equation .
Clearly, this Dirac equation can be solved by the plane-wave ansatz

P(z) = e " xp

with a constant spinor xi. Evaluating the resulting algebraic equation for x shows that
the momentum k must lie on the mass shell k* = m? (where k? = k7k; is the Minkowski
inner product). The solutions on the upper and lower mass shell are the solutions of
positive and negative energy, respectively. In order to avoid potential confusion with
other notions of energy (like energy densities or energy expectation values), we here
prefer the notion of solutions of positive and negative frequency. Taking Dirac’s original
concept literally, we here describe the vacuum in Minkowski space by the completely
filled Dirac sea. Thus we choose H as the subspace of the solution space spanned by
all plane-wave solutions of negative frequency. We refer to this choice as a Dirac sea
configuration.

LEMMA 1.2.8. If H is the subspace of the solution space of the Dirac equation ((1.2.1)
spanned by all negative-frequency solutions, then the unregularized kernel of the fermionic

projector as defined by (1.2.20) is the tempered bi-distribution

4
P(z,y) = / (gﬂ]; (F+m) 6(k* — m?) ©(—ko) e *@=v) | (1.2.23)

where § is Dirac’s delta distribution, © is the Heaviside function, k(z —y) is a short
notation for the Minkowski inner product k; (x — y)’, and the slash in f = k’~; denotes
contraction with the Dirac matrices (the “Feynman dagger”).

PRrooF. The integrand in clearly is a tempered distribution. Hence its Fourier
transform P(z,y) is also a tempered distribution (in the vector y — = and also in both
vectors z and y). In addition, one verifies by direct computation that P(x,y) is a distri-
butional solution of the Dirac equation,

d*k
(2m)*

= / (;‘lff; (K* = m?) 6(k* — m?) ©(—ko) e~ =¥ = 0.

(i, — m) P(a.y) = |

Due to the factor ©(—ko), the distribution P(z,y) is composed of solutions of negative
frequency. Moreover, since the matrix (f+m) has rank two, one sees that P(z,y) is indeed
composed of all negative-frequency solutions. It remains to show that the normalization

of P(x,y) is compatible with (1.2.20]), meaning that

- 27r/ P(z,(t,9)) ~0 P((t,7),2) d3y = P(x,z). (1.2.24)
R3



26 1. CAUSAL FERMION SYSTEMS - AN OVERVIEW

This identity follows by a straightforward computation: First,

/R (e, (t.9) 1 P((t, 7). 2) &y

3
d*k - d* -
_ 3 —ik(z—y) 9 _—iq(y—=2) 0
[ [ e e [ e P 1 Pt
d4k dA —ikx+iqz 0
—/(27T)4/R27r€ P (k) vy Pm(Q)‘
Setting k = (w, E), we evaluate the d-distributions inside the factors P,
2 2 2 2 2 72 2 2 172 2
0(k* —m*)d(q° —m )’q:()\ﬁ) =§(w® — |k|> = m?) §(N° — [k[* — m?)
= 6(\2 — w?) §(w? — K| —m?).

This shows that we only get a contribution if A = £w. Using this fact together with the
mass shell property w? — |k|? = m?, we can simplify the Dirac matrices according to

(K +m) 2 (¢ +m) = (W + &7 +m)7° (£w® + k7 + m)
= (W’ + k7 +m) (£ — E7 +m)A°

=(\E)

(Fw? + K2+ m3) 70 + (1 £ D w (k) + (1 £1) mw)

[ 2w(f+m) in case +
o 0 in case — .

Hence we only get a contribution if A = w, giving rise to the identity

S(A? —w?) = L S\ —w).

2wl
Combining these formulas, we obtain
[ Pl e.9) 20 P(7.2) dy
d*k ax 2w
= [ — | ZZ ek 5\ —w) §(k% — m?) — —k
[ 5 (A=) 8082 = m) 2 (-+ m) ©(Fo)
1 d*k .
- = —ik(z—=z) 5 k’2 02 —kn) .
5 | i ¢ (2~ m?) (k +m) ©(~k)
This gives the result. O

The Fourier integral can be computed in closed form, giving an expression
involving Bessel functions. Since the general structure of the resulting formula will be
important later on, we give the computation in detail. In preparation, it is useful to pull
the Dirac matrices out of the Fourier integral. To this end, one rewrites the factor (§-+m)
in in terms of a differential operator in position space,

P(z,y) = (i@, +m) T,2(x,y) , (1.2.25)

where T, is the scalar bi-distribution

d*k k(o
T2 (,y) = / @) 5(k* — m?) ©(—ko) e @y | (1.2.26)
In the next lemma, we determine the singular structure of this distribution. The method
is to subtract an explicit singular distribution and to show that the difference is a regular
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distribution (i.e. a locally integrable function, denoted by L{ ). The distribution PP/¢?,
denoted by principal value, is defined by evaluating weakly with a test function n €
C3° (M) and by removing the positive and negative parts of the pole in a symmetric way.
There are different equivalent ways of writing the principal part, each of which could

serve as a possible definition (for mathematical details see Exercises and [1.12)):
PP ) 1
[ n© s =1 [0 -v) 0 d'e

_31{‘1%)22/52:&211 4§_,}1{(r(1)22/£2i“/§077 )d4€

(here &2 = €7¢; is again the Minkowski inner product).

(1.2.27)

LEMMA 1.2.9. On the light cone, the distribution T,,2 has the singularity structure

T,2(z,y) = —8—;3 <12§ +im §(€2) 6(50)> +7r(z,y), (1.2.28)

where we set £ .=y —x, and r € LIOC(J% X M) is a regular distribution. Here € is the
sign function e(x) =1 for x > 0 and e(x) = —1 otherwise. Away from the light cone (i.e.
for €2 #0), T..2(x,y) is a smooth function given by

m Yi(my€) im A(mVE) o0 L.
+ €(&”) if € is timelik
o ove e Ve CUTT am)
m Ki(m\/—€%)

A

where J1, Y1 and K1 are Bessel functions.

T2 (ZL‘, y) =
if & is spacelike ,

ProoF. The Fourier integral is computed most conveniently by inserting a conver-
gence-generating factor. Thus for any € > 0 we consider the Fourier integral

itk |
T, (2,y) = / Gy 8% = m) ©( k) =Ko =<l (1.2.30)

This Fourier integral can be computed pointwise, showing that 7¢(z, y) is a regular distri-
bution. Taking the limit € N\, 0 in the distributional sense, we will then obtain T2 (z, y).
Setting £ =y — x and t = &Y, we first carry out the integral over kg to obtain

TS ( _ d'k S(k2 — m?2 - ik& —e kol
ca(z,y) = (k* —m~) O(—ko) e e

3 = . =
_ / d’k 1 e~V k24+m?2 t—ik€ eeV k2-+m?
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Next, for the spatial momentum k we introduce polar coordinates (p = |k/, 9 go) where ¢
is the angle between k and f , and ¢ is the azimuthal angle. Also setting r = |§ |, we get

o0 d 1 . '
Tz (@,y) = / 227]03 / dcos 0 % o~ (eHit)/p2Em? —ipr cos 0
o 202m)° /. VP2 +m?

1 [ dp p —(5+it)\/zm ;
= — e sSin(pr
7”/0 (2m)3 /7p2+m2 (pr)
om? Ki(my/r?+ (e +it)?)

27m)3  m/r2 4 (e + it)?

where the last integral was carried out using [GRJ formula (3.961.1)]. Here the square
root and the Bessel function K are defined as usual using a branch cut along the negative
real axis.

When taking the limit € \, 0, one must be careful for two reasons. First, a pole forms
on the light cone t = £r. Second, the Bessel function K;j involves logarithms, which
must be evaluated in the complex plane using the branch cut along the negative real axis.
For clarity, we treat these two issues after each other. The asymptotic expansion of the
Bessel function (see [OLBC| (10.31.1)])

(1.2.31)

1
Ki(z) = 2 + 0(zlog z)

yields that the pole on the light cone is of the form
1 1
€ — O(1 2
mz(i‘,y) (271_)3 r2 I (€+ it)Q + ( Og‘f ’) )

uniformly in . Therefore, after subtracting the pole, we can take the limit € \, 0 as a
locally integrable function, i.e.

: € o 1 1 1
i (T5000) = (g s e ) © el A0,

For the subtracted pole, the limit € ™\, 0 can be computed in the distributional sense by
1 PP
lim ———— =1lim ————— = ——— — 7 §(£2 0 1.2.32
e eray Mo prm - e ), (12:32)
where we used the distributional equations

lim( LI ): 2i §(x) (1.2.33)

eNo0 \ x — 1€ T+ 1€

L im ( L | 1,)::PP. (1.2.34)
2 \0 r—1 x+1e T
(for details see Exercises [T.I0HI.12)). Here e is again the sign function e(z) = 1 for z > 0
and e(z) = —1 otherwise. This gives (1.2.28]).

In order to compute the regular part of the distribution 7,,2, we may disregard the
singularity on the light cone and may consider the case that ¢ is either spacelike or time-
like. In the first case, the argument m+/r? + (e + it)? of the Bessel function converges to
the positive real axis, where the Bessel function is analytic. This gives the lower equation
in (1.2.29). In the remaining case that ¢ is timelike, the argument m+/r? + (¢ + it)? con-

verges to the imaginary axis (more precisely, to the upper imaginary axis if ¢ > 0 and to
the lower imaginary axis if £ < 0; see Figure . Using the relations [OLBC| (10.27.9)
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FIGURE 1.1. The set {r? + (¢ +it)?|r € R} (left) and its square root (right)

and (10.27.10)]
inJi(z) = —iKi(—iz) — 1K (iz) and —7Y1(2) = —iKi(—iz) + 1K (iz)

(valid if | arg z| < %), one can express K near the upper and lower imaginary axis by
. ™ .
Ky (+iz) = —5(.]1(7:) FiY1(z)) .

Using these identities in (1.2.31)) and using that the Bessel functions J; and K; are
analytic in a neighborhood of the positive real axis, one can take the limit € \, 0 to
obtain the upper equation in ((1.2.29)). O

We point out that the Bessel functions in are all real-valued. In particular, one
sees that T'(z, y) is real-valued if the vector ¢ is spacelike. This fact can also be understood
from a general symmetry argument (see Exercise [1.13)).

Using the result of Lemma [1.2.9)in (1.2.25)), one can derive corresponding formu-
las for P(x,y). In particular, differentiating (|1.2.28]), one sees that P(x,y) has an even
stronger singularity on the light cone which involves terms of the form 1/£* and &'(£2).
Differentiating , carrying out the derivatives with the chain rule and using for-
mulas for the derivatives of Bessel functions (see [OLBC] (10.6.6) and (10.29.4)]), one
can also express the fermionic projector P(z,y) in terms of Bessel functions (see Exer-
cise . We do not give the resulting formulas, because we do not need the detailed
form later on. Instead, we here prefer to argue with structural properties of the distri-
bution P(x,y). This makes it possible to infer qualitative properties of the eigenvalues
of Agy, even without referring to the detailed form of the formulas in Lemma[T.2.9] From
Lorentz symmetry, we know that for all x and y with spacelike or timelike separation,
P(z,y) can be written as

P(z,y) =a&n’ + 81 (1.2.35)
with two complex-valued functions « and § (where again £ = y — x). Taking the adjoint
with respect to the spin scalar product, we see that

P(y,x) =a&? + B 1. (1.2.36)
As a consequence,
Agy = P(x,y) Py, ) = a&y’ +b1 (1.2.37)

with two real parameters a and b given by

a=af+pa, b=|a+]|62. (1.2.38)
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Applying the formula (A, — b1)? = a? €21, the roots of the characteristic polynomial

of A,, are computed by
bt \/a2 €2, (1.2.39)

Therefore, the eigenvalues of the closed chain are either real, or else they form a complex
conjugate pairﬁ Which of the two cases occurs is determined by the sign of the factor £2.
This gives the agreement of the different notions of causality in the following sense:

PROPOSITION 1.2.10. Assume that P(x,y) is the unregularized kernel of the fermionic
projector of the vacuum (1.2.23)), and that the eigenvalues X\1”,..., X} are computed as
the eigenvalues of the closed chain (1.1.14)). Then the following statements hold:

If the points x,y € M have spacelike separation in Minkowski space, then they are also
spacelike separated in the sense of Definition[1.1.4. If, on the other hand, the points x,y €
M have timelike separation in Minkowski space, then they are also timelike separated
in the sense of Definition . Even more, they are properly timelike separated (see
Definition in the sense that the closed chain Azy has strictly positive eigenvalues
and definite eigenspaces. Finally, if the points x,y € JM have lightlike separation in
Minkowski space, then the causal structure of Definition 1s ill-defined.

The fact that the causal structure is ill-defined for lightlike separation again explains why
an UV regularization must be introduced.

PROOF OF PrROPOSITION [[L2.T0l If the vector £ = y—x is spacelike, then the term &2
is negative. Thus the eigenvalues in form a complex conjugate pair, implying that
they all have the same absolute value. Thus the points are spacelike separated in the
sense of Definition

If the vector ¢ is timelike, the term &2 in is positive, so that the \; are all
real. In order to show that they do not have the same absolute value, we need to verify
that the parameters a and b are both non-zero. This makes it necessary to refer to the
explicit formula involving Bessel functions : The Bessel functions Y7 and J; do
not have joint zeros on the positive real axis (this can be understood abstractly from
the fact that these Bessel functions form a fundamental system of solutions of the Bessel
equation; see Exercise . As a consequence, the parameter § in is non-zero.
Likewise, the derivatives Y{ and J| do not have joint zeros (as can again be verified from
the fact that the Bessel functions form a fundamental system). This implies that the
parameter « in is non-zero. We conclude that the parameter b in is
non-zero. The combination of & and 3 in the formula for a in can be rewritten in
terms of a Wronskian of the Bessel function. This Wronskian can be computed explicitly
using [OLBC, (10.5.2)], implying that a is non-zero (see Exercise [1.14). We conclude
that the points z and y are timelike separated in the sense of Definition [1.1.2

In order to get the connection to proper timelike separation, recall that if £ is a timelike
vector of Minkowski space, then the closed chain has the form with a,b # 0. A
direct computation shows that this matrix is diagonalizable and that the eigenspaces are
definite with respect to the spin scalar product (see Exercise . Moreover, applying
the Schwarz inequality to the explicit formulas , one obtains

la] /€2 = 2Re (a \/?B) D laPe+ 182 =, (1.2.40)

Ut is a general property of the closed chain that if \ is an eigenvalue, then so is \; see Exercise m
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proving that the eigenvalues in (|1.2.39)) are non-negative. It remains to show that none
of these eigenvalues vanishes. To this end, it suffices to show that the inequality (x)
in (|1.2.40) is strict, which in turn is equivalent to proving that

Im (aﬁ) #0.

This inequality follows by a detailed analysis of the Bessel functions (see [FG2| proof of
Lemma 4.3]). We conclude that z and y are indeed properly timelike separated.

If the vector ¢ is lightlike, then P(x,y) is not defined pointwise. As a consequence,
the closed chain is ill-defined. O

This proposition cannot be applied directly to causal fermion systems because, as
explained in §1.2.7] and §1.2.2] constructing a causal fermion system makes it necessary
to introduce an UV regularization. Nevertheless, the above proposition also gives the
correspondence of the different notions of causality for causal fermion systems describing
the Minkowski vacuum, as we now explain. Thus let us consider the causal fermion system
corresponding to the regularized fermionic projector of the vacuum P¢(z,y). In the
limit € N\, 0, the kernel of the fermionic projector P¢(z,y) converges to the unregularized

kernel P(z,y) (see (1.2.21]) in Proposition [1.2.6]). If this convergence is pointwise, i.e. if
for given space-time points x,y € M,

lim P (z,y) = P(z,y) , (1.2.41)
e\0

then the results of Proposition [1.2.10| also apply to the causal fermion system, up to
error terms which tend to zero as € N\, 0 (for the stability of the notions of causality
see Exercises and [1.19). Thinking of ¢ as the Planck scale, this means physically
that the notion of causality of Definition [1.1.2] agrees with the usual notion of causality in
Minkowski space, up to corrections which are so small that they cannot be observed. The
subtle point of this argument is that it requires pointwise convergence . Clearly,
such a pointwise convergence cannot hold if x and y are lightlike separated, because the
right side of is ill-defined pointwise. Expressed for a causal fermion system for
fixed € on the Planck scale, this means that the notion of causality of Definition [I.1.
does not agree with the usual notion of causality if the vector £ is almost lightlike in the
sense that H§O| — \EH < e. This is not surprising because we cannot expect that the notion
of causality in Minkowski space holds with a higher resolution than the regularization
scale €. The remaining question is whether we have pointwise convergence if
the points x and y have timelike or spacelike separation. The answer is yes for a large
class of regularizations (like for example the regularization by mollification in Exam-
ple . However, the general notion of Definition only gives weak convergence of
the kernels ([1.2.21]). This shortcoming could be removed by adding a condition to Defi-
nition which ensures pointwise convergence away from the light cone. On the other
hand, such an additional condition will not be needed for the constructions in this book,
and therefore it seems preferable not to impose it. Nevertheless, the physical picture is
that the regularized kernel should converge pointwise, at least for generic points z and y
which lie sufficiently far away from the light cone. With this in mind, Proposition
indeed shows that the notion of causality of Definition corresponds to the usual
notion of causality in Minkowski space, up to corrections which are so small that they
are irrelevant in most situations of interest.
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We conclude this section by explaining why the functional € introduced in (1.1.11))
gives information on the time direction. Our first task is to rewrite this functional in
terms of the regularized kernel of the fermionic projector P*(x,y).

LEMMA 1.2.11. Assume that the operator P¢(x,x) : Sz M — Sy M is invertible. Then,
setting

v(z) = P*(z,2)"" ¢ Spl — Sy (1.2.42)
the functional C, (1.1.11)), can be written as
C(z,y) =1iTrg, <P5(5L’,y) v(y) P*(y, ) [y(a:),AxyD . (1.2.43)

PROOF. Since P(z,r) = m,x|s, = 7|s,, we know that v(z) = (z|s,)~ . Thus
Tp Y T Ty Tpls, = Moy Tyx Ty V(y) myx v(2)|s,
= P(z,y) P*(y,x) P*(z,y) v(y) P*(y, ) v(z)ls, -
Using this formula in , we obtain

C(z,y) =i Trs, (y & my mals, — yme my @]s,)
=iTrg, (Pa(fr, y) Py, z) P*(x,y) v(y) P*(y, z) v(z)
— P(z,y) P (y, x) v(z) P*(x,y) v(y) P*(y, ﬂf))
=iTrg, (PE(J«", y) vy) P*(y,z) v(x) P*(z,y) P*(y,z)

= P (w,y) v(y) Py, @) P*(2,) P*(y,2) v(z) )
This gives the result. O

We point out that the operator v(x) in is ill-defined without UV regularization
because evaluating the distribution P(z,y) on the diagonal 2 = y has no mathematical
meaning. As a consequence, the functional € is ill-defined without UV regularization,
even if x and y have timelike separation. This makes the following computation somewhat
delicate. In order to keep the analysis reasonably simple, we assume that the regularized
kernel of the fermionic projector has wvector-scalar structure, meaning that it is of the
general form

Pe(z,y) = vj(z,y) 7 + [ (z,y) 1 (1.2.44)
with a vector and a scalar component. Here v®(x,y) is a complex vector field (i.e. it
can be written as v = u® 4 fw® with Minkowski vectors u®* and w® which need not be
collinear). Moreover, we only consider the case that x and y have timelike separation (for
points with spacelike separation see Exercise . Then, evaluating for x =y,
one sees that P¢(z,x) can be written as

P*(z,x) = v(z) ¥ + (°(2) 1

(where we set v*(z) = v*(z,x) and f°(x) = B°(x,z)). Since P°(x,z) is a symmetric
operator on S, , it follows that v® is a real vector field, and 8 a real-valued function.
For a large class of regularizations, the matrix P¢(x,z) is invertible because the vectorial
component dominates the scalar component (see Exercise . With this in mind, we
here assume that v(x) exists. Then it is given by

v(z) = — (v5(2) ¥ — F(2) 1), (1.2.45)
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where p := v5 (v¥) — (8%)%. Now we can compute the composite expression in (1.2.43)),
working for all other terms with the unregularized formulas (which is again justified if we
have pointwise convergence ([1.2.41])). This gives the following result.

PROPOSITION 1.2.12. Using (1.2.45)) and replacing P*(z,y), P°(y,x) and Ay, by the
unregularized expressions (1.2.35)), (1.2.36)) and (1.2.37)), the functional C is given by

16a ) e i € € | ,\E
Clz,y) = m Im (aﬁ) <v () & v (y)kfk — & () v (y)]> . (1.2.46)

Proor. Using (1.2.45) and (1.2.37)) in (1.2.43)) gives
ea,y) = i Trs, (Ple,y) v(y) Py 2) [W(a), Any) )

= a7 s (P ) Pl ) [, 6])

where in the last step we used that the scalar components of A, and v(x) drop out of the
commutator. Taking the scalar component of v(y), the two factors P(x,y) and P(y, )
combine to the closed chain, which according to has no bilinear component,
so that the trace vanishes. Therefore, we only need to take into account the vectorial
component of v(y). Using ((1.2.35)) and (1.2.36)), we obtain

C(esy) = s s, ((of +61) #°(w) (0 + 5 1) [#(2).€])
= o ™09 T ([ )] [F@).4]) -
Computing the trace of the product of Dirac matrices gives the result. O

The critical reader may wonder why the functional which distinguishes the time direction
has the specific form . This question is addressed in Exercise where another
similar functional is analyzed.

For the interpretation of the formula , we first consider the case that y and x
have space-like separation. In this case, it turns out that the prefactor Im(a3) vanishes,
so that gives no information on a time direction. This is consistent with the fact
that for points in Minkowski space with space-like separation, the notions of future- and
past-directed depend on the observer and cannot be defined in a covariant manner. How-
ever, if y and x have timelike separation, then the factors a and Im(a3) are indeed both
non-zero (see the proof of Proposition . Therefore, the functional € is non-zero,
provided that the vector £ is non-degenerate in the sense that it is linearly independent
of both v°(z) and v*(y). Since the set of directions £ for which these vectors are linearly
dependent has measure zero, we may always restrict attention to non-degenerate direc-
tions. Moreover, the formula shows that the functional C does not change sign
for £ inside the upper or lower light cone. On the other hand, C is antisymmetric under
sign flips of £ because interchanging x and y in obviously gives a minus sign.

We conclude that for the regularized Dirac sea vacuum, the sign of the functional C
distinguishes a time direction. Asymptotically as € N\, 0, this time direction agrees with
the distinction of the causal past and causal future in Minkowski space.

To summarize, in this section we saw how the intrinsic structures of a causal fermion
system correspond to the usual structures in Minkowski space. To this end, we con-
structed causal fermion systems from a regularized Dirac sea configuration and analyzed
the asymptotics as the UV regularization is removed. For brevity, we only considered the
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topological and causal structure of space-time as well as spinors and wave functions. The
reader interested in geometric structures like connection and curvature is referred to the
detailed exposition in [FG2]. Moreover, in Section below we shall explain how the
methods and results introduced in this section can be generalized to interacting systems.

1.3. Underlying Physical Principles

In order to clarify the physical concepts, we now briefly discuss the underlying physical
principles. Causal fermion systems evolved from an attempt to combine several physical
principles in a coherent mathematical framework. As a result, these principles appear in
the framework in a specific way:

» The principle of causality is built into a causal fermion system in a specific way, as
was explained in §I.1.2] above.

» The Pauli exclusion principle is incorporated in a causal fermion system, as can
be seen in various ways. One formulation of the Pauli exclusion principle states that
every fermionic one-particle state can be occupied by at most one particle. In this
formulation, the Pauli exclusion principle is respected because every wave function can
either be represented in the form " (the state is occupied) with u € 3 or it cannot
be represented as a physical wave function (the state is not occupied). Via these two
conditions, the fermionic projector encodes for every state the occupation numbers 1
and 0, respectively, but it is impossible to describe higher occupation numbers. More
technically, one may obtain the connection to the fermionic Fock space formalism by
choosing an orthonormal basis w1, ..., uy of } and forming the f-particle Hartree-Fock
state

W= U A AU

Clearly, the choice of the orthonormal basis is unique only up to the unitary transfor-

mations
f

j=1
Due to the anti-symmetrization, this transformation changes the corresponding Hart-
ree-Fock state only by an irrelevant phase factor,

PN AYY =det U Ut Ao AP

Thus the configuration of the physical wave functions can be described by a fermionic
multi-particle wave function. The Pauli exclusion principle becomes apparent in the
total anti-symmetrization of this wave function.

» A local gauge principle becomes apparent once we choose basis representations of
the spin spaces and write the wave functions in components. Denoting the signature
of (Sz,<.].>z) by (p(z), ¢(x)), we choose a pseudo-orthonormal basis (¢q(Z))a=1,... p+¢
of S;. Then a wave function 1 can be represented as

p+q

B(a) = 3 0° (@) eala)
a=1

with component functions w!,... 9P*9. The freedom in choosing the basis (¢4) is
described by the group U(p,q) of unitary transformations with respect to an inner
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product of signature (p,q). This gives rise to the transformations

p+q p+q
ea(x) — Z U Yx)? es(x) and () — Z U(z)3 VP ()
p=1 B=1

with U € U(p,q). As the basis (¢y) can be chosen independently at each space-time
point, one obtains local gauge transformations of the wave functions, where the gauge
group is determined to be the isometry group of the spin scalar product. The causal
action is gauge invariant in the sense that it does not depend on the choice of spinor
bases.

» The equivalence principle is incorporated in the following general way. Space-time
M := supp p together with the universal measure p form a topological measure space,
being a more general structure than a Lorentzian manifold. Therefore, when describ-
ing M by local coordinates, the freedom in choosing such coordinates generalizes the
freedom in choosing general reference frames in a space-time manifold. Therefore, the
equivalence principle of general relativity is respected. The causal action is generally
covariant in the sense that it does not depend on the choice of coordinates.

1.4. The Dynamics of Causal Fermion Systems

Similar to the Einstein-Hilbert action in general relativity, in the causal action princi-
ple one varies space-time as well as all structures therein globally. This global viewpoint
implies that it is not obvious what the causal action principle tells us about the dynamics
of the system. The first step for clarifying the situation is to derive the Euler-Lagrange
(EL) equations corresponding to the causal action principle ( Similar to the Ein-
stein or Maxwell equations, these EL equations should describe how the system evolves
in time. Additional insight is gained by studying Noether-like theorems which specify the
quantities which are conserved in the dynamics ( Finally, we review results on the
initial value problem ( We remark that more explicit information on the dynamics
is obtained by considering limiting cases in which the EL equations corresponding to the
causal action reduce to equations of a structure familiar from classical field theory and
quantum field theory (see Section .

1.4.1. The Euler-Lagrange Equations. We return to the abstract setting of Sec-
tion Our goal is to derive the EL equations corresponding to the causal action
principle in the form most useful for our purposes. Let (H,F, p) be a causal fermion sys-
tem. We assume that p is a minimizer of the causal action principle. However, we do not
want to assume that the total volume p(F) be finite. Instead, we merely assume that p is
locally finite in the sense that p(K) < oo for every compact subset K C F. Moreover, we
only consider variations of p of finite total variation (see the inequality in ) We
treat the constraints with Lagrange multipliers (this procedure is justified in [BF]). Thus
for each constraint 7, we add a corresponding Lagrange Lagrange multiplier
term to the action. We conclude that first variations of the functional

Sipv i =S+r(T—-C1)— A (/{ftr(x) dp — C’g) —v(p(F) — Cs) (1.4.1)

vanish for suitable values of the Lagrange parameters s, A\, v € R, where the constants C,
C5 and Cjs are the prescribed values of the constraints. For clarity, we point out that the
boundedness constraint merely is an inequality. The method for handling this inequality
constraint is to choose k = 0 if T(p) < C, whereas in the case T(p) = C the Lagrange
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multiplier x is in general non-zero (for details see again [BF]). Introducing the short
notation

Lo(w,y) = Llx,y) + oyl (1.4.2)
we can write the effective action as
Senole) = || Luta) dp(o)dpta) = A | tr(a) dp(o) = v o)
X
—kC1+ACo+v(C5.

When considering first variations of the measure p, it is useful to distinguish between
two types of variations. One possible variation is to multiply p by a positive function f; :
M — RT,

(1.4.3)

Pr = f7p~ (1'4'4)

Clearly, this does not change the support of the measure. In order to change the support,
one can consider a function F; : M — F and take the push-forward measure,

pr = (Fr)sp . (1.4.5)

Combining these two variations, we are led to considering the family of measures

pr = (Fr)u(frp) (146)

Clearly, pg should coincide with our minimizing measure p, leading to the condition
fo=1 and FpF=1. (1.4.7)
Moreover, in order to ensure that the variation has finite total variation, we assume that

it is trivial outside a compact set K C M, i.e. for all 7 € (—4,0),

Frlang =1 and  Frf =1. (1.4.8)

Finally, we assume that the functions f, and F are defined and smooth in 7 for all 7 €

(—0,0) for some § > 0. Variations of the form are sufficiently general for all the

purposes of this book (more general variations will be discussed in Remark below).
Choosing the function F; in a specific way, one gets the following result.

ProproSITION 1.4.1. If p is a minimizing measure of the causal action principle, then
there is a real constant ¢ such that

tr(xz) =c¢ forall z € M . (1.4.9)

We often refer to tr(x) as the local trace at the point z. Then the above proposition can
be stated that for a minimizing measure, the local trace is constant in space-time.

ProoF oF PROPOSITION [I.4.1] Using the definition of the push-forward measure
and the fact that the variation is trivial outside K, the integral over a function ¢ on &F
can be written conveniently as

/¢ ) dpr( /¢ (2) dp(z)
—/K( (@) f(x) dp <>+/M\K¢<x>dp<:c>.

We choose the mapping F; as

Fr(z) = —— . (1.4.10)

fr(x)
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Using that L£,(z,y) is homogeneous in y of degree two, it follows that

/ Lo Fo(y) £(y) dply) = /K ﬁ,.i(a:, fy(y)) £+ () dp(y)
1
_ /K Lulan) 5 ) dole) = /K Lol y) dply)

Arguing similar in the variable x, one sees that the variation does not change the integrals
over L, in (1.4.3)). Hence it remains to consider the variation of the other terms in (|1.4.3)),

Senslpr) = Senslp) = =\ [ (10 (Fo(a) £ra) = 1(a) die) = [ (7:(a) = 1) dpla)
= [ (VE@=1) @) dola) = v [ (1) = 1) dp(o).
K

where in the last step we used the linearity of the trace. Choosing fr =1+ 7¢ (where g
is a bounded function supported in K), the first order variation, denoted by

55}1,)\,1/ =

— S
dr KA =0 ’

is computed by

Sns =3 [ o) w@dota) v [ gto)dote) =~ [ ata) |3 tra) 4] dolo).

Since g is arbitrary, it follows that the square brackets vanish identically. This gives the
result. O

The result of this proposition is important because it tells us that seeking for min-
imizers of the causal action, we should always arrange that the local trace is constant
on M. If this constant is zero, then the measure supported at one point x given by
is a trivial minimizer. Therefore, we shall always restrict attention to the case ¢ # 0.

Then we can arrange (1.4.9) by the scaling

p— Fep with F(z)= ¢

tr(x) v
Clearly, this transformation can be used only if the local trace has no zeros in M. In order
to avoid the analysis of the zeros of the local trace, we note that if the local trace has zeros,
then the measure cannot be a minimizer because the condition ([1.4.9) is violated, and
we cannot arrange this condition by rescaling. Thus we may take the point of view that
this measure is not useful for us and should be discarded. In other words, our strategy
for constructing minimizers is to start from a measure p for which the local trace has no
zeros in M, and to perform the rescaling . The resulting measure satisfies .

With this in mind, in what follows we shall always assume that (1.4.9)) holds.
In Proposition we considered variations of the form ((1.4.6) with an arbitrary

function f,. Therefore, in what follows we may restrict attention to variations obtained by
taking the push-forward (more precisely, every linear perturbation can be uniquely
decomposed into the sum of a variation of the form with F given by
and a variation of the form ) Variations of the form can be described
conveniently by working with so-called wvariations of the physical wave functions, which
we now introduce. Our starting point is the wave evaluation operator ¥ introduced

in (L120).

(1.4.11)

U H— CO%M,SM), u— Y.
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We want to vary the wave evaluation operator. Thus for given § > 0 and any 7 € (-4, 6)
we consider a mapping ¥, : H — C°(M, SM). For 7 = 0, this mapping should coincide
with the wave evaluation operator W. The family (¥;),c(_s45) can be regarded as a
simultaneous variation of all physical wave functions of the system. In fact, for any v € X,
the variation of the corresponding physical wave function is given by

YU =W, (u) € CO(M,SM) .
Next, we introduce the corresponding local correlation operators F; by
Fr(x) = -V, (2)"V,(x) so that F, - M—7. (1.4.12)

In view of (L.1.21I), we know that Fy(xz) = x. Therefore, the family (Fr);c(—ss) i
a variation of the local correlation operators. Taking the push-forward measure (|1.4.5])
gives rise to a variation (pr)rc(—s,4) of the universal measure. Indeed, if all points of K are
regular (see Definition , every variation of the universal measure of the form
can be realized by a variation of the wave functions (see Exercise .

We now work out the EL equations for the resulting class of variations of the universal
measure. In order for the constructions to be mathematically well-defined, we need a few
technical assumptions which are summarized in the following definition.

DEFINITION 1.4.2. The variation of the physical wave functions is smooth and
compact if the family of operators (‘I’T)re(—é,é) has the following properties:

(a) The variation is trivial on the orthogonal complement of a finite-dimensional
subspace I C H, 1i.e.

Uolp =V forall T € (=9,9) .
(b) There is a compact subset K C M outside which the variation is trivial, i.e.

(V- (u)) ’M\K = (\If(u))‘M\K for all T € (—0,0) and u € H .

(¢) The Lagrangian is continuously differentiable in the sense that the derivative

d

L EW)], (1.4.13)

exists and is continuous on M x M.

With the conditions (a) and (b) we restrict attention to variations which are sufficiently
well-behaved (similar as in the classical calculus of variations, where one restricts atten-
tion to smooth and compactly supported variations). It is a delicate point to satisfy
the condition (c), because (due to the absolute values of the eigenvalues in ((1.1.1))) the
Lagrangian is only Lipschitz continuous on F x F. Therefore, the derivative
does not need to exist, even if F;(y) is smooth. This means that in the applications,
one must verify that the condition (c) holds (for details see Sections and many
computations in subsequent sections). Right now, we simply assume that the variation
of the wave functions is smooth and compact.

By definition of the push-forward measure , we know that for any integrable
function f on &,

/ f(x) dp, = / F(Fo(2)) dp. (1.4.14)
F F
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In this way, the variation of the measure can be rewritten as a variation of the arguments
of the integrand. In particular, the variation of the action can be written as

// L(Fy(z), Fy(y)) dp(x) dp(y)
Mx M

(and similarly for the other integrals). Another benefit of working with the push-forward
measure is that the total volume is preserved. Namely, combining the iden-
tity with the assumption in Definition [1.4.2] (b), one readily verifies that the
volume constraint is satisfied in the sense that p, satisfies the conditions .

Now we can compute the first variation by differentiating with respect to 7. It is
most convenient to express the causal action and the constraints in terms of the kernel
of the fermionic projector (just as explained at the beginning of . Moreover, it is
preferable to consider the Lagrangian £, (x,y) as a function only of P,(z,y) by writing
the closed chain as

A;y = Pr(z,y) Pr(z,y)" (1.4.15)

(where the index 7 clarifies the dependence on the parameter 7 € (—0,0), and P;(x,y)*
denotes similar to the adjoint with respect to the spin scalar product). When
computing the variation of the Lagrangian, one must keep in mind that £, (x,y) depends
both on P-(x,y) and on its adjoint Pr(z,y)* (cf. ) Therefore, when applying
the chain rule, we obtain contributions which are complex linear and complex anti-linear
in 0P(z,y). We write the first variation in terms of traces as

6L (z,y) = Trg, (BOP(z,y)) + Trs, (COP(z,y)*)

with linear operators B : S, — S, and C : S, — S,. Since §P(z,y) can be chosen
arbitrarily, this equation uniquely defines both B and C'. Since the variation of the La-
grangian is always real-valued, it follows that C' = B*. Using furthermore the symmetry
of the Lagrangian in the arguments x and y, we conclude that the first variation of the
Lagrangian can be written as (see also [F7, Section 5.2])

0L (z,y) = Trg, (Q(y, x) 0P (x, y)) + Trg, (Q(m, y) 0P (x, y)*) (1.4.16)

with a kernel Q(z,y) : Sy — S, which is symmetric in the sense that

The EL equations are expressed in terms of the kernel Q(x,y) as follows.

PropoOSITION 1.4.3. (Euler-Lagrange equations) Let p be a minimizer of the
causal action principle. Then for a suitable choice of the Lagrange parameters A and k,
the integral operator Q with kernel defined by (1.4.16)) satisfies the equations

A

/ Qx,y)v*(y) dp(y) = 3 P (x) forallue H and x € M . (1.4.18)
M

We note for clarity that by writing the equation (|1.4.18)) we imply that the integral must
exist and be finite.
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ProoF oF PROPOSITION [1.4.3l Using (1.4.16)), the first variation of Sj ), is com-
puted by

0Skay = //M y (Trsy (Qy,z) 6P (x,y)) + Trs, (Q(z,y) 5P(af,y)*)> dp(x) dp(y)

- )\/M Tr (0P(z,z)) dp(z) .

Noting that 0 P(x,y) = 0P(y,x)*, after renaming the integration variables in the first
summand of the double integral, we obtain

6Sny = 2 // Trs, (Q(z,y) 6P (y, ) dp(w) dp(y)
MM (1.4.19)

- A /M Trs, (6P(z,2)) dp(x) .

Next, we express 6P in terms of the variation of the physical wave functions. By
Lemma [1.1.3] we know that

Pr(y7$) = _\IIT(y)\IjT(x)* .
Differentiating this relation gives
6P (y,x) = =(0W)(y) ¥(z)" — (y) (69)(x)" .

We now specialize to the case that the variation is trivial on the orthogonal comple-
ment of a one-dimensional subspace I = span(u) C 3. Then for any ¢ € S,

0P (y,x) ¢ = =00 (y) <" (2) [ @2 — " (y) <00"(2) | P> -
By inserting a phase factor according to
St — € 5y
one sees that 1" can be varied independently inside and outside the spin scalar prod-
uct (more precisely, denoting the variation of the action (1.4.19) corresponding to Jyb*
by 0S8k, [09"], the linear combination §Sy x,[09"] 4+ i dS, (i 09"] involves only the
complex conjugate of dip", whereas 0¢* without complex conjugation drops out). We

conclude that it suffices to consider variations inside the spin scalar product. Thus the
vanishing of the first variation (1.4.19) yields the condition

0=2 [ <60"@) | Qavy) w(u)ms — A [ <66%(@) [0}
MxM M
Since Jy* is arbitrary (within the class of smooth and compactly supported variations),

the result follows. O

We remark that the kernel Q(x,y) also gives rise to an operator on the one-particle
Krein space (K, <.|.>) as introduced in §1.1.5| Thus, in analogy to (|1.1.26]), one sets

Q:DQCK—K,  (QU)) = /M Q. y) ¥(y) dp(y)

where the domain D(Q) can be chosen for example as the continuous wave functions
with compact support. The symmetry property of the kernel (1.4.17) implies that the
operator () is symmetric on the Krein space (X, <.|.>). The equation (1.4.18)) can be
written in a compact form as the operator equation

(2Q-A1) ¥ =0 (1.4.20)
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(where ¥ is again the wave evaluation operator ) In words, this equation means
that the operator (2Q) — A1) vanishes on the physical wave functions. However, the opera-
tor equation is not satisfying mathematically because the physical wave functions
in the image of W are in general not vectors of the Krein space (X, <.|.>) (see §1.1.5).

Nevertheless, (|1.4.20)) is useful as a short notation for the EL equations (|1.4.18]).

REMARK 1.4.4. (more general variations) Clearly, the ansatz only covers
a certain class of variations of the universal measure. As a consequence, the resulting EL
equations (|1.4.9) and (|1.4.18)) are only necessary conditions for p to be a critical point
of the action ([1.4.1)). We now explain how these necessary conditions are related to the
stronger EL equations as derived in [BF].

Variations of the form have the property that the support of the universal
measure changes continuously (in the sense that for every compact set K C F and every
open neighborhood U of K Nsupp p there is € > 0 such that suppp, "N K C U for all 7
with |7| < €). In fact, up to regularity and smoothness issues which we shall not enter
here, every variation of p which changes its support continuously can be written in the
form (this could be proved abstractly using arguments as in [F'13 Lemma 1.4]).
Such variations can be regarded as the analogs of variations of the potentials, the metric
or the wave functions in classical field theory or quantum mechanics. However, in the
setting of causal fermion systems there are also more general smooth variations for which
the support of the measure p, changes discontinuously. A typical example is to let p be
a bounded measure and to set

pr=0-7)p+71*p(F) s, (1.4.21)

where §, is the Dirac measure supported at x ¢ supp p. The EL equations corresponding
to such variations have a different mathematical structure, which we cannot explain in
detail here. Generally speaking, for interacting systems in Minkowski space, the EL
equations of Proposition [1.4.3] give rise to an effective interaction via classical gauge
fields (this so-called continuum limit will be discussed in . The EL equations
corresponding to more general variations like , however, give rise to an effective
interaction via bosonic quantum fields (see Exercise . We will come back to this

point in §1.5.3] O

REMARK 1.4.5. (unitary variations in Krein space) Rather than generaliz-
ing , one can also proceed in the opposite way and restrict attention to a more
special class of variations of the universal measure. If this is done, one obtains weaker
equations, meaning that the resulting EL equations are only necessary conditions for the
EL equations of Proposition to hold. Nevertheless, this procedure has its
benefits in cases when the weaker EL equations are easier to handle and/or if the weaker
EL equations capture the essence of in certain limiting cases. A specific class of
variations which is of interest in this context are so-called unitary variations in the Krein
space. Such variations were first considered in [E'7, Section 3.5]. It turns out that in the
continuum limit, the resulting EL equations are equivalent to (|1.4.18)). The advantage of
working with unitary variations in Krein spaces is that the volume and trace constraints
are respected by the variation, making it unnecessary to treat these constraints with La-
grange multipliers. This method is also used in Chapter |3| (see Section and §3.5.2)).
We now briefly outline the method and put it into the context of the variations (|1.4.6)).

We let U, be a family of unitary operators on the Krein space (X, <.|.>). Setting

U, =U oV, (1.4.22)
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FIGURE 1.2. A surface integral and a corresponding surface layer integral

we obtain a corresponding variation of the physical wave functions. Following ((1.4.12])
and ((1.4.5)) gives a corresponding variation of the universal measure, i.e.

Pr = (FT)*P with F-,—(J?) = _\PT($)*\I/T($) :

Since p, is the push-forward of the measure p, the volume constraint is clearly satisfied.
In order to verify the trace constraint, we note that formally,

| @ don@) = [t (Puta) dpr(a)

= —/ tr (U, (z) U (2)) dp = — tr(V10,) ,
M
where the adjoint WX : K — I is defined using the respective inner products, i.e.
<V u|¢p>= (u| Vs ¢)g forue 3, p € X.

Therefore, using ((1.4.22)) together with the fact that the operators U, are unitary, we
conclude that

/tr(x) dpr(z) = —tr(Vi0;) = — tr(UUS UL ¥,) = —tr(UF0,) = / tr(z) dp(z) ,
F M

showing that the trace constraint is indeed respected. Clearly, this computation has the
shortcoming that the integral in (1.4.23) may diverge (see before ), and that ¥
does not necessarily map to K (se. But the above consideration can be given a
mathematical meaning when assuming that the operators 1 — U, can be represented as
integral operators with integral kernels which vanish outside a compact subset of M x M.
We refer to the details to Definition and the constructions in Section O

(1.4.23)

1.4.2. Symmetries and Conserved Surface Layer Integrals. In [FK2] it is
shown that symmetries of the Lagrangian give rise to conservation laws. These results
can be understood as adaptations of Noether’s theorem to the causal action principle.
Since the mathematical structure of the causal action principle is quite different from that
of the Lagrangian formulation of classical field theory, these adaptations are not straight-
forward. We now explain a few concepts and results from [FK2] which are important for
understanding the general physical picture.

We first recall that the conservation laws obtained from the classical Noether theorem
state that the integral of a certain density over a Cauchy surface N does not depend on
the choice of N. For example, charge conservation states that the spatial integral of the
charge density gives a constant. As another example, energy conservation states that
in a static space-time background, the integral of the energy density is a constant. In
general terms, the conserved quantities are surface integrals over a Cauchy surface N (see
the left of Figure . In the setting of causal fermion systems, it is unclear how such
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surface integrals should be defined, in particular because we do not have a measure on
hypersurfaces and because it is not clear what the normal v on the hypersurface should be.
This is the reason why in the Noether-like theorems in [F'K2] one works instead of surface
integrals with so-called surface layer integrals where one integrates over a boundary layer
of a set Q@ C M (see the right of Figure and Exercise for an illustration of how
such double integrals arise). The width ¢ of this layer is the length scale on which L£(z,y)
decays. For a system composed of Dirac particles (similar as explained in Section
for the Minkowski vacuum and in for interacting systems), this length scale can
be identified with the Compton scale ~ m~"! of the Dirac particles. Thus the width of
the surface layer is a non-zero macroscopic length scale. In particular, the surface layer
integrals cannot be identified with or considered as a generalization of the surface integrals
of the classical Noether theorem. However, in many situations of interest the surface N
is almost flat on the Compton scale (the simplest example being a spatial hyperplane
in Minkowski space). Then the surface layer integral can be well-approximated by a
corresponding surface integral. It turns out that in this limiting case, the conservation
laws obtained from the Noether-like theorems in [FK2| go over to corresponding classical
conservation laws.

From the conceptual point of view, the most interesting conservation law is charge
conservation. In order to construct the underlying symmetry, we let A be a bounded
symmetric operator on J and let

U; :=exp(itA) forre R

be the corresponding one-parameter family of unitary transformations. We introduce the
family of transformations

b, T T, O, (z) =U 2z UL,

Since the Lagrangian is defined via the spectrum of operators on H, it clearly remains
unchanged if all operators are unitarily transformed, i.e.

L(P;(2), P, (y)) = L(z,y) . (1.4.24)

In other words, the transformations ®, describe a symmetry of the Lagrangian. Next,
one constructs a corresponding one-parameter family of universal measures by taking the
push-forward,

pr = (Pr)p .
As a consequence of the symmetry ([1.4.24]), this variation of the universal measure leaves

the action invariant. Under suitable differentiability assumptions, this symmetry gives
rise to the identity

o) [ ant) (£(@-@.9) £

dr 0
valid for any compact subset Q C M.

We now explain how the identity is related to a conservation law. To this
end, for simplicity we consider a system in Minkowski space (similar as explained for
the vacuum in Section and choose a sequence of compact sets €2, which exhaust the
region between two Cauchy surfaces at times ¢t = tg and ¢t = ¢;. Then the surface layer
integral reduces to the difference of integrals over surface layers at times ¢t = tg
and t ~ ¢. Next, we choose A = 7, as the projection operator on the one-dimensional
subspace generated by a vector u € J. Then in the limit ¢ ~\, 0 in which the UV

=0, (1.4.25)
=0
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regularization is removed, the resulting surface layer integral at time ¢t = ty reduces to
the integral

/3 <u(to, %) |70u(t0, T)>= (0,2) RIS
R

thereby reproducing the probability integral in Dirac theory. As a consequence, the
representation of the scalar product (.|.)s¢ as an integral over a Cauchy surface has
a natural generalization to the setting of causal fermion systems, if the surface integral is
replaced by a corresponding surface layer integral. This result also shows that the spatial
normalization of the fermionic projector (where one works with spatial integrals of the
form (1.2.24)); for details see [FT2]) really is the correct normalization method which
reflects the intrinsic conservation laws of the causal fermion system.

The conservation laws in [FK2| also give rise to the conservation of energy and
momentum, as we now outline. In the classical Noether theorem, these conservation laws
are a consequence of space-time symmetries as described most conveniently using the
notion of Killing fields. Therefore, one must extend this notion to the setting of causal
fermion systems. Before explaining how this can be accomplished, we recall the procedure
in the classical Noether theorem: In the notion of a Killing field, one distinguishes the
background geometry from the additional particles and fields. The background geometry
must have a symmetry as described by the Killing equation. The additional particles and
fields, however, do not need to have any symmetries. Nevertheless, one can construct
a symmetry of the whole system by actively transporting the particles and fields along
the flow lines of the Killing field. The conservation law corresponding to this symmetry
transformation gives rise to the conservation of energy and momentum.

In a causal fermion system, there is no clear-cut distinction between the background
geometry and the particles and fields of the system, because all of these structures are
encoded in the underlying causal fermion system and mutually depend on each other.
Therefore, instead of working with a symmetry of the background geometry, we work with
the notion of an approximate symmetry. By actively transforming those physical wave
functions which do not respect the symmetry, such an approximate symmetry again gives
rise to an exact symmetry transformation, to which the Noether-like theorems in [FK2)]
can be applied. More precisely, one begins with a C'!'-family of transformations ( fr)re(=s.0)
of space-time,

fr: M — M with fo=1, (1.4.26)

which preserve the universal measure in the sense that (f;).p = p. The family (f;) can
be regarded as the analog of a flow in space-time along a classical Killing field. Moreover,
one considers a family of unitary transformations (U:),¢(—s545) on H with the property
that

U_ U =1 for all 7 € (—4,9) .

Combining these transformations should give rise to an approzimate symmetry of the
wave evaluation operator ({1.1.20)) in the sense that if we compare the transformation of
the space-time point with the unitary transformation by setting

Er(u,x) = (Yu)(fr(z)) — (TU ) () (x € Myue ), (1.4.27)
then the operator E, : 3 — C°(M,SM) should be sufficiently small. Here “small”

means for example that F vanishes on the orthogonal complement of a finite-dimensional
subspace of H; for details see [FK2] Section 6]. Introducing the variation ®, by

&, M—F, d(z)=U2U",
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we again obtain a symmetry of the Lagrangian ((1.4.24)). This gives rise to conserved
surface layer integrals of the form (1.4.25)). In order to bring these surface layer integrals
into a computable form, one decomposes the first variation of @, as

0®(x) := 8T<I>T(x)|T:O =0f(x) +v(z), (1.4.28)

where df is the first variation of f;, , and v(z) is a vector field on F along M
which is transversal to M C F. Expressing v in terms of the operator F in shows
that v is again small, making it possible to compute the corresponding variation of the
Lagrangian in (1.4.25). We remark that in the decomposition (1.4.28), the vector field 4 f
describes a transformation of the space-time points. The vector field v, however, can
be understood as an active transformation of all the objects in space-time which do not
have the space-time symmetry (similar as described above for the parallel transport of
the particles and fields along the flow lines of the Killing field in the classical Noether
theorem).

In order to get the connection to classical conservation laws, one again studies a
system in Minkowski space and considers the limiting case where a sequence 2,, exhausts
the region between two Cauchy surfaces at times t = tg and ¢t = ¢;. In this limiting case,
the conserved surface layer integral reduces to the surface integral

/ T K d®x |
R3

where Tj; is the energy-momentum tensor of the Dirac particles and K = ¢ f is a Killing
field. This shows that the conservation of energy and momentum is a special case of more
general conservation laws which are intrinsic to causal fermion systems.

1.4.3. The Initial Value Problem and Time Evolution. In order to get a better
understanding of the dynamics described by the causal action principle, it is an important
task to analyze the initial value problem. The obvious questions are: What is the initial
data? Is it clear that a solution exists? Is the solution unique? How do solutions look
like? Giving general answers to these questions is a difficult mathematical problem. In
order to evaluate the difficulties, one should recall that p describes space-time as well
as all structures therein. Therefore, similar as in the Cauchy problem for the Einstein
equations, solving the initial value problem involves finding the geometry of space-time
together with the dynamics of all particles and fields. In view of the complexity of
this problem, at present there are only a few partial results. First, in the paper [FG3]
an initial value problem is formulated and some existence and uniqueness theorems are
proven. We now review a few methods and results of this paper. Moreover, at the end
of this section we mention an approach proposed in [FK3| for obtaining more explicit
information on the dynamics by analyzing perturbations of a given minimizing measure.

Since the analysis of the causal action principle is technically demanding, in [FG3]
one considers instead so-called causal variational principles in the compact setting. In
order to get into this simplified setting, one replaces F by a compact metric space (or
a smooth manifold). The Lagrangian is replaced by a non-negative Lipschitz-continuous
function £ € COY(F x T, ]Rar) which is symmetric in its two arguments. Similar to (1.1.2])
one minimizes the action

S(p) = / [ ey dota) doty)

in the class of all normalized regular Borel measures on &, but now leaving out the con-
straints (1.1.4)) and ((1.1.5). Space-time is again defined by M := supp p. The resulting
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causal structure is defined by saying that two space-time points x,y € M are called time-
like separated if L(x,y) > 0, and spacelike separated if L(x,y) = 0. The principle of
causality is again incorporated in the sense that pairs of points with spacelike separation
do no enter the action. But clearly, in this setting there are no wave functions. Nev-
ertheless, causal variational principles in the compact setting have many features of the
causal action principle and are therefore a good starting point for the analysis (for a more
detailed introduction and structural results on the minimizing measures see [FS]).
When solving the classical Cauchy problem, instead of searching for a global solution
for all times, it is often easier to look for a local solution around a given initial value
surface. This concept of a local solution also reflects the common physical situation where
the physical system under consideration is only a small subsystem of the whole universe.
With this in mind, we would like to “localize” the variational principle to a subset J C F,
referred to as the inner region. There is the complication that the Lagrangian L£(x,y) is
nonlocal in the sense that it may be non-zero for points € J and y € F\ J. In order
to take this effect into account, one describes the influence of the “outer region” F\ J
by a so-called external potential ¢ : F — Rg . In the limiting case when the outer region
becomes large, this gives rise to the so-called inner variational principle, where the action

defined by
Silp.o) = [| 2@ dptw) dot) +2 [ (9(2) =) dn(e) (1.4.20)

is minimized under variations of p in the class of regular Borel measures on J (not neces-
sarily normalized because the volume constraint is now taken care of by the corresponding
Lagrange parameter s > 0).

The initial values are described by a regular Borel measure py (which is to be thought
of as the universal measure restricted to a time slice around the initial value surface in
space-time). The initial conditions are implemented by demanding that

P> po- (1.4.30)
The naive method of minimizing (|1.4.29)) under the constraint ((1.4.30)) is not a sensible
1.4.30

concept because the constraint (|1.4.30)) would give rise to undesirable Lagrange multiplier
terms in the EL equations. Instead, one minimizes without constraints, but
chooses the external potential ¢ in such a way that the minimizing measure satisfies the
initial values . It turns out that this procedure does not determine the external
potential uniquely. Therefore, the method proposed in [FG3]| is to optimize the external
potential by making it in a suitable sense “small.” As is made precise in [FG3] in
various situations, the resulting interplay between minimizing the action and optimizing
the external potential gives rise to unique solutions of the initial-value problem with an
optimal external potential.

We point out that, due to the mathematical simplifications made, the results in [FG3|
do not apply to physically interesting situations like the initial value problem for interact-
ing Dirac sea configurations. Moreover, the methods in [FG3] do not seem to give explicit
information on the dynamics of causal fermion systems. Therefore, it is a promising com-
plementary approach to consider perturbations of a given minimizing measure (which
should describe the “vacuum configuration”) and to analyze the dynamics of the per-
turbations by studying the resulting EL equations. This approach is pursued in [FK3]|
in the following way. In order to describe the perturbations of the minimizing mea-
sure p, one considers smooth variations for which the support of p changes continuously.
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Combining ([1.4.5)) and (1.4.4]), these variations can be written as
pr = (F‘r)*(f‘r P)

with a family of mappings F. : M — F and a family of non-negative functions f,.
Expanding in powers of 7, these variations can be described conveniently in terms of
sections of jet bundles over M. The EL equations yield conditions on the jets, which can
be rewritten as dynamical equations in space-time.

1.5. Limiting Cases

We now discuss different limiting cases of causal fermion systems.

1.5.1. The Quasi-Free Dirac Field and Hadamard States. We now turn atten-
tion to interacting systems. The simplest interaction is obtained by inserting an external

potential into the Dirac equation (1.2.1),
(i’yj(?j +B—m)p(z)=0. (1.5.1)

Another situation of physical interest is to consider the Dirac equation in an external clas-
sical gravitational field as described mathematically by a globally hyperbolic Lorentzian
manifold (A, g). In this section, we explain how the methods and results of Section
generalize to the situation when an external field is present. This will also give a connec-
tion to quasi-free Dirac fields and Hadamard states. In order to keep the explanations
as simple as possible, we here restrict attention to an external potential B in Minkowski
space, but remark that many methods and results could or have been worked out also in
the presence of a gravitational field.

The obvious conceptual difficulty when extending the constructions of Section is
that one no longer has the notion of “negative-frequency solutions” which were essential
for introducing Dirac sea configurations (see Lemma . In order to overcome this
difficulty, one needs to decompose the solution space of the Dirac equation into
two subspaces, in such a way that without external potential, the two subspaces reduce to
the subspaces of positive and negative frequency. This external field problem was solved
perturbatively in [F3, [FG1] and non-perturbatively in [FR2, [FR3, FMR] (for a more
detailed exposition see or [F7, Section 2.1]).

We now briefly outline the non-perturbative treatment, which relies on the construc-
tion on the so-called fermionic signature operator. Choosing again the scalar prod-
uct , the solution space of the Dirac equation forms a Hilbert space denoted
by (Hom, (-|.)m). Moreover, on the Dirac wave functions (not necessarily solutions of the
Dirac equations) one may introduce a dual pairing by integrating the spin scalar product
over all of space-time,

<|.> O, SM) x C(AM,SAM) — C, <w|¢>:/ <tplpo diz . (1.5.2)
M

The basic idea is to extend this dual pairing to a bilinear form on the Hilbert space H,,
and to represent this bilinear form in terms of the Hilbert space scalar product

<¢m|¢m> = (¢m | 8¢m)m

If M is a space-time of finite lifetime, this construction can indeed be carried out and
defines the fermionic signature operator 8 being a bounded symmetric operator on H,,
(see [FR2]). The positive and negative spectral subspaces of 8 give the desired decompo-
sition of HH,, into two subspaces. We remark that the fermionic signature operator makes
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it possible to study spectral geometry for Lorentzian signature (see [FM] and [F19] for
the connection to index theory).

In space-times of infinite lifetime like Minkowski space, the above method does not
work because does not extend to a continuous bilinear form on H,, x H,,. The
underlying problem is that the time integral in in general diverges for solutions of
the Dirac equation. In order to circumvent this problem, one considers families of Dirac
solutions (¢m,)mer (for an open interval I = (mg,mp) C (0,00)) and makes use of the
fact that integrating over the mass parameter generates decay of the wave functions for
large times (the mass oscillation property; for details see [FR3]). As a result, one can
make sense of the equation

</I¢mdm| /lwmfdm’>=/l<wmrsm¢m>mdm,

which uniquely defines a family of bounded symmetric operators (8,,)mer. Now the
positive and negative spectral subspaces of the operator §,, again give the desired de-
composition of H,, into two subspaces.

Having decomposed the solution space, one may choose the Hilbert space H of the
causal fermion system as one of the two subspaces of the solution space. Choosing an
orthonormal basis (ug) of H and introducing the unregularized kernel of the fermionic
projector again by , one obtains a two-point distribution P(x,y). Using that
this two-point distribution comes from a projection operator in the Hilbert space H,,,
there is a canonical construction which gives a quasi-free Dirac field together with a
Fock representation such that the two-point distribution coincides with P(z,y). In the
canonical formalism, this result can be stated as follows (for a formulation in the language
of algebraic quantum field theory see [FMRJ, Theorem 1.4]):

THEOREM 1.5.1. There are fermionic field operators W (x) and WP (y)* together with
a ground state |0> with the following properties:

(a) The canonical anti-commutation relations holdﬂ
{09(2), ()"} = km(,p)f,  {¥%), ¥ (y)} = 0= {¥(2)", ¥ (y)"} .
(b) The two-point function is given by
<0 ¥ (2) WP (y)* 0> = —P(,y)5 -

This theorem means that before introducing an UV regularization, the description of the
Dirac system using the fermionic projector is equivalent to the usual description of a
non-interacting Dirac field in quantum field theory.

Moreover, it is shown in [FMR] that the two-point distribution P(z,y) is of Hadamard
form, provided that B is smooth, not too large and decays faster than quadratically for
large times (for details see [FMR) Theorem 1.3] and the references in this paper). This
result implies that the representation of the quasi-free Dirac field as obtained from the
fermionic projector is a suitable starting point for a perturbative treatment of the resulting
interacting theory (see for example [BDF]).

In our context, the fact that P(z,y) is of Hadamard form implies that the results
in also apply in the presence of an external potential, as we now explain. The

—

5In order to avoid confusion, we note that the operators \i/(av)Jr which appear in the usual equal-time
— ¢) are related to the above operators

canonical commutation relations {¥° (¢, ), U2 (¢,7)'} = 55 8°(x
by U ()" = 2w 375, ¥P ()" (195
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Hadamard property means in words that the bi-distribution P(z,y) in the presence of
the external potential has the same singularity structure as in the Minkowski vacuum. As
a consequence, the arguments in remain true if the points x and y are sufficiently
close to each other. More precisely, the relevant length scale is given by the inverse of
the amplitude |B(z)|~! of the external potential. On the other hand, the separation of
the points  and y must be larger than the scale € on which regularization effects come
into play. Therefore, the causal structure of a causal fermion system agrees with that of
Minkowski space on the scale e < |2 — °| + |Z — 7| < |B|~! (where |B| is any matrix
norm). Thinking of € as being at least as small as the Planck length, in most situations of
interest the lower bound is no restriction. The upper bound is also unproblematic because
the causal structure on the macroscopic scale can still be recovered by considering paths in
space-time and subdividing the path on a scale § < |B|™! (similar as explained in [FG2,
Section 4.4] for the spin connection). With this in mind, we conclude that the causal
structure of a causal fermion system indeed agrees with that of Minkowski space, even in
the presence of an external potential.

1.5.2. Effective Interaction via Classical Gauge Fields. We now outline how
to describe interacting systems in Minkowski space by analyzing the EL equations cor-
responding to the causal action principle as worked out in Proposition [[.4:3] In this
so-called continuum limit, the interaction is described by classical gauge fields. Work-
ing out the details of this procedure is the main objective of this book (see Sections
and for the general formalism and Chapters for the explicit analysis of different
models). Therefore, we here merely explain a few basic concepts.

Let us begin with the Minkowski vacuum. As shown in regularizing a vacuum
Dirac sea configuration gives rise to a causal fermion system (H, F, p?). Moreover, we saw
in the following sections that the inherent structures of the causal fermion
system can be identified with those of Minkowski space (in particular, see ([1.2.13]) as well

as Propositions and|1.2.7)). This makes it possible to write the EL equations (|1.4.18|)

as

| @ @ity =3
M

where the regularized kernel Q°(x,y) is again defined via as the derivative of
the Lagrangian. Next, one chooses the Hilbert space H as in as the Dirac sea
configuration formed of all negative-energy solutions of the Dirac equation. Then P¢(z,y)
can be computed explicitly by regularizing the distribution P(z,y) as given in momentum
space by and in position space by and Lemma Computing Q¢ (z,y),
it turns out that the EL equations are mathematically well-defined if the convolution
integral in is rewritten with the help of Plancherel’s theorem as a multiplication
in momentum space. The analysis of the continuum limit gives a procedure for studying
these equations in the asymptotics € \, 0 when the regularization is removed. The
effective equations obtained in this asymptotic limit are evaluated most conveniently in
a formalism in which the unknown microscopic structure of space-time (as described
by the regularization) enters only in terms of a finite (typically small) number of so-
called regularization parameters. According to the method of variable regularization (see
Remark , one needs to analyze the dependence of the regularization parameters in
detail. It turns out that the causal fermion systems obtained from the vacuum Dirac
sea configuration satisfy the EL equations in the continuum limit, for any choice of the
regularization parameters.

(Rewr) () for all u € H, (1.5.3)
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The first step towards interacting systems is to consider systems involving particles
and/or anti-particles. To this end, one simply modifies the constructions in by
choosing the Hilbert space H differently. Namely, instead of choosing all negative-energy
solutions, one chooses H as a subspace of the solution space which differs from the space
of all negative-energy solutions by a finite-dimensional subspace. In other words, H is
obtained from the space of all negative-energy solutions by taking out a finite number n,
of states and by adding a finite number of states n, of positive energy. Thus, denoting
the regularized kernel of the fermionic projector of the Minkowski vacuum for clarity

by PZ,(x,y), the kernel of the fermionic projector (1.2.19)) can be written as
ip
Pg(xvy) = Pssea('T,y) - Z (9‘{61/%)( ) awk Z s¢l €¢l)( ) ’ (1'5'4)
k=1

where 1, and ¢; are suitably normalized bases of the partlcle and anti-particle states, re-
spectively. In this procedure, we again take Dirac’s concept of a “sea” of particles literally
and describe particles and anti-particles by occupying positive-energy states and creating
“holes” in the Dirac sea, respectively. We also remark that the construction ([1.5.4]) modi-
fies the kernel of the fermionic projector only by smooth contributions and thus preserves
the singularity structure of P(z,y) as € \, 0. As a consequence, the correspondence
of the inherent structures of the causal fermion systems to the structures in Minkowski
space remains unchanged (just as explained at the end of for an external potential).

According to , the particle and anti-particle states modify the kernel of the
fermionic projector. It turns out that this has the effect that the EL equations in the
continuum limit no longer hold. In order to again satisfy these equations, we need to
introduce an interaction. In mathematical terms, this means that the universal measure p
must be modified. The basic question is how to modify the universal measure in such a
way that the EL equations in the continuum limit again hold. It turns out that it is a
useful first step to insert an external potential B into the Dirac equation by going
over to the Dirac equation . Choosing H as a subspace of the solution space of this
Dirac equation, the constructions of Section[1.2|again apply and give rise to causal fermion
systems (3, F, p°). The potential B modifies the dynamics of all physical wave functions
in a collective way. Now one can ask the question whether the resulting causal fermion
systems satisfy the EL equations in the continuum limit. It turns out that this is the
case if and only if the potential B satisfies certain equations, which can be identified with
classical field equations for the potential B. In this way, the causal action principle gives
rise to classical field equations. In order to make our concepts clear, we point out that
the potential B merely is a convenient device in order to describe the collective behavior
of all physical wave functions. It should not be considered as a fundamental object of the
theory. We also note that, in order to describe variations of the physical wave functions,
the potential in can be chosen arbitrarily (in particular, the potential does not
need to satisfy any field equations). Each choice of B describes a different variation of
the physical wave functions. It is the EL equations in the continuum limit which single
out the physically admissible potentials as being those which satisfy the field equations.

Before going on, we briefly explain how the subspace H is chosen. Clearly, the
Dirac equation cannot in general be solved in closed form. Therefore, for an
explicit analysis one must use perturbative methods. When performing the perturbation
expansion, one must be careful about the proper normalization of the fermionic states (in
the sense that spatial integrals of the form should be preserved). Moreover, one
must make sure that the singular structure of P(x,y) in position space is compatible with
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the causal action principle (meaning that the light-cone expansion of P(z,y) only involves
bounded integrals of B and its derivatives). Satisfying these two requirements leads to the
causal perturbation expansion (see or [F'T2] and the references therein). We also
mention that regularizing the perturbation expansion is a delicate issue. This can already
be understood for the simple regularization by mollification in Example in which
case it is not clear whether one should first mollify and then introduce the interaction or
vice versa. The correct method for regularizing the perturbation expansion is obtained
by demanding that the behavior under gauge transformations should be preserved by the
regularization. This leads to the regularized causal perturbation expansion as developed
in [E'7, Appendix D] and Appendix

We proceed with a brief overview of the results of the analysis of the continuum limit.
In the following Chapters[3}[5| the continuum limit is worked out in several steps beginning
from simple systems and ending with a system realizing the fermion configuration of the
standard model. For each of these systems, the continuum limit gives rise to effective
equations for second-quantized fermion fields coupled to classical bosonic gauge fields
(for the connection to second-quantized bosonic fields see below). To explain the
structure of the obtained results, it is preferable to first describe the system modelling
the leptons as analyzed in Chapter [ The input to this model is the configuration of
the leptons in the standard model without interaction. Thus the fermionic projector
of the vacuum is assumed to be composed of three generations of Dirac particles of
masses mi, ma, m3 > 0 (describing e, u, 7) as well as three generations of Dirac particles
of masses mq,mg,m3 > 0 (describing the corresponding neutrinos). Furthermore, we
assume that the regularization of the neutrinos breaks the chiral symmetry (implying
that we only see their left-handed components). We point out that the definition of the
model does not involve any assumptions on the interaction.

The detailed analysis in Chapter [ reveals that the effective interaction in the contin-
uum limit has the following structure. The fermions satisfy the Dirac equation coupled
to a left-handed SU(2)-gauge potential A; = (AlL])

i,j=1,27
11 12 1y
. L L ~MNS
L UMNS AL

where we used a block matrix notation (in which the matrix entries are 3 X 3-matrices).
Here mY is a diagonal matrix composed of the fermion masses,

mY = diag(rhl,mg,m;),, mi,ma, m3) N (155)

and Uyys is a unitary 3 x 3-matrix (taking the role of the Maki-Nakagawa-Sakata matrix
in the standard model). The gauge potentials A; satisfy a classical Yang-Mills-type
equation, coupled to the fermions. More precisely, writing the isospin dependence of the
gauge potentials according to Ay = Zzzl A%o® in terms of Pauli matrices, we obtain
the field equations

(AL — O(AL)F — M2 (ALY = ca ¥ (x27" o)1, (1.5.6)

valid for a = 1,2,3 (for notational simplicity, we wrote the Dirac current for one Dirac
particle; for a second-quantized Dirac field, this current is to be replaced by the expec-
tation value of the corresponding fermionic field operators). Here M, are the bosonic
masses and ¢, the corresponding coupling constants. The masses and coupling constants
of the two off-diagonal components are equal, i.e. M; = Ms and ¢; = ¢z, but they may
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be different from the mass and coupling constant of the diagonal component o = 3. Gen-
erally speaking, the mass ratios Mj/my, Ms3/m; as well as the coupling constants ¢, c3
depend on the regularization. For a given regularization, they are computable.

Finally, our model involves a gravitational field described by the Einstein equations

1
Riu— R+ Mgy = w5 (157)

where Rj;, denotes the Ricci tensor, R is scalar curvature, and Ty, is the energy-momentum
tensor of the Dirac field. Moreover, x and A denote the gravitational and the cosmolog-
ical constants, respectively. We find that the gravitational constant scales like xk ~ 62,
where § > ¢ is the length scale on which the chiral symmetry is broken. We remark that
the regularization is not necessarily constant in space-time but may have a dynamical
behavior, in which case also the gravitational constant would become dynamical. The
resulting effect, referred to as dynamical gravitational coupling, will not be covered in
this book, but we refer the interested reader to [FR].

In Chapter 5] a system is analyzed which realizes the configuration of the leptons and
quarks in the standard model. The result is that the field equation is replaced by
field equations for the electroweak and strong interactions after spontaneous symmetry
breaking (the dynamics of the corresponding Higgs field has not yet been analyzed).
Furthermore, the system again involves gravity .

A few clarifying remarks are in order. First, the above field equations come with
corrections which for brevity we cannot discuss here (see Sections and .
Next, it is worth noting that, although the states of the Dirac sea are explicitly taken
into account in our analysis, they do not enter the field equations. More specifically,
in a perturbative treatment, the divergences of the Feynman diagram describing the
vacuum polarization drop out of the EL equations of the causal action. Similarly, the
naive “infinite negative energy density” of the sea drops out of the Einstein equations,
making it unnecessary to subtract any counter terms. We finally remark that the only
free parameters of the theory are the masses in as well as the parameter d which
determines the gravitational constant. The coupling constants, the bosonic masses and
the mixing matrices are functions of the regularization parameters which are unknown
due to our present lack of knowledge on the microscopic structure of space-time. The
regularization parameters cannot be chosen arbitrarily because they must satisfy certain
relations. But except for these constraints, the regularization parameters are currently
treated as free empirical parameters.

To summarize, the dynamics in the continuum limit is described by Dirac spinors
coupled to classical gauge fields and gravity. The effective continuum theory is manifestly
covariant under general coordinate transformations. The only limitation of the continuum
limit is that the bosonic fields are merely classical. We shall come back to second-
quantized bosonic fields in below.

1.5.3. Effective Interaction via Bosonic Quantum Fields. In it was
outlined that and in which sense the regularized Dirac sea vacuum satisfies the EL equa-
tions . In simple terms, these results mean that the regularized Dirac sea vacuum
is a critical point of the causal action under variations of the physical wave functions
(see Definition . We now explain why the regularized Dirac sea vacuum is not a
minimizer of the causal action principle. This argument will lead us to a method for
further decreasing the causal action. It also gives some insight on the structure of the
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minimizing measure. Working out this method systematically reveals that the resulting
interaction is to be described effectively by bosonic quantum fields.

Our argument is based on the general observation that a conver combination of uni-
versal measures is again a universal measure. More precisely, let pi,..., pr be positive
measures on F. Choosing coefficients ¢, with

L
ce >0 and Z =1,
/=1
the convex combination
L
=> cipe (1.5.8)
(=1

is again a positive measure on F. Moreover, if the p, satisfy the linear constraints (i.e.
the volume constraint and the trace constraint ), then these constraints
are again respected by p. Taking convex combinations of universal measures resembles
superpositions of quantum states in quantum field theory. However, as a major difference,
the coefficients in the convex combination (|1.5.8)) must be real-valued and non-negative.

Taking convex combinations of measures is a useful method for decreasing the causal
action. Thus we want to choose the measures pg and the coefficients ¢y in in such
a way that the boundedness constraint (| is satisfied and the causal actlon is
smaller than that of p. A simple but useful method for constructing the measures py is
to work with unitary transformations. For a unitary operator V € U(H), we define the
measure V(p) by

(Vp)(Q) =p(VQV). (1.5.9)
Choosing unitary transformations Vi,...,Vy, we set py = Vyp and introduce p as a convex
combination where for simplicity we choose ¢y = 1/L,
1L
0 = 7 z:l Vap
a=

The action becomes

L
é%m==£2E:h[”§£@40dﬂwﬁ@)ﬂmew

+2/ L(x,y) d(Vap) (@) d(Vep)(y) (1.5.10)

ab FxTF

In order to analyze this equation more concretely, we consider the situation that (H, F, p)
is a causal fermion system describing a regularized Dirac sea configuration (see .
Then, due to the factor 1/L, the first summand becomes small as L increases. The
second summand involves all the contributions for a # b. If we can arrange that these
contributions become small, then the action of the new measure p will indeed be smaller
than the action of p.

Let us consider the contributions for a # b in more detail. In order to simplify the
explanations, it is convenient to assume that the measures V,;p have mutually disjoint
supports (this can typically be arranged by a suitable choice of the unitary transforma-
tions V). Then the space-time M := supp p can be decomposed into L “sub-space-times”



54 1. CAUSAL FERMION SYSTEMS - AN OVERVIEW

Mg := supp pq,
M=MU---UM;, and M,NMy=2 ifa#b.

Likewise, a physical wave function ¥* can be decomposed into the contributions in the
individual sub-space-times,

L
= Z (T with Yo = X, V°

(and x s, is the characteristic function). This also gives rise to a corresponding decom-
position of the fermionic projector:

LEMMA 1.5.2. Every sub-space-time My of M is homeomorphic to M, with a home-
omorphism given by
Ga : M — M, ba(z) =V 2 V.
Moreover, the mapping
s 1 S = Spua) (1.5.11)
is an isomorphism of the corresponding spin spaces. Identifying the spin spaces in different
sub-space-times via this isomOTphz’sm the fermionic projector can be written as

Z Xote () Pap(,) xar, (y)  with (1.5.12)
a,b=1
Pop(w,y) == ¥(x) Va Vi ¥(y)". (1.5.13)

PROOF. The definition of Vp, (1.5.9), immediately implies that the transforma-
tion (|1.1.18) maps M to M, and is a homeomorphism. By definition of the physical

wave function (|1.1.18]),

V(o)) = Tha(x) = TVizV, U = V: Tz Vau
The identification ([1.5.11)) makes it possible to leave out the factor V.. Then we can
write the wave evaluation operator ((1.1.20]) as

L
= X (@) U(@) Vi
a=1

Applying (1.1.22)) gives the result. O
This lemma makes it possible to rewrite the action (1.5.10) as

s =2 1 Z // Pas(,)] dp() dp(y) (1.5.14)

where the square bracket means that the Lagrangian is computed as a function of the
kernel of the fermionic projector P, (x,y) (just as explained after (1.1.14) for the ker-

nel P(x,y)). The identities (1.5.13)) and (|1.5.14)) give a good intuitive understanding of
how the action depends on the unitary operators V;. We first note that in the case a = b,

the unitary operators in (1.5.13]) drop out, so that P ¢(x,y) = P(x,y). This also explains
why the first summand involves the original action S(p). In the case a # b,
however, the unitary operators in do not drop out. In particular, this makes it
possible to introduce phase factors into the fermionic projector. For example, one may
change the phase of each physical wave function vy arbitrarily while keeping the physical
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wave functions 1y for b # a unchanged. Choosing the resulting phases randomly, one
gets destructive interference, implying that the kernel Py p(z,y) becomes small. Making
use of this dephasing effect, one can make the summands in for a # b small.
A detailed analysis of the involved scalings reveals that this indeed makes it possible to
decrease the causal action while respecting all constraints (see [F17]).

We refer to the measures p, = Vyp as decoherent replicas of p. Thus in the above
example, the universal measure p consists of a convex combination of many decoherent
replicas of p. Likewise, space-time M is decomposed many sub-space-times My, ..., My.
Each of these sub-space-times describes the same physical system because the geometric
structures are identical for all sub-space-times. However, the physical wave functions in
the different sub-space-times involve relative phases, with the effect that the correlations
between the sub-space-times (as described by the kernels Py (2, y)) become small. This
means physically that the decoherent replicas do not interact with each other. The
resulting picture is that space-time looks effectively like a “superposition” of the different
sub-space-times. The dephasing can be understood similar to decoherence effects in
standard quantum field theory (see for example [JZKGKS]).

Instead of taking decoherent replicas of the same measure p, one can consider the
situation that each of the measures py describes a sub-space-time which involves a different
classical bosonic field. In this way, one obtains effectively a superposition of classical
field configurations. This makes it possible to describe second-quantized bosonic fields
(see [F'14]). However, as the different sub-space-times do not interact with each other,
each sub-space-time has it own independent dynamics. This dynamics is described by
the classical bosonic field in the corresponding sub-space-time.

In order to obtain an interaction via second-quantized bosonic fields, one needs to
consider another limiting case in which the dephasing involves only some of the physical
wave functions. In this case, the contributions P, with a # b to the fermionic projector
are not necessarily small. This also implies that relations which arise as a consequence of
the collective behavior of all physical wave functions (like the causal relations or classical
bosonic fields) still exist between the sub-space-times M, and My. In more physical terms,
the sub-space-times still interact with each other. This scenario is studied in [F17] and
is referred to as the microscopic mizing of physical wave functions. In order to describe
the effective interaction, one describes the unitary operators V, by random matrices.
Taking averages over the random matrices, one finds that the effective interaction can
be described perturbatively in the Fock space formalism working with fermionic and
bosonic field operators. Working out the detailed combinatorics and the implications of
the resulting quantum field theory is work in progress (for the first step in this program
see [F20]).

Exercises

EXERCISE 1.1. (a causal fermion system on f3) Let (H = ¢2,(.].)) be the Hilbert
space of square-summable complex-valued sequences. Thus, writing the vectors of H
as u = (u;)ien, the scalar product is defined by

o
(ulv)y = Z W V5 .
i=1

For any k € N, we let x; be an operator on H defined by

(2 u), = w1, (zn u)k+1 = Uk
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and (zxu); =0 for all i € {k,k + 1}. In other words,

wru=( 0,0 ,ups1,uk,0,...) . (1.5.15)

k — 1 entries

Finally, we let p be the counting measure on N (i.e. u(X) = #X equals the number of
elements of X C N).

(a)

(b)

()

Show that every operator z; has rank two, is symmetric, and has one positive and
one negative eigenvalue. Make yourself familiar with the concept that every operator
is a point in F (as introduced in Definition for spin dimension n = 1.

Let FF : N — JF be the mapping which to every k associates the corresponding
operator xi. Show that the push-forward measure p = Fyu defined by p(Q2) =
pu(F~(Q)) defines a measure on F. Show that this measure can also be characterized
by

p(Q) = #{k € N| 2 € Q}.

(Clearly, we could also have taken this equation as the definition of p. But work-
ing with the push-forward measure is a good preparation for the constructions in

Section )

Show that (3, J, p) is a causal fermion system of spin dimension one.

EXERCISE 1.2. This exercise shows that the trace constraint ensures that the action

is non-zero. Let (H, T, p) be a causal fermion system of spin dimension 7.

(a)
(b)

the

Assume that tr(z) # 0. Show that £(x,z) > 0. (For a quantitative statement of this
fact in the setting of discrete space-times see [F10, Proposition 4.3].)
Assume that [; tr(z) dp # 0. Show that S(p) > 0.

EXERCISE 1.3. This exercise explains why the causal action principle is ill-posed in
case dimH = oo and p(F) < co. The underlying estimates were first given in the

setting of discrete space-times in [F'10, Lemma 5.1].

(a)

Let Hp be a finite-dimensional Hilbert space of dimension n and (Hy, po, Fp) be a
causal fermion system of finite total volume po(Fp). Let ¢ : Ho — H be an isometric
embedding. Construct a causal fermion system (H, p, F) which has the same action,
the same total volume and the same values for the trace and boundedness constraints
as the causal fermion system (Ho, po, Fo).

Let H; = Ho @ Hp. Construct a causal fermion system (Hj, p1,F1) which has the
same total volume and the same value of the trace constraint as (Ho, po, Fo) but a
smaller action and a smaller value of the boundedness constraint. Hint: Let Fyp :
L(Hp) — L(H1) be the linear mappings

(Fi(A))(udv) = (Au) @0, (Fo(A)) (udv) =0 (Av) .
Show that Fip map Fo to F1. Define p; by

p1 = %((Fﬁ*f) + (F2)*P> :

Iterate the construction in (b) and apply (a) to obtain a series of universal measures
on JF of fixed total volume and with fixed value of the trace constraint, for which the
action and the values of the boundedness constraint tend to zero. Do these universal
measures converge? If yes, what is the limit?
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EXERCISE 1.4. The following example explains why the boundedness constraint
is needed to ensure the existence of minimizers. This example was first given in [F13|
Example 2.9]. Let H = C*. For a given parameter 7 > 1 consider the following mapping
from the sphere S® C R* to the linear operators on H,

4
F: S5 L), Fa)=) tay' +1.
=1

Here ~' are the four matrices

a o 0 o 4 0 1
0% —<0 _Ua>, a=1,2,3 and ol _(]l 0

(and o are the Pauli matrices).

(a) Verify by explicit computation that F'(x) has two positive and two negative eigen-
values. Hint: To simplify the computation one can make use of the fact that the
matrices v satisfy the anti-commutation relations {7?,7/} = 26% 1 (in other words,
these matrices generate the Clifford algebra on Euclidean R*).

(b) Let p be the normalized Lebesgue measure on S C R*. Show that setting p = Fipu
defines a causal fermion system of spin dimension two and total volume one. Show
that M := supp p is homeomorhic to S3.

(c) Compute the eigenvalues of F'(x) F(y). What is the causal structure of the causal
fermion system?

(d) We now analyze the dependence on the parameter 7. Show that the value of the
trace constraint is independent of 7, whereas

lim S=0 and lim 7 =o00.

T—00 T—00

Do the universal measures converge in the limit 7 — oo? If yes, what is the limit?

EXERCISE 1.5. (support of a measure)

(a) We return to the example of Exercise Show that the support of p consists
precisely of all the operators xy.

(b) In order to illustrate how to encode geometric information in the support of a mea-
sure, let # C R? be a smooth surface described in a parametrization ®. Thus given
an open subset £ C R?, we consider a smooth injective map

b0 R

with the property that D®|, : R? — R3 has rank two for all p € . Then the
surface J is defined as the image ®(2) C R3. We now introduce the measure p as
the push-forward measure of the Lebesgue measure on R?: Let u be the Lebesgue
measure on R?. We define a set U C R? to be p-measurable if and only if its
preimage ®~1(U) C R? is y-measurable. On the p-measurable sets we define the
measure p by
p(U) = p(@1(U)) .

Verify that the p-measurable sets form a o-algebra, and that p is a measure. What
are the sets of p-measure zero? What is the support of the measure p?

Suppose that ® is no longer assumed to be injective. Is p still a well-defined
measure? Is p well-defined if ® is only assumed to be continuous? What are the
minimal regularity assumptions on ® needed for the push-forward measure to be
well-defined? What is the support of p in this general setting?
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EXERCISE 1.6. (space-time and causal structure of the causal fermion system on {3)
We return to the example of Exercise What is space-time M7 (Hint: See Exer-
cise (a).) What is the causal structure on M? What is the resulting causal action?
Discuss the last result in the context of the trace constraint and Exercise

EXERCISE 1.7. This exercise is devoted to the inequality

1 1
|11 = v1al| < lly = 213 lly + 21 (1.5.16)
used in ([1.1.19)) (the solution to this exercise can be found in [F18]).

(a) Let A and B be symmetric linear operators of finite rank. Construct an explicit
counter example for 2 x 2-matrices to the inequality

1Al - |B|| < [lA - B]|

(a similar exercise can be found in [RS1, Exercise 7 on page 217]).
(b) Prove the inequality

14| — B> < ||4% - B?||. (1.5.17)
Hint: First show that there is a vector v € H such that
(JA| = |B|)u = |||A] — |B||| (1.5.18)

and deduce the inequality
AT = 1Bl < (u| (JA] + [Bl)w)

Then use ((1.5.18]) once again.
(c) Tterate obtain (L.5.16).
EXERCISE 1.8. (Krein structure of the causal fermion system on f3) We return to
the example of Exercise and Exercise
(a) For any k € N, construct the spin space S, and its spin scalar product.
(b) Given a vector u € H, what is the corresponding wave function ¥*(x;)? What
is the Krein inner product <.|.>7
(¢) What is the topology on the Krein space K? Does the wave evaluation opera-
tor give rise to a well-defined and continuous mapping ¥ : H — K? If
yes, is it an embedding? Is it surjective?
(d) Repeat part (c) of this exercise for the causal fermion system obtained if the

operators zy in (1.5.15)) are multiplied by &, i.e.
Tpu = ( 0,...,0 ,kuk+1,k:uk,0,...) .
~—
k — 1 entries

EXERCISE 1.9. The goal of this exercise is to explore possible modifications of the
definition of regularization operators.

(a) Show that for the regularization operators in Example the estimate (1.2.21])
can be improved to

// n(z) (P*(z,y) — P(z,y)) i(y) d*z d*y
Jx M

(1.5.19)
<6 (Inleo o) liler ey + Il ooy il oo ) -

Hint: Using the notation in the proof of Proposition [1.2.7] one should first prove
that

1951 < elnleox) -
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(b) Can Definition be modified so that the stronger estimate (1.5.19)) holds? Is
there a natural way of doing so?

EXERCISE 1.10. This exercise is devoted to a clean proof of the distributional rela-
tion ([1.2.33)) in one dimension. More precisely, we want to prove the slightly more general
statement that for any function n € C1(R) N L}(R),

1 1

li — = 271 . 1.5.2

tin [ ofe) (2 - o ) do = 20i000) (15.20)

(a) Let n € CY(R) N L*(R) with 7(0) = 0. Show with the help of Lebesgue’s dominated
convergence theorem that (1.5.20)) holds.

(b) Show with residues that (1.5.20)) holds for the function n(x) = 1/(z? + 1).

(c) Combine the results of (a) and (b) to prove (1.5.20) for general n € C'(R) N L!(R).

EXERCISE 1.11. This exercise recalls basics on the principal value in one dimen-
sion ([1.2.34]).

(a) Repeat the method in Exercise to show that the limit of the left side of
exist for any n € C'(R) N L'(R). Derive a corresponding estimate which shows
that PP is a well-defined tempered distribution.

(b) Show that for any n € C1(R) N L}(R),

pe =t ([ +[7) "

EXERCISE 1.12. The goal of this exercise is to justify that the one-dimensional rela-
tions and can be used in the four-dimensional setting .
(a) Let T be a distribution on R,  C . be an open subset of Minkowski space and f :
2 — R a smooth function with nowhere vanishing gradient. Show that the relation

(7)) =T(¢(m),  ne€CF(Q)
with 5

610 = 5 [ Ot = (@) nta) a'e
(where © is the Heaviside function) defines f*7T" as a distribution on € (this is the
so-called pullback of T' under f; for details see [Frl, Section 7.2]).

(b) Choosing © as the half space in the future, Q = {z € 4,2 > 0}, one can rewrite

the expression on the left of as

li !

sl\r‘r(l) r2 —¢2 + e '
Use (a) to conclude that this expression is a well-defined distribution for any ¢ > 0.
Show that the limit € N\, 0 exist in the distributional sense.

(¢) Repeating the procedure of (b) for the half space in the past, one obtains a distribu-
tion on /i \ {t = 0}. Show that this distribution coincides with the limit in (1.2.32).
Hint: Similar as in Exercise [1.10] one can estimate the behavior at the origin with
Lebesgue’s dominated convergence theorem.

EXERCISE 1.13. Show with a symmetry argument (without explicit computation of
Fourier integrals!) that the imaginary part of the distribution T'(x,y) vanishes if x and y
have space-like separation.

EXERCISE 1.14. This exercise is concerned with the Bessel functions in Lemma[1.2.9]
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(a)

(b)
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Express the vectorial component of P(z,y) similar to (1.2.29)) in terms of Bessel
functions. Hint: Use together with the relations for the derivatives of Bessel
functions (see [OLBC, (10.6.6) and (10.29.4)]).

Use (|1.2.29)) together with the results of (a) to compute the parameters a and b
in n the case that z and y have timelike separation. Simplify the for-
mula for a using the relations for the Wronskians of Bessel functions (see [OLBC|
(10.5.2)]).

EXERCISE 1.15. This exercise is devoted to analyzing general properties of the spec-

trum of the closed chain.

(a)

(b)

()
(d)

As in Definition we let x and y be symmetric operators of finite rank on a
Hilbert space (3, (.|.)g¢). Show that there is a finite-dimensional subspace I C H
on which both x and y are invariant. By choosing an orthonormal basis of I and
restricting the operators to I, we may represent both = and y by Hermitian matrices.
Therefore, the remainder of this exercise is formulated for simplicity in terms of
Hermitian matrices.

Show that for any matrix Z, the characteristic polynomials of Z and of its adjoint Z*
(being the transposed complex conjugate matrix) are related by complex conjugation,
ie det(Z* — A1) =det(Z — A 1).

Let X and Y be symmetric matrices. Show that the characteristic polynomials of
the matrices XY and Y X coincide.

Combine (b) and (c) to conclude that the characteristic polynomial of XY has real
coefficients, i.e. det(XY — A1) = det(XY — A 1). Infer that the spectrum of the
matrix product XY is symmetric about the real axis, i.e.

det(XY — A1) =0 = det(XY —A1)=0. (1.5.21)

For the closed chain , the mathematical setting is somewhat different, be-
cause Az, is a symmetric operator on the indefinite inner product space (S, <.|.>¢).
On the other hand, we saw after that A, is isospectral to zy. Indeed, the
symmetry result can be used to prove a corresponding statement for A,

det(Ayy — A1) =0 = det(Ay;y — A1) =0. (1.5.22)

This result is well-known in the theory of indefinite inner product spaces (see for
example the textbooks [B2, [GLR] or [F10, Section 3]). In order to derive it
from , one can proceed as follows: First, represent the indefinite inner prod-
uct in the form <.|.>- = (.|S z), where (.|.) is a scalar product and S is an invertible
operator which is symmetric (with respect to this scalar product). Next, show that
the operator B := A,,S is symmetric (again with respect to this scalar product).
Finally, write the closed chain as A;, = BS —1 and apply .

EXERCISE 1.16. This exercise recalls a few basic facts from the theory of ordinary dif-

ferential equations which are relevant in the context of the Bessel functions in Lemma/l.2.9
(for more material in this direction see for example the textbook [CL]). Let ¢1 and ¢2 be
two linearly independent real-valued solutions of the linear ordinary differential equation
of second order

¢"(x) + a(z) ¢'(z) + b(x) $(x) =0,

where a and b are two smooth, real-valued functions on an open interval I.

(a) Show that at every x € I, either ¢1(z) or ¢o(z) is non-zero. Moreover, either ¢/ (x)

or ¢4(z) is non-zero. Hint: Combine the statement of the Picard-Lindeldf theorem
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with the fact that a general solution can be written as a linear combination of ¢
and qbg.
(b) Show that the Wronskian defined by w(¢1, ¢2) = ¢} () p2(z) — ¢1(z) ¢h(x) is inde-

pendent of x and non-zero.

EXERCISE 1.17. Let £ be a timelike vector, for simplicity normalized to £ = 1. Let A

be the 4 x 4-matrix A = af + b. Show that the operators
1
Fy = 3 (1+¢)

have rank two and map to eigenspaces of A. What are the corresponding eigenvalues?
Show that the operators Fy are idempotent and symmetric with respect to the spin
scalar product. Show that the image of the operators F is positive or negative definite.
Moreover, the image of F; is orthogonal to that of F_ (again with respect to the spin
scalar product). The results of this exercise can be summarized by saying that the F.
are the spectral projection operators of A.

EXERCISE 1.18. The goal of this exercise is to analyze in which sense the notion of
causality is stable under perturbations.

(a) Show by a counter example with 3 x 3-matrices that the notion of timelike separation
(see Definition is not stable under perturbations.

(b) Show that the notion of properly timelike separation (see Definition is stable
under perturbations.

(c) We now analyze a setting in which the notion of spacelike separation (see Defini-
tion[1.1.2) is stable under perturbations: Assume that the regularized kernel P¢(z,y)
converges to the unregularized kernel . Moreover, assume that the eigenval-
ues of the regularized closed chain are at least two-fold degenerate for every € > 0.
Finally, assume that the eigenvalues of the unregularized closed chain form a com-
plex conjugate pair. Show that under these assumptions, the eigenvalues of the
regularized closed chain also form a complex conjugate pair for sufficiently small e.

In Exercise a setting is given in which the assumptions in (c) are satisfied.

EXERCISE 1.19. This exercise explains why the assumptions in Exercise m (c)
are reasonable. It is a good preparation for the computation of the eigenvalues of the
closed chain in the vacuum to be carried out in Assume that the regularized ker-
nel P¢(z,y) has vector-scalar structure . Compute the eigenvalues of the closed
chain. Why are they always two-fold degenerate? Explain why the bilinear contribution
to the closed chain tends to gives rise to complex conjugate pairs of eigenvalues.

In order to put these results into context, we remark that the picture in is that
in space-like directions, the bilinear contribution gives rise to complex conjugate pairs of
eigenvalues. These are stable under perturbations according to Exercise [L.18] (c).

EXERCISE 1.20. The goal of this exercise is to analyze the functional € for the regu-
larized Dirac sea vacuum in spacelike directions.

(a) Let & be a spacelike vector. Show that in the representation of the kernel
of the fermionic projector, the parameter « is imaginary, whereas 3 is real. Hint:
Use with either the formula (1.2.29) or the result of Exercise

(b) Deduce that the parameter a in ishes if £ is spacelike.

(¢) What do these findings imply for the size of the functional C? Hint: Discuss the
commutator in (|1.2.43)).
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EXERCISE 1.21. Consider the kernel of the fermionic projector regularized by a con-
vergence-generating factor e® |k0‘, i.e. similar to (|1.2.30)),

P(z,y) = / (;Z:; (F +m) 5(k% — m2) ©(—k) e~ *(@=v) g=elkol

Compute P¢(xz,x). How do the scalar and vectorial components scale in &7

EXERCISE 1.22. We now explore a functional which at first sight might seem a promis-
ing alternative to for distinguishing a time direction. Clearly, for the sign of a
functional to distinguish a time direction, the functional should be anti-symmetric in its
arguments x and y. The simplest functional with this property is given by

B:MxM-—=R, B(z,y) :=tr (ym —zmy) .
(a) Write the functional B similar to ([1.2.43) in the form
B(x,y) = Trg, (I/(LE) Aiy) —Trg, (V(y) A;z) . (1.5.23)
(b) Now assume that in a given spinor basis, the fermionic projector has vector-scalar
structure ([1.2.44). Show that only the scalar and vectorial components of B, con-

tribute to the trace in (|1.5.23)) (whereas the bilinear component drops out). Deduce
that, in the chosen spinor basis, the relations A5, = A7, holds and

B(z,y) =Tr ((V(x) - V(y)) AZy) .

Show that the last equation vanishes if the fermionic projector is homogeneous in the
sense that P¢(z,x) = P*(y,y) for all z,y € M.

In non-technical terms, these results show that the functional B gives information on the
“deviation from homogeneity.” But this functional cannot be used to distinguish a time
direction. In particular, it vanishes for regularized Dirac sea configurations in Minkowski
space. We remark that seeking for an anti-symmetric functional which does not vanish
for homogeneous fermionic projectors with vector-scalar structure leads directly to the

functional (|1.1.11)).

EXERCISE 1.23. This exercise explains how a variation of the universal measure de-
scribed by a push-forward (1.4.5) can be realized by a variation of the physical wave
functions. Thus we let Fr : M — JF with 7 € (—6,6) be a family of functions which sat-
isfy the conditions in and . Moreover, we assume that £ is differentiable
in 7 and that all points in K are regular (see Definition .

(a) We first fix x € K. Show that by decreasing 0, one can arrange that the opera-
tors F;(x) have maximal rank 2n for all 7 € (—6,0). Hint: Make use of the fact that

the spectrum of the operators F;(x) depends continuously on 7.

(b) We introduce the spin spaces S7 endowed with corresponding inner products <.|.>-7

in analogy to (1.1.16]) by
ST = (FT(ac))(fH) ) < |- = —=(|Fr(z

T )'>}C|S;><S; ’

Construct a family of isometries
Vi(x) o (S, <|->=2) = (ST, <.|.-7)

which is differentiable in 7 (where “isometric” refers to the corresponding spin scalar
product). Hint: For example, one can work with the orthogonal projections in H
and take the polar decomposition with respect to the spin scalar products.
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(c) Consider the variation of the wave evaluation operator given by
U, () = (Ve(2)) " iy - H— S,

(where 7 () is the orthogonal projection in 3 on S7 as defined above). Show that
the relation gives us back the family of functions F(z) we started with.

(d) So far, the point x € K was fixed. We now extend the construction so that x can
be varied: Use a compactness argument to show that there is § > 0 such that the
operators Fr(x) have maximal rank 2n for all 7 € (—4,6) and all z € K. Show that
the mappings V;(z) can be introduced such that they depend continuously in x and
are differentiable in 7.

EXERCISE 1.24. The goal of this exercise is to illustrate the more general EL equations
as derived in [BF]. In order to simplify the setting, we leave out the constraints and
replace F by a compact manifold. Thus let F be a smooth compact manifold and £ €
C%L(F x F,RY) be a non-negative Lipschitz-continuous function which is symmetric, i.e.

L(z,y) = L(y,x) forall z,y € F. (1.5.24)
The causal variational principle is to minimize the action S defined by
Sto)= [ lew) do(o) doty (1.5.25)
FxTF

under variations of p in the class of (positive) normalized regular Borel measures. Let p
be a minimizer.

(a) Show by analyzing variations of the form (1.4.21)) that the function ¢ € C%(J)
defined by

o) = [ £la.) doty) (1.5.26)
is minimal on the support of p,

Usuppp = nf (. (1.5.27)

(b) We now consider second variations. Let (H,, (.,.),) be the Hilbert space L*(F,dp).
Show that the operator £, defined by

L, 9, %, (L)) = /Sr £z, ) $(y) dp(y)

is Hilbert-Schmidt. Show that it is non-negative. Hint: Consider suitable variations
of the form dp, = dp + T dp with ¢ € H,,.
We refer the reader interested in the analysis of the causal variational principle in this
compact setting to [F13), [FS].

EXERCISE 1.25. The goal of this exercise is to illustrate the Noether-like theorems
mentioned in In order to simplify the problem as far as possible, we again consider
the compact setting of Exercise and assume furthermore that the Lagrangian is
smooth, i.e. L € C®(F x F,RY). Let p be a minimizer of the action under
variations of p in the class of (positive) normalized regular Borel measures. Let u be a
vector field on F. Assume that u is a symmetry of the Lagrangian in the sense that

(u(:v)] % + u(y) 8?;]) L(x,y) =0 for all x,y € F . (1.5.28)
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Prove that for any measurable set Q C F,
-0
[ dote) [ doty) utw)’ 5 LG = 0.
Q \Q €T

Hint: Integrate (|1.5.28)) over 2 x ). Transform the integrals using the symmetry of the
Lagrangian (1.5.24)). Finally, make use of the EL equations ([1.5.27)) and the smoothness

of the function ¥.



CHAPTER 2

Computational Tools

In this chapter we introduce the computational methods needed for the analysis of
the causal action principle in the continuum limit. These methods are the backbone of
the analysis given in Chapters Nevertheless, in order to facilitate the reading of the
book, we made the subsequent chapters accessible even without a detailed knowledge of
the computational tools. To this end, all the technical computations are given in the ap-
pendices, whereas in the main Chapters these results are merely stated and explained.
Therefore, a reader who is willing to accept the results of the detailed computations may
skip the present chapter in a first reading.

Our main objective is to construct the fermionic projector in the presence of an
external potential and to analyze it in position space. The first task is to define the
unregularized fermionic projector P(x,y) in the presence of the external potential. In
this setting, the fermionic projector was constructed in a perturbation expansion in B
in [F3, [FG1, [F'T2]. More recently, a non-perturbative construction was given in [FR2),
FR3, FMR)] (see also the brief review in . For the explicit analysis of the causal
action principle to be carried out in this book, we need the detailed formulas of the
perturbation expansion. In order to focus on what is really needed in this book, we here
restrict attention to the perturbative treatment (Section . The reader interested in
non-perturbative methods is referred to the introduction in [FKT] or to the research
papers [FR2, [FR3, FMR)].

Our next task is to derive detailed formulas for the fermionic projector in position
space. Such formulas are most conveniently obtained using the so-called light-cone expan-
sion as first developed in [F5, [F6]. In Section we give a self-contained introduction
to the light-cone expansion.

In Section the causal perturbation expansion and the light-cone expansion are
adapted to the description of linearized gravity.

In Section we turn attention to the ultraviolet regularization of the fermionic
projector. This leads us to the so-called formalism of the continuum limit, which makes
it possible to analyze how the different contributions to the causal action depend on
the regularization. In order to make the presentation easily accessible, we begin with
the example of an ie-regularization (§2.4.1). Then we consider linear combinations of
such regularizations ( and explain further regularization effects ( Then the
formalism of the continuum is introduced (§2.4.4)), and its derivation is outlined (§2.4.5).
Our presentation is not as general as the original derivation as given in [E'7, Chapter 4],
but instead it aims at clarifying the main points of the construction.

In Section we explain how to compute the local trace. This is important in view
of the rescaling procedure explained in §1.4.1{ (see ((1.4.11))).

Finally, in Section [2.6] it is explained how the EL equations as derived in §I.4.1] can
can be analyzed in the formalism of the continuum limit.

65
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2.1. The Fermionic Projector in an External Potential

2.1.1. The Fermionic Projector of the Vacuum. Our starting point is the un-
regularized kernel of the fermionic projector of the vacuum which we already encountered
in (see Lemma and Lemma . For the later constructions, it
is convenient to clarify that we are in the Minkowski vacuum by adding an index “vac.”
Moreover, we denote the mass by an additional index m. Thus we define the kernel of
the fermionic projector of the vacuum as the bi-distribution

m ? (27_(_)4 m ) .1
where PY2¢(k) is the distribution in momentum space
PY(k) = (F +m) 6(k* — m?) ©(—k°) (2.1.2)

(and © denotes the Heaviside function). We also consider the distribution Py*(x,y) as
the integral kernel of an operator acting on wave functions in space-time, i.e.

Py s Coo (M, S) — C (AL, Sat), (P ) (z) = /M Pre(z,y)v(y)d'y. (2.1.3)

This operator is the so-called fermionic projector of the vacuum.

Before going on, we briefly recall the physical picture. In we integrate over
all the plane-wave solutions of the Dirac equation of negative frequency (the decompo-
sition into plane-wave solutions was explained in detail in Chapter |1} see and
Lemma . Thus P;*¢ describes the ensemble of all negative-frequency solutions of
the Dirac equation. As already mentioned in we use this Dirac sea configuration to
describe the vacuum in Minkowski space. In order to describe a system with an additional
particle, we simply add the corresponding bra/ket-combination by setting

Pla,y) = PY<(r,y) — 5-0() 005)

where 1) is a positive-frequency solution of the Dirac equation (for the prefactor —1/(27)
and the normalization of the wave function see below). Similarly, we occupy several
states by adding the bra/ket-combinations of several particle states,

Pla,y) = PE<(ay) — o= > u(@)s()
k=1

(which need to be suitably ortho-normalized; see again §2.1.7| below). In order to intro-
duce anti-particles, we similarly subtract bra/ket-combinations

P(r,y) = Be(e,9) — 5= S o@Bnl) + o= S ou@)ail),  (2.14)
k=1 =1

where ¢1,...,¢,, are the wave functions of negative-frequency solutions. Thus in sim-
ple terms, we take Dirac’s concept of the Dirac sea literally and describe particles by
additional occupied states and anti-particles by “holes” in the sea.

With the methods introduced so far, this description of particles and anti-particles
by occupying states and creating “holes” can only be performed in the non-interacting
situation in which we can work with plane-wave solutions of the Dirac equation. But
it is not obvious how the construction should be carried out if an external potential is
present. In order to tackle this problem, we first analyze how to describe the completely
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filled Dirac sea in the presence of an external potential (see §2.1.21-§2.1.6). Afterwards,
we will come back to the description of systems involving particles and anti-particles

(see 217,

2.1.2. The External Field Problem. We now return to the Dirac equation in the
presence of an external potential (|1.5.1)),

(i + B —m)p(z) =0, (2.1.5)

where B is a smooth potential with suitable decay properties at spatial infinity and for
large times (to be specified in Lemma below). We now explain the basic problem
in defining the fermionic projector in the presence of an external potential.

The definition of the fermionic projector of the vacuum and makes
essential use of the fact that the solution space of the Dirac equation splits into two
subspaces of negative and positive frequency, respectively. Indeed, this made it pos-
sible in to integrate only over the solutions of negative frequency. In order to
extend the definition of the fermionic projector to the case when an external potential
is present , one needs to again decompose the solution space into two subspaces.
In the special case that B is static, one can still separate the time dependence by the
plane wave ansatz ¥ (t,¥) = e~ “! ), (&), so that the sign of w gives a canonical splitting
of the solution space. This procedure is often referred to as the frequency splitting. In
the general time-dependent setting, however, no plane wave ansatz can be used, so that
the frequency splitting breaks down. Therefore, it is no longer obvious if there still is a
canonical decomposition of the solution space into two subspaces.

This problem is sometimes referred to as the external field problem (for more details
see Exercise or the exposition in [E7, Section 2.1]). It is a common belief that in
the presence of a general time-dependent external potential, there no longer exists a
canonical decomposition of the solution space into two subspaces. Nevertheless, it is still
possible to decompose the solution space into two subspaces, for example by using the
sign of the spectrum of the Dirac Hamiltonian on a distinguished Cauchy surface. But
the decomposition is no longer canonical in the sense that it involves an arbitrariness.
This arbitrariness is often associated to an observer, so that the choice of the subspaces
depends on the observer. As a consequence, the interpretation of the fermionic many-
particle state in terms of particles and anti-particles also depends on the observer. This
observer dependence of the particle interpretation becomes most apparent in the Unruh
effect in which the vacuum of the observer at rest is described by a uniformly accelerated
observer in terms of a thermal state involving particles and anti-particles.

Nevertheless, this reduction to particles and anti-particles as being objects associ-
ated to observers only tells part of the truth. Namely, as shall be developed in what
follows, even in the presence of a time-dependent external potential there is a canonical
decomposition of the solution space into two subspaces. In the static situation, this de-
composition reduces to the frequency splitting. In the time-dependent situation, however,
this decomposition depends on the global behavior of B in space-time. In particular, this
decomposition cannot be associated to a local observer. Starting from the canonical de-
composition of the solution space, one can again generate particles and holes, giving rise
to an interpretation of the many-particle state in terms of particles and anti-particles.
This particle interpretation is again independent of the choice of an observer. All con-
structions are explicitly covariant.
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2.1.3. Main Ingredients to the Construction. Before entering the construc-
tions, we explain a few ingredients and ideas. Generally speaking, we shall make use of
additional properties of the fermionic projector of the vacuum, which are not immediately
apparent in the Fourier decomposition and . One ingredient is to use that
causality is built into PV?°(x,y). To see how this comes about, we decompose P)2¢ as

1
Pie(e,y) = 5 (pm(@,9) = k(2.9 (2.1.6)
where p,,(x,y) and k,,(x,y) are the Fourier transforms of the distributions in momentum
space

Pm(a) = (¢ +m) 6(¢° —m?) (2.1.7)

km(q) = (¢ +m) 8(¢* — m?) e(q") (2.1.8)
(and € in (2.1.8) is again the sign function e(x) = 1 for x > 0 and e(x) = —1 other-
wise). All these Fourier integrals are well-defined tempered distributions, which are also
distributional solutions of the vacuum Dirac equation. The point is that the distribu-
tion k,,(z,y) is causal in the sense that it vanishes if z and y have spacelike separation. In

order to see this, it is useful to introduce the advanced and the retarded Green’s functions
by
v L qg+m A L qd+m
sm(q) = il{‘f(l) E—m?—ivgd and  sp(q) = 31{% pp—p—— (2.1.9)

respectively (with the limit v N\, 0 taken in the distributional sense). Taking their Fourier
transform

4
sm(z,y) = / (517343771((]) ealey) (2.1.10)

we obtain corresponding bi-distributions sY, (x,y) and s, (z,y). By direct computation
one verifies that these Green’s functions satisfy the distributional equation

(idy — m) sm(z,y) = 64z — 7). (2.1.11)

Moreover, computing the Fourier integral (2.1.10)) with residues, one sees that the support
of these Green’s functions lies in the upper respectively lower light cone, i.e.

supp s, (x,.) C J., | supp sh (x,.) C J2, (2.1.12)
where J,” and J,' denote the points in the causal future respectively past of z,

Ty ={yeM|[(y—=2)*>0, (y°—2") >0}

Jr={yeM|(y-2)>>0, (° —2°) <0}

(for details see Exercise or [FKT| Chapter 4]). In view of (2.1.11)), the difference
of the advanced and retarded Greens’ functions is a solution of the homogeneous Dirac
equation. In order to compute it in detail, we again make use of (|1.2.33]) to obtain

i (@) — s (q) = (¢ +m) lim [ 1 1 }

N0 |2 —m2 —ivg®  ¢2 —m2 +ivgd
: 1 1 (2.1.13)
_ 1 _ 0
(g +m) u%[q2—m2—iy q2—m2—|—iu]€(Q)

= 2i (¢ +m) 6(¢* — m?) e(¢")
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(for details see Exercise [2.4). Comparing with (2.1.8)), we conclude that the difference of
the advanced and retarded Green’s functions is a multiple of k,,
1
=— (s(z,y) — s"(z,v)). (2.1.14)

k
In particular, this shows that k,, is indeed causal, i.e.
supp km (z,.) C Jy , (2.1.15)

where J,, := JY U J.. We refer to ky, as the causal fundamental solution.

Now can be understood as the decomposition of the vacuum fermionic projec-
tor into a causal part (the distribution k,,) and a part which is not causal (the distribu-
tion p,; note that the explicit formulas in and Lemma show that p,,(x,y) is
indeed non-zero for spacelike distances). One idea behind our constructions is to perform
the perturbation expansion in such a way that the decomposition of P(z,y) in to a causal
and a non-causal part is preserved.

Another ingredient to our constructions is that the distributions p,, and k,, are related
to each other by a functional calculus, as we now explain. We first point out that for
the space-time integral in to exist, we had to assume that the wave function 1)
has suitable decay properties at infinity. More specifically, the time integral in in
general diverges if 1 is a physical wave function, being a solution of the Dirac equation.
In particular, the operator in cannot be defined as an operator from a vector
space to itself, but it necessarily maps one function space to another function space. As
a consequence, it is impossible to multiply the operator P,, by itself. This is obvious
because the formal integral

/P;fc(x, 2) PV (2, y) d*z (2.1.16)

is ill-defined. This problem can be understood similarly in momentum space. Namely,
using that convolution in position space corresponds to multiplication in momentum
space, the integral in (2.1.16]) corresponds to the formal product

Py(q) Pr(a),

which is again ill-defined because the square of the d-distribution in makes no
mathematical sense. As we shall see, these obvious problems in the naive treatment of the
fermionic projector are not only a mathematical subtlety. On the contrary, the methods
for overcoming these problems will involve a careful analysis of the causal structure of
the fermionic projector and of its proper normalization.

It is important to observe that the above operator product does make sense if we
consider two different mass parameters. Namely,

Py(q) Pyic(a) = (¢ +m) 3(¢° —m?) ©(—¢°) (51 +m') 8(¢* — (m')*) ©(—¢")
= (¢* + (m+m') g +mm’) §(m* — (m')?) 6(¢° —m?) ©(=¢")
= (¢ + m 4 m') g+ ) 5 6(m — ') 5(q* — m?) O(~")
= 6(m —m') (¢ +m) (q* —m?) O(—¢°).

giving rise to the distributional identity

PY2¢ PV — §(m —m') PV . (2.1.17)
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This resembles idempotence, but it involves a §-distribution in the mass parameter. We
remark that this §-normalization in the mass parameter can be treated in a mathemat-
ically convincing way using the notion of the mass oscillation property as introduced
in [FR3|. For brevity, we shall not enter these constructions here. Instead, we are
content with the fact that is well-defined if we test in both m and gq.

This calculus can be used similarly for the operators p,, and k,, obtained by consider-
ing the distributions and as multiplication operators in momentum space.
In particular, this gives rise to the relation

km ke = 6(m —m') pp (2.1.18)

(for details see Lemma below). This identity is very useful because it allows us to
deduce p,, from k,,. Therefore, our strategy is to first construct k,, in the presence of an
external potential using the underlying causal structure (2.1.14]). Then we take
to define p,, in the presence of the external potential. Finally, we use to define
the fermionic projector.

There is one subtle point in the construction which we want to mention here: the
proper normalization of the states of the fermionic projector. The most obvious method
is to interpret and use the identity as a normalization condition. This so-called
mass normalization was used in [F3l, FG1]; see also [E'7, Chapter 2]. More recently, the
non-perturbative construction in [FR3] revealed that on a general globally hyperbolic
manifold, the mass normalization cannot be used and should be replaced by the so-called
spatial normalization. In [FT2| the causal perturbation expansion is worked out for both
the mass and the spatial normalizations, and the methods and results are compared.
In [ET2, Section 2.2] the advantages of the spatial normalization are discussed, but
no decisive argument in favor of one of the normalization methods is given. Finally,
the Noether-like theorems in [FK2| showed that the spatial normalization is the proper
normalization method, because it reflects the intrinsic conservation laws of the causal
fermion system (see [FK2, Remark 5.13] or the brief outline in §1.4.2)).

With these results in mind, we here restrict attention to the spatial normaliza-
tion, which we now introduce. Recall that for a Dirac wave function v, the quan-
tity (7°%)(to, ¥) has the interpretation as the probability density for the particle at
time ty to be at position . Integrating over space and polarizing, we obtain the scalar
product , which we also denote by

(bl =27 [ 07 0lt0.) d (2119

It follows from current conservation that for any solutions 1, ¢ of the Dirac equation, this
scalar product is independent of the choice of #y3. This is the case even in the presence
of an external potential (2.1.5)), provided that the potential is symmetric with respect to
the inner product on the spinors (|1.2.18)), i.e.

<) B = <Bip| > (2.1.20)
(see Exercise [2.5)). Since the kernel of the fermionic projector is a solution of the Dirac

equation, one is led to evaluating the integral in (2.1.19) for ¢(y) = P(y,z) and ¥(y) =
P(z,y). In the vacuum, the resulting integral can be computed, giving a simple result.

LEMMA 2.1.1. For any t € R, there is the distributional relation

o / P (a, (6,7)) 1° P (1 9), 2) dy = — Py (, 2) (2.1.21)
RS
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PROOF. The identity follows by a straightforward computation, which was already
given in the proof of Lemma |1.2.8] (see (1.2.24]) and the computation thereafter). O

We refer to as the spatial normalization of the fermionic projector. It has the
advantage that it is well-defined even for fixed m. Moreover, the normalization method
is closely related to the probabilistic interpretation of the Dirac equation.

In the following sections we shall carry out the construction of the
fermionic projector describing the completely filled Dirac sea in the presence of the exter-
nal potential B. Our method will make essential use of generalizations of the underlying
causal structure (as is apparent in (2.1.6)) and (2.1.12))), of the relation between k,, and p,,

as expressed by (2.1.18)), and of the spatial normalization (2.1.21)). Finally, in §2.1.7| we

shall extend the construction to allow for particles and anti-particles.

2.1.4. The Perturbation Expansion of the Causal Green’s Functions. Using
the causal support property, the advanced and retarded Green’s functions sy, and ),
are uniquely defined even in the presence of an external potential . They can be
constructed non-perturbatively using the theory of symmetric hyperbolic systems (see [J]
or [FKT, Chapter 5]). For our purposes, it is sufficient to work out their perturbation
expansions: The retarded Green’s function is characterized by the conditions

(id + B —m) 3 (x,y) = 6*(z — y) and supp &0 (z,.) C J2 .

Employing the perturbation ansatz
o0
s = Z Sé\n) with Sé\o) =sh
n=0
(where the subscript (n) denotes the order of perturbation theory), we obtain for n =
1,2, ... the inductive conditions
(i@ — m) SE\n) =-3B sé\nfl) and supp §(An) (z,.) C J). (2.1.22)

Using the defining property of the Green’s function (2.1.11]), one sees that the left equation
in (2.1.22) can be solved in the case n =1 by

S(AI) = —5p,Bsh, (2.1.23)

where the operator product is defined as follows,

(8m Bsh)(w,y) = /d4z sm(z,2) B(2) sh (2,9) (2.1.24)

(the analytic justification of this and all other operator products in this section will
be given in Lemma below). The operator s,, in (2.1.23) is any Green’s function

(like the advanced, retarded or the symmetric Green’s function). In order to determine
which Green’s function to choose, we evaluate the condition on the right side of .
Namely, if we choose s, in again as the retarded Green’s function, then the
integral in (2.1.24]) vanishes if = lies in the past of y because in this case the supports of
the distributions s/ (z,.) and s} (.,y) do not intersect. This leads us to setting

s(Al) = —sh Bsh .
Now we can evaluate (2.1.22]) inductively to obtain

S(An) = —s)B sé\n_l) = ( —sh B)n sh.
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Proceeding similarly for the advanced Green’s function, we obtain the unique perturbation
series

o0 [e.e]
=) (=snB)"sn.  n=> (—snB)"sp. (2.1.25)
n=0 n=0

Having derived a perturbation series for the causal Green’s functions, we can also define
the causal fundamental solution in generalization of (2.1.14]) by

Ky = ! (50 —3N), (2.1.26)

= — — 35
2w~ ™ m

We now specify a class of potentials for which all the operator products appearing here
and later in this book are all well-defined in the distributional sense:

LEMMA 2.1.2. Let (C;), 0 < j < n, be a choice of operators C; € {km,Dm; Syns S}
(and py,, kn, according to and ) If the external potential B is smooth and
decays so fast at infinity that the functions B(x), 2'B(x), and x'x?B(x) are integrable,
then the operator product

(ChBCr—1B---BCh)(z,y) (2.1.27)

is a well-defined tempered distribution on R* x R?.
ProOOF. Calculating the Fourier transform of (2.1.27)) gives the formal expression

4 4 .
M) = [ 58 [ Gt Culan) Bl = o)

A~ A~

X Cp—1(Pn—1) B(Pn—1 = pPn—2) --- C1(p1) B(p1 — q1) Co(q1) , (2.1.28)

where we consider the C; as multiplication operators in momentum space and where B
denotes the Fourier transform of the function B (it is more convenient to work in momen-
tum space because the operators C; are then diagonal). We will show that M (g2, ¢1) is a
well-defined tempered distribution; the Lemma then immediately follows by transforming
back to position space.

The assumptions on B yield that B is C? and has rapid decay at infinity, i.e.

sup g g™ 9.B(g)| < oo

q€R?, |K|<2
for all n, all tensor indices iy,...,4, and all multi-indices x (with x = (k!,..., K9),
|k| :== q). As is verified explicitly in momentum space, the distributions k,,, p,, and s,

are bounded in the Schwartz norms of the test functions involving derivatives of only first
order. More precisely,

|C(f)| < const || f||a1 with C = km, pm or 8, and f € S(R4,C4) ,

where S(R*, C*) is the Schwartz space, and the Schwartz norms are defined as usual by

I

Wb =, 25, 508" 025
(for basics on the Schwartz space and distributions see for example [Fr]). As a conse-
quence, we can apply the corresponding operators even to functions with rapid decay
which are only C'. Furthermore, we can form the convolution of such functions with C;
this gives continuous functions (which will no longer have rapid decay, however). Since C
involves first derivatives, a convolution decreases the order of differentiability of the func-
tion by one.
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We consider the combination of multiplication and convolution

4
Fo) = [ 5B Foa =) Cor) o). (2.1.29)

where we assume that f € C? has rapid decay and g € C' is bounded together with its
first derivatives, ||g|lo1 < co. For any fixed po, the integral in is well-defined and
finite because f(pa —.) g(.) is C!' and has rapid decay. The resulting function F is C!
and bounded together with its first derivatives, more precisely

[ F'llo,1 < const || fll4,2 [|glo,1 - (2.1.30)

After these preparations, we can estimate the integrals in (2.1.28) from the right to
the left: We choose two test functions f,g € S(R*,C*) and introduce the functions

4
Fi(p) = / (6;73)24 B(p1 —@1) Co(qr) 9(ar) (2.1.31)
d'pj1 4 ‘
Fj(pj) = / 2r) B(pj —pj—1) Cj—1(pj—1) Fj—1(pj—1), 1<j<n. (2.1.32)

The integral (2.1.31)) is of the form ([2.1.29)) and satisfies the above assumptions on the
integrand. Using the bound ([2.1.30]), we can proceed inductively in (2.1.32). Finally, we

perform the go-integration,

d*q
M(f.9) = [ 2% fa) Cula) Fulan) (213
We conclude that M is a linear functional on S(R*,C*) x S(R?*,C*), which is bounded
in the Schwartz norm ||.|[4,1 of the test functions. O

We remark that the assumptions in this lemma are stronger than what is needed for the
operator products in (2.1.25)) and (2.1.26]) to be well-defined: First of all, the smoothness
assumption for B is unnecessarily strong; for example, it would be sufficient to assume
that B is twice differentiable. Moreover, using the causal structure, the contributions to
the above perturbation expansions are well-defined even without the decay assumptions
in Lemma Namely, these perturbation expansions are all causal in the sense that
for any given x,y € A, the distributions §V(z,y) and 5" (x,y) depend on the potential B
only on in the so-called

causal diamond (J)n Jé\) U (J2n J;/) .

Since the causal diamond is a bounded region of space-time, we may modify B outside
this bounded set to arrange the decay assumptions without changing the contributions
to the above perturbation expansions.

The reason why we prefer to impose with the stronger assumptions in Lemma [2.1.2
is that they will be needed later on. Indeed, for the operator products appearing in the
causal perturbation expansion of the Dirac sea, the decay assumptions in Lemma [2.1.2| will
be required. Moreover, the smoothness of B will be needed for the light-cone expansion.

The summands of the above perturbation expansions (2.1.25)) and ([2.1.26]) arise simi-
larly in quantum field theory and are then depicted by Feynman diagrams (see Figure .
Using the language of quantum field theory, we also refer to the summands of our per-
turbation expansions as Feynman diagrams. Then the result of the last lemma can be
understood from the fact that in the presence of an external field one only encounters
tree diagrams, which are all finite.
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FIGURE 2.1. A Feynman tree diagram

2.1.5. Computation of Operator Products. We saw in (2.1.17) and (2.1.18) that
operator products can be formed if the mass is considered as a variable parameter. We
now develop this method more systematically. It is usually most convenient to work with
the symmetric Green’s function defined by

1
S = 5(3; +sh) . (2.1.34)

LEMMA 2.1.3. The following identities hold:

P Pt = ko Ky = 0(m —m') prm (2.1.35)
PP
PmSm/ = Sm/Pm = ———; Pm (2137)
m—m
PP
km spr = S b = ——— ki, (2.1.38)
m—m
PP )
Sm S/ = (Sm — 8p) + 72 5(m —m') ppy (2.1.39)

where PP denotes the principal value defined in analogy to (1.2.27) alternatively by

[ oo [+ )22
:ll\f%z;/_mnﬂdm'

Proor. Calculating pointwise in momentum space, we obtain

(2.1.40)

P (@) P (@) = (¢ +m) 6(¢° —m?) (¢ +m') 5(¢> —m'?)

= 0(m? —m'?) 6(¢* — m?) <q2 + (m+m')¢ + mm’)

- ﬁ §(m —m') 6(¢* —m?) (m® + (m +m')¢ + mm’)
— % §(m —m') 6(¢° —m?) 2m (m + ¢) = 6(m —m') pm(q) -

This gives the first part of (2.1.35)). The second part of this formula as well as formula
(2.1.36|) are obtained analogously. The formulas (2.1.37) and (2.1.38]) are obtained as
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follows:
+m/ q+m'
2 m ’ITL/ :1 2_ ? g
Pm(q) Smr (q) VI{%‘S(Q m)(¢+m)<q2_mf2_¢yq0+q2—m’2+ivq0>
1 1
T 2 2 2 / /
1 1
T 2 2 2 / /
‘ +m) (m+m/)
-1 5 2 2 (m
lim, (q m>(¢+m)((m+m’)(m—m’)—i1/q0+(m+m’)(m—m/)+i’/qo
_Qi ()
= m_m,pmq .

The derivation of (2.1.39) is a bit more involved. Combining (2.1.14) and (2.1.34)),

we obtain

S = Sy — 1Tk = sy + iThky, . (2.1.41)
Thus we can express the product $,,(q) $;(q) in two ways, namely as
sm(q) smr (@) = (57,(@) — 7k (9)) (5, (@) — ik ()
= $30(@) sy (q) = T28(m —m') p(q)

1 1
—imim | Ky (@) —————— + k() —————5 |
it (eta) + ) )

v m' —m — ivg®
or alternatively as
Sm (@) $m (@) = (s7,(@) + ik (@) (70 (@) + ik (q))
= s (q) s (q) = 78(m — 1) pra(q)

1 1
i lim ( k() ———————— 4+ k() —————————— ).
+im 1{%< (q) + Em(q) )

v m' —m + ivg® m —m/ + ivg®
Adding these two formulas yields
2 5m() s (0) = (53 (@) 530 (0) + 57(a) 57 (@)) + 278 (m — ") i (q)

— it Tim Ky () ( L _ L >

AN m' —m+ivg® m —m —ivg°

+ i lim ko (q) ! !
7 lim -
! AN mid m—m'+ivg® m—m/ —ivg®

©) itk ()e(—q°) 2 (! — m) + ik (q)e(—¢°) 278 6(m — m')
= —27°6(m’ — m)(—pm () — 2w26(m — m')(=pim () ,

where in (%) we applied ((1.2.33), and in the last line we used the definitions of p,, and
k... We thus obtain

1
Sm S = 3 (517, Senr + Sy Sivr) + 72 8 (m—m) Py, - (2.1.42)
It remains to derive the relations
PP PP
S Symt = p— m’(sx"” —50) and s shy = p— m,(s,/;1 —sh), (2.1.43)
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which can be regarded as “resolvent identities” for the causal Green’s functions. It suffices
to consider the case of the advanced Green’s function. Clearly, the operators on the right
side of (2.1.43) satisfy the support condition supp((s,, — s,)(z,.)) C J, and from

o S (T, y) = /d4z s (2,2) 500 (2,9)

we see that the operators on the left side of (2.1.43)) satisfy this support condition as well.
Moreover, the calculations

(Zaaz - ’I?’L) Sr\{m s>/n’ (1‘, y) = Syn’ (.TC, y)

and
(i, —m) T (s, ) (r.)
= mP_Pm/ (5(56 -y) — (m’ _ m)s;/l,(x?y) —(x — y)) = sxl/(;c,y)

show that both sides of satisfy the same inhomogeneous Dirac equation. Hence
their difference is a distributional solution of the homogeneous Dirac equation which
vanishes outside J)Y. The uniqueness of the solution of the Cauchy problem for hyper-
bolic PDEs yields that this difference vanishes identically. This proves and thus
concludes the proof of . O

In the above operator products we get contributions of two different forms: those
involving a factor d(m — m’) and those involving the principal value of 1/(m —m’). In
order to simplify the structure of the multiplication rules, it is useful to get rid of the
principal values by restricting attention to combinations in which all principal values drop
out in telescopic sums. To this end, we introduce the series of operator products

by = io: (—smB)", i — Bsm)" B, b, = i (= Bsm)" . (2.1.44)
n=0 n=0 n=0

COROLLARY 2.1.4. Let C € {pm,km} and C' € {pp,km} as well as by,, by a
n . Then the following calculation rule holds:

Cbobs, O =CC'+6(m —m') 7 C by, pm by C. (2.1.45)

Proor. Using the calculation rules of the previous lemma, we obtain

1
(Bsm) (smB)" ) €' = Cspy BC' + C B sy, C
=0

- P esc—cmoy=o.

m—m
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The same method also applies to higher order. We again get a telescopic sum, but the
last summand in (2.1.39)) gives additional contributions. More precisely, for any n > 2,

C (D (Bsm) (5B ) €
=0
n—1
= C(Bsn)"C' + C(spwB)"C' + C [Z@sm)l(sm/%)“ﬂ c’

=1

PP n— n—
=C— [—(Bsim)" !B + B(syB)" ] C’
n—1 PP
+C ;(Bsm)llﬁ <m —— (5w — ) +6(m — m/)7r2pm> B(syB)" 1O
PP . -
e~ C [~ (Bsp)" 'B + B(sB)" ] O’
PP n—1 n—2
l n—l—-1lm l , n—{—1 /
— C(;(Bsm) (B )" 1B lz;(zssm) (Bsym) B)C

n—1
+6(m—m) 72 C Y (Bsm)' ' BpmB(spB)" I 1C
=1

n—1
=§(m—m/)x*C Z(Bsm)l_lﬁpmﬂ(sm/B)"_l_lc/
=1
n—2
=5(m—m')x*C Z(Bsm)prmB(sm/B)"_l_QC’.
=0
Thus, performing an index shift, we obtain
[e.e] o0
Chbsy C'=C> (=Bsm)" Y (—smB)"C’
n=0

n'=0

=C i zn:(—i%sm)l(—smlﬁ)"*lc’

n=0 (=0

oo n—2

=Cc’ —+ 5(m — m’)7r2 Z(_l)nc (Z(Bsm)prmB(sm/B)n—l—2> ol
n=2 1=0

= CC" +6(m —m')n? i(—l)"c (i(ﬁsm)lﬁpmg(smlg)nl> c’

=0

n=0

=CC'+d6(m — m’)TrQC bimPmbm C.
This concludes the proof. O

In what follows, we rewrite all operator products in terms of B and p,,, kn, as well
as the above combinations b5, by, and b,,. In order to explain how this can be done, we

rewrite the perturbation expansion for Ky, in this form.
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PropoSITION 2.1.5. The perturbation expansion for k as given by (2.1.26) can be

written as
o0

Fm = Y (=im) 205 Ko (b o ) 207, (2.1.46)
5=0
where the factors by, by, and b, are again the operator products in (2.1.44]),

PROOF. An explicit calculation shows that
(i@ +B—m)b;, =0.

As all operator products in (2.1.46) have a factor by, at the left, the series in (2.1.46]) is
a solution of the Dirac equation.

From ([2.1.14) and (2.1.34]), we have

s,vn = Sy + ik, , SN = Sy — iThy - (2.1.47)

We substitute the series (2.1.25)) into (2.1.26)), insert (2.1.47) and expand. A reordering

of the resulting sum gives the claim. The details of the reordering process can be found
in [F3]. O

2.1.6. The Causal Perturbation Expansion. We follow the constructions
in [FT2]. Recall that, in the presence of an external potential B, the perturbation
expansion of the advanced and retarded Green’s functions is unique by causality .
Moreover, Proposition [2.1.5| gave us a unique perturbation expansion of the causal fun-
damental solution .

In the following constructions, we need to multiply the operator products in .
These products have a mathematical meaning as distributions in the involved mass pa-
rameters. Namely, according to Lemma and Corollary

Pm Pt = km Ky = 6(m —m') pm (2.1.48)
Pm Ky = km Py = 6(m —m) kyy, (2.1.49)
o b2 05, Koy = 0(m — /) (pm 4 72 Ko by P b k:m) . (2.1.50)

Since these formulas all involve a common prefactor 6(m — m'), we can introduce a
convenient notation by leaving out this factor and omitting the mass indices. For clarity,
we denote this short notation with a dot, i.e. symbolically

A-B=C  standsfor Ay By =8(m—m')Cy, . (2.1.51)

With this short notation, the above multiplication rules can be written in the compact
form

p-p=k-k=p), p-k=k-p=£k, kb~ - bk = p + n% kbpbk . (2.1.52)
Writing (2-1.46) as
E=> (—im)*? b=k (bk)*" b~ (2.1.53)
B8=0

powers of the operator k with the product are well-defined using the multipli-
cation rules . This makes it possible to develop a spectral calculus for k. In
particular, in [F'G1] the operator P** is constructed as the projection operator on the
negative spectral subspace of k. We now give an equivalent construction using contour
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integrals, which gives a more systematic procedure for computing all the contributions
to the expansion (for basics on the resolvent and contour integrals see Exercise [2.6]).
We introduce the resolvent by

(2.1.54)

Writing k as
k=k+ Ak, (2.1.55)
(where k is the corresponding distribution in the vacuum), the resolvent R can be written
as a Neumann series,
o0
Ry=(k—A+Ak)™ = (1+Ry-Ak)™' Ry =) (—Ry-Ak)"- R, . (2.1.56)
n=0
The multiplication rules imply that p is idempotent and thus has the eigenval-
ues 1 and 0. Since the operator k commutes with p and its square equals p, it has the
eigenvalues +1 and 0. A short computation shows that the corresponding spectral projec-
tion operators are (p+k)/2 and 1 — p, respectively. Hence we can write the unperturbed
resolvent Ry := (k — A)~! as

p+k 1 p—k 1 1-p
Mot (L) (L) g
Using this formula in , to every order in perturbation theory we obtain a mero-
morphic function in A having poles only at A =0 and A\ = £1.

We now use contour integral methods to develop a spectral calculus. To this end, we
choose a contour I'_ which encloses the point —1 in counter-clockwise direction and does
not enclose the points 1 and 0. Similarly, I'y is a contour which encloses the point +1
in counter-clockwise direction and does not enclose the points —1 and 0. Moreover, we
let f be a holomorphic function defined on an open neighborhood of the points £1. We
define f(k) as the contour integral

f(k) = —i, F(A) Ry dA. (2.1.58)
2mi Jr,our_

Using together with the fact that to every order in perturbation theory, the
integrand is a meromorphic function in A having poles only at A = 0 and A = +1, one
sees that the operator f (l%) is well-defined to every order in perturbation theory and is
independent of the choice of the contours 'y and I'_.

THEOREM 2.1.6. (functional calculus) For any functions f,g which are holomor-
phic in discs around £1 which contain the contours I'y,

(i@ +B—m)f(k) =0 (2.1.59)

(k) -g(k) = (f9)(k). (2.1.60)

PROOF. Since the operator k maps to solutions of the Dirac equation, we know that
(i +B—m) Ry = (id + B —m) (= A7").

Taking the contour integral (2.1.58)) gives ([2.1.59)).
The starting point for proving (2.1.60) is the resolvent identity

_ . 1 . -
Ry Ry = (RA - RX) . (2.1.61)
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We set I' = I'; UT_ and denote the corresponding contour for A by I'. Since the
integral (2.1.58) is independent of the precise choice of the contour, we may choose
I'= 835(1) U 835(—1) and I = 8325(1) U 8325(—1)
for sufficiently small § < 1/2. Then I" does not enclose any point of IV, implying that
)

Y dA\=0  forall N eI". (2.1.62)
On the other hand, I"” encloses every point of I", so that
FN) g\ )\R)\)\’ dN = —2mi f(\) g(\) Ry forall A eT. (2.1.63)
I/ -

Combining (2.1.61)) with (2.1.62) and (2.1.63), we obtain
£(B)-9(8) =~z b SV . o) X =5 (o= R
o P I 90 B dr = (F) (B).
r

omi
This concludes the proof. O

The fermionic projector P%? is obtained by choosing a specific function f, as we now
explain. First, the desired splitting of the solution space of the Dirac equation into two
subspaces (see can now be obtained using the sign of the spectrum of k. More
precisely, we choose P*** such that its image coincides with the negative spectral subspace
of k. To this end, we choose a function f which vanishes identically in a neighborhood
of +1. In a neighborhood of —1, on the other hand, the form of f is determined by the

spatial normalization condition (see (2.1.21))). Namely, the correct definition is
1 -
Pt = —— —A) Ry dA 2.1.64
5 (N R, (2.1.64)

as becomes clear in the next proposition.

PROPOSITION 2.1.7. The expansion P*** has the properties

(i@ +B —m) P*** =0 (2.1.65)
o / P (2, (1,37)) 10 P (8, ), 2) d = —P**(z, 2) (2.1.66)
R3
Moreover, P3°? is symmetric
(Pe?)* = pses (2.1.67)

where the star denotes the adjoint with respect to the space-time inner product (|1.5.2)).

We note for clarity that for the kernel of the fermionic projector, the symmetry prop-

erty (2.1.67) means that
(P**(z,y))" = P**(y, ), (2.1.68)

where the star denotes the adjoint with respect to the spin scalar product ((1.2.18)).
In order to simplify the notation in the proof, we abbreviate the spatial integral

in (2.1.66) by [¢, i.e.
(Al B 2) = 2m [ Al (1) 2 B((t.5).2) .

We begin with a preparatory lemma.
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LEMMA 2.1.8. For any tg € R, the distribution (2.1.26)) has the property
Fom |t km = Ko, -

PRroOOF. Clearly, it suffices to prove the relation when evaluated by a test function f.
Then ¢ := k,,(f) is a smooth solution of the Dirac equation with spatially compact
support. Therefore, it suffices to show that for any such solution,

o(t, ) = 27 /

RS

ke (t, 5 to, §) 7° b0 () d*y -

Since qg and ki, satisfy the Dirac equation, it suffices to prove this equation in the case t >
to. In this case, the equation simplifies in view of ([2.1.26]) to

) =1 [ ) ¥ ool g, -

where we set © = (¢,Z). This identity is derived as follows: We choose a non-negative
function n € C°°(R) with 7|y, 4 = 1 and 7o 4,—1) = 0. We also consider n = n(z%) as a
function of the time variable in space-time. Then

d(x) = (nd) () = & ((id + B —m)(nd)) = &) (17" 19)) ,

where we used the defining equation of the Green’s function 3, (i@, + B —m) = 1
together with the fact that ¢ is a solution of the Dirac equation. To conclude the proof,
we choose a sequence 7; such that the sequence of derivatives 7; converges as [ — oo in
the distributional sense to the J-distribution d;, supported at to. Then

in (i7" 9)) () = / (%(%y)(ivoﬁ(yo)é(y))) d'y
— R3 <§¢n (CC, y) (270(5)> ‘yz(to,ﬁ) d3y 9
giving the result. O

An alternative, more computational proof of this lemma is sketched in Exercise

PROOF OF PROPOSITION 2.1.7.  The Dirac equation (2.1.65]) follows immediately
from the identity (2.1.59)). In order to prove (2.1.66[), we integrate the relations

Ry- (k=X =1=(k—\)-Ry,
to obtain

Ry kd\= Rmu:;é kRyd\.
I_ I_ _

As a consequence,
1 N~
Psea\tPsea:% d)\ﬁé d\N Ry -kl k- Ry,
47'('2 T_ ’
and applying Lemma for tg =t gives

1 = s = 1 BT
Psea‘tpsea:_¢ dA% d)\/R)\'k'R)\/:_§£ Ad)\% d)\/R/\-R)\/.
A2 T T 472 T g
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Now we can again apply (2.1.61) and (2.1.62) (which remains valid if the integrand
i

involves an additional factor \) as well as (2.1.63). We thus obtain

1 ~
psea |tPsea:_'¢ ARy d)\ = — P52
21 T_

It remains to prove the symmetry property (2.1.67)). The operators p,,, kn,, and sy, are
obviously symmetric (with respect to the inner product (1.5.2))). According to (2.1.46)),
the operator k,, is also symmetric. Hence the resolvent R) defined by (2.1.54]) has the
property

This property implies that if we consider the Laurent expansion of —A\ R, around \ = -1,

Ay
A+1

then the operators A_1, Ay, ... are all symmetric with respect to (1.5.2)). Since the contour
integral (2.1.64)) simply gives the residue —A_1, we obtain (2.1.67). This concludes the

proof. O

~AR) =

FAg+ Ay (LN +--

In order to illustrate the above constructions, we now compute the first orders of the
perturbation expansion . We first recall that in the computation rules ([2.1.48))—
(2.1.50) no principal values occur. Using these rules in (2.1.56) and (2.1.64), one sees
that also P*°® involves no principal values. With this in mind, we may omit all principal
values in the computation, even if we consider other operator products. In particular, we
may write the computation rules of Lemma [2.1.3] as

p-s=sp=k-s=s-k=0 and s-s=m’p. (2.1.69)
Combining ([2.1.52)) and (2.1.69) with (2.1.57)), we obtain
1
R)\'SZS-R)\:—XS

_ _ptk 1 p—k 1
Ba-b=k Ry=" <1,\> 2 \—1-2A

According to (2.1.53]) and (2.1.55]),
Ak = —sBk — kBs + kBsBs + sBkBs + sBsBk — m*kBkBk + O(B?) .

Hence, using (2.1.56]),

o0
Ryx=> (=Rx-Ak)"-Ry=Ry— Ry-Ak-Ry+ Ry Ak- Ry - Ak - Ry + O(B?)
n=0
=R\ — Ry - (—sBk — kBs + kBsBs + sBkBs + sBsBk — m*kBkBEk) - R,
+ Ry - (—sBk — kBs) - Ry - (—sBk — kBs) - Ry + O(B3).
Using (2.1.57)) and computing the contour integrals, one obtains to first order

sea _ Pk op—k p—k 2
P\ P2 s P ——Bs| _ +0(B?)

:p;k—sBp;k—p;kBSJrO(Bz). (2.1.70)
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To second and higher orders, the resolvent R involves higher poles at A = —1. This gives
rise to derivatives of the factor (—\) in , having an influence of the combinatorics
of the perturbation expansion (see Exercise . The reader interested in more details
is referred to [FT2, Appendix A]. A few structural results of the causal perturbation
expansion are treated in Exercises 2.11

2.1.7. Introducing Particles and Anti-Particles. We shall now make the me-
thod of occupying particle and anti-particle states precise in the presence of an
external potential. To this end, it is useful to construct out of the kernel of the fermionic
projector a projection operator on a Hilbert space, as we now explain. On the smooth
solutions of the Dirac equation with spatially compact support one can introduce
the scalar product . Due to current conservation, this scalar product is again
independent of the choice of ¢t. Taking the completion, the solution space of the Dirac
equation becomes a Hilbert space, which we denote by (H,,, (.|.)m). We now introduce
on the Dirac wave functions at time ¢ the operator

15 CSS( Ny, Sull) — O (L, Sl
() (z) = —2n / P, (1)) A0 () &
R3

where N; := {t} xR? C /4 denotes the spatial hyperplane at time t. According to ,
this operator maps to the solutions of the Dirac equation. Moreover, the spatial normal-
ization property implies that II°°® can be extended by continuity to a projection
operator on J(,,, i.e.

15 : K, — Hy with  (IP9)* = e, = 112,

(2.1.71)

(where the star now denotes the adjoint with respect to the scalar product ; note
that the last equation follows from the symmetry of the kernel )

Now we can form another operator by adding and subtracting projection operators.
More precisely, the operator

II := II%°® + Hspan(d}l,--q’%bnp) - Hspan(¢1,...,¢na)

(where Iy @ H,,, — H,, denotes the orthogonal projection to a subspace U C H,,) is
again a projection operator, provided that the functions ¢; are vectors in H,, which lie
in the image of II***, whereas the vectors ¢ € JH,, are in the orthogonal complement of
the image of II°¢®. In order to comply with the usual normalization of wave functions in
quantum mechanics, we orthonormalize these vectors as follows,

(rlor)m = 2w S and (| @y )m = 27 Oy (2.1.72)

(we included the factor 27 in order to account for the factor 27 in ((1.2.2))). Then we can
write II more explicitly as

Iy := Hseaw—Zwk (©k]9)m ——Z@ (61]t)m

This new projection operator can again be written in the form (2.1.71)) with the distri-
bution

P(z,y) = P (z,y) Zwk Urly) + 72@(:@@-
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This relation gives a mathematical justification for in the presence of an ex-
ternal potential. Note that the wave functions ¥, and ¢; must be solutions of the Dirac
equation . Moreover, the ¢; must be in the image of II°*®, whereas the 1, must
be in the orthogonal complement of the image of I1°°?. Finally, the normalization condi-

tions (2.1.72)) can be written as

/ (i V) (¢, F) P2 = S / (oY ) (t, Z) d*x = o .
R3 R3

2.2. The Light-Cone Expansion

The light-cone expansion is a powerful tool for analyzing the fermionic projector
in position space. We now outline the constructions and results as first given in [F5]
and [F6]. Before beginning, we point out that the light-cone expansion is closely tied to
the causal perturbation expansion. Namely, we will shall see that the “causality” of the
perturbation expansion (as built in via into the resolvent ) will become
apparent in the light-cone expansion of P(z,y) in the fact that all appearing line integrals
will be bounded integrals along the line segment Zy. This specific feature of the light-cone
expansion is of central importance for the analysis of the continuum limit.

2.2.1. Basic Definition. We first give the basic definition of the light-cone expan-
sion and explain it afterwards.

DEFINITION 2.2.1. A distribution A(z,y) on M x M is of the order O((y — z)?P)
for p € Z if the product

(y—x)7% A(z,y)

is a regular distribution (i.e. a locally integrable function). An expansion of the form
Az,y) = All(z,y) (2:2.1)
Jj=g

with g € Z is called light-cone expansion if the AUl(z, y) are distributions of the order
O((y — x)%) and if A is approzimated by the partial sums in the sense that for all p > g,

P
Az, y) — Z Abl(z, ) is of the order O((y — z)**?) . (2.2.2)

Jj=g

The parameter g gives the leading order of the singularity of A(z,y) on the light cone. We
point out that we do not demand that the infinite series in ([2.2.1)) converges. Thus, similar
to a formal Taylor series, the series in is defined only via the approximation by the
partial sums . The notion of the light-cone expansion is illustrated in Exercise

As a simple example for a light-cone expansion, we consider the distribution 7;,,2(z, y)
as introduced in and analyzed in Lemma Expanding the Bessel functions
in in a power series, one obtains (see [OLBC| (10.2.2), (10.8.1) and (10.25.2),
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(10.31.1)])

T2(z,y) = —# <(yIiP$)2 + iﬂé((y — x)2) 6((y — 33)0)>

2(y B x)Z)J'
32773 Z (J + ! 43

X (log ‘m (y — x)? |+ ¢ +imO((y — $)2) ey — ZL‘)O)> (2.2.3)

with real coefficients ¢; (here © and e are again the Heaviside and the sign function,
respectively). Due to the factors (y — x)%, this series representation is a light-cone
expansion. The term with the leading singularity becomes integrable after multiplying
by (y — x)?, showing that g = —1.

The light-cone expansion of the kernel of the fermionic projector of the vacuum
PYa(x,y) (see and (2.1.2)) is readily obtained using the relation (1.2.25). To
this end, one simply applies the differential operator i@ +m to the above series expansion
of T,,» and computes the derivatives term by term. Since differentiation increases the
order of the singularity on the light cone by one, we thus obtain a light-cone expansion

of the form (2.2.1) with g = —2.

2.2.2. Inductive Light-Cone Expansion of the Green’s Functions. We now
return to the perturbation series for the causal Green’s functions derived in
Our goal is to develop a method for performing the light-cone expansion of each summand
of this perturbation series. In order to get a first idea for how to proceed, we begin by
considering the free advanced Green’s function s, of a the Dirac equation of mass m in
position space: Similar to , it is again convenient to pull the Dirac matrices out
of s, by setting

s (@,y) = (i, +m) S (z,y) (2.24)

where S,,\?/,LQ is the advanced Green’s function of the Klein-Gordon operator,

4
1
SYs(z,y) = lim d'p

lm [ T T i e~y (2.2.5)

Computing this Fourier integral and expanding the resulting Bessel function in a power
series gives (for details see Exercise [2.13)

Syalwy) = —5- 6((y — 7)) O ~ =)
m2 Jl( m? (y — :L’)Q)

E (g O((y —2)*) ©(y" — ) (2.2.6)
((y 2) @(y —2%)

m2 > j 20y — 2)2)

TS ju ( (y4j V) O(ly—2)?)O(y° —2%. (2.2.7)
7=0

This computation shows that SY.,(z, y) has a §((y—x)?)-like singularity on the light cone.
Furthermore, one sees that S7vn2 is a power series in m?. The important point for what



86 2. COMPUTATIONAL TOOLS

follows is that the higher order contributions in m? contain more factors (y —z)? and are

thus of higher order on the light cone. More precisely,

d n
<dm2> SYs (a:,y)‘mzo is of the order O((y — z)*"?). (2.2.8)
According to (2.2.4), the Dirac Green’s function is obtained by computing the first partial
derivatives of (2.2.7). Therefore, s),(x,y) has a singularity on the light cone which is even

~ &'((y — x)?). The higher order contributions in m are again of increasing order on the
light cone. This means that we can view the Taylor expansion of (2.2.4)) in m,

v _ . 1 v
Sm(:Ua y) - T;)(Za + m) n! <dm2> sz(ﬂf, y)‘m:O >
as a light-cone expansion of the free Green’s function. Owur idea is to generalize this
formula to the case with interaction. More precisely, we want to express the perturbed
Green’s function in the form

oo d n
=V v
e =X R (i) S, (229)
with factors F), which depend on the external potential. We will see that this method is
very convenient; especially, we can in this way avoid working with the rather complicated
explicit formula . Apart from giving a motivation for the desired form of the
formulas of the light-cone expansion, the mass expansion leads to the conjecture
that even the higher order contributions in the mass to the perturbed Green’s functions
might be of higher order on the light cone. If this conjecture was true, it would be a
good idea to expand the perturbation expansion for § with respect to the parameter m.
Therefore, our strategy is to first expand with respect to the mass and to try to
express the contributions to the resulting expansion in a form similar to .
The expansion of with respect to m gives a double sum over the orders in
the mass parameter and in the external potential. It is convenient to combine these two
expansions in a single perturbation series. To this end, we rewrite the Dirac operator as

id+B-m=id+B  with B:=B-m. (2.2.10)

For the light-cone expansion of the Green’s functions, we will always view B as the
perturbation of the Dirac operator. This has the advantage that the unperturbed objects
are massless. Expanding in powers of B gives the mass expansion and the perturbation
expansion in one step. In order to simplify the notation, for the massless objects we
usually omit the index m. Thus we write the Green’s function of the massless Dirac
equation in the Minkowski vacuum as

sV (2, y) =i, S)o (x,y)‘mzo , s™(w,y) =i, Sho (m,y)‘mzo . (2.2.11)
Then the interacting Green’s functions are given by the perturbation series
oo oo
= (=s"B)lFsY,  § =) (=s"B)s". (2.2.12)
k=0 k=0

The constructions of the following subsections are exactly the same for the advanced and
retarded Green’s functions. In order to treat both cases at once, in the remainder of this
section we will omit all superscripts V', . The formulas for the advanced and retarded
Green’s functions are obtained by either adding ‘¥’ or “*’ to all factors s, S.



2.2. THE LIGHT-CONE EXPANSION 87

We now explain how the individual contributions to the perturbation expansion
(2.2.12) can be written similar to the right side of (2.2.9) as a sum of terms of increasing
order on the light cone. For the mass expansion of S,,2, we set a = m? and use the

notation
(l) d !
SV = (da) Sa‘a 0 (2.2.13)

In preparation, we derive some computation rules for the S®): S, satisfies the defining
equation of a Klein-Gordon Green’s function

(_Dx —a) Sa(xa y) = 54($ - y) .
Differentiating with respect to a and setting a = 0 gives
—0,8U(z,y) = 61004z —y) + 15 V(z,y), 1>0. (2.2.14)

(For [ = 0, this formula does not seem to make sense because S~ is undefined. The
expression is meaningful, however, if one keeps in mind that in this case the factor [ is
zero, and thus the whole second summand vanishes. We will also use this convention
in the following calculations.) Next, we differentiate the formulas for S, in momentum
space,

1 1

Vi) — Np)= — = 2.2.1
Sa (p) P p———— Sa (p) P R— " (2.2.15)
with respect to both p and a. Comparing the results gives the relation
0 d
[ 1. Pa =-2 7 Ra ’
ap Sa(p) pr 2 -Sa(p)
or, after expanding in the parameter a,
0
—SW(p) = —2p, SUHY 1>0. 2.2.16
apF (p) D (p) > ( )

This formula also determines the derivatives of S() in position space; namely

4 .
2eS0y) = [ 52 S0) (wipy) e

Ok (2m)4
; 4
2/ d’p is(l—l)(p) o~ ip(@—y)
2 ) (2m)* opk
i d4p (1-1) 9 —ip(z—y)
=5 G S0 g
1
=5 (- SV (z,y),  1>1. (2.2.17)
We iterate this relation to calculate the Laplacian,
1 0
_ 0] —_-_Z _ )k g-1)
0,50 (@) = =5 57 (0= 0)F S (@)
=250V (ay) 43 (-2 S D(wy), 122

After comparing with (2.2.14)), we conclude that
(y—2)2 SO (x,y) = a1 SV (zy), 1>0. (2.2.18)
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Finally, S (z,y) is only a function of (y — z), which implies that

o o
wS(l)(x,y) = —a—ykS(l)(x,y) ., 1>0. (2.2.19)

The following lemma gives the light-cone expansion of an operator product which is
linear in the external potential. We will later use it for the iterative light-cone expansion
of more complicated operator products; in this case, the potential will be a composite
expression in B and its partial derivatives. In order to avoid confusion then, we denote
the external potential by V.

LEMMA 2.2.2. (light-cone expansion to first order) For anyl,r > 0, the operator
product SOV S has the light-cone expansion

SOV SM)(a,y)

- Z ﬁ / al (1 - O‘)r (a - a2)n (Dnv)lay+(1fa)x dov S(n+l+r+1)(xa y) : (2'2'20)
n=0 = 70

PROOF. The method of proof is to first compute the Laplacian of both sides of
(2.2.20)). The resulting formulas will have a similar structure, making it possible to
proceed inductively.

On the left side of , we calculate the Laplacian with the help of (2.2.14]) to

— 0, (SO V SO (z,y) = 810 V(z) ST (z,9) + 1 (SEVV D) (x,y) . (2.2.21)

The Laplacian of the integral on the right side of (2.2.20) can be computed with
(12.2.17) and (2.2.14),

1
—Os / o (1= a)" (@ = 0®)" (O"V)jayt(1-a)e da ST (,y) (2.2.22)
0
1
_ _/ al (1 o a)r+2 (a - a2)n (Dn+1v)|ay+(lfa)x do S(n+l+r+1)(x7y)

0

1
_/ al (1 _ a)r+1 (a o a2)n (8I€Dnv)|ay+(1fa):p do (y o :L’)k S(n+l+r)(x7y)
0

1
+(nAl+r+ 1)/ o' (1-a)" (a—a®)" (O"V)jays(1-a)e da ST (2, y) .
0

In the second summand, we rewrite the partial derivative as a derivative with respect to
a?

d

(y - x)k(ak‘:‘nv)m;ﬁ-(l—a)x = %(Dnv)my—l—(l—a)x
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(as is verified immediately by computing the right side with the chain rule). This makes
it possible to integrate in o by parts. We thus obtain

1
/ o (1— a)* (o — 0" 0"V g1 das (3 — )"
0

b +1 ovn A

:/0 o (1—a) (v — a®) %<(D V)!aer(l_a)m)da
1
— —dn0 G V)~ (0 +1) [ o' (1= )" (= 0" (@V)jayia-ae da
0
1
+(n+r+1) / o (1-a)" (a— 042)" (D”V)‘ayﬂl_a)x do
0
= —0n,0 01,0 V(2)
1
—n [ ol (1= a) " @ = )" OV )1 do

1
Farter+1) [ ol (= a) (@) @V )ayii-apda
0

1
[ a0 (0= 0 @V )i da-
0
We substitute back into the original equation to obtain
[£:2:22) = 6.0 010 V() ST (2, )

1
+ l/ o/ (1= )" (@ = )" (O"V)jay 1 (1-a)e da ST (2, y)
0
1
- /0 ol (1 =)™ (@ = )" (O"V) g (1-a)e da ST (2, y)

1
+n / ol (1= )+ (a = a®)" ! (O"V) jay 1 (1_age da ST ().
0

After dividing by n! and summation over n, the last two summands are telescopic and
cancel each other. Thus one gets

Z / 1 - a O‘ - a2)n (Dnv)|ay+(1fa)x dov S(n+l+r+1)(x’ y)
= 510V( ) ST (2, y)
+1 Z / (1—a)" (@ — o)™ (O"V)jayt(1—aye da ST (2, y) . (2.2.23)

We now compare the formulas and for the Laplacian of both sides of
. In the special case [ = 0, these formulas coincide, and we can use a uniqueness
argument for the solutions of the wave equation to prove : We assume that we
consider the advanced Green’s function (for the retarded Green’s function, the argument
is analogous). For given y, we denote the difference of both sides of by F(x).
Since the support of F'(z) is in the past light cone x € L;\, F vanishes in a neighborhood
of the hypersurface H = {z € R*|2° = y°+1}. Moreover, the Laplacian of F is identically
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zero according to (2.2.21)) and (2.2.23]). We conclude that

Since the wave equation has a unique solution for given initial data on the Cauchy surface
‘H, F vanishes identically.

The general case follows by induction in I: Suppose that holds for given [
(and arbitrary r). Then, according to (2.2.21), (2.2.23]), and the induction hypothesis,
the Laplacian of both sides of coincides for | = [ 4+ 1. The above uniqueness
argument for the solutions of the wave equation again gives . O

We recall for clarity that, according to , the higher a-derivatives of S, (z,y) are of
higher order on the light cone. Thus the summands in are of increasing order
on the light cone, and the infinite sum is mathematically well-defined in the sense of
Definition via the approximation by the partial sums .

Lemma can be used for the light-cone expansion of more complicated operator
products. To explain the method, we look at the simplest example of three factors S(©)
and two potentials V and W,

(SO v §O W §O)(z,y) = / d'z S (2, 2) V(2) (SO W SO)(z,y) .

Having split up the operator product in this form, we can apply Lemma [2:2.2] to the
factor SO WSO,

oo 1
=>4 [ 59w {Ve) [ oo @Whayrima: daf SO
n=0 0

Now we rewrite the z-integral as the operator product (S g,S©))(x,y), where g,(2) is
the function in the curly brackets. The y-dependence of g, causes no problems because
we can view y as a fixed parameter throughout the expansion. Thus we can simply apply
Lemma |2.2.2f once again to obtain

=N T . b1 .
mgom!n!/odﬁ(l—ﬂ)Jf (B —p5%) /Oda(a_a)

x O (V(2) (O"W)jag+(1-a)z) §lmn+2)(

2 |e=py+(1-B)e 7y)-

The Laplacian 7" could be computed further with the Leibniz rule. Notice that the
manipulations of the infinite sums are unproblematic because to every order on the light
cone, the number of terms is actually finite (the situation would be more difficult if we
studied the convergence of the sum , but, as pointed out earlier, the light-cone
expansion is defined merely via the partial sums).

We want to iteratively perform the light-cone expansion of the operator products in
(2.2.12)). This is not possible directly with the method just described, because
contains the Dirac Green’s function s (instead of S). We must think about how to
deal with this complication. Relation allows us to replace the factors s by S,
but this gives additional partial derivatives in the operator product. These derivatives
can be carried out after each iteration step by applying the Leibniz rule and using the
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differentiation rule (2.2.17). In the simplest example, we have
(s V SO (a,y) = (id,)(SVV SO)(z,y)

. — 1 ! n (n n
= Zax Z E /0 (a - a2) (D V)|ay+(17a)x da S( +1)(I, y)
n=0

-OO 1 ! n n n
:Ilzi (1—&) (04—042) (al:l V)|ay+(1fa)x da S( +1)($7y)

o n! Jo
1 0 1 1 o . J
) Z A (a =) (") jay+(1-a)e do (y — )77 ST (x,y) -
n=0

The only problem with this method is that the partial derivatives might hit a factor .S ©)
in which case the rule cannot be applied. In order to resolve this problem, we
extend our constructions in a way which allows us to use all previous formulas also in this
special case. To this end, we take as the defining equation for (y—z); S (z, y),

- 0
(v = 2)i SV (,y) =2 5 5P () (2:2:24)

(notice that S(—1 itself remains undefined, only the combination (y — 2)r SV (x,y)
makes mathematical sense as the partial derivative of the distribution S(©). It turns out

that with this definition, all our computation rules as well as the light-cone expansion of
Lemma [2.2.2 remain valid for S(-1):

LEMMA 2.2.3. (light-cone expansion to first order for r = —1) The operator
product (S© . S1), 1> 0, has the light-cone expansion

/d4z s (z,2) V(2) (y — 2)k 5(71)(25&)

I e e CTURE N IO L)

Since the proof is straightforward, we omit it here but refer to Exercise or [F6l proof
of Lemma 2.2]. We note for clarity that the pole of the factor (1 — )™ at o = 1 in the
formula of the above lemma does not cause any problems. Namely, in the case n = 0 it
disappears because (1 —a)~!(y — 2) = y — z, whereas in the case n > 0 it is compensated
by the zero of the factor (o — a?)™.

2.2.3. Structural Results for Chiral Potentials. In the previous section, we
gave a constructive procedure for performing the light-cone expansion of each summand
of the perturbation expansion for the causal Green’s functions . In this and
the next section, we shall explain how to use this method to uncover the structure of
the Green’s functions in position space. To this end, we need to specify the form of
the external potential B in the Dirac equation . We are mostly interested in the
situation that B is composed of left- or right-handed potentials, i.e.

B=xLAr+ xr AL . (2.2.25)

(here xr/r = %(]l F 1) are the chiral projectors, and I' = i7%y'y243 is the usual pseu-

doscalar matrix). Such so-called chiral potential are of central interest because they allow
for the description of gauge fields. For example, an electromagnetic field is described by
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choosing A; = Ar = A, where A is the electromagnetic potential. A left-handed poten-
tial is needed for example for describing the weak interaction in the standard model. In
this context, it is important to describe non-abelian gauge fields. In this case, the poten-
tials Ay, and Ag take values in a Lie algebra. For simplicity, we here always represent
the potentials by matrices acting on C9 with g € N. In order to describe the coupling
of the gauge gauge fields to the fermions, the Dirac wave functions must also carry an
index a =1,...,9. Moreover, we want to allow for the situation that the system involves
Dirac matrices of different rest masses, which we label again by an index a. This leads
to the following setup. We define the fermionic projector of the vacuum and the Green’s

functions as direct sums of the corresponding operators with rest masses my, ..., my, i.e.
g g
P = @ Pre and s = @ Sma (2.2.26)
a=1 a=1

with P and s, according to (2.1.2) and ({2.1.9). We write the Dirac equation as
(id+B —mY)y(z) =0 (2.2.27)
with B as in (2.2.25)). Here Y is the mass matriz defined by

1
Y = — diag(ml, ceey M)
m

(here m is introduced merely as an expansion parameter; the picture is that Y is di-
mensionless, whereas m carries the dimension of inverse length). For later use, it is also
convenient to allow for scalar and pseudoscalar potentials. In order to built these poten-
tials into the Dirac equation ([2.2.27)), it is most convenient to replace the mass matrix by
a space-time dependent matrixl

Y =Y(z) :=xrYe(x) + xrYr(x), (2.2.28)

referred to as the dynamical mass matriz.
In analogy to (2.2.10f), we combine the mass term with the potential by setting

B=xp Ap+xr AL —mY . (2.2.29)

Then the perturbation expansion for the causal Green’s functions can again be written
in the form (2.2.12)). The light-cone expansion can be carried out exactly as explained
in the previous section. The only point to keep in mind is that the chiral potentials at
different space-time points do not necessarily commute. Moreover, the chiral potentials
in general do not commute with the mass matrix. Therefore, in what follows we need to
be careful in keeping track of the order of multiplication.

Before going on, we explain our convention for the chiral indices of potentials in
and . We follow the usual rule that a left-handed potential couples to the left-
handed component of the Dirac wave function, whereas the right-handed potential couples
to the right-handed component of the wave function. Indeed, decomposing the Dirac wave
function as

Y =xL%L+XRVR, (2.2.30)

176 avoid confusion, we point out that our convention differs from that used in [F'6), [F7], where the
dynamical mass matrix is defined instead by Y = x1.Yr + xrYz. Our convention fits to our general rule
that left- and right-handed potentials should couple to the left- and right-handed component of the Dirac
spinors, respectively (see also and the explanation thereafter).
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the Dirac equation (2.2.27)) becomes
0= (23 +x. Ar + xr AL — mxLYr(z) — mXRYR(l‘)> (XL YL+ XR ¢R>

= XL ((2(3 + AR) YR — mYL¢L) + XR ((l@ + Ap)yr — mYm/JR) :

(here we use that the chirality is reversed at each Dirac matrix). This shows that our
conventions ([2.2.28)) and ([2.2.29)) indeed imply that left-handed potentials couple to 9y,
and right-handed potentials to ¥g.

The next theorem gives a structural result on the contributions to the light-cone
expansion of the Green’s functions. For the line integrals, we introduce the short notation

y 1
/ [l,r|n]dz f(z) = /0 da o (1-a)" (a— az)” flay+ (1 —a)zx) . (2.2.31)

Furthermore, we abbreviate the following products with multi-indices,

b b . . . .
0l = oo o) =-o) oy -2y, =l

where J = (j1,...,71).
THEOREM 2.2.4. In the presence of chiral potentials (2.2.29)), the light-cone expansion

of the k™ order contribution ((—sB)¥ s)(x,y) to the perturbation series ([2.2.12)) can be
written as an infinite sum of expressions, each of which has the form

y y
Xeo C (y — z)l/ [l1,71 | n1] dz1 32 o V‘](i)cl(zl)/ [l2, 72 | 2] dzo 82 g2 V}?Q (22)

21

y

k

= / [ 7 [ 1) dzg 02 D25 VIO () 77 ST () (2.2.32)
21

In this formula, C is a complex number and the parameters lg, rq, Ng, and pg are non-

negative integers; the indices ¢ and cq, can take the two values L or R. The functions

VJ(:L)CG (where Jg is a multi-index and ¢, € {L, R} is a chiral index) coincide with any of

the individual potentials in (2.2.29) and (2.2.28|) with chirality c,, i.e.
Vi = A, (in which case |J,| =1) or

Ca

V) = my,, (in which case |J,| =0).

Ca

(2.2.33)

The chirality c, of the potentials is determined by the following rule:

(i) The chirality is reversed precisely at every mass matriz, i.e.

T eys(a)
ot and cy comczde. z.f Vc(aa) = A,
are opposite if Vi’ =mY,
foralla=1,... k.
The tensor indices of the multi-indices in (2.2.32)) are all contracted with each other,
according to the following rules:

(a) No two tensor indices of the same multi-index are contracted with each other.

(b) The tensor indices of the factor v’ are all contracted with different multi-indices, in
the order of their appearance in the product (i.e., for J = (j1,...,J1) and
1 <a < b <, the multi-index with which j, is contracted must stand to the left of
the multi-index corresponding to jp).
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The parameter h is given by

k
Sh=k—1-|I|+3 (]Ia| —|—2pa). (2.2.34)

a=1

The number of factors (y — x) is bounded by
k
I <k+1-) |l (2.2.35)
a=1

Basically, this theorem states that the light-cone expansion of the k' order Feynman
diagrams can be written with k nested line integrals. Notice that the potentials V() (z,)
do in general not commute with each other, so that the order of multiplication is important
in . In order to avoid misunderstandings, we point out that the derivatives 82
and [0%¢ do not only act on V(% (z,), but also on all the following factors V(@1 (z,,1),
V(a”)(za“),. .. (note that the variables z4+1, zq+2,... implicitly depend on z, via the
inductive definition of the line integrals). Clearly, these derivatives could be carried out
further with the Leibniz rule, but it is easier not to do this at the moment. The restrictions
(a) and (b) on the possible contractions of the tensor indices were imposed in order to
avoid an abuse of our multi-index notation. More precisely, (a) prevents factors (y — z)>
in (y —x)’, an unnecessary large number of y-matrices in 7/, and “hidden” Laplacians in
the partial derivatives /¢, The rule (), on the other hand, prevents factors (y — x)? and
hidden Laplacians in combinations of the form (y — z); (y — z); 7" 77 and 8ijV}:) A,
respectively. Our ordering condition for the y-matrices is just a matter of convenience.
Relation is very useful because it immediately tells for any configuration of the
line integrals and potentials in what the corresponding order on the light cone

is. Notice that (2.2.34]) and (2.2.35)) imply the inequality

k
h> =1+ (I +pa) - (2.2.36)
a=1
In particular, one sees that h > —1. In the case h = —1, yields that |I| > 0,
so that must contain at least one factor (y — z). Therefore, the factor S™ in
is always well-defined by either (2.2.13)) or (2.2.24).

We point out that, although the total number of summands is infinite, the
number of summands for any given value of the parameter h is finite. This is clear be-
cause, for fixed h, the relations and only allow for a finite number of
possibilities to choose the parameters |I|, |I,|, and p,, giving rise to only a finite num-
ber of expressions of the form . Since, according to , the contributions for
higher values of h are of higher order on the light cone, we conclude that the number of
summands is finite to every order on the light cone. Therefore, the light-cone
expansion of Theorem makes mathematical sense in terms of Definition [2.2.1

PROOF OF THEOREM [2.2.4l We proceed inductively in k. For & = 0, the assumption
is true because in view of ([2.2.11)) and (2.2.24]) we can write the free Dirac Green’s function
as
)

s(@,y) = (xr +Xr) 5

(y — )y STV (), (2.2.37)
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which is of the desired form (2.2.32). The conditions (i), (a), (b), and the relations
(2.2.34), (2.2.35) are clearly satisfied.
Assume that the theorem holds for a given k. With the formula

((=sB)**1 s)(x,y) = i, / d*z SO (z,2) B(2) ((—sB)" s)(z,y) , (2.2.38)

we can express the (k+1)%* order contribution to the perturbation series (2.2.12)) in terms
of the k" order contribution. We must show that can again be written as a sum
of expressions of the form (with k replaced by k + 1), and that (i), (a), (b), and
(2.2.34), (2.2.35)) are satisfied. This is done in several construction steps:

(1) Chiral decomposition:

We substitute the induction hypothesis (2.2.32)) into (2.2.38)). This gives a sum of
expressions of the form

Y
Ci, [ 50,2 {<y =) B xe [l i) den 0 0 VD, (a1

kCk

)
- / (o 7 | ) dzg 02 P VP, () w}s%,y). (2.2.39)
Zk—1

We insert the specific form of the potential B, , and expand. Using the
commutation rule 7% y IJR = XRIL ~%, we bring all chiral projectors to the very left,
where they can be combined with the formula y.xq = dcq4 Xc to a single chiral
projector. Next, we bring the ~-matrices of B to the right and write them together
with the factor v/ in (notice that the Dirac matrices commute with the

potentials Vc(f), which act non-trivially only on the Dirac sea index). Denoting the

individual potentials of the factor B in (2.2.39) by V}(?)CO, we thus get for (2.2.39) a
sum of expressions of the form

Y
Xe Ciam/d‘lz 5(0) (z,2) {(y — z)l VJ((?,)CO (Z)/ [l1,71 | n1] dz1 (‘92 P Vj(ll,)cl (z1)

)
' / [l 7 | 1] dzg 2 P VIV, () 7‘]} S (z,y). (2.2.40)

k+Ck
Zk—1

The chiral decomposition in (2.2.29)) and (2.2.28)) imply that the chiralities in (2.2.40))
satisfy the rule (i) (after relabeling the indices in an obvious way). The chirality of
the potentials will not be affected in all the following construction steps; to simplify
the notation, we will omit the indices ¢, from now on.

(2) Light-cone expansion:
Since y can be considered as a fixed parameter, we can in apply Lemmam
with V' given by the expression in the curly brackets,

EZI) = x.Cit. > [ 0.h|n)dz
n=0 v’

on _ I V(O) Y l d 811 [JP: V(l)
x 02 ((y—2)" V; 7 (2) [ [li,r1 | ma] dz O 7, (21)

Y
X / i i | i) dz O TP V}?(zk)) v SO (2 y) . (2.2.41)

Zk—1
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(8) Computation of the Laplacian O07:
We carry out the z-derivatives in inductively with the Leibniz rule. Each
derivative can act either on the factors (y — z)! or on the functions V(). In the first
case, one of the factors (y — z) disappears. Thus we get a sum of expressions of the
form

Y ~ Y
e C'id, / 0,1 | n) dz (y — )T B O VO (2) / oy | e dzy 81 0P VD ()

y
k
: / [lk, Tk | nk] dzk Bg’; OPx VJ(k)(Zk) ’}/J S(n+h+l)(.%', y) (2.2.42)
Zk—1

with |7] < |I| and

on = |I| — |I| + |Io| + 2po . (2.2.43)
We can assume that no tensor indices of 910 are contracted with each other (otherwise
we rewrite the corresponding partial derivatives as additional Laplacians). Then all
the partial derivatives 9, in ([2.2.42]) were generated in the case when one derivative
of a Laplacian [, in (2.2.41) hit a factor (y — z) whereas the other derivative acted
on the V(@ Thus the number of factors (y — z) which disappeared by carrying out
the Laplacians in (2.2.41)) is larger or equal than the number of partial derivatives
0z,

|1 — |I| > || . (2.2.44)

(4) Extraction of the factors (y — z):
In (2.2.42)), we iteratively apply the identity

/y[O,r]n]dz(y—z)u‘:(y—a:)/y[O,T—i-Hn]dz

This gives (k + 1) nested line integrals of the form

B2 — x.Cibuly ) SV (ary) [ lo.ro o) o 0% 7 VI (ao)
[ B ] s 02 0 VA ) o7 (2.2.45)
Zk—1
with
lo=0, ro=h+I|, mno=n (2.2.46)
0<2h=2n+h+1) %+ 2+ |T| — 1] + [To| + 2po . (2.2.47)

We can arrange that the parameters lg, 9, and ng are all positive: The only param-
eter which might be negative is rg; in this case, h = —1, |f| =0, and thus rg = —1.
The induction hypothesis yields that |I| > 0. Thus |I| > |I], and relation
gives that (ng =)n > 0. Therefore, we can apply the identity

[lo,70 | no] = [lo+ 1,70 + 1| ng — 1]

to make all the parameters in this bracket positive.

(5) Computation of the partial derivative @,
The z-derivative in can act on the factors S(ﬁ), (y—x)i, or V(@) (z,). The first
case can be computed with the rules ([2.2.17) or (2.2.24); it decreases h by one and
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gives one additional factor (y —x). In the second case, one factor (y — =) disappears,
and thus |/| is decremented. The last case can be handled with the rule

E)(-;/:Cy[l,r |n]dz f(z,y) = /xy[laTJr 1|n] (;jkf(z,y) , (2.2.48)

which increases |Iy| by one. As is immediately verified in each of these cases, equation

(2.2.47)) transforms into

2h = 2h+ 1+ |I| — |I| + |Io| + 2po (2.2.49)
whereas inequality (2.2.44) must be weakened to
1) <1+ || — | o] - (2.2.50)

Finally, we combine the y-matrix of the factor @, with 7.

After these transformations, the (k + 1)%* order Feynman diagram consists of a sum of
terms of the form

~ Y
e C (y — ) / o o | o] dzo 8% 070 V0 ()

Y .
x / (7 | 7] dz 01 02 VI () 7 ST () (2.2.51)
Zk—1
Notice that the parameters I,,pq, a = 1,..., k, were not changed by the above construc-

tion steps; they are still the same as in the induction hypothesis (2.2.32)). After renaming
the indices and the integration variables, is of the required form (2.2.32)). The
conditions (a) and (b) for the contractions of the tensor indices, however, will in general
be violated. Therefore we need two further computation steps:

(6) Simplification of the Dirac matrices:
If any two of the tensor indices of the factor v/ are contracted with each other, we
reorder the v-matrices with the anti-commutation relations

(7', ¥} =2¢"1 (2.2.52)

until the corresponding matrices are next to each other. Applying the identity v%y; =
41, both Dirac matrices disappear. We iterate this procedure until no tensor indices
of v/ are contracted with each other (notice that the iteration comes to an end
because the number of y-factors is decreased by two in each step). Again using the
anti-commutation rule , we reorder the Dirac matrices until they are in the
same order in which the factors to which their tensor indices are contracted appear
in the product . If any two of the y-matrices are contracted with the same
multi-index, these y-matrices are next to each other, and we can use the symmetry
in the tensor indices to eliminate them both, more precisely

(y—a)ily—2)-2"7 =@y-a)? 1 (2.2.53)
OV W .. yind =0V @ ... 1, (2.2.54)

After all these transformations, condition (b) is satisfied.
Notice that the parameters |I,| and p, are in general changed in this construction

step. More precisely, each transformation ([2.2.54)) modifies the parameters according
to

ol = |la] =2 and  ps —pa+1. (2.2.55)
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(7) Handling of the new contractions:
If any two tensor indices of a factor 8¢ are contracted with each other, we rewrite
the corresponding partial derivatives as a Laplacian; this changes the parameters
I,| and p, according to (2:2.5F). If two tensor indices of the factor (y — z)’ are
contracted with each other, this gives a factor (y — z)2. Using the identity ,

we inductively absorb the factors (y —x)? into S (k) (2,y), which transforms h and |I|
as

h— h+1 and |I| = |[]—2. (2.2.56)

After these transformations, condition (a) is also satisfied.

After all these construction steps, the (k+ 1)%* order Feynman diagram is a sum of terms
of the form ([2.2.51)) satisfying the conditions (a) and (b). It remains to show that the
relations ([2.2.34)) and ([2.2.35)) remain valid in our inductive construction: As mentioned
earlier, the parameters I, ps, a = 1,...,k are not changed in the construction steps
(1) to (5). In the steps (6) and (7), the transformations and (2.2.56]) preserve
both the induction hypothesis (2.2.34]),(2.2.35) and the relations ,, as is
immediately verified. By substituting (2.2.49) and into ,, we

obtain

k k
2h=(k+1) = 1— 1|+ > | +2pa, < (k+1)+1-) |l
a=0 a=0

This concludes the proof. O

2.2.4. Reduction to the Phase-Free Contribution. The shortcoming of the con-
structions of the previous section is that the resulting formulas become more and more
involved to higher order in perturbation theory. Moreover, to any order on the light
cone, one gets an infinite number of contributions. In order to clarify the structure of
the singularities on the light-cone, it is therefore essential to collect and rearrange the
different contribution to the light-cone expansion. This procedure is called resummation
of the light-cone expansion. After the resummation, the light-cone expansion of §(z,y)
will, to every order on the light cone, consist of only a finite number of terms. Before
beginning, we remark that the resummation technique can also be understood from un-
derlying gauge symmetries. In order no to mix mathematical constructions with physical
considerations, we postpone the explanation of gauge phases and gauge transformations
to (however, the idea of working with local transformations will be used in our
constructions; see and the computations thereafter).

In order to give a first idea of how the resummation works, we consider the leading
singularity on the light cone by neglecting all terms of the order O((y —x)~2). According
to , we need to take into account only the contributions with h = —1.
The inequality (2.2.36]) implies that no derivatives of the potentials appear. Moreover,
we obtain from (2.2.34) that |I| = k + 1. Using the rules (a) and (b), we conclude that
one tensor index of the multi-index I is contracted with a Dirac matrix, whereas all the
remaining k indices of I are contracted with chiral potentials. Therefore, all £ potentials
are chiral, and no dynamical mass matrices appear. A detailed calculation yields for
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the k™ order Feynman diagram a term of precisely this structure,
Yy .
Xe ((—5B)*s)(2,y) = xe (—i)k/ dzy (y — @), A (21)
x

Yy . ) X
x / Ao (y — 21); A2 (2) - / Ak (y — 7). A (2) () + O((y — 2)72) |

1 Zk—1

The obtained nested line integrals can be identified with the summands of the familiar
Dyson series. This allows us to carry out the sum over all Feynman diagrams,

Xe 8(2,y) = Xc Pexp (—1/
xT

where Pexp is defined as follows.

- oy AL &) steg) + O, (2250

DEFINITION 2.2.5. For a smooth one-parameter family of matrices F(a), o € R, the
ordered exponential Pexp( [ F(a) da) is given by the Dyson series

Pexp (/:F(a) da) = 11+/:F(t0) dto + /ab dto F(to)/t: dty F(t1)

b b b
+/dtoF(to)/tdtlF(tl)/tdf2F(t2)+~--.

0 1

For ordered exponentials over the chiral potentials, we use the short notations

Y ) vy o . j
Pexp ( - z/ (y —x); Al(2) dz> = Pexp ( - z/ Al (y — x)]> = Pet /s A (y=2);

1
:= Pexp < —i/o Ag\aﬁ(ka)x (y—x); doz).

Sometimes, we shall find it more convenient to write Pexp(---) as Pe(™). For elemen-
tary properties of the ordered exponentials we refer to FExercise [2.15] For the general
background on the ordered exponential we refer to [RS2l X.12] or to the closely related
time-ordered or path-ordered exponential in the physics literature (see for example [PS|
Section 4.2]). The connection to local gauge transformations is explained in Exercise

To lower order on the light cone, the situation clearly is more complicated. The idea
is to rearrange the contributions of the light-cone expansion in a such a way that certain
subseries can be summed up to again obtain ordered exponentials of the chiral potentials.
This idea is made precise in the following proposition and theorem, which we state and
explain before giving their proofs.

Note that the partial derivatives in may be contracted with the factors y — x.
If this is the case, the corresponding combination

-0

PRV .
(y — ) 0]
is a derivative in the direction of the vector y — . Since the direction y — x is tangential
to the corresponding line integral, such so-called tangential derivatives can be rewritten
as derivatives with respect to the corresponding integration variable (for details see Ex-
ercise or the proof of Proposition below). Integrating by parts, the tangential
derivatives disappear. Proceeding in this way, one can in fact eliminate all tangential
derivatives, as is made precise in the following Proposition.

(2.2.58)
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PROPOSITION 2.2.6. (elimination of tangential derivatives)
Every contribution (2.2.32)) to the light cone expansion of Theorem can be written

as a finite sum of expressions of the form

) )
Xe C (y — 2)K WO (z) / (11,71 | n1) dzy WO (1) / [l 72 | na] dza WP (25)

T 21

y

/ o 7o | na] dza W (24) 47 SW (2, ) (2.2.59)
Za—1

with a < k, where the factors W®B) are composed of the potentials and their partial

derivatives,

Kagpagy/(a8) K (bg)

W) = (9Fes P stj;CaB) (07 P va;Cbﬁ) (2.2.60)
with a1 =1, ag41 = bg+1, bg > ag—1 (in the case bg = ag—1, W) s identically one),
and by, = k. The parameters l,, T4, and n, are non-negative integers, C is a complex
number, and ¢ = L/R, ¢, = L/R are chiral indices. The potentials V(@) are again given
by (2.2.33)); their chirality is determined by the rule (i) in Theorem m The tensor

indices of the multi-indices J, K, J,, and K, are all contracted with each other, according

to the rules (a),(b) of Theorem and
(c) The tensor indices of (y—=z)% are all contracted with the tensor indices of the factors
V}f) or v (but not with the factors 9%« ).

We have the relation
k
2h =k —1—|K|+ Y (IKd|+2pa) - (2.2.61)
a=1
Before coming to the proof, we make precise how this proposition can be used to

simplify the light-cone expansion.

DEFINITION 2.2.7. A contribution of the form (2.2.32)) to the light-cone expansion of
)

are differentiated,

Theorem |(2.2.6 is called phase-free if all the tangential potentials VJ(:
i.e.

|Ko| +2pe >0 whenever J, is contracted with (y — x)X.

From every phase-free contribution the corresponding phase-inserted contribution is
obtained as follows: We insert ordered exponentials according to the replacement rule

o [FB+ j

W(B)(Z,g) — W(B)(Zg) Pexp —z/ AL (zp41—28)js |+ B=0,...,a, (2.2.62)
2

where we set zg = x and zo+1 = y. The chiralities cg are determined by the relations co =

c and

coincide }

are opposite

cg—1 and cg {
(2.2.63)

if W=D contains an{ } number of factors Y.

even
odd

THEOREM 2.2.8. To every order on the light cone, the number of phase-free contri-
butions is finite. The light-cone expansion of the Green’s function 5(z,y) is given by the
sum of the corresponding phase-inserted contributions.
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This theorem gives a convenient procedure for performing the light-cone expansion
of the Green’s function. The only task is to compute to any order on the light cone
the finite number of phase-free contributions. Then one inserts ordered exponentials
according to Definition [2.2.7] Note that this method is constructive in the sense that
it gives a procedure with which the light-cone expansion of every Feynman diagram can
be carried out explicitly. Indeed, this procedure is implemented in the C++-program
cIass,commuteEL These computations are illustrated in Exercise

The remainder of this section is devoted to the proof of Proposition and Theo-
rem We begin with a preparatory lemma which controls the number of tangential

derivatives in the contributions (2.2.32) in Theorem

LEMMA 2.2.9. For any a € {1,...,k}, we let t, be the number of tensor indices of
the multi-index I, in ([2.2.32) which are contracted with the factor (y — x)!. Then the
following inequalities hold for alla =1,... k:

k
lo+na>ta—1  and  Tatng> Y t. (2.2.64)
b=a

PROOF. As in the proof of Theorem [2.2.4] we proceed inductively in the order k of the
perturbation theory. For k = 0, the inequalities are trivially satisfied according
to . Assume that (2.2.64)) is true for a given k. We go through the construction
steps (1) to (7) of Theore and check that the inequalities then also hold
in fora=0,...,k.

We first consider the case a > 0. The parameters l,, ., and n, remain unchanged in
all the construction steps of Theorem[2.2.4l Furthermore, it is obvious that the parameters
t, are not affected in the steps (1), (2), (4) and (7). In the steps (3) and (5), the
computation of the derivatives (07 and @, might annihilate some of the factors (y — x)
which were contracted with the factors ag;; this may decrease the parameters ¢,. For the
analysis of step (6), note that all y-matrices which are contracted with factors (y — x)
stand to the left of those y-matrices which are contracted with the ag;, a=1,...,k (this
follows from the ordering condition (b) in the induction hypothesis and the fact that
additional factors (y — )7 - - -; are only generated during the construction if the partial

derivative @, hits S in step (5); in this case, the corresponding ~-matrix stands at
the very left in 7). Therefore the commutations of the Dirac matrices do not lead to
additional contractions between factors (y—x) and agg, which implies that the parameters
t, remain unchanged in step (6). We conclude that the l,, r4, and n, remain unchanged
whereas the t, may only decrease, and thus holds for a = 1, ..., k throughout all
the construction steps.

It remains to show that the inequalities hold in (2.2.51)) for a = 0. We first
look at the situation after step (4) in : The values r lg, 19, and ng give
in combination with the equations

1 ~
lo+mno =3 (|I| — 1] + || +2p0> (2.2.65)

1 .
ro+no=h+3 (uy + ]+ 1 To| + 2p0) . (2.2.66)

2The C++ program class_commute and its computational output as well as the resulting Mathematica
worksheets were included as ancillary files to the arXiv submission arXiv:1211.3351 [math-ph].
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Moreover, the number of tangential derivatives ty at the first potential is clearly bounded
by the total number of derivatives there,

Io| > to - (2.2.67)

Furthermore, the total number of tangential derivatives is smaller than the number of
factors (y — z),

k
HE?S (2.2.68)
a=0
Substituting ([2.2.44]) and (2.2.67)) into (2.2.65)) yields the inequalities
lo+ng > |IO‘ +po = to . (2.2.69)

In order to get a bound for rg + ng, we must distinguish two cases. If h > 0, we
substitute (2.2.44)) into (2.2.66[) and get with (2.2.68]) the inequality
k
ro+mno > I+ Io| +po > [I] > o (2.2.70)
a=0

In the case h = —1, ([2.2.36]) shows that |I,|, and consequently also t,, vanish for 1 < a <
k. Furthermore, (2.2.34)) yields that || # 0. Thus (2.2.66) and (2.2.67)), (2.2.68) give the

bound

where we used in the last inequality that h + |I|/2 > —1/2 and that all the other terms
are integers. Since ty = Z’;:O tq, we conclude that inequality (2.2.70) also holds in the

case h = —1.

We finally consider how the bounds and for lp + ng and rg + ng must
be modified in the subsequent construction steps. In step (5), the partial derivative @,
may annihilate a factor (y — x), in which case the parameters ¢, might decrease. On the
other hand, the partial derivatives @, may produce an additional factor 9,,; in this case,

ro is incremented according to . In step (6), only this additional factor 0,, may
be contracted with (y — x)!. Step (7) does not change ly, 70, no, and tg. Putting these
transformations together, we conclude that the inequality for Iy + ng must be
weakened by one, whereas the bound (2.2.70) for ro + ng remains valid as it is. This gives
precisely the inequalities (2.2.64)) for a = 0. O

PROOF OF PROPOSITION [2.2.6] The basic method for the proof is to iteratively elim-
inate those partial derivatives 82; in (2.2.32)) which are contracted with a factor (y — z).
This is accomplished with the integration-by-parts formula

1
=y [(rinld: 0,) D [Ldaal (1-a) (0= a®) - flay+ (1))
= 5r+n,0 f(y) - 5l+n,0 f(w)

—(l+n)/y[l—1,r]n]dzf(z) + (r—i-n)/y[l,r—l\n]dzf(z).
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In order to see the main difficulty, we consider the example of two nested line integrals
with two tangential derivatives

(y— ) (y— o) / ’10,110] dz VO (21) / 0,110]dz 0V (z)  (2271)

= (y — :E)J /y[0,0 | 0] ClZl V(l)(zl) (y — Zl)k /y[O, 1 | 0] dZQ ajkv(2)(22)

21

. Y
=—(y— x)]/ dz1 VW (21) 9,V () (2.2.72)
x, Y Y
+ (y - J})J / dzl V(l)(zl)/ dZQ OjV(Q)(zg) . (2.2.73)
xX Z1

Although the line integrals in satisfy the conditions of Theorem the ex-
pression cannot be transformed into the required form . Namely, in (2.2.72) we
cannot eliminate the remaining tangential derivative (because partial integration would
yield a term (y — ) 9;V(D(z)). In ([2.2.73), on the other hand, we can successfully
perform a second partial integration

= / 10, -110dzy V(1) (VO () — V(1))

but then the second parameter in the bracket [.,.|.] becomes negative. More generally,
we must ensure that the boundary terms contain no tangential derivatives, and that the
parameters [y, 74, and n, stay positive in the construction.

Since the chirality of the potentials is not affected by the partial integrations, it is
obvious that the rule (i) in Theorem will remain valid. For ease in notation, in the
remainder of the proof we usually omit the indices c,.

First of all, we split up the factor (y — x)! in in the form (y — z)! = (y —
z)% (y — z)¥, where L are those tensor indices which are contracted with the partial
derivatives OZIZ, a=1,...,k. Setting b = 1 and zy = x, the first line integral in (2.2.32)
can be written as

Yy
=) [ el ey 2 E2 VD () - (2.2.74)
Zp—1

We rewrite the tangential derivatives in this line integral as derivatives in the integration
variable,

= wea) [aedt ooy () ool e2m)

with |L| = |[N|+q and | = I, + ny, 7 = 13, + np. Lemma [2.2.9] gives the bounds
I>q—1 and r>q¢+|N|. (2.2.76)
More generally, we use and as our induction hypothesis, where the left
factor - -’ stands for all previous line integrals (which contain no tangential derivatives),

¢

and the right factor - - -’ stands for subsequent line integrals. The tensor indices of the
factor (y — z4—1)" must all be contracted with the partial derivatives d%* for a > b and
thus give tangential derivatives in the subsequent line integrals. The induction step is
to show that all the a-derivatives in ([2.2.75)) can be eliminated, and that we can write
the resulting expressions again in the form (2.2.75)) and (2.2.76)) with b replaced by b+ 1.
Under the assumption that this induction step holds, we can eliminate all tangential
derivatives in k steps. The resulting expressions are very similar to (2.2.59) and (2.2.60)).
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The only difference is that the derivatives 9« and 0P« in the resulting expressions are
differential operators acting on all the following factors V(@) V(etd) - ip , on
the other hand, the partial derivatives act only on the adjacent potential V(@) . In order
to bring the resulting expressions into the required form, we finally carry out all the

derivatives with the Leibniz rule and the chain rule (2.2.48)).

For the proof of the induction step, we integrate q times by parts (if ¢ is
zero, we can skip the partial integrations; our expression is then of the form )
Since the powers of the factors a and (1 — «) are decreased at most by one in each partial

integration step, (2.2.76)) implies that the boundary values vanish unless in the last step
for a« = 0. We thus obtain a sum of terms of the form

(y— )N o O VI (z) - (2.2.77)

“lzp=2p-1

and

Y
N K (b)
(Y — zp_1 / L,r|n=0]dz 0,° 0% V;”(z
( ) Zb_l[ | ] o 08 V(=) (2.2.78)
with [ >0, r > |N]|.

In (2.2.78)), we iteratively use the relation
.Y Y .
(y—x)]/ [l,r|n]dz :/ [l,r—1|n]dz(y—=2) ---

to bring all factors (y — z—1) to the right. We thus obtain expressions of the form

Yy
22.78) = - / L n=0]dz (y—2)N 0K 02 VP () -+ with I,r > 0. (2.2.79)
Zh—1

In both cases (2.2.77) and (2.2.79)), we have an expression of the form
b
y— )N o o v () (2.2.80)

where the first factor stands for line integrals without tangential derivatives, and
where none of the factors (y — z;) are contracted with 85217. Applying the “inverse Leibniz
rules”

¢ 9

9 9 o
(y—ﬂﬁ)]wzw(y—ﬂ?y+5i

0
(y—az)le«:Dx(y—x)j—l—2@,

we iteratively commute all factors (y — zp) in (2.2.80)) to the right. This gives a sum of
expressions of the form

.. ,agb D};g V}f)(zb) (y — Zb)L oo (2.2.81)

where the factors (y — z,) are all contracted with the partial derivatives 92, a = b+
1,...,k. The Leibniz rules may have annihilated some factors (y — z) (i.e., |L| might be
smaller than |N|); in this case, the parameters t,, a = b+ 1,...,k have decreased. As a
consequence, the inequalities of Lemma are still valid for all expressions . If
we write in the form (2.2.74)) with b replaced by b + 1, we can thus split up the
tangential derivatives in the f and . This concludes the proof of the
induction step.

It remains to derive equation : Note that each integration by parts decreases
both the number of factors (y — z4—1) and the total number of partial derivatives by one.
If we carry out the remaining derivatives with the Leibniz rule (in the last step of the
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proof), this does not change the total order Z’;Zl | K|+ 2p, of the derivatives. Therefore,

relation ([2.2.34]) in Theorem transforms into ([2.2.61]). O

We come to the proof of Theorem A possible method would be to rearrange
all the contributions to the light-cone expansion of Theorem until recovering the
Dyson series of the ordered exponentials in . However, this method has the
disadvantage of being rather involved. It is more elegant to use a particular form of local
gauge invariance of the Green’s function for the proof (for basics see Exercise . To
this end, for given z and y we will transform the spinors locally. The transformation
will be such that the light-cone expansion for the transformed Green’s function §(z,y)
consists precisely of all phase-free contributions. Using the transformation law of the
Green’s function, we then show that the light-cone expansion of §(x,y) is obtained from
that of §(x,y) by inserting unitary matrices into the line integrals. Finally, we prove that
these unitary matrices coincide with the ordered exponentials in Definition [2.2.7]

In preparation, we consider the transformation law of the Dirac operator and the
Green’s function under generalized local phase transformations of the spinors. We let
Ur(xz) and Ug(x) be two unitary matrices acting on the Lie algebra index of the gauge
potential. We transform the wave functions according to

Y(x) = p(z) =U(z) p(z)  with  U(z) = xz Up(x) + xg Ur(z) . (2.2.82)

Thus Uy, and Ug transform the left and right handed component of the wave functions,
respectively. We point out that transformation U is not unitary with respect to the spin
scalar product because x7 = xr and therefore

Vi=U"'=x,U;'+xrUz"  but
U =7 U’ = xr U+ x0 Uz

Therefore, in what follows we carefully distinguish between U, U* and their inverses V'
and V*. As an immediate consequence of the Dirac equation (i@ + B — m)y = 0, the
transformed wave functions v satisfies the equation

V(i + B)V 1) =0.
A short computation yields for the transformed Dirac operator
V*(id + B)V =i + B
with
B=x(Ar—mYy) + xr (AL —mYg),

where A /r and YL/R are the potentials

Aé/R =Uyr AJL/R UZ/]I% + iUL/R(ajUZ/Ilg) (2.2.83)
Yip = Unn Y Uy (2.2.84)

We denote the advanced and retarded Green’s functions of the transformed Dirac operator
i@ + B by 5. They satisfy the equation

(id, + B(x))3(z,y) = 6"z —y). (2.2.85)
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Since we can view B as the perturbation of the Dirac operator, the Green’s function §
has, in analogy to (2.2.12]), the perturbation expansion

§=> (=sB)"s. (2.2.86)

n=0

The important point for what follows is that the Green’s functions § and § are related to
each other by the local transformation

S(z,y) =U(x) $(x,y) U(y)* . (2.2.87)

This is verified as follows: The right side of (2.2.87)) also satisfies the defining equa-
tion ([2.2.85)) of the Green’s functions; namely

(i, + B(x)) U(z) 3(z,y) Uy)* = V(@)" (idly + B(x)) V(2) U(x) 3(z,y) U(y)"
= V(2)" (i, + B(2)) 3(z,y) Uy)" = V(2)" 6*(z — y) U(y)"
=V(2)" U(x) 8*(z —y) = 8"z —y).

Furthermore, the supports of both sides of lie (depending on whether we consider
the advanced or retarded Green’s functions) either in the upper or in the lower light cone.
A uniqueness argument for the solutions of hyperbolic differential equations yields that
both sides of coincide.

We next specify the unitary transformations Uy, and Ugr: We fix the points = and y.
For any point z on the line segment 7y, we chose Upp(z) as

Urr(2) Pexp< / AL/R —x j> . (2.2.88)

Using the differential equation for the ordered exponential (see Exercise
(y— )" oo Pe 2 AL — iy — )y A () Pei 2 A0, (2.2.89)
we obtain
(y = 2) Uel2) (9;Uel(2) ") = Pe e 46 i (g — x)jg Pe i [ AL (7=2)k
= Pe i) AL =m0k iy — z); Al(2) Pe—i J2 AL (z—2))
=i(y —); Ue(2) Al(2) Ue(2) ™
Using this formula in ([2.2.83) gives
AJL/R(Z) (y—x); =0 for z € 7y . (2.2.90)
Thus our choice of Uy, and Ui makes the potentials AL(z) and AR(z) for z € Ty orthog-

onal to the vector (y —z). Before going on, we point out that we did not specify Urr(2)
away from the line segment z € Ty; the unitary transformation Urp may be arbitrary

there. This also implies that also A /R is undetermined outside the line segment zy. In
particular, all the non-tangential derivatives of A /r(z) for z € 7y are undetermined.

However, (2.2.88)) does give constraints for the tangential derivatives. For example, dif-
2.2.90

ferentiating (2.2.90)) in the direction (y — z) yields
(y — ) (y — ) @AZR(Z) =0 for ZETY.
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We now consider the perturbation expansion (2.2.86). The light-cone expansion of
all Feynman diagrams according to Theorem [2.2.4] gives a sum of terms of the form

Yo C (y — 2)% WO (z) /

T

Y R Y ~
[ll, (& | nl] dz1 W(l)(zl)/ [lz, T9 ‘ TLQ] dZQ W(2)(Z2)

Z1

Yy .
: / Uou T | na] dzq W(a) (Za) ’YJ S(h) (m, y) ’ (2'2'91)
Za—1
where the factors W) are of the form
W) = @ eapea V) .. (9800 V}f;f%) . (2.2.92)

Because of , all the contributions which are not phase-free vanish. Furthermore,
according to Theorem [2.2.4] the contributions (2.2.91)) and (2.2.92) contain no tangential
derivatives. Clearly, the derivatives in these formulas may have a component in direction
of (y — x). But the contribution of the derivatives transversal to (y — x) uniquely deter-
mines the form of each derivative term. Therefore, all the phase-free contributions of the
form and are independent in the sense that we have no algebraic rela-
tions between them. We conclude that, as long as the potentials A r/r and YL/R are only
specified by (2.2.83)), (2.2.84))) and (2.2.88), the light-cone expansion (2.2.91) and (2.2.92)
consists precisely of all phase-free contributions.

Next, we exploit the local transformation law of the Green’s functions: We
solve this equation for 3,

S(x,y) =V(x) §(z,y) V(y)*. (2.2.93)
The transformation Uy r does not enter on the left side of this equation. Thus the right
side of is also independent of Ur/g. In particular, we conclude that the light-
cone expansion of 5(z,y) must be independent of the derivatives of Uz along the line
segment Ty. At first sight, this might seem inconsistent because the individual contri-
butions and (2.2.92) do depend on the derivatives of Uy (this is obvious if one
substitutes (2.2.83) and (2.2.84) into and carries out the derivatives with the
Leibniz rule). The right way to understand the independence of §(x,y) on the deriva-
tives of Up g is that all derivative terms of Ur/g cancel each other to every order on the
light cone if the (finite) sum over all contributions to the light-cone expansion of
$(x,y) is carried out. Since we will form the sum over all contributions to the light-cone

expansion in the end, it suffices to consider only those contributions to the light-cone ex-
pansion which contain no derivatives of Ur/z. This means that we can substitute (2.2.83)

and ([2.2.84)) into (2.2.92)), forget about the derivative term z'UL/R(c?jUE/}l%) in (2.2.83)), and

pull the unitary transformations Ur g, U L_/Il% out of the derivatives. In other words, we can
replace W(B), (12.2.92)), by

Ka a ((Z ) - K (b ) -
W = v, (0" Ve ek Uy (0 bBDp"f’VJ,,;,cbﬁ)Ucb; (2.2.94)

with chiral indices ¢4, d, = L/R. The light-cone expansion for §(x,y) consists precisely of
the sum of all phase-free contributions of the form (2.2.91)) and ([2.2.94]).

The chiralities cq, d, of the unitary transformations Urg, Uy, ]1% in @D are deter-
mined by the rule (i) in Theorem and by and . According to this
rule, the indices ¢,_; and ¢, coincide iff V(%) is a chiral potential. According to (2.2.83)
and , on the other hand, the indices d, and ¢, coincide iff V(@ = Apr. We
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conclude that the indices ¢,—1 and d, always coincide. Thus all the intermediate factors
U;' Ug, give the identity, and (2.2.94) simplifies to

z -1
W& =g, wP Ut (2.2.95)

Furthermore, the chiralities dg and cg coincide if and only if W®) contains an even
number of dynamic mass matrices.

Finally, we substitute the light-cone expansion for §(x,y) as well as
into . This gives for the light-cone expansion of §(x,y) a sum of expressions of
the form

Yy
X C (y— )" U (2) (UdoW(O)Uml)(&?)/ (1,71 | ] dz1 (U, WOUZY) (21)

Y
: / [l!l? Ta ’ na] dzll (UdaW(O) Uc_al)(zll) UCa+1 (y) 7J S(h) (JJ, y) ’ (2296)
Za—1

where the sum runs over all phase-free contributions of this type. Similar to the consid-
erations before , one sees that adjacent unitary transformations always have the
same chirality. Therefore, renaming the chiral indices, the expressions can be
written in the simpler form

Y
Xe C (y — 2)F W(O)(x)/ [l,71 | 1] dz1 Uey ()7 Uey (20) W

T

Yy
. / a7 | 0] dz Us, (zat) ™ U (20) WO (20) Uy (z0)
Za—1

X Uepir () 7! P (z,y),

where the chiral indices ¢, satisfy the rule (2.2.63]). According to (2.2.88]), the factors
U (.) Us(.) coincide with the ordered exponentials in (2.2.62)). This concludes the proof

[

of Theorem 2.2.8]

2.2.5. The Residual Argument. In the previous sections, the light-cone expan-
sion was performed for the causal Green’s functions. We now want to extend our methods
and results to the fermionic projector. We begin by describing how the light-cone expan-
sion of the Green’s functions can be understood in momentum space. Apart from giving
a different point of view, this will make it possible to get a connection to the light-cone
expansion of the fermionic projector. For notational simplicity, we restrict attention to
the case g = 1 where in there is only one direct summand (the generalization
to several direct summands is obtained in a straightforward way by replacing all vacuum
operators as in by corresponding direct sums). As in , we again combine
the rest mass and the external potential in a potential B. Furthermore, we only con-
sider the advanced Green’s function; for the retarded Green’s function, the calculation is
analogous.

Suppose that we want to perform the light-cone expansion of the k™" order contribu-
tion to the perturbation series . Using that the Green’s function is diagonal in
momentum space and that multiplying by B in position space corresponds to a convolu-
tion in momentum space, we can write the contribution as a multiple Fourier integral,

((=s"B)*s")(z,y)

d'p d'q: d*qx A .
= _— _— ... A \Y . . —Z(p+q1+...+qk)$+7/py 22
/ (27r)4 / (27T)4 / (271')4 S (pv q1, 5 Qk) e , ( 97)
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where the distribution AsY(p;qu,...,qk) is the Feynman diagram in momentum space,

AsY(D5q1y - qr) = (1) sV (4 g+ +aqr) Blgr) sV (0 + a1+ - + qe—1) Blgr—1)
- B(g) sV (p+ @) Bla1) s¥ (p) (2.2.98)

(here B denotes the Fourier transform of the potential B, and s"(p) is the multiplication
operator in momentum space). For the arguments of the Green’s functions, we introduce
the abbreviation

po:=p and p =ptqat+--+q, 1<I<k. (2.2.99)
Substituting the explicit formulas (2.2.4) and (2.2.15]) into (2.2.98)), we obtain
ASV(p; qi,- - - ,Qk) = (_1)k pk B(Qk) pk,1 e ?1 B(ql) po

1 1 1
x  lim : - e : :
Vo, N0 (D)% — el (Pk—1)? — ivk—1p)_, (po)? — ivopf
We already know that the limits vy, ..., v N\, 0 exist in the distributional sense. This can

be understood directly from the fact that, fixing the momenta ¢, ...qy as well as p, the
above expression for AsY is a meromorphic function in p® having poles only in the lower
half plane. Computing the Fourier transform with residues, we obtain a well-defined

expression which remains finite as vy, ..., v, \( 0. This consideration also shows that we
may choose the vy, ..., to be equal, i.e.
5 R .
AS\/(p; Q17"'7Qk) = (_1) pk B(Qk)pk_l pl B(Ql)I)O
. 1 1 1
x lim e . (2.2.100)

N0 (pr)? —ivp)) (pe—1)? —ivp)_,  (po)? — ivp)

We now expand the Klein-Gordon Green’s functions in (2.2.100)) with respect to the
momenta p; — p. If we expand the terms il/p? with a geometric series,

1 i (v () = p°))"
(p1)? — ivp ((pr)? — iwp0)ttn’
all contributions with n > 1 contain factors v and vanish in the limit v \, 0. Therefore,

we must only expand with respect to the parameters ((p;)? — p?). This gives, again with
geometric series,

n=0

AsY(pi g, qe) = (=1  p, Blaw) p,_, - p, Blar) p,

(e 9]

1
2 2 2 2 :
X Z (p _pk)nk T (p - pl)nl 31{‘% (pg — iyp0)1+k+”1+"'+”k :

n1,...,nE=0

Rewriting the negative power of (p? —ivpY) as a mass-derivative,

1
1 d k+ni+-+ng 1
- ' <d> —— (2.2.101)
14+ +n)! \da p? —a—ivp®|,_,
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we obtain a formula containing only one Green’s function. Namely, using the nota-

tion (2.2.13]), we get
AsY(piqr,-aqe) = (=1)F p, Blaw) p,_, - p, Bla) p,

3 1 2 2\ 2 2\n1 oV (k+ni4-4nyg)
— Nk ... _ n g ni ng )
x Z (k;+n1_|_...+nk)! (p pk) (p pl) (p)

(2.2.102)

ni,...,n=0
This is the basic equation for the light-cone expansion of the Green’s functions in momen-
tum space. Similar to the light-cone expansion of the previous section, ([2.2.102) involves

the mass derivatives of the Green’s functions SV(). In order to get a connection to the
nested line integrals of, say, Theorem [2.2.4] it remains to transform the polynomials in

the momenta py, ..., pg as follows: Using (2.2.99), we rewrite (2.2.102)) in terms of the
momenta p, qi,...,qr and multiply out. Furthermore, we simplify the Dirac matrices

with the anti-commutation rules (2.2.52)). This gives for (2.2.102)) a sum of terms of the

form

Xe CA gl gl ViP (k) VD (@) pF VP () (b= [IL1/2]),  (22.103)

JksCh J1,c1

where the tensor indices of the multi-indices I, I;, J;, and L are contracted with each
other (similar to the notation of Theorem [2.2.4] the factors VJ(ZI) stand for the individual

sCl

potentials of E) If tensor indices of the power p’ are contracted with each other, we can
eliminate the corresponding factors p? iteratively with the rule (2.2.14)), more precisely

p? gV(h) (p) =h SV(hfl)(p) (h>1). (2.2.104)

In this way, we can arrange that the tensor indices of p” in (2.2.103)) are all contracted with

tensor indices of the factors ~/, qu LorV J(ll)q. By iteratively applying the differentiation

rule ([2.2.16)), we can now rewrite the power p” in ([2.2.103) with p-derivatives, e.g.

1 0 1 0 1
4 V@) () = —Z p. L V() = _ 2 “ (. gV(D) =g SV
pj Pk ST7(p) = =5 pj aka (p)=—5 o (pj ST (P)) + 5 951 ST ()
1 02 1
- _Y g Z a0 s
10y aka (p) + 5 955 (p) -
In this way, we obtain for As(p;qi,...,qx) a sum of terms of the form
Xe CAlal gl VI (a) - VY (@) 05 SV (p), (2.2.105)

where no tensor indices of the derivatives 05 are contracted with each other. We sub-
stitute these terms into (2.2.97)) and transform them to position space. Integrating the
derivatives 85 by parts gives factors (y — 2)%. The factors qu !, on the other hand,

can be written as partial derivatives & acting on the potentials V"), More precisely,

substituting into (2.2.97)), the term (2.2.105|) gives the contribution
Xe CilltlE I () KLy T @l V) (2)) - (0M VD, (2)) (y— )% Y0 (2,y), (2.2.106)
where the tensor indices of the factor (y — ) are all contracted with tensor indices of
the multi-indices I, I;, or .J;. The Feynman diagram ((—sB)*s)(z,y) coincides with the
sum of all these contributions.
This expansion has much similarity with the light-cone expansion of Theorem [2.2.4]

Namely, if one expands the nested line integrals in (2.2.32)) in a Taylor series around
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x, one gets precisely the expansion into terms of the form (2.2.106)). Clearly, the light-
cone expansion of Theorem goes far beyond the expa, because the
dependence on the external potential is described by non-local line integrals. Nevertheless,
the expansion in momentum space and subsequent Fourier transformation give
an easy way of understanding in principle how the formulas of the light-cone expansion
come about. We remark that, after going through the details of the combinatorics and
rearranging the contributions , one can indeed recover the Taylor series of the
line integrals in . This gives an alternative method for proving Theorem m
However, it is obvious that this becomes complicated and does not yield the most elegant
approach (the reader interested in the details of this method is referred to [F'5], where a
very similar technique is used for the light-cone expansion to first order in the external
potential).

Next, we want to generalize the previous construction to other types of Green’s func-
tions. Since, similar to , we must rewrite a product of Green’s functions as the
mass derivative of a single Green’s function, we can only expect the construction to work
if all Green’s functions in the product are of the same type (e.g. the construc-
tion breaks down for a “mixed” operator product containing both advanced and retarded
Green’s functions). But we need not necessarily work with the advanced or retarded
Green’s functions. Instead, we can use Green’s functions with a different location of the
poles in the complex p°-plane: We consider the Green’s functions

() =pSE . yp)  with  SE(p) = lim 5——— (2.2.107)

VN0 p2 —a Fiv
and again use the notation (2.2.13)),

d l
+0) _ [ % +
g0 = (da> SE o

The distribution s~ is referred to as the Feynman propagator (see Exercise [2.3). The
perturbation expansion for these Dirac Green’s functions is, similar to (2.1.25]) or (2.2.12)),
given by the formal series

5T = Z(fs"' B)"s™ and 5= Z(fs_ B)"s™ . (2.2.108)
n=0 n=0

The light-cone expansion in momentum space is performed exactly as for the advanced
and retarded Green’s functions. In analogy to (2.2.97)) and (2.2.102), we thus obtain the
formula

(5% B)" s%)(z,y)

4 4 4

(2m)* ) (2m)* (2m)4
with
AsH(pian,- ) = (1 P Blao) py_y - py Bla py
Y 1 “en n
X Z ‘ (p2 _p%)nk (pQ _p%)nl S’i (k+ny+-+ng) '

(k+n1+-+ng)!

ni,...,nE=0

Since ST are Green’s functions of the Klein-Gordon equation, they clearly also satisfy
the identity (2.2.104). Furthermore, the differentiation rule (2.2.16) is also valid for S*;
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namely

O ey (A 2 (L
Oij (n) = da K%apj p? —aFiv

d\' —2p,
=(—] lim ——"-"2—
<da> N0 (P2 —aFiv)?|,_,

Therefore we can, exactly as in , rewrite the power p” with p-derivatives. Thus
the expansion (2.2.106) is valid in the same way for the Green’s functions s* if one only
replaces the index “V” in (2.2.106]) by “*”. As explained before, the expansion
can be obtained from the light-cone expansion of Theorem by expanding the poten-
tials around the space-time point z. Since the formulas of the light-cone expansion are
uniquely determined by this Taylor expansion, we immediately conclude that the state-
ment of Theorem ﬁ is also valid for the k'™ order contribution to the perturbation
expansion (2.2.108) if the factor S™) in stands more generally for ST (" or §— ()
respectively. This simple analogy between the formulas of the light-cone expansions of the
Feynman diagrams ((—s"/" B)*s¥/") and ((—s* B)* s%), which are obtained by changing
the location of the poles of the vacuum Green’s functions in momentum space, is called
the residual argument (the name is motivated by the fact that the effect of changing the
location of the poles becomes apparent when taking the Fourier integral with residues).

Having other Green’s functions to our disposal, one can also form more general so-
lutions of the homogeneous equation. Namely, taking the difference of s™ and s~, we

obtain similar to (2.1.13]),

+ SN 1 1

sT(q) —s (q) = }1{% 2w Pt
with p according to . Replacing the Green’s functions by those in the exter-
nal potential, one gets a canonical perturbation series for p. As we shall see below
(see §2.2.7, this perturbation series does not agree with the causal perturbation expan-
sion (2.1.64). Therefore, we denote the obtained operator with an additional index res.
Similar to (2.1.26)), we thus introduce the residual fundamental solution p™* by

= —2p; 5V (p).

= 2mi ¢ 6(q*) = 2mip(q) (2.2.109)

pre=— (st —-357). (2.2.110)

We now introduce the residual fermionic projector by replacing the operators p,, and &y,
in (2.1.6) by the corresponding perturbation series.

DEFINITION 2.2.10. The residual fermionic projector Pres(:r,y) is defined by
- 1 -
Pres(x,y) — 5 (ﬁres — k;) (x7y) , (22111)

where the operator p*® is defined in (2.2.110)), and k is again gwen by (2.1.53)).

Similar to (2.1.64)), the residual fermionic projector also has a contour integral represen-

tation (see Exercise [2.19)).

Applying the residual argument, the light-cone expansion of the Green’s functions
immediately carries over to P™: As in ({1.2.26]) we denote the lower mass shell by Ty, i.e.
in momentum space

Tu(q) = O(=¢") 6(¢° — a) . (2.2.112)
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In analogy to the mass expansion of the Green’s functions ([2.2.13f), we set

l
l d
T et = <da> To|,_, - (2.2.113)

In order not to distract from the main idea, we postpone the analysis of whether these
derivatives exist to §2.2.6] This is why we added the index “formal.”

PROPOSITION 2.2.11. The light-cone expansion for the causal Green’s functions also
holds for the residual fermionic projector P (z,y) if one simply replaces ORI O

formal

PRrROOF. The starting point is the light-cone expansion for the causal Green’s functions

(see Theorem Theorem and Theorem [2.2.8). By linearity, this light-cone
expansion also hold for k defined by ([2.1.26]), after the replacements

g, b <Sv M _ gh (l)) _
211

Using the residual argument, the light-cone expansion of the Green’s functions 5% is
obtained by the replacements S — SE*U Tt follows by linearity that 5™ as defined

by ([2.2.110)) also has a light-cone expansion obtained by the replacements
g, 1 <s+ W _ g <l>) .

2
Finally, again by linearity, we obtain the light-cone expansion of residual fermionic pro-

jector ([2.2.111]) by the replacements

g _, L (5+<l> _g W _gvi | SAU)) _
4re

A direct computation in analogy to (2.1.13)) and (2.2.109|) shows that
1
—(st-5-8"+8") =T,
47i
This concludes the proof. O

We point out that the result of Proposition [2.2.11]is only formal because we have not yet
analyzed whether the factors Tf(l)

ormal are mathematically well-defined. This will be done
in the next section.

2.2.6. The Non-Causal Low Energy Contribution. We now want to put the
residual argument and the formal light-cone expansion of Proposition [2.2.11| on a sat-
isfying mathematical basis. In order to explain what precisely we need to do, we first
recall how the light-cone expansion of the Green’s functions makes mathematical sense:
Theorem gives a representation of every Feynman diagram of the perturbation series
2.2.12)) as an infinite sum of contributions of the form . According to the bound
2.2.30|), there are, for any given h, only a finite number of possibilities to choose I, and
Pa; as a consequence, we get, for fixed h, only a finite number of contributions .
Thus we can write the light-cone expansion in the symbolic form

(=sB)Fs)(@,y) = > > - SM(a,y), (2.2.114)

h=—1 finite

where ‘.-’ stands for a configuration of the y-matrices and nested line integrals in

(2.2.59). According to the explicit formula (2.2.7)), the higher a-derivatives of S,(x,y)
contain more factors (y — z)? and are thus of higher order on the light cone. This makes
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it possible to make mathematical sense of the infinite series in as a light-cone
expansion.

According to Proposition all the results for the Green’s function are, on a
formal level, also valid for the residual fermionic projector. We begin by considering
the light-cone expansion of the individual Feynman diagrams in more detail. Similar to
, the k*® order contribution AP™ to the residual fermionic projector has an
expansion of the form

AP (z,y) = Z Z e ng@nal(x’ y), (2.2.115)

h=-—1 finite

where ngﬁgnal is the a-derivative (2.2.113)) of the lower mass shell T, (2.2.112)). In position

space, T, is given explicitly in (2.2.3]). The basic difference between the light-cone expan-
sions (2.2.114) and (2.2.115)) is related to the logarithmic pole log |a| in (2.2.3)). Namely,
as a consequence of this logarithm, the higher a-derivatives of T, are not of higher order
on the light cone. To the order O((y — x)?), for example, one has

1

<dd> Ta<x7y>=3z7rs<ja> (alogla) +0((y—2)*) (n22).  (22.116)

In our context of an expansion around a = 0, the situation is even worse, because the
a-derivatives of T, are singular for a — 0 (as one sees e.g. in ) Thus not even
the individual contributions to the light-cone expansion make mathematical sense. These
difficulties arising from the logarithm in are called the logarithmic mass problem
(see [F5] for a more detailed discussion in a slightly different setting). Since we know
from Lemma that the Feynman diagrams are all well-defined, the logarithmic mass
problem is not a problem of the perturbation expansion, but shows that something is
wrong with the light-cone expansion of Proposition [2.2.11

In order to resolve the logarithmic mass problem, we first “regularize” the formal
light-cone expansion by taking out the problematic log|a| term. By resumming the
formal light-cone expansion, we then show that the difference between the residual Dirac
sea and the “regularized” Dirac sea is a smooth function in position space. We introduce
the notation

reg _ _a (-1)7 (a§?)
Ta*®(z,y) = Tu(2,y) — 555 loga| ;oﬂ GiD)l o (2.2.117)
LAY
70 = <da) T (2.2.118)

(where ¢2 = ¢J &; denotes again the Minkowski inner product).

DEFINITION 2.2.12. The causal contribution Pl ¢y the fermionic projector is
obtained from the residual Dirac sea P™ by replacing all factors ng;)mal in the formal
light-cone expansion by T™ . The non-causal low energy contribution P to the
fermionic projector is given by

P*(a,y) = P(x,y) — Pz, ).
By the replacement Tf(o};])ml — T™ the formal light-cone expansion of Proposi-

tion [2.2.11] becomes mathematically meaningful in the sense of Definition Thus
we can restate this result as a theorem, leaving out the word “formal.”
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THEOREM 2.2.13. The light-cone expansion for the causal Green’s functions also holds
for the causal contribution P53 to the fermionic projector if one simply replaces S —

TO with TO according to ([2.2.118).

Since T, — T,°® is a smooth function in z and y, it is natural to expect that the
non-causal low energy contribution should also be smooth. This is indeed the case, in
the following sense.

THEOREM 2.2.14. To every order in the external potential B, the non-causal low
energy contribution P'°(z,y) is a smooth function in x and y.

The subtle point in the proof is that, to every order in perturbation theory, the
non-causal low energy contribution involves an infinite number of summands. Although
each summand is smooth, it is not clear whether the infinite sum converges and gives
rise to a smooth function. This makes it necessary to use a resummation technique for
the smooth contributions to the light-cone expansion. For brevity, we do not enter these
constructions here but instead refer the interested reader to [F6, Proof of Theorem 3.8].
The resummation technique will also be introduced and applied in Appendix

2.2.7. The Non-Causal High Energy Contribution. In the previous sections
( and we performed the light-cone expansion for the residual fermionic pro-
jector Pres (see Definition . The remaining task is to deduce the light-cone expan-
sion of the fermionic projector P*** with spatial normalization (as defined by )
We now prove that P** and P have the same light-cone expansion.

We begin by giving the difference between the fermionic projector and the residual
fermionic projector a name.

DEFINITION 2.2.15. The non-causal high energy contribution P"¢(z,y) to the
fermionic projector is given by

phe(‘r?y) = Psea(:pay) - pres(l‘ay) .

THEOREM 2.2.16. To every order in the external potential B, the non-causal high
energy contribution PP (x,vy) is a smooth function in x and y.

PROOF. Our first task is to rewrite the perturbation expansion for P™ in terms of
the potential B. To this end, one combines the rest masses of the Dirac particles with the
unperturbed Green’s functions. Thus for the advanced and retarded Green’s functions,
we return to the perturbation expansions . Similarly, for the Green’s functions 5,

we rewrite (2.2.108)) as
oo

5 = Z(—s;; B)"s,t and S = Z(—S; B)"s,, .
n=0

n=0

Then k and p"* are defined again by (2.1.26) and (2.2.110), respectively. As a result, the
operators k and p'® are defined as sums of operator products of the form

CoBCp1B - BCy, (2.2.119)

where the factors C; coincide with either &, p or s.
Next, we need a few structural properties of the causal perturbation expansion. These
results are derived in Exercises [2.9H2.11] Alternatively, these results are obvious from the
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detailed formulas in the research papers [FG1, [FT2]. First, the operator k has the
contour integral representation (see Exercise (a))

- 1 -
k=—— ARy dN.
2m I ur—
As a consequence, the fermionic projector P (2.1.64]), can be represented as
1 -
pPsea — Z (5 — k
5 (p—k),

where p is defined by

: 2m<§é+ yﬁ)ARﬂu

(see Exercise (b)). Comparing with (2.2.111)) and Definition [2.2.15| we conclude that
~ 1
Phe: Z (5 — pres) .
5 (P =7)

Next, the operator p has the following properties:

(i) Every contribution to the perturbation expansion of p contains an even number of
factors k.

(ii) If in the perturbation series for p one replaces all factors k by factors p, one gets
precisely the perturbation series for pr®

These properties can be read off from the explicit formulas for p and p** given in [FG1),
FT2]. For abstract proofs, one can proceed as follows. Property (i) is shown in Exer-
cise In order to prove (ii), we first bring the perturbation expansion for the residual
fundamental solution into a more explicit form. Comparing with (2.1.26]) and
noting that in view of , the Green’s functions s} satisfy in analog
the relations
s=sT —irp=s +inp,
we find that the perturbation expansion for 5 is obtained from that for k, ,
simply by replacing all factors k by factors p,

oo

=) (=i b p (bp)*P b7

B=0
In Exercise [2.11] it is shown that exactly the same perturbation series is obtained if in
the perturbation series for p one replaces all factors k by factors p. This proves (ii).

Using the above properties (i) and (ii), we can convert the perturbation series for p

into that for p' by iteratively replacing pairs of factors k£ in the operator products by
pairs of factors p. Thus the difference p — p™ can, to every order in perturbation theory,
be written as a finite sum of expressions of the form

CoB+-Coyr B (pBCyr+ Casy Bp o120
—kBCb_l---CaHBk)BCa,l---BC’O, -

where the factors C} again stand for k, p or s. Therefore, it remains to show that
is a smooth function in position space.

We first simplify our problem: Once we have shown that the bracket in is
smooth and bounded in position space, the additional multiplications to the very left and
right can be carried out by iteratively multiplying with B and forming the convolution
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with Cj, which again gives a smooth and bounded function in each step (notice that,

according to the assumptions of Lemma B decays sufficiently fast at infinity).
2.120).

Thus we must only consider the bracket in (2 We rewrite this bracket with the
projectors 2(p k) and (p + k) on the lower and upper mass shells,

prCn_l"-Cl'Bp — kaCn_l-”leBk

1 1
:§(p+k)fBCn_1~--Clﬁ(p—k) + -(p—k)BCh1---C1B(p+k).

2
For symmetry reasons, it suffices to consider the first summand of this decomposition,
(p+k)BCpoq---C1B (p—k))(z,y), (2.2.121)

where the factors C; again stand for k, p, or s. Our task is to show that is a
smooth function in position space.

We proceed in momentum space. We say that a function f(q) has rapid decay for posi-
tive frequencyif it is C1, bounded together with its first derivatives (i.e. sup | f|,sup |9, f| <
00), and satisfies for every a > 0 the bounds

sup  |w® flw, k)|, sup |w® Oy f(w, k)| < oo. (2.2.122)
w>0, kER3 w>0, kER3

After setting Cp = p — k and C,, = p + k, the operator product is of the form
(2.1.27). We choose a function g With rapid decay for positive frequency and decompose
the operator product in the form m It follows by induction that the func-
tions F} all have rapid decay for posmve frequency: The induction hypothesis is obvious
by setting Fy = g. The induction step is to show that for a function Fj;_; with rapid
decay for positive frequency, the convolution

!
/ / dk Blw - k—K)Cj_ (k) Fj_1(, k) (2.2.123)

also has rapid decay for posrtive frequency. In Lemma it was shown that Fj is ct
and bounded together with its first derivatives. As a consequence, we must only establish
the bounds for w > 1. Moreover, because of the monotonicity w® < w” for a < 3
(and w > 1), it suffices to show that there are arbitrarily large numbers « satisfying the
bounds ; we only consider a = 2n with n € N. For w > 1 and «’ € R, we have
the inequality
w2n < (2w/)2n @(w/) + (2(w _ w/))2n ,

as is immediately verified by checking the three regions W <0,0 < < w/2, and
w' > w/2. We combine this inequality with and obtain for w > 1 the estimate

W Fj(w, k)| < i/ dk/ = (E1+ E2)|, (2.2.124)

where E; and E5 are given by
By =Bw—-uw,k—F)Cja(w,F) [(2w’)2" O(w') Fj—1 (', E)i (2.2.125)
By = [(2@ W) Blw— o k- 12’)] Cjr (o B Fj_1 (' F) . (2.2.126)

According to the induction hypothesis, the square bracket in is bounded together
with its first derivatives. Since B has rapid decay at infinity, the square bracket in
(2.2.126) also has rapid decay at infinity. As a consequence, the integral in (2.2.124)
satisfies the hypothesis considered in Lemma [2.1.2| for (2.1.29) and is therefore bounded.
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In order to estimate the expression |w?"9,F}|, we differentiate (2.2.123)) and obtain similar
to (2.2.125) and (2.2.126]) the inequality

jw?™ O Fy(w, )|

dw’ di’ > rTq 1T \2n / I
< ‘/27T/W81B(w—w,k:—k)C]_1(w,k)[(Qw) OW) Fii (. )]

+ ‘/ij/(;lg)’ [(2(w —w'))?" 9, B(w —w’,l;:'—];/)} Cir (W, K) Fja (W' k)| -

This concludes the proof of the induction step.
We just showed that for a function g with rapid decay for positive frequency, the
function

4
Fo(q) = / (2:)14 (BCy_1B---BCLBCy) (¢,q1) 9(q1) (2.2.127)

has rapid decay for positive frequency. We now consider what this means for our operator
product (2.2.121)) in position space. For a given four-vector y = (y°, %), we choose

9w, k) = n(w) eV k)

where 7 is a smooth function with n(w) = 1 for w < 0 and n(w) = 0 for w > 1 (this
choice of g clearly has rapid decay for positive frequency). Since the support of the factor
Co = (p — k) is the lower mass cone {¢* > 0, ¢° < 0}, g(w, k) enters into the integral
(2.2.127) only for negative w. But for w < 0, the cutoff function 7 is identically one.
Thus the integral is simply a Fourier integral; i.e., with a mixed notation in
momentum and position space,

Fo(q) = (BCr1B---BCiB(p—k))(¢y) -
Next, we multiply from the left with the operator (p + k),
(p+k)BCr1B---BC1B(p—k)(gy) = (p+k)(a) Falg) - (2.2.128)

Since F,, has rapid decay for positive frequency and (p + k) has its support in the upper
mass cone {g% > 0, ¢° > 0}, their product decays fast at infinity. More precisely,

lq" (p+ F)(q) Fulg)| < const(I) (p+ k)(q)

for any multi-index I. As a consequence, the Fourier transform of (2.2.128)) is even finite
after multiplying with an arbitrary number of factors g, i.e.

‘/ d4q 1 —iqT
@)t ¢ (p+k)(q) Fu(q) e < const(l) < oo

for all x and I. This shows that our operator product in position space ([2.2.121]) is
bounded and, for fixed y, a smooth function in z (with derivative bounds which are

uniform in y). Similarly, one obtains that (2.2.121)) is, for fixed x, a smooth function in
@2121

y. We conclude that the distribution (2.2.121)) is a smooth and bounded function. O
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2.2.8. The Unregularized Fermionic Projector in Position Space. The pre-
vious constructions give a representation of the fermionic projector in the presence of

chiral and scalar/pseudoscalar potentials (see (2.2.27)), (2.2.25)) and (2.2.28])) of the form

o0
P (z,y) = Z (phase-inserted line integrals) x 7™ (z, )

n=-—1

+ P(x,y) + P*(x,y) .

(2.2.129)

Here the series is a light-cone expansion which describes the singular behavior of the
fermionic projector on the light cone non-perturbatively. It is obtained from the light-
cone expansion of the Green’s functions by the simple replacement rule

gn) __y ()

(with T () as defined in ) In particular, the phase-inserted line integrals are
exactly the same as those for the Green’s functions (see Definition [2.2.7). The contri-
butions P' and P" on the other hand, are both given perturbatively by a series of
terms which are all smooth on the light cone. The “causality” of the causal perturba-
tion expansion can be understood from the fact that the phase-inserted line integrals
in are all bounded integrals along the line segment joining the points x and y
(whereas the light-cone expansion of general operator products involves unbounded line
integrals). In particular, when y lies in the causal future or past of x, the light-cone
expansion in depends on the external potential only inside the causal diamond
(Jy NI U (Jp N Jy)). Nevertheless, the light-cone expansion is not causal in this strict
sense because there are contributions for y ¢ J,. Furthermore, the low and high en-
ergy contributions cannot be described with line integrals and violate locality as well as
causality. This non-locality can be understood from the fact that the fermionic projector
is a global object in space-time. We conclude that the singular behavior of the fermionic
projector on the light-cone can be described explicitly by causal line integrals, whereas
the smooth contributions to the fermionic projector are governed by non-local effects.
We finally remark that the decomposition is also a suitable starting point
for analyzing the smooth contributions to the fermionic projector. Indeed, the low energy
contribution P can be computed effectively by resumming the perturbation expansion,
as is explained in Appendix [D| The high energy contribution P, on the other hand, is
given in terms of operator products, which can be analyzed with Fourier methods.

2.3. Description of Linearized Gravity

We now outline how our computational tools apply in the presence of a gravitational
field. Note that so far, the external potential B in the Dirac equation was assumed
to be a multiplication operator. When describing a gravitational field, however, the
derivative terms in the Dirac equation are modified. The gravitational field can still be
described by the Dirac equation (2.1.5) if we allow for B to be a first order differential
operator. This means that the causal perturbation expansion of still applies. An
analysis similar to that in Lemma [2.1.2] shows that the contributions to the perturbation
series are again all well-defined and finite, provided that the gravitational field is smooth
and decays sufficiently fast at infinity. In order to perform the light-cone expansion of
the Green’s functions, it is convenient to commute the differential operators contained
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in B to the very left to obtain operator products of the form

0
@[SZI ZnS](ﬂjay)v
where the Zi,...,Z, are again multiplication operators (which contain tensor indices

contracted with the multi-index I'). This makes it possible to perform the light-cone ex-
pansion of the square brackets with the inductive procedure described in Carrying
out the derivatives 9! gives the desired light-cone expansion of the Green’s function.

The basic difficulty with this construction is that, due to the additional derivatives,
the contributions to higher order in perturbation theory become more and more singular
on the light cone. In particular, the structural results of §2.2.3| no longer hold, and the re-
summation method of §2:2.4 no longer applies. These difficulties are closely related to the
fact that in the presence of a gravitational field, the light cone is no longer the light cone
of Minkowski space, but it is generated by the null geodesics of the Lorentzian metric.
This “deformation of the light cone” by the gravitational field is an effect which cannot
be properly described by a light-cone expansion in Minkowski space. A possible way
out is to use to use the non-perturbative construction in [FR3, [FMR]. The structure
of the singularities on the light-cone can then be analyzed with the so-called Hadamard
expansion (for explicit computations for the fermionic projector we refer to [FG2, Ap-
pendix A]). Since we do not want to enter these techniques here, we simply describe how
linearized gravity can be described with our methods. We refer to more details to [F5]
Appendix BJ.

For the metric, we consider a first order perturbation hj, of the Minkowski met-
ric n;, = diag(1, —1,—1,—1),

9jk(x) = ik + hjp(x) .

As in the usual formalism (see for example [LL, §105 and §107]), we raise and lower tensor
indices with the Minkowski metric. Using the transformation of /1, under infinitesimal
coordinate transformations, we can assume [LLL §105] that

1
" hjy, = 5 O with = hE .

A straightforward computation (using for example the formalism introduced in [F4])
shows that in the so-called symmetric gauge, the Dirac operator takes the form

T 0 i
i@ — = hjpe ™ == + < (Ph).
In contrast to (2.1.5)), now the perturbation itself is a differential operator.

One complication arises from the fact that the integration measure in curved space is
Vgld*z = (14 %) d*x, whereas the formula (2.1.70) for the perturbation of the fermionic
projector is valid only if one has the integration measure d*z of Minkowski space. There-
fore we first transform the system such that the integration measure becomes dz, then
apply (2.1.70)), and finally transform back to the original integration measure +/|g| d*z.
Rewriting the space-time inner product (1.5.2)) as

/ <|¢> du(z) = / <plo- /gl diz = / <(lgl70) | (|g|% ¢> d*x
M R4 R4
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the transformation to the measure d*z is accomplished by
- 1
¢(!L‘) = Y(z) = |9|4( ) ()
b= ST ko L) > ol (10, - 32 o+ S @)l

g b he o, — 4 h
The perturbation AP'?) of the transformed system is given by (2.1.70)),

AP ay) = - [[ats {ste2) (= 57 12 — SO Pla)
O UD10) ) SCER

The formula for the transformation of the Dirac sea to the original integration measure
\/@ d*z is
P(z,y) + AP(z,y) = gl 75 (2) lgl 3 () (P(@,9) + AP@ D (z,p))
Thus
AP(z,y) = AP (z,y)  § (h(w) + hiy)) Pl,y).
Since the factors P(z,y) and s(z,y) in only depend on the difference vector z —y,

we can rewrite the z-derivatives as y-derivatives,

B
e ~5P(zy) =

which can be pulled out of the integral. Furthermore, the relations
/ d' P(a,2) (id.h(2)) s(z,y) = / d'z P(a,2) [(id. — m), h(=)] s(z1)
= —P(z,y) h(y)
[t s 2) (i8:0(2)) Pley) = ho) Pa.y

make it possible to simplify the factors (@h) in the integral. In the resulting formula for
AP(x,y), one recovers the perturbation by an electromagnetic potential. More precisely,

AP(ay) = (= ghle) = 3 W) Ply) = 5 5 AP @), (232

where AP[y/ hé?](ac, y) is the per‘;urbation (2.1.70) of the Dirac sea corresponding to the
electromagnetic potential B = ~/ hf. The light-cone expansion of AP(x,y) is obtained by

substituting the light-cone expansion of AP[y/ hf] (x,y) into (2.3.2) and computing the
y-derivative.

0 0 0
aykp(zay)u @S(z)y) - a k (Z y)

2.4. The Formalism of the Continuum Limit

In Section we developed a method for analyzing the unregularized kernel of the
fermionic projector in position space (see the summary in . Our next goal is to
extend these methods in order to include an wultraviolet regularization. Following the
method of variable regularization (see Remark , the allowed class of regularizations
should be as large as possible. Moreover, we need to analyze in detail how the causal
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action and the corresponding EL equations depend on the regularization. As we shall
see, these issues can be treated conveniently in the so-called formalism of the continuum
limit, which is also most suitable for explicit computations.

The formalism of the continuum limit was first introduced in [E'7, Chapter 4], based on
earlier considerations in the unpublished preprint [F1]. In particular, the analysis in [E'7,
Sections 4.3—4.5] puts the formalism on a rigorous basis. For better readability, we here
follow the original ideas in [F'1] and develop the formalism from a more computational
perspective. This makes it possible to explain the main points of the formalism in a non-
technical way. Generalizing the concepts, we then obtain the formalism of the continuum
limit. In order avoid repetitions, we only outline the general derivation and refer the
reader interested in the details to [F'7, Sections 4.3-4.5] and Appendix

2.4.1. Example: The ic-Regularization. In Section [1.2] we introduced the UV
regularization in Minkowski space using general regularization operators (see Defini-
tion and the resulting regularized kernel in Proposition . In order to get
a better idea of what the effect of the regularization is, we now consider an explicit
example. To this end, we assume that the regularized kernel of the fermionic projec-
tor, denoted again by P¢(x,y), is homogeneous in the sense that it depends only on the
difference vector £ := y — x. Then the kernel can be written as a Fourier integral

4
Pe(z,y) = /(;lﬂl; P (k) emF—) (2.4.1)

with a distribution P¢ (k). From the computational point of view, the simplest possi-
ble regularization method is to modify the unregularized kernel (1.2.23)) by inserting a
convergence-generating exponential factor. This leads us to choosing

PE(k) = (F+m) 0(k*> —m?) ©(—k°) exp (k) (2.4.2)

where € > 0 is the regularization length. The convergence-generating factor ensures
that the Fourier integral converges pointwise for any vector & € . Moreover,
differentiating with respect to x or y gives rise to powers of k. Since these polyno-
mial factors are dominated by the convergence-generating exponential factor, the Fourier
integral again converges pointwise. We thus conclude that P¢(z,y) is a smooth function,

Pe(.,.) € Co°(l x L) .

Therefore, all composite expressions in the fermionic are well-defined (like the closed

chain (1.1.14)), its eigenvalues A\7Y, ... A5, the Lagrangian (1.1.9), the integrands in (1.1.4)
and ([1.1.5)) as well as the kernel Q(z,y) in ([1.4.16))). But clearly, the singularities on the

light-cone reappear in the limit € N\, 0, and the composite expressions will diverge. In
other words, the limit ¢ N\, 0 is a singular limit. Our goal is to analyze this singular limit
in detail.
The effect of the convergence-generating factor in (2.4.2) can be described conve-
niently in position space. Namely, introducing the short notations
w=k" and &= (t,2),
one can combine the exponential with the phase factor of the Fourier transform,
exp(sko) otk — eiw(t—z‘s)—iﬁf_
This shows that the regularization amounts to the replacement
t—t—ic. (2.4.3)
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This simple replacement rule motivates the name ie-regularization.

In order to illustrate how to work with this regularization, we next derive explicit
formulas for the fermionic projector of the vacuum with this regularization. Our starting
point is the light-cone expansion of the unregularized fermionic projector . More

specifically, pulling the Dirac matrices out of the Fourier integral (|1.2.25]) and expanding
in a Taylor series in the mass parameter using (2.2.118]) and (2.2.117]), we obtain

o0 2n
P (z,y) = (i@ +m) T2 = (i@ +m) <Z % T™ 4+ (smooth contributions)) .
n=0 )

Since we are again interested mainly in the behavior of the singularities, for simplicity
we shall disregard the smooth contributions. Clearly, such smooth contributions are im-
portant, and they also affect the singularities of composite expressions on the light cone
(for example if multiplied by a singular contribution when forming the closed chain). But
of course, smooth contributions can be treated in composite expressions in a straightfor-
ward way. Therefore, we now focus on the singularities and do all computations modulo
smooth contributions. Then the residual argument shows that the 7 satisfy the same
computation rules as the Green’s functions in (2.2.17)) and ([2.2.19)),

o 0 1 _
@T(l)( y) = *TykT(l)(x»?/) =5 70Dz, y) (2.4.4)

(again valid up to smooth contributions; for an explicit derivation see Exercise 2.21)). We
thus obtain the light-cone expansion

Pvac ’L;z Z ; ( 1+n) _|_ i
n:

n=0

2n+1
7™ (2.4.5)

(where in analogy to (2.2.24) we use (2.4.4) to define T(~1)).
The next step is to apply the replacement rule (2.4.3)). The factor ¢ becomes

{— = (t—ieh’ —&5. (2.4.6)

In order to regularize the factors T(!), we first note that, applying the replacement
rule to the distribution 7, computed in Lemma one really obtains a smooth
function. Moreover, using the series expansion , one can compute the factors 7
as defined by and . When doing so, it is most convenient to combine
the principal part with the §-contribution as well as the logarithm with the Heaviside
function by using the identities

?2 +imd () (&) =l 5
log }(y — ) ‘ +ir @(52) 6(50) = li{% <log (52 — iufo) — iﬂ),
14
where the logarithm is understood in the complex plane which is cut along the positive
real axis such that lim,\ o log(x + iv) is real for x > 0. This gives
1 1

83 t—zs ’a

W 5 32 log( ~ 1] ) (2.4.8)

7O 5 — (2.4.7)
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and similar for the other distributions 7). These replacement rules are compatible with
our earlier computation rules like (2.4.4). These rules can also be used to compute 7(-1)

via ([2.2.24)) to obtain
1 1

21 ((t—ig)2 — r2)?

7D , (2.4.9)

where we set r = |€].

Next, in we apply the replacement rule and replace the factors 7"
according to rules like f. We thus obtain the regularized fermionic projector
of the vacuum P?(x,y). The kernel P*(y,x) is obtained by taking the conjugate with
respect to the spin scalar product (see (|1.1.15) or (2.1.68)). Then one can form the
closed chain A, by and compute all other quantities of interest. In order to give
a concrete example, let us consider the massless case. Then

P(z,y) = % ¢ 1) and thus

i (t—igh’ - &y
AT (t—ie)2 — r2)?
£ 15 * i (t+’i€)’yo—§’7
P (yvx)*P (xvy) *R ((t+2‘€)2—7’2)2

Az = P (z,y) P*(y, 2)

1 1
167 |(t—i6)2 —7“2’4

Pa(‘rvy) =

—

((t —ie)y’ - W) ((t +ie)y’ - f?) :

Simplifying the Dirac matrices according to

(§ —ie7°) (£ +ie7®) = € —ie[y°, 4] + &2, (2.4.10)
we obtain
e _ 1 @) i’ g + ¢
Aoy = 155 i (2.4.11)

In order to compute the eigenvalues of this matrix, the task is to diagonalize the bilinear
contribution ie[y?, ¢]. The calculation

(iel°,])” = —422 1 ° (E9)1°(E7) = 4e? 1" (E7)(€7) = —4e? |2 < 0
shows that this bilinear contribution has complex eigenvalues. Thus the regularization
makes the spacelike region larger. As we shall see below, this happens in a much more
general setting. It is a desirable effect because it decreases the causal action.

Clearly, the singular behavior of the resulting expressions in the limit € N\ 0 is rather
complicated. However, one limiting case, which will be important later on, is relatively
easy to handle. This limiting case is to consider the region close to the light cone and
away from the origin. For simplicity, we restrict attention to the upper light cone t ~ r
(but clearly, the lower light cone can be treated similarly). Then “close to the light cone”

means that ¢ —r is much smaller than r, whereas “away from the origin” means that ¢ is
much smaller that . Under these assumptions, we have approximately

(t—ie)> —r? = (t+r—ie)(t —r —ic) = 2r (t —r —ic) .
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In order to make the approximation precise, we write the error term as

(t—ie)2 — 12 =2 (t —r —ic) <1 + o(t —1)+ o<€)> . (2.4.12)

r r

Computing up to error terms of this type, the above formulas (2.4.7)—(2.4.9) can be
simplified to

1 1

oo, 92.4.1
T8 2 (t—r—ie) ( 3)
1 .
7@ _y 39,3 log (2r (t—r— za)) (2.4.14)
7(-1) 1 ! (2.4.15)

— — .
8312 (t —r —ig)?
Using this approximation, the closed chain (2.4.11)) simplifies to

AE = 1 (tQ - T2) - ig['yO’ g] + 52
Y 25670 4 |t —r —iel* '

Moreover, the numerator can be further simplified. We first note that, since £ is close to
the light cone, the factor £2 can be arbitrarily small. Therefore, despite the factor e, the
summand e[y, ] cannot be left out. But the summand &2 is of higher order in ¢/r and
can be omitted. We conclude that

az = L (o) el gl <1+O(t_r)+o<5>>. (2.4.16)

Y 925676 4 |t —r — gl r r

Clearly, composite expressions diverge in the limit € N\, 0. In order to analyze this
singular behavior, the proper method is to evaluate weakly in ¢ for fixed r. Thus one
considers integrals of the form

/oo n(t) (---)dt (2.4.17)

“ kY

for a smooth test function 7, where stands for a composite expression in the 7

and T, Then “--” is a meromorphic function in ¢ with poles at ¢t = £r % ic. This
makes it possible to compute the integral with the help of residues. The reader interested
in an explicit example is referred to Exercise 2.20l Here we proceed by compiling and
explaining a few general conclusions which will be important later on.

(a) The integrand in has poles at t = +r +ie. Again restricting attention to the
upper light cone, we only need to consider the poles at t = r + 7. When computing
the residues at these points, the variable ¢ — r is of the order . Therefore, the two
error terms in become the same. For convenience, we usually write the error
terms as

-+ + (higher orders in /|¢]) . (2.4.18)

Moreover, the theorem of residues gives rise to contributions where the test function n
is differentiated. Every such derivative gives rise to an additional factor of . In order
to keep the dimensions of length, we write the resulting error terms in the form

+ (higher orders in €/lpacro) , (2.4.19)

where f a0 denotes the “macroscopic” length scale on which 7 varies.
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The scaling of the integral (2.4.17)) in € and r can be described by
T ~ (€)™ and  dt~e. (2.4.20)

The resulting scaling of a composite expression in powers of 1/(¢ |€]) is referred to as
the degree of the expression. One should carefully distinguish the powers of 1/(¢ |€])
defining the degree from the factors e/ |a appearing in the error terms in (2.4.18).
To make this distinction, it is important that we have two independent variables &
and |§7, and that we consider the scaling behavior in both variables. In this way,

when evaluating a sum of expressions of different degrees, our methods make it
possible to evaluate each degree separately, each with error terms of the form (2.4.18)|)

and ([2.4.19)).

The scaling behavior of the factors £° is more subtle, as we now explain. If a factor £°
is contracted to Dirac matrices or to a macroscopic function (like a gauge potential
or the Dirac current), we may simply disregard the regularization (2.4.6), i.e.

¢° = ¢ + (higher orders in £/|€])
& f7 =& f7 + (higher orders in e/1€))
(where f; is a macroscopic vector field). We refer to such factors £° as outer factors.
Two factors £ which are contracted to each other are called inner factors. Since the

resulting function &2 is very small on the light cone, the factor ¢ in (2.4.6) must be
taken into account, i.e.

(€)% = (t —ie)® — [€]* = 2 — |€* — 2iet — 2. (2.4.21)
But similar as in (2.4.12)), the quadratic term in € may be dropped, i.e.
(55)2 = - |§_]2 — 2iet 4 (higher orders in 6/]g|) ) (2.4.22)

The general rule is that in every contraction, the factors ie must be taken into
account linearly. This means in particular that the regularized factors £° are no
longer real, but must be treated as complex-valued vectors. Taking their complex
conjugate corresponds to flipping the sign of ¢, i.e.

& = (t + ie, E) .
Taking the adjoint of ¢° (with respect to the spin scalar product), we need to take
the complex conjugate of &%, i.e.

(&) =¢.
One must carefully distinguish £ and &¢ in all computations. B
Clearly, a factor £&° may also be contracted to a factor fa, or two factors 56 may be

contracted to each other. In these cases, we again refer to the factors £° and EE as
inner factors. Since we only take into account ¢ linearly, we get

(EE)Z = t? — |€]? + 2iet + (higher orders in /|€])
(&%) (Ea)j =t? - \5|2 + (higher orders in 5/\§|) .
Comparing these formulas with (2.4.22]), one sees that

(€); () = %((56)2 + (EE)2> + (higher orders in /[¢]) . (2.4.23)
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This identity will appear later in a much more general context as the so-called con-
traction rule.

After applying this contraction rule, one gets products of the form (£5)27®,
We remark that such products can be further simplified. Namely, according to the
residual argument, the rule also holds for S® replaced by T®, up to smooth
contributions. In fact, this rule even holds with regularization, i.e. for all [ > 0

(§(p))2 T® = —4p 701 4 (smooth contributions) (2.4.24)

(the smooth contributions are of course important, but they can be treated together
with the other smooth contributions to the fermionic projector as outlined in §2.2.8)).
The reader interested in the details of the derivation of the identity (2.4.24)) is referred
to Exercise 2.211

We mention one more structure which in the present example is easy to understand,
and which will come up in a more general context later on. Namely, suppose that
the composite expression “--” in can be written as a time derivative. Then
we can integrate by parts,

/OO n(t) (981;“ dt = —/Oo (On(t)) F(t)dt .

Since derivatives of the test function scale like factors 1/fmacro, this contribution is
much smaller than expected from the scalings (2.4.20). We write

oo F
/ n(t) %—t dt =0 + (higher orders in €/lmacro) - (2.4.25)

This relation shows that certain composite expressions in the factors 7 and 7"
vanish when evaluated weakly on the light cone. In other words, there are relations
between composite expressions.

These relations are expressed most conveniently in terms of so-called integration-
by-parts rules. The starting point for deriving these rules is the identity which
holds up to smooth contributions, i.e. for all I > 0

%T(l) (z,y) = % (y — 2), TV (,y) + (smooth contributions) (2.4.26)

(recall that in the case [ = 0, this relation serves as the definition of T(_l)). For an
explicit derivation of the identity (2.4.26|) we again refer to Exercise Considering
a derivative in time direction (and noting that 0, = —d,0), we obtain

1
aT(l) (z,y) = —5 t T (2, y) + (smooth contributions) .
Near the upper light cone, we can write this identity as
10
r Ot
+ (smooth contributions) + (higher orders in /|€]) .

1 -
TO(@,y) = -5 TV (a,y)

Introducing the abbreviation

V= (2.4.27)

~ | =

0
ot’
we thus obtain the relations

7= (2.4.28)
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Moreover, the identity (2.4.25)) can be written in the short symbolic form
V() =0+ (smooth contributions) + (higher orders in e/1€]), (2.4.29)

again stands for a composite expression in the T and T™).

We finally remark that, at this stage, neglecting all terms of the order (2.4.18) merely is a
matter of convenience. In fact, one can also take into account the higher orders in €/[¢]||

“ k)

where

by performing an expansion in powers of £/ ]a . Such an expansion is called regularization
ezpansion. We will come back to the regularization expansion in But before, we
analyze the situation for more general regularizations.

2.4.2. Example: Linear Combinations of ic-Regularizations. Clearly, the ie-
regularization is very special and ad-hoc. In order to get a first idea on what happens
for more general regularizations, it is instructive to consider linear combinations of ie-
regularizations. To this end, we choose an integer N and generalize (2.4.2)) to

N
PE(k) = (F +m) 6(k% —m?) ©(—k°) (Z ca exp (edq k0)> (2.4.30)

a=1
with positive parameters dy,...,dy and real numbers cy,...,cny which add up to one,
Cl+"'+CN:1-

In fact, by choosing N sufficiently large, with this ansatz one can approximate any regu-
larization of the form

Pe(k) = (F+m)5(k* — m?) O(=k°) h(k") (2.4.31)
corresponding to a regularization by convolution with a function h(t) (being a special
case of the regularizations in Example [1.2.4]).

For regularizations of the form (2.4.30]), we can again evaluate weakly on the light
cone (12.4.17). It turns out that the scalings in ¢ and |¢| are exactly the same as for the

ie-regularization. In order to see this in a simple setting, one can consider a polynomial
in 7" and T,

7). . pla) plna) .. ng) |

When evaluating weakly on the light cone, one can pull the sums of the linear combina-

tions in (2.4.30)) out of the integral, i.e.

/ n(#) T ... 7) T - 78) gy

N 00 - (2.4.32)

_ Sy Can oy / n(O T Tl 7 T gy
ai,..,0a,b1,...,bg=1 —o© ° ! ?

where Tén) denotes the ie-regularization with € replaced by ed. Again computing up
to the error terms (2.4.18)) and , one can again use the explicit formulas for 7™
like (2.4.13)—(2.4.15)) and analyze the integral with residues. The only difference compared
to the analysis of the ie-regularization is that one has many poles at positions t = r+ied,,
and the residue theorem gives sums over these poles. But obviously, this has no effect on
all scalings.
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The contraction of the inner factors must be handled with care, as we now explain.
Using (2.4.6) and forming linear combinations, one sees that the factor 7' is to be
regularized according to

N
g7 > o[t~ ieda)r - €7) T} (24.33)
a=1

(with T én) again as in (2.4.32)). When forming composite expressions, one must take into
account that the regularized factors & and T both carry the same summation index.
Therefore, one should regard the factors T and ¢ as belonging together. It is useful to
make this connection explicit in the notation. Therefore, we discard and introduce
instead the more general rule
;fT(") N 52#(71) 7" |
where the right side is a short notation for the sum in .
Contracting two inner factors ¢ in this formalism gives

N .
(£0), 7O (MY 70 = 37 cuey (¢~ ieda), € )j T ((t—iedy), €) 75"

a,b=1

N
=Y e TV T <t2 —ietdy — ictdy — e2dady — yé’\?) . (2.4.34)
a,b=1
This is considerably more complicated than (2.4.21)). However, if as in (2.4.22]) we drop
the term quadratic in ¢, the formula can be simplified to

(5(p))j 7(1) (5(q))j (1)
N
= Z CaCy Téa) Tcg:) (t2 —ietd, — ictdy — |§_]2> + (higher orders in £/|¢])  (2.4.35)
a,b=1
1 & (1) ro(n) , -\ 2 . -\ 2
=3 > an T T, <<(t—zsda),§> + (¢~ iedy), €) ) (2.4.36)
a,b=1

+ (higher orders in 6/|€])
1 —
9 <(£(l))2 + (f(n))Q) 7O T 4 (higher orders in €/|¢]) , (2.4.37)

where the squares in (2.4.36]) denote the Minkowski inner product, and where in the last
step we introduced the notation

(€270 = ica ((¢—ieda)® — |€]°) 32 (2.4.38)
a=1
In this way, the contraction rules can be generalized to
(€O (€)= 5 (€0 + (™)) (2.4:39)
Similarly the contraction rule becomes
(€0 &), = 5 (€07 + @), (2.4.40)
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We remark that this product can again be simplified using (2.4.24)), giving rise to the

computation rule

(f( N2 70 = —4p T 4 (smooth contributions)

We also remark that the integration-by-parts rules (2.4.28)) and (2.4.29) with V according
o0 (2.4.27) remain valid, as one sees immediately by applying (2.4.28) to each summand

in ([2.4.30) and by noting that ([2.4.25) holds for any regularization.

Working with linear combinations of is regularization gives a first hint why one should
disregard error terms of the form and 4 19)), as we now explain. Using the
method of variable regularization (see Rernark We must show that the structure
of the effective equations in the continuum hrnit does not depend on the details of the
regularization. Evaluating weakly on the light cone and neglecting error terms of the
form and , one gets relatively simple computation rules (like ,
(2.4.40) or (2.4.24))), giving rise to a formalism which captures the structure of the EL
equation independent of regularization details. However, for example the quadratic term

in € in (2.4.34)

N

— 2N cucy dady TN T (2.4.41)

a,b=1
has a different structure. Namely, even after prescribing linear moments as they appear
in , there is a lot of freedom to give the quadratic term in (2.4.41) an arbitrary
value. More generally, if we computed the terms (2.4.18)) or (2.4.19)), these contributions
would depend on the regularization in a complicated way, so much so that without know-
ing the regularization in detail, it would be impossible to evaluate these contributions.
This is the reason why we shall disregard these contributions. Clearly, at this stage, the
above argument is not quite satisfying because notions like “complicated” and “know-
ing the regularization in detail” are somewhat vague. The argument will be made more

precise in using Fourier methods.

2.4.3. Further Regularization Effects. Working with linear combinations of ie-
regularizations, one is still in the restrictive class of regularizations of the form
where the unregularized distribution is multiplied in momentum space by a convergence-
generating function B(k‘o). Considering more general regularizations gives rise to addi-
tional effects. We now list those regularization effects will be important later on:

» The support of the distribution in can be slightly deformed from the hyper-
boloid to another hypersurface. It turns out that in this case, one can still perform
a mass expansion of the form . But the regularization of the factors T also
depends on the power of the mass in the corresponding contribution to the fermionic
projector. In order to implement this effect into our formalism, one adds a sub-
script [] to the factors T which counts the power in m. Thus we regularize the
contributions to the light-cone expansion according to the rule

mP T —5 P T
[p] -

For example, the regularization of the light-cone expansion of the vacuum ([2.4.5])
now takes the form

2n ig(_H”) o0 p2ntl

£ _ > m 1+n
P(fL‘,y)—Z n T [2n] +Z n! [2n+1]

n=0
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Regularizing the fermionic projector in the presence of an external potential, one gets

(n)

contributions involving factors T[p} with the same n but different values of p. These

factors must be treated as being different (although they clearly coincide without
regularization).

» The direction of the vector k which appears in the factor £ in can be slightly
changed by the regularization. This leads to the notion of the shear of surface states.
This effect is of importance when inner factors are contracted. More precisely, one
needs to modify the calculation rule (2.4.24) to

(é:(p))2 T[S]L) — 4 <n T&LH) + T{(;;ﬂ)) + (smooth contributions) ,

@

corresponding factors with square brackets but are regularized differently.

» There may be additional contributions to P(k:) which lie outside the hyperboloid
in or the deformation thereof. It turns out that the resulting contributions
can be absorbed into the error terms (2.4.18)) and (2.4.19) (for details see §2.4.5).

We also remark that the regularization of neutrinos is more involved because the regu-
larization must break the chiral symmetry and because the corresponding Dirac sea can
“mimic” a Dirac sea of a different mass. In order not to distract from the main points
of our construction, these extensions of the formalism will be introduced later when we

need them (see Section [4.2).

where the factors T} % with curly brackets have the same scaling behavior as the

2.4.4. The Formalism of the Continuum Limit. After the above motivation
and preparations, we now present the formalism of the continuum limit. In we
shall outline the derivation of this formalism as first given in [F7, Chapter 4].

Before beginning, we point out that we work modulo smooth contributions throughout.
The reason for this procedure is that the smooth contributions can be computed in a
straightforward manner by first evaluating composite expressions away from the light
cone (where they are smooth) and taking the limit when y — = approaches the light
cone. Clearly, computing the smooth contributions is important and not always easy (for
details see Appendix @ But these computations are not related to the problem of the
singularities on the light cone to be considered here.

Our starting point is the light-cone expansion of the unregularized fermionic projec-
tor P(z,y) (as given in . In order to regularize the light-cone expansion on the
length scale e, we proceed as follows. The smooth contributions are all left unchanged.
For the regularization of the factors T, we employ the replacement rule

m? T — mr 71 (2.4.42)

where the factors T[;?) are smooth functions of £&. Fortunately, the rather complicated

detailed form of the factors T;n) will not be needed here, because these functions can be
treated symbolically using the following simple calculation rules. In computations one
may treat the T[S]L) like complex functions. However, one must be careful when tensor
indices of factors ¢ are contracted with each other. Naively, this gives a factor £2 which
vanishes on the light cone and thus changes the singular behavior on the light cone.
In order to describe this effect correctly, we first write every summand of the light cone
expansion such that it involves at most one factor ¢ (this can always be arranged
using the anti-commutation relations of the Dirac matrices). We now associate every
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)

by putting brackets around the two factors, whereas in the general situation we add
corresponding indices to the factor ¢, giving rise to the replacement rule

factor ¢ to the corresponding factor 7| [;T]Z . In short calculations, this can be indicated

mP T — P g1 T (2.4.43)

For example, we write the regularized fermionic projector of the vacuum as

e (—14n) (- 10) | N
Pa—§Z T S Tian +Z

n=0

2n+1

(n)
Tiont) -

The kernel P(y, x) is obtained by taking the conjugate (see (2.1.68))). The conjugates
of the factors T[;?) and f[(]:]L) are the complex conjugates,

(n) ._ (p(n)y* PO ON
Ty = (T)"  and &= (&)
One must carefully distinguish between these factors with and without complex conjuga-
tion. In particular, the factors ¢ [(;L]) need not be symmetric,

(Zgj))* # gf;]) in general .
When forming composite expressions, the tensor indices of the factors & are con-
tracted to other tensor indices. The factors £ which are contracted to other factors £ are

called inner factors. The contractions of the inner factors are handled with the so-called
contraction rules

R o R N O B )
(g[p] )? (5@/} )j = 5 (Z[p} + 2 ) (2.4.44)
n ] n’ 1 n'
€ €D =5 (4 + ) (2.4.45)
L) () _ (nt1) | p(nt2)
4 T = =4 (n TV + 7). (2.4.46)

which are to be complemented by the complex conjugates of these equations. Here the

(n)

factors 2, can be regarded simply as a book-keeping device to ensure the correct appli-

cation of the rule (2.4.46[). The factors T E;}) have the same scaling behavior as the T[S]L),

but their detailed form is somewhat different; we simply treat them as a new class of
symbols. In cases where the lower index does not need to be specified we write To(n).
After applying the contraction rules, all inner factors £ have disappeared. The remaining

so-called outer factors £ need no special attention and are treated like smooth functions.
Next, to any factor To(”) we associate the degree deg To(n) by

degTo(n) =1-—n

The degree is additive in products, whereas the degree of a quotient is defined as the
difference of the degrees of numerator and denominator. The degree of an expression can
be thought of as describing the order of its singularity on the light cone, in the sense
that a larger degree corresponds to a stronger singularity (for example, the contraction
rule increments n and thus decrements the degree, in agreement with the naive
observation that the function z = &2 vanishes on the light cone). Using formal Taylor
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series, we can expand in the degree. In all our applications, this will give rise to terms of
the form
(a1) (aa) n(b1) (bs)
n(z,y) Lo To u with n(x,y) smooth . (2.4.47)
rlen . ople) pldy) o p(ds)
The quotient of the two monomials in this equation is referred to as a simple fraction.
A simple fraction can be given a quantitative meaning by considering one-dimensional
integrals along curves which cross the light cone transversely away from the origin £ = 0.
This procedure is called weak evaluation on the light cone. For our purpose, it suffices to
integrate over the time coordinate ¢ = £9 for fixed E # 0. Moreover, using the symmetry
under reflections & — —&, it suffices to consider the upper light cone t &~ |a . The resulting
integrals diverge if the regularization is removed. The leading contribution for small
can be written as

/§|+a L gl plaa) (o) | pbs) o = Creg log” (£]€])
|

dt n(t, Y , =
g "M e g ) G T

where L is the degree of the simple fraction and c,eg, the so-called regularization param-

. (2.4.48)

eter, is a real-valued function of the spatial direction E / |5’ which also depends on the
simple fraction and on the regularization details (the error of the approximation will be
specified below). The integer r describes a possible logarithmic divergence. Apart from
this logarithmic divergence, the scalings in both £ and ¢ are described by the degree.
When analyzing a sum of expressions of the form , one must know if the
corresponding regularization parameters are related to each other. In this respect, the
integration-by-parts rules are important, which are described symbolically as follows. On

the factors T. o(n) we introduce a derivation V by
v =i

Extending this derivation with the Leibniz and quotient rules to simple fractions, the
integration-by-parts rules state that

(a1) (aa) rp(b1) (bs)
i) oplae) plon) o
\Y —— | =0. (2.4.49)

ien) L oplen) pld) o plds)

These rules give relations between simple fractions. The name is motivated by the
integration-by-parts method as explained for the ie-regularization in . Simple
fractions which are not related to each other by the integration-by-parts rules are called
basic fractions. As shown in [E7, Appendix E|, there are no further relations between
the basic fractions. Thus the corresponding basic reqularization parameters are linearly
independent.

The above symbolic computation rules give a convenient procedure to evaluate com-
posite expressions in the fermionic projector, referred to as the analysis in the continuum
limit: After applying the contraction rules and expanding in the degree, the EL equations
can be rewritten as equations involving a finite number of terms of the form (2.4.47). By
applying the integration-by-parts rules, we can arrange that all simple fractions are basic
fractions. We evaluate weakly on the light cone and collect the terms accord-
ing to their scaling in . Taking for every given scaling in £ only the leading pole in ¢,
we obtain equations which involve linear combinations of smooth functions and basic
regularization parameters. We consider the basic regularization parameters as empirical
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parameters describing the unknown microscopic structure of space-time. We thus end up
with equations involving smooth functions and a finite number of free parameters. We
point out that these free parameters cannot be chosen arbitrarily because they might be
constrained by inequalities (see the discussion after [F7, Theorem E.1]). Also, the values
of the basic regularization parameters should ultimately be justified by an analysis of
vacuum minimizers of the causal action principle.

We finally specify the error of the above expansions. By not regularizing the bosonic
potentials and fermionic wave functions, we clearly disregard the

higher orders in €/fpacro - (2.4.50)
Furthermore, in ([2.4.48]) we must stay away from the origin, meaning that we neglect the

higher orders in /€] . (2.4.51)

The higher oder corrections in /|¢] depend on the fine structure of the regulariza-
tion and thus seem unknown for principal reasons. Neglecting the terms in (2.4.50))
and also justifies the formal Taylor expansion in the degree. Clearly, leaving
out the terms is justified only if |€| > e. Therefore, whenever using the above

formalism, we must always ensure that |§| is much larger than ¢ (we will come back to

this point in §2.6.5 §3.5.2 and Appendix [A]).

2.4.5. Outline of the Derivation. We now outline the derivation of the formalism
of the continuum limit (for more details see [E'7, Chapter 4]). The method relies on an
asymptotic analysis of the Fourier integral (2.4.1]),

Pe(z,y) = / 'k P (k) eke (2.4.52)

? (271-)4 . Wk,
For simplicity, we begin the analysis for the scalar component, i.e. we consider the case
P*(p) = ¢(p) f(p) (2.4.53)

(the vector component will be treated after below). We may assume that the
spatial component of the vector £ points in the direction of the z-axis of our Cartesian
coordinate system, i.e. y —x = (t,7,0,0) with » > 0. Choosing cylindrical coordinates w,
k, p and ¢ in momentum space, defined by p = (w,p) and p'= (k, p cosy, p sing), the
Fourier integral becomes

1 oo 00 [e9) 2m A, it ik
P(x,y) = (2#)4/ dw/ dk/ ,odp/ dp P(w, k, p, p) et=r (2.4.54)
—o0 —00 0 0

Since the exponential factor in this formula is independent of p and ¢, we can write the
fermionic projector as the two-dimensional Fourier transform

P(z,y) = 2/ dw/ dk h(w, k) e™t=ikr (2.4.55)

of a function h defined by

0 27
h(w,m:mﬂry /0 pip [ o (6 Pl kepip). (2.4.56)

We want to analyze P(x,%) close to the light cone (y — x)? = 0 away from the origin
y = z. Without loss of generality, we may restrict attention to the upper light cone t = 7.
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Thus we are interested in the region ¢ ~ r > 0. The “light-cone coordinates”

1 1
525(75—1"), lzi(t#—r) (2.4.57)
are well-suited to this region, because the “small” variable s vanishes for ¢t = r, whereas

the “large” variable ! is positive and non-zero. Introducing also the associated momenta

u=—k—-w, v=k—-w, (2.4.58)
we can write the fermionic projector as
P(s,l) = / du/ dv h(u,v) e s (2.4.59)

Let us briefly discuss the qualitative form of the function h, (2.4.56)). Without
regularization, the scalar component is given by the d-distribution on the lower mass
shell P = m §(p? —m?) ©(—p°). In this case, the integral (2.4.56)) can be evaluated to be

oo 2
__m 2_ 2 2 2 _
h = 2(277)4/0 pdp/o dp §(w” — k* — p* —m*) O(—w)

m m

= 1o 2n)? O(w? — k* —m?) O(—w) = 39,3
Thus integrating over p and ¢ yields a constant function in the interior of the two-di-
mensional “lower mass shell” w? — k> = m?, w < 0. From this we conclude that for
small momenta, where the regularization should play no role, the function A should have
a discontinuity along the hyperbola {uv = m?, u > 0}, be zero below (i.e. for uv < m?)
and be nearly constant above. The precise form of h for large energy or momentum can
be arbitrary. We only know that h decays at infinity.

It is instructive to discuss the energy scales. Clearly, one scale is given by the regular-
ization length €. In momentum space, this corresponds to the high energy scale e 1. We
sometimes refer to the region |w|+ |k| > 7! as the high energy region. The relevant low
energy scale, on the other hand, is em? (it is zero for massless fermions). This is because
the hyperbola uv = m? comes as close to the v-axis as as v ~ em? before entering the
high energy region. Finally, the Compton scale m lies between the low- and high energy
scales,

O(uv — m?) O(u) . (2.4.60)

em? <m <e L.
Since we want to analyze the situation close to the light cone, we choose the “small”
light-cone parameter s on the regularization scale, i.e.
s<eg. (2.4.61)

The “large” light-cone parameter [, on the other hand, is non-zero. We shall always
choose this scale between the regularization scale and the Compton scale,

1
el —. (2.4.62)
m

Since em < 1, the inequalities in still leave us the freedom to vary [ on many
orders of magnitude.

Our task is to evaluate the Fourier integral using the scales and
(2.4.62). In preparation, we discuss and specify the function h(u,v) for fixed w, also
denoted by h,(v). Without regularization (2.4.60)), the function h, has a discontinuous
“jump” from zero to a finite value on the hyperbola. Therefore, we cannot expect that h,,
is continuous when a regularization is present. On the contrary, the decay for large v
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suggests that h, might have another discontinuity for large v, where it might “jump” to
zero. In order to keep the presentation reasonably simple, we assume that h, is always
of this general form, i.e.

B 0 for v < ay or v > By
hu(v) = { smooth for a, < v < f3, (2.4.63)

with parameters o, < (,. The case of less than two discontinuities can be obtained from
by setting hy, () or hy(B,) equal to zero, or alternatively by moving the position
of the discontinuities c,, or 8, to infinity. We remark that the discontinuity at v = 3, will
become irrelevant later; it is taken into account only in order to explain why the behavior
of the fermionic projector on the light cone is independent of many regularization details.
Without regularization (2.4.60), the function h,(v) is constant for v > a,. Thus the
v-dependence of h,(v) for a,, < v < B, merely is a consequence of the regularization, and
it is therefore reasonable to assume that the v-derivatives of h,(v) scale in powers of the
regularization length . More precisely, we assume that there is a constant ¢; < [/e such
that
b (v)] < (c1€)"™ max |hy| for o, <w < By, (2.4.64)
where the derivatives at v = «,, and (3, are understood as the right- and left-sided limits,
respectively. This regularity condition is typically satisfied for polynomial, exponential
and trigonometric functions, but it excludes the case that the function h, has small-scale
fluctuations. Clearly, we could also consider a more general ansatz for h, with more
than two discontinuities or weaker regularity assumptions. But this does not seem to be
the point because all interesting effects, namely the influence of discontinuities for small
and large v as well as of smooth regions, can already be studied in the setting ,

(12.4.64]).
Let us analyze the v-integral of the Fourier transform ([2.4.59)),

P,() := / h hu(v) e ™ du . (2.4.65)

—00

According to the left inequality in (2.4.62)), the exponential factor in (2.4.65)) is highly
oscillatory on the scale v ~ 1/e. Thus we can expect that the smooth component of

h,, only gives a small contribution to the integral (2.4.65)), so that the discontinuities at
o, and (B, should play the dominant role. In order to make this picture mathematically
precise, in (|2.4.65|) we iteratively integrate K times by parts,

Bu ) 1 [Bu d )
P(l) = / haw) e do = / Ao () e

— 7 hu(v) 6—wl + l/ h;(v) e—wl dl = ... =
Qq U Jq,
K-1 K
1 1 n . ﬁu 1 Bu .
=— (u) A (v) e~ o <zl> / A () e ™ dl.  (2.4.66)
n=0 “ Ay

If we bound all summands in (2.4.66)) using the first inequality in (2.4.62)) and the regu-
larity condition (2.4.64)), each v-derivative appears in combination with a power of [ =1,
and giving a factor c¢1e/l < 1. Thus in the limit K — oo, we may drop the integral in

(2.4.66)) to obtain

Bu

(2.4.67)



2.4. THE FORMALISM OF THE CONTINUUM LIMIT 137

This expansion converges, and its summands decay like (c1e/1)".

Using ([2.4.65)), we can write the Fourier transform ([2.4.59)) as
o0
P(s,l) = / P,(l)e "™ du . (2.4.68)
—00

Notice that, apart from the constraints (2.4.62)), the “large” variable [ can be freely
chosen. We want to study the functional dependence of (2.4.68)) on the parameter [. In
preparation, we consider an integral of the general form

b
/ Flu) e gy, | (2.4.69)

where we assume that (u,7y(u)) is a curve in the high energy region in the sense that v ~
1/e. Furthermore, we assume that « is monotone with |y/| ~ 1 and that (b—a) ~ 1/e. By
transforming the integration variable, we can then write (2.4.69) as the Fourier integral

7v(b) ,
/( | fFl e dy. (2.4.70)
v(a

If the function f |7/|~! is smooth, its Fourier transform has rapid decay in the
variable [. Under the stronger assumption that f|y/|~! varies on the scale 1 /¢, we conclude
that the length scale for this rapid decay is of the order [ ~ . As a consequence, the
rapid decay can be detected even under the constraint | < l.x imposed by ,
and we say that has rapid decay in . The reader who feels uncomfortable with
this informal definition can immediately make this notion mathematically precise by an
integration by parts argument similar to imposing for f |7/|~! a condition of type
(2.4.64). The precise mathematical meaning of rapid decay in [ for the integral
is that for every integer k there should be constants ¢ ~ 1 and parameters lmin, lmax in
the range ¢ < lpin < lmax < 1/m such that for all I € (Iyin, lmax),

/f el du<c /|f )| du .

We return to the analysis of the integral (2.4.68)). The boundary terms in (2.4.67)) at
Bu yield contributions to P(s,!) of the form

—<Zl> / W (B) e~ Pul=tus gy (2.4.71)

According to (2.4.61)), the length scale for the oscillations of the factor exp(—ius) is
u ~ 1/e. Under the reasonable assumption that 3, is monotone and that the functions

|3’ (u)|~* and hgn) (B4) vary on the scale 1/e, the integral (2.4.71)) is of the form ([2.4.70)),
and the above consideration yields that (2.4.71)) has rapid decay in I. We conclude that

it suffices to consider the boundary terms in (2.4.67)) at a,. Using this result in (2.4.68|),

we obtain
&8 1 n+1 ) )
P(s,l) = Z <zl> / A () et~ dy, + (rapid decay in 1) . (2.4.72)
n=0 o

The integral (2.4.72) cannot be estimated again using the “oscillation argument”
after (2.4.69), because, according to (2.4.60), the function «, tends asymptotically to
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zero for large u, so that the factor exp(—ia,,l) is non-oscillating in this region. Instead,
we expand this factor in a Taylor series,
Ps,)= 3 = (ityn-! / B () (=) e~ du (2.4.73)
nk=0 " o

Let us discuss this expansion. Without regularization (2.4.60)), the function v, = m?/u
involves the mass. Therefore, expanding in powers of «y Corresponds precisely to the
expansion in the mass expansion as considered earlier (see (2.2.8 and m and the
explanations thereafter). With this in mind, we can regard (2 as a generalization of
the mass expansion to the setting with regularization. This expansion is clearly justified
if ayl < 1. However, as the function m?/u has a pole at u = 0, the function a,
becomes large for small u, so that it is not clear whether the mass expansion is sensible.
Indeed, this issue is closely related to the logarithmic mass problem which was mentioned
in and was resolved by working with the “regularized” distribution 7, (2.2.117).
In the present setting, this “regularization procedure” can be understood as follows: For
small momenta u < 1/¢, our oscillation argument after again applies and shows
that the resulting contribution to P(s,l) decays rapidly in [. Therefore, disregarding
contributions with rapid decay in [, we may restrict attention to the region u = ¢ where

< Oax <K l][naX . (2.4.74)

Then «,l < 1, justifying the mass expansion (|2 .

For a fixed value of £ — n, all summands in have the same [-dependence.
Let us compare the relative size of these terms. According to our regularity assumption
, the derivatives of h scale like h&n) ~ g™, Using the bound , we conclude
that, for a fixed power of [, the summands in decrease like (eamax)™. Thus it is a
very good approximation to drop the summands for large n. At first sight, it might seem
admissible to take into account only the first summand n = 0. But the situation is not
quite so simple. For example, it may happen that, when restricted to the curve (u, ay,),
the function h(u,v) is so small that the summands for n = 0 in are indeed not

(no

dominant. More generally, we need to know that for some ng > 0, the function h,, )(au)
is really of the order given in (2.4.64)), i.e.
1h{") ()| > ¢ (e1€)™ max|hy| (2.4.75)

with a positive constant ¢ which is of the order one. If this condition is satisfied, we may
neglect all summands for n > ng, and collecting the terms in powers of [, we conclude
that

P(s,1)

no —
_ (_1)710 " > (n) k—no+n ,—ius
= Zln0+1§: —it Y G—ngrny ) (o) a0 e du

n=max(no—k,0)

+ Z (il) (inn+1 / h&”)(au) e ™ du + (rapid decay in [)
n=ng +1 oo

+ (higher orders in eamax) - (2.4.76)
We point out that, according to (2.4.74)),

EQmax K 8/lmax 5
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and this explains why we disregard the higher orders in eapmax. In our case, the function
h, has in the low energy region according to (2.4.60) the form h, () = m/(3273) O(u).
Hence it is natural to assume that (2.4.75) is satisfied for ng = 0. Introducing the shorter
notation

h(u) = hy(o(w)), hMw) = hrM (), a(u) =y, (2.4.77)

we have thus derived the following result.

Expansion of the scalar component: Close to the light cone (2.4.61)), (2.4.62)), the
scalar component (2.4.53|) of the fermionic projector of the vacuum has the expansion

1 = (_Zl)k > —ius
P(s,0) = & 2 / h ot e dy, (2.4.78)
=0 o0
[n] ,—ius
+n§_:1 Gy /_ Ooh e~ dy (2.4.79)
+ (rapid decay in [) + (higher orders in eamax) (2.4.80)

with suitable reqularization functions h, h™ and . In the low energy region u < 1/e,
the reqularization functions are

m m2

h(u) = 25— O(u), APy =0,  a(u)=a, = —- (2.4.81)

In this expansion, the [-dependence is written out similar to a Laurent expansion. The
main simplification compared to our earlier Fourier representation is that the dependence
on the regularization is now described by functions of only one variable, denoted by h,
hl" and . In composite expressions in P(s,[), we will typically get convolutions of these
functions; such one-dimensional convolutions can be easily analyzed. The simplification
to one-dimensional regularization functions became possible because many details of the
regularization affect only the contribution with rapid decay in I, which we do not consider

here. Notice that the summands in ([2.4.78) and ([2.4.79) decay like (I cumax)*/k! <

(1/lmax)®/K! and (¢/1)", respectively. In the low energy limit (2.4.81), the expansion
[2.4.78) goes over to a power series in m?, and we thus refer to (2.4.78) as the mass

expansion. In the mass expansion, the regularization is described by only two functions
h and «. The series (2.4.79)), on the other hand, is a pure regularization effect and is
thus called the regularization expansion. It involves an infinite number of regularization
functions A", Accordingly, we will use the notions of mass and regularization expansions

also for other expansions of type ([2.4.76)).
We now outline how to extend the previous analysis to the vector component. More

precisely, we will analyze the Fourier integral (2.4.52) for
P*(p) = vj(p) ¥’ f(p) (2.4.82)

close to the light cone. We again choose light-cone coordinates (s, [, x9, x3) with y — x =
(s,1,0,0) (s and [ are given by (2.4.57), while 25 and x3 are Cartesian coordinates in
the orthogonal complement of the si-plane). The associated momenta are denoted by

p = (u,v,p2, p3) with u and v according to (2.4.58). As in (2.4.55)), we integrate out the

coordinates perpendicular to v and v,

iy, ) = 2(21@4 / ~ / s (0 F)(wv.p2.p) (2.4.83)
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We thus obtain a representation of the fermionic projector involving two-dimensional
Fourier integrals

P(s,1) =~ Pj(s,1)
with
Pj(s,1) := / du/ dv hj(u,v) e~tUstel) (2.4.84)

The tensor indices in (2.4.83) and ([2.4.84]) refer to the coordinate system (s,l, x2,x3).
For clarity, we denote the range of the indices by j = s,1, 2, 3; thus

1

1
=50, A =50+, (2.4.85)

where 70, ..., 4> are the usual Dirac matrices of Minkowski space. Since without regular-
ization, P = p d(p* — m?) ©(—p°), the functions h; can be computed similar to ([2.4.60)
to be

v hj(u,v) = (—uy® —vy!) O(uv — m?) O(u) . (2.4.86)

1
32m3
This limiting case specifies the regularized h;(u,v) for small energy-momentum u,v <
1/e. In order to keep the form of the functions h; in the high energy region sufficiently
general, we merely assume in what follows that the functions h; have all the properties
which se assumed for the function h above. This gives the following result.

Expansion of the vector component: Close to the light cone (2.4.61)), (2.4.62)), the
vector component (2.4.82)) of the fermionic projector of the vacuum has the expansion
P = ~3 Pj with

Py(s,l) = ] Z ( li') / —U gs o e duy

k=0 ' >
+ i L /00 —u gl e
2yt |
+ (rapid decay in [) + (higher orders in camax) (2.4.87)

— 1 o (7Zl)k > k b k—1 —ius
P(s,l) = GE 2 o /OO [(k—l)a + kaoz gre " du

1 > [n] —ius
+Z (il>n+2/ —(n+1)g, e du
n=1 >
+ (rapid decay in I) + (higher orders in eamax) (2.4.88)

1 & (=il
P%(S’l):(il)?kz_o( k:!)

- 1 o [n]  —jus
* 3 gy | e

/ [ak + k B ak_l] gap e " du
o U

+ (rapid decay in [) + (higher orders in camax) (2.4.89)

and suitable reqularization functions g;, g][-n], b, bys and the mass reqularization function

a as in (2.4.78) and (2.4.81). In the low energy region u < 1/e, the reqularization
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functions have the form

go(w) = 535 Ou), gl(w) =0 (2.4.90)
a(u) = % o),  g™(w) =bu) =0 (2.4.91)
gop(u) = gop(u) = byg(u) = 0. (2.4.92)

In order to explain these formulas, we consider the situation where, like in the case
without regularization, the vector v(p) in (2.4.82)) points into the direction p. In this case,
we can write the vector component as

PE(p) = p;v’ (of)(p) (2.4.93)

where (¢ f) has the form of the scalar component as considered above. Since multiplication
in momentum space corresponds to differentiation in position space, we obtain for (2.4.84)

3 0

S 0 0 0
P(s,l) = —i (’Y Bs +’YZE+’YZ@ + 7y 8:63) Pscalar (s, 1) ,

where Pialar is the scalar component (2.4.59) with h as in (2.4.56)). We now substitute
for Picalar the expansion on the light cone (2.4.78)—(2.4.80) and carry out the partial
derivatives. For the s- and [-components, this gives exactly the expansions (2.4.87)),

(2-4.88) with

g=a=h, g"=g"=n" b=o0. (2.4.94)

For the components j = 2,3, the calculation of the partial derivatives is not quite so
straightforward because the expansion of the scalar component ([2.4.78))—(2.4.80) was car-
ried out for fixed x2 and x3. Nevertheless, one can deduce also the expansion ([2.4.89))
from 1) if one considers z9 and 3 as parameters of the regularization func-
tions A, h!™ and «, and differentiates through, keeping in mind that differentiation yields
a factor 1/1 (to get the scaling dimensions right). In this way, the simple example (2.4.93)
explains the general structure of the expansions f. We point out that the
regularization function b vanishes identically in . This means that b is non-zero
only when the direction of the vector field v is modified by the regularization. Thinking
in terms of the decomposition into the one-particle states, we refer to this regularization
effect as the shear of the surface states.

The derivation of these formulas uses the same methods as for the scalar components.
The analysis is a bit more subtle because one must carefully analyze the scaling of the
different components. We refer the interested reader to [E7), Section 4.4].

Computing composite expressions using the above Fourier representations, one read-
ily verifies the calculations rules stated in The details can be found in [F7,
Section 4.5].

2.5. Computation of the Local Trace

When deriving the EL equations in §1.4.1, we showed in Proposition that for
every minimizer of the causal action principle, the local trace is constant in space-time.
We also argued that this condition should be satisfied by the rescaling . In
the Minkowski vacuum, the local trace is obviously constant because the kernel of the
fermionic projector is translation invariant (see our ansatz ) But in the presence
of an external potential, the local trace will in general no longer be constant, making it
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necessary to perform the rescaling (1.4.11)). We now explain how to compute the local
trace and discuss the effect of the rescaling (|1.4.11)).

We begin by noting that, using the abstract definition of the kernel of the fermionic
projector (1.1.13)), we know that the local trace can be computed by

tr(z) = Trg, (P°(z,2)) .

In what follows, we usually omit the subscript S, and regard Tr as the trace of a 4 x 4-
matrix. In the vacuum, one can compute this trace from (2.4.52) to conclude the scaling

Trg, (P°(z,2)) = ¢ :L—Q <1 + O(ms)) , (2.5.1)

where the constant ¢ depends on the regularization method (for an explicit computation
in the ie-regularization see Exercise .

In the next proposition we specify how the local trace is affected by the external
potential.

PROPOSITION 2.5.1. In the presence of a smooth external chiral potential (2.2.25)
with the properties as in Lemma[2.1.3, the contribution AP to the fermionic projector to
order n in perturbation theory influences the local trace only by an error term of the form

€

Trg, (AP‘E(:U,Q:))‘ < ¢ : (2.5.2)

where the constant C' depends on m, n as well as on the potential B and its partial
derivatives. Moreover, the function Trg (AP®(x,x)) is smooth in x.

This result implies that, when rescaling the causal fermion system according to ,
we only pick up smooth error terms of the order &/lpacro. Since such error terms are
neglected in the continuum limit (see (2.4.50))), we may disregard the rescaling (1.4.11)).
This is the reason why the rescaling will not be considered further in this book.

Before coming to the proof of the above proposition, we note that for a gravitational
field, the situation is more involved. Namely, for linear gravity as considered in Section[2.3]
the change of the local trace is typically of the order

Trg, (AP (z,2)) ~ 6@ O(h) . (2.5.3)

Clearly, this is sufficient in order to treat a weak gravitational field. However, when
constructing causal fermion systems non-perturbatively in curved space-time (as is done
in [FR2| Section 4]), the macroscopic space-time dependence of the local trace must be
taken into account, meaning that the rescaling procedure will change the causal
fermion system substantially. The same is true if a scalar potential is considered, because
in this case the local trace takes the form

Trs, (P°(z,)) = 5% m + o(é) , (2.5.4)

where the potential B again includes the mass (2.2.10|) (for the derivation see Exer-
cise [2.23)).

PROOF OF PROPOSITION 2.5.1] As shown in Theorem to every order in per-
turbation theory, the non-causal high energy contribution p — p is a smooth function
in x and y. Therefore, it is even bounded for x = y, and we do not need to consider
it here. Hence it suffices to consider the perturbation expansions for k and p'. These
perturbation expansions must be regularized on the scale €. The procedure for this is



2.5. COMPUTATION OF THE LOCAL TRACE 143

explained in the appendix (see Appendix . In order to keep the presentation as simple
as possible, here we shall not enter the regularized causal perturbation theory. Instead,
we consider the unregularized perturbation expansion and make use of the fact that the
regularization gives rise to a decay in momentum space on the scale e~!. This simplified
procedure will be justified by a short remark at the end of the proof.

In view of and , instead of k and p' we can just as well consider
the causal Green’s functions s and sV (see ) as well as the Green’s functions s™
and s~ (see ) For the causal Green’s function, we can apply the structural results
on the light-cone expansion stated in Theorem Using the residual argument, this
theorem holds just as well for the Green’s functions s*. With this in mind, we may
restrict attention to the causal Green’s functions, which we again simply denote by s.

The formula can also be expressed by saying that S(© ~ =2, Since increasing
the upper index gives a scaling factor 2, which for z = y is translated to a scaling
factor €2, we have

SR =242k (2.5.5)
Moreover, every factor £ in the light-cone expansion gives rise to a scaling factor
E~e. (2.5.6)

Applying these scalings to a contribution of the light-cone expansion in Theorem
we find that

R25) ~ e 220+
Therefore, our task is to show that all expressions of the form (2.2.5) which contribute
to the local trace satisfy the inequality

2h + 1| > 0. (2.5.7)
Using the identity (2.2.34]), the inequality (2.5.7)) is equivalent to

k
k—l+;<|[al+2pa> > 0.

Obviously, it suffices to consider the cases k = 0 and kK = 1. If k = 0, the fermionic
projector is odd (i.e. it contains an odd number of Dirac matrices), so that the local trace
vanishes. In the case £ = 1, on the other hand, the contribution involving the chiral
potential is again odd and vanishes. The contribution involving the mass matrix mY’, on
the other hand, is precisely the term mY S whose local trace was computed in .
This concludes the proof, provided that the scalings (2.5.5) and (2.5.6)) hold.

The scalings (2.5.5)) and are justified by the regularized causal perturbation
theory developed in Appendix [F] We here explain the reason for the scalings: In the
regularized causal perturbation calculation, the “causality” is built in by demanding
that the resulting regularized light-cone expansion again only involves integrals along
the line segment Ty (and not integrals along the whole straight line through x and y).
In more technical terms, this is achieved by demanding that the contributions to the
perturbation expansion remain bounded in the limit when the momentum of the external
potential tends to zero (this method was first used in [F7, Appendix D]). This procedure
ensures that a factor £ in the unregularized light-cone expansion really gives a scaling
factor e, . The scaling , on the other hand, follows immediately from the
fact that the local trace is obtained by integrating over the momentum variables (similar
as in Exercise , and that the regularization gives decay in momentum space on the
scale 1. 0
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2.6. Spectral Analysis of the Closed Chain

In this section we explain how to analyze the EL equations corresponding to the
causal action in the continuum limit. Since the Lagrangian involves the eigenvalues
of the closed chain, the main task is to compute the spectral decomposition of AZ, =
Pe(z,y) P*(y,z). We first compute this spectral decomposition in the vacuum (
This spectral decomposition has the special properties that the eigenvalues are non-real
and form complex conjugate pairs, and that the corresponding eigenvectors are null (with
respect to the spin scalar product). In order to simplify the subsequent computations, it
is very convenient to choose a spinor basis which reflects these special properties of the
closed chain of the vacuum. This so-called double null spinor frameis introduced in
In we proceed by describing the interaction perturbatively using contour integral
methods. In we derive a few general properties of the spectral representation of the
closed chain. Finally, in we use the obtained spectral representation of the closed
chain to rewrite the EL equations in a form suitable for an explicit analysis.

2.6.1. Spectral Decomposition of the Regularized Vacuum. In order to ana-
lyze the causal action principle, we clearly need to know the eigenvalues A} of the closed
chain. Moreover, in order to bring the EL equations into a tractable form, we also need
to know the corresponding eigenspaces. We now compute the spectral decomposition of
the closed chain for the regularized fermionic projector of the vacuum. We first do the
computation in general, and then rewrite it using the formalism of the continuum limit.

As in we assume that the regularized fermionic projector of the vacuum is
homogeneous and has a vector-scalar structure ((1.2.44)). These assumptions are reasonable
and sufficiently general for our purposes. Thus we assume that P¢(x,y) can again be
written again as the Fourier integral , where P¢ now is a distribution of the form

PE(k) = g;(k) +7 + h(k) (2.6.1)
with real-valued distributions g; and h. Here the parameter € > 0 denotes the length
scale of the regularization. Thus, expressed in momentum space, the distributions g;
and h should decay at infinity on the scale k ~ ¢~!. This means in position space that
the kernel of the fermionic projector has the form

Pe(a,y) = gj(z,y) ¥ + h(z,y) (2.6.2)
with smooth functions g; and h whose derivatives scale at most in powers of el Ase

tends to zero, the regularized fermionic projectors should go over to the unregularized
fermionic projector,

li\r"% Pe(z,y) = P(z,y) as a distribution. (2.6.3)
3

According to (1.1.14]), we introduce the corresponding closed chain by
A, = P¥(z,y) P¥(y,2) . (2.6.4)

In the next lemma we compute the roots of the characteristic polynomial of this matrix.
For ease in notation we shall often omit the subscripts “xy.”

LEMMA 2.6.1. The characteristic polynomial of the closed chain A3, has two roots Ay..

Either the A+ form a complex conjugate pair, Ay = A_, or else they are both real and
have the same sign. The roots are given explicitly by

A =gg + hh £ \/(g§)2 - >3 + (gh+hg)?. (2.6.5)
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ProoOF. We write the fermionic projector in position space as

P*(z,y) = gj(z,y) ¥ +h(z,y),  P(y,2) = gj(z,y) ¥ + h(z,y).
Thus, omitting the arguments x and y,
A, =(g+h)(g+h).
Omitting the superscript € and the subscript xy, we obtain
A=gg+ hg+ gh + hh. (2.6.6)
It is useful to decompose A in the form
A=A + Ay + u
with
A1=é[g,§], Ay=hg + ¢gh, p=gg+ hh

and gg = g; ¢7. Then the matrices A; and Ay anti-commute, and thus

(A—p)?=A1+43=(99)° - 9°9" + (gh+hg)*. (2.6.7)

The right side of is a multiple of the identity matrix, and so is a quadratic
equation for A. The roots Ay of this equation as given by are the zeros of the
characteristic polynomial of A. If the discriminant is negative, the A+ form a complex
conjugate pair. If conversely the discriminant is positive, the AL are both real. In order
to show that they have the same sign, we compute their product,

MA- = (g9 +hh)* = [(99)* — ¢° §° + (gh + hg)?]
= 2(gg) |h]* + [n* + ¢° §° — (gh + hg)?
_ |h\4+g2§2 —9252 . h2§2
= (¢* - W)@ -h") > 0.
This concludes the proof. O

In the degenerate case that the two eigenvalues A and A_ coincide, the relation
shows that the matrix A — p is nilpotent. However, in this case the matrix A — pu
need not vanish (as one sees from ), giving examples where the matrix A is not
diagonalizable. Except for this degenerate case, the matrix A is indeed diagonalizable
and has two-dimensional eigenspaces:

LEMMA 2.6.2. In the case Ay # A_, the matriz A,y is diagonalizable and has two-
dimenstonal eigenspaces. It has the spectral representation

Agy =D NVFW, (2.6.8)
s==+

where the spectral projections are given by
L g+ g+ gh
+ - 5 — '
2 \/ (99)* — 9°9° + (gh + hg)?

(2.6.9)
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PROOF. If we assume that A is diagonalizable, then Ay are the two eigenvalues of A,
and the corresponding spectral projectors F are given by

1 1 1

Applying (2.6.5) gives (2.6.9)). Taking their trace, one sees that the matrices F; and F_
both have rank two.

In order to prove that A is diagonalizable, one takes formulas (2.6.9) and shows by
direct computation that (see Exercise [2.24))

AFL =)L Fy and Fi+F_ =1. (2.6.11)
This shows that the images of F and F_ are indeed eigenspaces of A which span C*. [

Our next step is to rewrite the spectral representation using the formalism of the
continuum limit. Let us compute the leading singularity on the light cone. Then

Plz,y) = 5 { Tf " + (deg < 2), (2.6.12)

where for notational convenience we omitted the indices [6]

the bracket (deg < 2) stands for terms of degree at most one. Using this formula for the
fermionic projector, the closed chain becomes

of the factor &, and where

1 1
Ay =5 ETET) + fldeg < 3) + (deg < 3), (2.6.13)
where 8 = 57-71 . Its trace can be computed with the help of the contraction rules (2.4.45)),

75V TEY 4 (deg < 3).

1
Tr(Agy) = (§¢ )T( Y T[(] Y= ) (z+72) [0] [0]

We next compute the square of the trace-free part of the closed chain,

<Amy —i Tr(Azy) )2 <sf§ z+z> (T[(o] 1)T[E)}_1)>2
- = (zzzz (+D 47+ z>2) (T[%]‘ ”T[%]‘”)z
614 (= —2)° (T[Eﬂ YTy 1)) ‘

Combining these formulas, we see that to leading degree, the closed chain is a solution of
the polynomial equation

1 1 1 A
(Axy—S(Z+Z> To Ty )> - <8(Z_Z) T Ty )) ' (2.6.14)

We point out that the calculations so far are only formal, but they have a well-defined
meaning in the formalism of the continuum, because to all our end formulas we will be
able to apply the weak evaluation formula ([2.4.48]). Having this in mind, we can interpret
the roots of the polynomial in (2.6.14))

1 (1) (—1) L (-1 (D
Ay = 1 (= Ty )T[o} and A= 1 T (= an )
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as the eigenvalues of the closed chain. Using the contraction rule (2.4.46)), these eigen-
values simplify to (see also [F7, eq. (5.3.20)])

0
N =TH TG + (deg<3), A =TG5V T + (deg < 3) . (2.6.15)

The corresponding spectral projectors become (see also [F7, eq. (5.3.21)])

Fe=3 (]1 + [5 g ) + #(deg < 0) + (deg < 0). (2.6.16)
Since in the formalism of the continuum limit, the factors z and Z are treated as two
different functions, we do not need to worry about the possibility that the eigenvalues A4
and A_ might coincide or that the denominator in might vanish. Similarly, we
can treat ¢ and € simply as two different vectors. Then the methods and results of
Lemma apply and show that the matrices F; and F_ have rank two, so that the
eigenvalues Ay and A_ are both two-fold degenerate. By direct computation, one finds
that (see Exercise

O for “+”

for “_r T (deg < 2). (2.6.17)

FiP(CC,y):{ 2Z [0]

From (2.6.15)) and ([2.6.16)) one sees that the eigenvalues of the closed chain form a complex
conjugate pair and are both two-fold degenerate. Using this result in , one comes to
the important conclusion that the Lagrangian vanishes identically, implying that, using
the formalism of the continuum limit, the fermionic projector of the vacuum is a minimizer
of the causal action. We will return to this point in a more general context in
The lower degrees on the light cone can be computed in a straightforward way by
expanding the formulas . To give an impression, we here list a few formulas:

(ZT( 1))T( 1) (zTg}))T[(]l) (zT( ))W for “+47

A = & ox o] /(o] [ o /1
4 1 Dy L D O ) LDy g e
Ty~ (2 Tjgy ) + Ty~ (2 Tigp) + Ty (2T ) for
©) 7D _ p(—1) 700
. TOrCh _p -
o720 - T =T T 0 7 0 70
+ Ty Toy 1O 7D D70 Ty Ty = Ty Ty
o Toy — T " To
(deg<2).

FiPla,y) =+ (T") + (deg <2)

, - (0) (1) 4 p(=1) 7(0) (=1) 7(0)
" i (¢ T[o] )(T[o] T[O] +T[0] [0] ) — 2 (f ) [0] T[O}
; .

©) D) (1) 0)
Loy Ty~ = T~ Ty

These formulas can be obtained more systematically with the perturbation expansion for
the spectral decomposition which we now describe.

2.6.2. The Double Null Spinor Frame. Before entering the perturbation calcu-
lation, it is convenient to choose a specific eigenvector basis of the closed chain of the
vacuum. This basis is referred to as the double null spinor frame and is denoted by (fL/ R).
Performing computations in the double null spinor frame is an improvement of the method
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of “factorizing matrix traces” as introduced in [F7, Appendix G.2]. Following (2.6.13),
we introduce the matrix )
0 _ (=1 (-1)
A9, = 1 GV ET )
According to (2.6.15)) and (2.6.16)), in the formalism of the continuum limit the corre-
sponding eigenvalues and spectral projectors are given by

_ 7O ) ()
A=) TV A =TV T (2.6.18)
P L £, ¢]
L _§<]liz_§>, (2.6.19)

and they satisfy the relations
F.g§=2F,, and F_ ¢f=%F .

Furthermore, the matrix Agy is invariant on the left- and right-handed components, and
thus we may choose joint eigenvectors of the matrices Ag and I". This leads us to introduce

the four eigenvectors fi/ " by the relations

| xeFfo=f | (2.6.20)

with ¢ € {L, R} and s € {+, —}, which define each of these vectors up to a complex factor.
For clarity in notation, we again write the inner product on Dirac spinors ¢ = 1%
as <y|¢>=, and refer to it as the spin scalar product. Then the calculation

<P I = =<xaoff Ixofi- = < Ixrxe - =0

(and similarly for the other eigenvectors) shows that these vectors are indeed all null with
respect to the spin scalar product. Moreover, taking the adjoint of (2.6.19) with respect
to the spin scalar product, one sees that

(Fy) =F._. (2.6.21)

As a consequence, the inner products vanish unless the lower indices are different, for
example

<F - = <Py [Pyl = <fh [ Fo Fof- =0,
We conclude that all inner products between the basis vectors vanish except for the inner
products <f%|ff=, <§%|f£~ as well as their complex conjugates <f%|f4~ and <fL|fit-.
We assume that all the non-vanishing inner products are equal to one,

<L 7= =1 = =i 1§~ (2.6.22)

In order to specify the phases and relative scalings of the basis vectors, we introduce a
space-like unit vector w which is orthogonal to both £ and £. Then the imaginary vector
v = 1u satisfies the relations

(0,) =0=(v,&), (v,v)=1 and V= —v. (2.6.23)

As a consequence, the operator ¥ commutes with F'y and F_, and since it flips parity, we
may set & = ﬁfi Next, a straightforward computation using (2.6.19|) gives the identities

F ¢§=¢F, and F {=¢F,. (2.6.24)
These identities can be used as follows. The first identity implies that

(XrF-§) i = ¢ xoFy 5 ~ g5
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showing that the vectors ¢ f% and §2 are linearly dependent. The calculation

¢f {4

<FL g = <iL 1 2 i = <0 2 g = < g7

(where we used (2.6.20)) and (2.6.19))) shows that the vector ¢ §% is in fact a real multiple
of {#. Hence by normalizing fi appropriately, we can arrangeﬂ that f® = ¢ fi Using
the second identity in (2.6.24)), we also find that & = ngLr Similarly, we may also

set f£ = ¢ = M. The resulting relations between our basis vectors are summarized
in the following diagram:

oL gh
(i ¢y (2.6.25)
L7

With (2.6.20)), (2.6.22)) and ([2.6.25]) we have introduced the double null spinor frame ( i/R).
The construction involves the freedom in choosing the operator # according to (2.6.23)); for

given ¢, the basis vectors are unique up to an irrelevant common phase. The construction
of the double null spinor frame is illustrated in Exercise [2.26

We next explain how we can represent a given linear operator B on the spinors in
the double null frame (fi/ R). Following the notation in [F7, Appendix G|, we denote the
matrix element in the column (¢, s) and row (¢, s’) by Sgil, (B). These matrix entries are
obtained by acting with B on the vector fgl, and taking the inner product with the basis
vector which is conjugate to ¢, i.e.

°(B) = <fS| Bf% >, (2.6.26)
where the conjugation flips the indices according to L <+ R and + < —. Similarly, we
can also express the projectors x.Fs in terms of the basis vectors, for example

xoFy = | =<7 (2.6.27)

For computing , we use the relations in to express the vector fg; in terms
of %, choosing the relations which do not involve factors of ¢. Similarly, we express the
vector fS in terms of 2, avoiding factors of ¢. Applying , we can then rewrite
the inner product as a trace involving the operator F.y. More precisely, a straightforward
calculation yields

§44(B) = Te(Fs x1 B) , 3H(B) = Te(Fy f xi B)
FEB)=Tr(¢ Fr¢x B) , FH(B)=Tr(¢{ Fy x1 B)
FLL(B) = L T(F y g B) . §(B) = L T(Fy £ xi B) (2.6.28)
FL(B)= I TR g B),  §R(B) = TP p e B)
3Let us explain why we do not consider the opposite sign ¥ = —¢§%. To this end, we must show

that -<f£‘,|éffi> > 0. Since for any given positive or definite spinor ¢, the vector xrF4( is a multiple
of §%, it suffices to compute instead the sign of the combination <xrFy¢|¢xrF1¢>. Applying
and , this inner product simplifies to <¢|xrF-¢¢>. With the help of (2.6.17) and (2.6.12), we can
treat the factor ¢ as an outer factor. Then our inner product simplifies to the expectation value <¢|xrg¢>-.
This expectation value is positive if we follow the convention introduced before that £° > 0.
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(see also [E7, eq. (G.19)], where these relations are derived with a different method).
Indeed, it suffices to compute the given eight matrix elements, because the other eight
matrix elements are obtained by the replacements L <+ R. Moreover, the matrix elements
of the adjoint (with respect to the spin scalar product) are obtained by

ss’

©/(B*) = <f5| B* 5= = <5 | Bfe- = 35(B) .

A simple example for how to compute the matrix elements in the double null spinor frame
is given in Exercise 2.27]

2.6.3. Perturbing the Spectral Decomposition. Omitting the arguments (z,y),
we decompose the fermionic projector as

P =P+ AP,

where Py is the vacuum fermionic projector (possibly modified by gauge phases). This
gives rise to the decomposition of A

A=Ay+AA (2.6.29)
with

Ay = P()(l’,y) P()(y, (E) (2630)
AA = AP(z,y) Py(y,z) + Po(z,y) AP(y,z) + AP(xz,y) AP(y,x). (2.6.31)

The eigenvalues and spectral projectors of Ay were computed explicitly in §2.6.1} In view
of later generalizations, we write the obtained spectral decomposition as

K

Ay = Z Ak Fi
k=1

with K = 2, where A\, are distinct eigenvalues with corresponding spectral projections F}.
Since the perturbation AA will in general remove the degeneracies, we cannot expect that
by perturbing F} we again obtain spectral projection operators. But we can form projec-
tors G on the space spanned by all eigenvectors of A whose eigenvalues are sufficiently
close to A\g. The G are most conveniently introduced using contour integrals. We choose
€ > 0 such that

i — A < 2 foralli,j=1,..., K and i # j.

Then we set

_ L (z— A dz, (2.6.32)

k=5
270 J 2 ay|=e

Combining the resolvent identity with the Cauchy integral formula, one sees that Gy, is
indeed an idempotent operator whose image is the invariant subspace corresponding to
the eigenvalues near Ay (for details see Exercise [2.6)).
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The integral formula ([2.6.32)) is very useful for a perturbation expansion. To this end,
we substitute (2.6.29)) into (2.6.32)) and compute the inverse with the Neumann series,

1

Gr = — (2= Ag— AA) ' dz
27[-7/ |Z*)\k|=€
1 _ -1 _
= — 1—(z—A49) 1 AA 2— Ag) ldz
271 |z—Ap|=e ( ( O) ) ( 0)
1 = -1 n -1
= 5= D> ((z—A9) P AA)" (z— Ag) N dz.

[z=Akl=¢ ,—¢

Interchanging the integral with the infinite sum gives the perturbation expansion,

b I
Gk;)m ylg“kzg((z Ag) "N AA)" (2 — Ag)Vdz, (2.6.33)

where n is the order in perturbation theory. After substituting in the spectral represen-
tation for (z — Ag) 71,
K

(z—A40) ' =) il (2.6.34)

z—=N
=1

the contour integral in (2.6.33)) can be carried out with residues. For example, we obtain
to second order,

1
Ge=F.+ > v (Fy AAF, + FAAF) + O((AA)%)
£k
1
_|_

x (Fy AAFyAAF,, + FyAAF, AAF,, + F; AAF,, AAF})

—Z¥
1k (A = A1)

To order n > 2, the corresponding formulas are clearly more complicated, but even then
they involve matrix products which are all of the form

Fiy AAFy AA - Fy AAF,,, . (2.6.36)

An example of a first order perturbation computation is given in Exercise [2.2§

2.6.4. General Properties of the Spectral Decomposition. We now derive a
few general properties of the spectral decomposition of the closed chain.

LEMMA 2.6.3. Assume that for a one-parameter family of fermionic projectors P(T)
and fized x,y € M, the matrices Azy and Ay, are diagonalizable for all T in a neighborhood
of T = 0, and that the eigenvalues of the matriz Agy|;—o are all non-real. Then the
unperturbed closed chain Ay has a spectral representation

4
Ayl = D N'FY (2.6.37)
k=1
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with the following properties. The last two eigenvalues and spectral projectors are related
to the first two by

NYZXNTEW = (FU) and NV =X, FY = (FY). (2.6.38)

The first order perturbation 6 Ayy = 07 Agy|r=0 of the closed chain is diagonal in the bases
of the non-trivial degenerate subspaces, i.e.

FY(§A)F™Y =0 if k#1 and A = AV, (2.6.39)

The closed chain Ay, has a corresponding spectral representation satisfying (2.6.37)—
(12.6.39) with all indices ‘vy’ are replaced by ‘yx’. The spectral representations of Agy
and Ay are related to each other by

Y=\ and  FY P(z,y) = P(z,y) FJ". (2.6.40)

PROOF. By continuity, the eigenvalues of the matrix A, are non-real in a neigh-
borhood of 7 = 0. Moreover, by direct computation one sees that the matrix A, is

symmetric in the sense that A, = A7 = 'yOALyfyO. Hence, using the idempotence of the
matrix 7° together with the multiplicity of the determinant, we find that

det(Agy — A) = det(y(AL, — M)y") = det(Al, — \) = det(Azy — X) .

Hence if A is an eigenvalue of the matrix Ay, so is A. Thus the eigenvalues must form
complex conjugate pairs.

We first complete the proof in the case that there are no degeneracies. For any
eigenvalue A of A,, we choose a polynomial py(z) with pyx(A\) = 1 and py(p) = 0 for
all other spectral points g. Then the spectral projector on the eigenspace corresponding
to A, denoted by Fy", is given by

F™ = pr(Agy) - (2.6.41)

Taking the adjoint and possibly after reordering the indices k, we obtain the rela-
tions and (2.6.38). The general matrix relation det(BC — \) = det(CB — )
(see for example [F10) Section 3]) shows that the closed chains A;, and A,, have the
same spectrum. Multiplying by P(z,y) and iteratively applying the relation

Axyp(way) :P(x,y)P(y,a:)P(x,y) :P(xay)Azm?

we find that F{Y P(z,y) = P(z,y) F{". Thus we can label the eigenvalues of the ma-
trix Ay, such that holds.

In the case with degeneracies, the assumption that A, is diagonalizable in a neigh-
borhood of 7 = 0 allows us to diagonalize JA,, on the degenerate subspaces (see for
example [Ba] or the similar method for self-adjoint operators in [S2] Section 11.1.2}).
This yields (2.6.39)), whereas can be arranged by a suitable ordering of the spec-

tral projectors Fi.Y. In the degenerate subspaces of Ay, we can choose the bases such

that (2.6.37) and (2.6.38)) hold (with ‘xy’ replaced by ‘yz’) and that (2.6.40)) is satisfied.
It remains to prove that (2.6.39) also holds for A,,: From (2.6.39) we know that for any
pair [, k with )\fy = )\iy,

0= F™(5 Ay, F™Y = F* (5P(az, y) P(y,z) + P(z,y) 0P(y, x))Fﬁ“y
= F.Y(0P(z,y))F/" P(y,z) + P(z,y) ;" (6 P(y, 2)) I},
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where in the last line we applied the second equation in (2.6.40)). Multiplying by P(y, z)
from the left and by P(z,y) on the right, we find

0= Py, 2)FF (5P (2, y) FY* NI* + NEFY (5P (y, ) F{V Pz, y) -

After dividing by A/" = A" (note that the eigenvalues are non-zero because they are as-
sumed to form complex conjugate pairs), we can again use the second equation in (2.6.40))
to obtain

0= Py, z) Y OP(z,y)) " + F"(6P(y, ) F; Pz, y)
=F (P(y, x) dP(z,y) + 0 P(y,x) P(x,y)>Flyw = FY"(0A,0) FY

concluding the proof. O

2.6.5. Spectral Analysis of the Euler-Lagrange Equations. We now explain
how the spectral decomposition of the closed chain can be used to analyze the causal
action principle introduced in as well as the corresponding EL equations as worked
out in For the regularized Dirac sea vacuum as considered in the situation is
quite simple. Namely, according to Lemma (or more explicitly in (2.6.18))), the closed
chain has two eigenvalues which form a complex conjugate pair. As a consequence, the
eigenvalues all have the same absolute value. Writing the Lagrangian in the form ,
one sees that the Lagrangian vanishes identically. We come to the following conclusion:

In the formalism of the continuum limit, the regularized Dirac sea vacuum

is a minimizer of the causal action. (2.6.42)

If the fermionic projector of the vacuum is perturbed (for example by an external potential
or by additional particle or antiparticle states), the degeneracy of the eigenvalues will in
general disappear, so that the spectrum will consist of two complex conjugate pairs. As
a consequence, the causal action will no longer vanish. In order to analyze whether we
still have a critical point of the causal action, one needs to analyze the corresponding
EL equations in Proposition To this end, it is very convenient to rewrite these EL
equations using the spectral decomposition of the closed chain, as we now explain.

For simplicity, we again restrict attention to Dirac spinors and spin dimension two.
Moreover, we only consider the case that the Lagrange multipliers x and A in Proposi-
tion [1.4.3| are both equal to zero. The generalization to higher spin dimension and to
non-trivial k£ and A are straightforward and will be carried out later on (see Lemma
Lemma and the similar results in . Writing the Lagrangian in the form

we have
1< 2
Lay) =g (wyy - Mjﬂ\) . (2.6.43)
ij=1
The relation ([2.6.39)) allows us to compute the variation of the eigenvalues by a standard
first order perturbation calculation without degeneracies,

N =Tr(FY 6Asy) - (2.6.44)
Using that that J|\| = Re(Ad\/|)|), we can compute the first variation of (2.6.43) by

4 \ZTY
]‘ X X A X
6L(z,y) = 5 Re Y (yxky\ - ijy\) M%y‘ Te(F™ 6 Ay,) . (2.6.45)

jk=1
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We now insert the identity
0Ayy = 0P (z,y) P(y,z) + P(x,y) dP(y,x) .

Cyclically commuting the arguments of the trace, we obtain

4
sey) =5 S (17— 1))

Jh=1
N oy My
x ReTr WP(?/,?’?)F/f 5P(937?J)+WF;€ P(z,y)6P(y, )
k k

Using (2.6.38)) and (2.6.40)), one sees that the first summand in the square bracket is the
adjoint of the second summand. Therefore, the trace of the square bracket is real-valued,
so that it is unnecessary take the real part. Comparing with (1.4.16[), we conclude that

, -
Qa,y)=5 > (1= 19) M%y' F™ P(z,y) (2.6.46)
j=1

(where we again used (2.6.40])). In the vacuum, when the eigenvalues of the closed chain
form a complex conjugate pair (2.6.18)), the kernel Q(z,y) vanishes identically in the
formalism of the continuum limit. If the fermionic projector of the vacuum is perturbed,
the first order perturbation of Q(z,y) can be computed easily with the help of .
The higher orders in perturbation theory can be treated systematically by using the
contour method in and by evaluating the resulting expressions in the formalism of
the continuum limit.

The above methods give a mathematical meaning to Q(x,y) in the formalism of the
continuum limit. The remaining difficulty is that in the EL equations worked out in
Proposition the kernel Q(z,y) appears inside an integral , and one must
control the error terms and inside this integral. The method is to choose
a vector u € H such that its physical wave function " is supported away from x, up
to a small error. This method is referred to as testing on null lines. In a more physical
picture, one chooses YY" as an wultrarelativistic wave packet localized near a null curve
which does not meet the space-time point z. Applying this method to , the left
side is evaluated weakly on the light cone, whereas the right side vanishes. In this way,
the EL equations in the continuum limit reduce to

Q(z,y) =0 evaluated weakly on the light cone .

We refer for details to §3.5.2 The estimates of all the error terms are worked out in
Appendix [A]

Exercises

EXERCISE 2.1. (external field problem) In physics textbooks, the notions of a “parti-
cle” and “anti-particle” are often associated to the frequency (or equivalently the energy)
of the solutions: solutions of positive frequency are called particles, whereas the negative-
frequency solutions are reinterpreted as describing anti-particle states. The aim of this
exercise is to explain why these notions are ill-defined in the presence of a time-dependent
potential. To this end, we consider the Dirac equation

(id+B—-m)yp=0, (2.6.47)
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where B is a “step potential in time” i.e.

B(t,Z) = V42 O(t) (1 — 1)

with a real parameter V.

(a)

Separate out the spatial dependence for any given k € R3 with the plane-wave ansatz

b(t, ) = ¢ (1)

(where ¢ is a spinor-valued function). Derive the resulting ordinary differential
equation for ¢(t).

Clearly, the potential has discontinuities at t = 0 and ¢ = 1. Show that there are
two fundamental solutions ¢1,¢2 € C°(R,C?*) which are smooth solutions of the
ODE except at the points ¢t = 0 and ¢ = 1. Remark: This procedure is familiar
to physics students from quantum mechanics textbooks where wave functions are
“olued together” at discontinuities of step potentials. From the mathematical point
of view, the “glueing” of the solutions can be justified by saying that ¢, and ¢9
are a fundamental system of weak solutions of the ODE. To the reader who is not
familiar with these concepts, it might be instructive to verify that the notion of
“weak solution” really gives rise to a continuity condition for ¢. (Likewise, for a
second order equation like the Schrédinger equation, the notion of “weak solution”
gives rise to C'l-solutions whose second derivatives are discontinuous.)

Consider a “scattering process” where for negative times the solution is of the form

¢(t) — e—iwt X,

where x is a constant spinor and w := V/ k2 — m?2. Show that for time ¢ > 1, this
solution can be written as

gf)(t) — e—iwt X4 + e—l—z’wt Y—

with constant spinors x4+ and x—. Compute x4 and y_ explicitly as functions of x
and V. Verify in particular that y_ in general does not vanish.

What does this mean for the interpretation of the solution in terms of “particles”
and “anti-particles”? Why can the frequency of the solutions not be used for a
global concept of particles and anti-particles? How can a pair creation/annihilation
process be understood in our example? Remark: In order to avoid misunderstand-
ings, we point out that the above arguments only show that the frequency cannot be
used to obtain a global particle interpretation. They do not rule out the possibility
that there may be a well-defined global particle interpretation using other properties
of the solutions. In fact, such a global particle interpretation is provided by the
causal perturbation expansion (or the corresponding functional analytic construc-
tions in [FR2, FR3l, FMR]). However, this global particle interpretation in general
does not coincide with the “particles” and “anti-particles” as experienced by a local
observer.

EXERCISE 2.2. This exercise is devoted to the advanced Green’s function s, (for a

more computational exercise on the advanced Green’s function see Exercise below).

(a)
(b)

Assume that m > 0. Show that the limit v \ 0 in (2.1.9) exist in the distributional
sense.
Show that the limit v N\, 0 in (2.1.9) also exists in the massless case m = 0 and that

h{lo sp (k) = s (k) as a distribution .
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Hint: Proceed similar as in Exercise
(c) Consider the Fourier integral in the ¢ -variable

/OO 1 iqOt d 0
——ec¢ :
oo @ —m? —ivg® 1
Show with residues that this integral vanishes for sufficiently small v if ¢ < 0.
(d) Argue with Lorentz invariance to prove the left side of (2.1.12]).

EXERCISE 2.3. Modifying the location of the poles in gives rise to the distri-
bution "
F NRT +m
sm(F) '_zll\r%ﬁ—m?—i—iu '
This is the well-known Feynman propagator, which is often described intuitively by saying
that “positive frequencies move to the future and negative frequencies move to the past.”
Make this sentence precise by a computation similar to that in Exercise (c).

EXERCISE 2.4. (a) Assume that m > 0. Give a detailed proof of the distributional

relation (2.1.14)). Hint: Argue similar as in Exercise m

(b) Prove that (2.1.14) also holds in the case m = 0. Hint: The subtle point is to
analyze the behavior at ¢ = 0. To this end, apply Lebesgue’s dominated convergence
theorem.

EXERCISE 2.5. (probability integral and current conservation) Let 1), ¢ be two solu-
tions of the Dirac equation with a smooth potential B which is symmetric .
Moreover, assume that i and ¢ are smooth and have spatially compact support.

(a) Show that the integral is independent of ¢y.
(b) More generally, let N be a Cauchy surface in Minkowski space with future-directed
normal v. Show that the integral

/ D(pe) duy
N

is independent of the choice of the Cauchy surface (where dpu y is the volume measure
corresponding to the induced Riemannian metric on .X). Hint: Show that the vector
field 177 ¢ is divergence-free and apply the Gaufl divergence theorem.

EXERCISE 2.6. (resolvent and contour integrals) The aim of this exercise is to make
the reader familiar with the notion of the resolvent and the contour integral representation
of spectral projectors in the finite-dimensional setting. More details and generalizations
to infinite dimensions can be found in the book by Kato [Kal.

(a) Let A € L(CF) be a k x k-matrix. The resolvent set is the set of all A € C for which
the matrix (A — A) is invertible. The spectrum is the complement of the resolvent
set. For any A in the resolvent set, we define the resolvent Ry by

Ry = (A - )\]1)71

(we use this sign convention consistently, although some authors use the opposite
sign convention). Prove the resolvent identity

1

NS, (R)\ _R)\’) ’

valid for any A, A" in the resolvent set. Hint: Multiply the identity N — A\ = (4 —
A) — (A = X) from the left and right by a resolvent.

RyRy =
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(b) Assume that A is a Hermitian matrix. Let I' be a contour which encloses only one
eigenvalue \g with winding number one. Show that the contour integral

1

7t P BrdX (2.6.48)
is an orthogonal projection onto the corresponding eigenspace. Hint: Choose an
eigenvector basis and apply the Cauchy integral formula.

(¢c) Now let A be any matrix. Let I" be a contour which encloses a point )¢ in the
spectrum with winding number one. Show that the contour integral is an
idempotent operator whose image is the corresponding invariant subspace. Hint:
Choose a Jordan representation of the matrix. Restrict attention to one Jordan
block. Then the resolvent can be written as a Neumann series, which reduces to a
finite sum. The resulting integral can be computed with residues.

(d) Derive the idempotence relation in (c) directly from the resolvent identity. Hint: A
very similar computation is given in the proof of Theorem [2.1.6

EXERCISE 2.7. In this exercise we explore an alternative and more computational
proof of Lemma, [2.1.8

(a) Show by direct computation in momentum space that ky, |¢, km = km. Hint: Proceed
similarly as in the derivation of in the proof of Lemma m

(b) Show that due to current conservation (see Exerciseabove)7 the operator &y, lto K
is independent of #y3. Therefore, it suffices to compute the limit ¢y — —oo. In order to
study this limit, assume for technical simplicity that B has compact support. Show
with the help of (2.1.14]), (2.1.25) and that for sufficiently small ¢y < 0,

- -  — " o
b o = 75 D (=50B)" 5, L sy (~Bsy)
n,n'/=0
= > (=5pB)" ki ltg ko (—Bsy,)™ .
n,n'=0

(¢) Apply the result of (a) together with (2.1.14) to conclude that k, |t km = K.

EXERCISE 2.8. (causal perturbation expansion to second order)

(a) Compute ~PSeaL to second order in B. Hint: Use (2.1.64]) as well as the perturbation
series for k. The resulting formulas are also listed in [F'T2, Appendix A].
(b) The so-called residual fermionic projector is defined by modifying the integrand

in (2.1.64) to
1 ~
P=—— dX.
res Imi %%_ Ry

Show that to first order in B, the operators P and P3* coincide. However, there
is a difference to second order in B. Compute it. Hint: In order to simplify the

computation, it is helpful to write the difference as

1 ~
P psen =~ (A1) Ry d)

res 271_1/ r
and to use that the factor A + 1 decreases the order of the pole at A = —1.

EXERCISE 2.9. (the fundamental solution p)
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(a) Show that the operator k has the contour integral representation

. 1 .
k=——— ARy d)\.
2mi rLur—
Hint: Use (12.1.54) or the functional calculus of Theorem
(b) Conclude that the fermionic projector P%?, (2.1.64]), can be represented as

Psea:%(ﬁ_%)’

" 2mi (7% 515 ) ARy d). (2.6.49)

EXERCISE 2.10. (structural properties of p: even number of factors k) The goal of
this exercise is to show that every contribution to the perturbation expansion of p contains
an even number of factors k.

(a) Use the multiplication rules and to show that the last summand
—(1 — p)/A in (2.1.57)) drops out of the perturbation expansion for p as defined
by (2.6.49)). Conclude that instead of , we may work with the formula

A i 1

e R

(b) Use the perturbation series for R in and restrict attention to a contribution
for fixed n. Insert and multiply out. Analyze the symmetry of the contour
integral under the transformation A — —A\. Show that all contributions to p which
involve an even number of factors R} vanish.

(c) Deduce from and that every contribution to Ak involves an even
numbers of factors k.

(d) Show that every contribution to the perturbation expansion of p contains an even

number of factors k. Hint: Combine the results of (b) and (c) and use the multipli-
cation rules (2.1.52)) and (2.1.69).

where p is defined by

R\=RV+R) with R{=p (2.6.50)

EXERCISE 2.11. (structural properties of p: replacing k by p) In this exercise we
compute what one gets if in the perturbation series for p one replaces all factors p by k.

(a) Show that replacing all factors p by k, the formulas (2.1.53), (2.1.55) and (2.1.57)
simplify to

> 1
Ak — — —im) 28 b<p (bp)** b> R —
— p—i-;::o( im) p (bp) , )‘_>p1—/\

Hint: See also Exercise 2.10] (a).
(b) Show that, using the formulas of part (a) in (2.1.56), the contour integral (2.6.49)
simplifies to

}5 Z oyt (P AR)"pdA.

Compute the contour integral Wlth residues to obtain

p— Z )2 b= p (bp)* b~ .
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Hint: Again use the multiplication rules (2.1.52)) and (2.1.69)).

EXERCISE 2.12. This exercise explains the notion of the light-cone expansion in simple
examples.
(a) What is the light-cone expansion for a smooth function on M x M? In which sense
is it trivial? In which sense is it non-unique?
(b) Show that A(z,y) =log (|y — z|?) is a well-defined distribution on M x M. What is
the order on the light cone? Write down a light-cone expansion.
(c) Now consider the distributional derivatives

0 \P .
<@) Az, y) with peN
and A(z,y) as in part (b). What is the order on the light cone? Write down a

light-cone expansion.
(d) Consider the function

E(z,y) = sin ((y — 2)?) log (ly — z[*) .
Determine the order on the light cone and give a light cone expansion.
(e) Consider the function

1
Bla,y) =4 ¢ "7 ifly—2)?=0
’ 0 otherwise .

Determine the order on the light cone and give a light cone expansion.
(f) Show that the expression
i 108 (ly — 2%)
m ———
N0 (y — x)* +ie
is a well-defined distribution on M x M. Derive its light-cone expansion.

EXERCISE 2.13. This exercise is devoted to computing the Fourier transform of the
advanced Green’s function ([2.2.5) and deriving the series expansion (2.2.7)).

(a) As in Lemma we set &€ = y —x and £ = (t,€) with ¢ > 0. Moreover, we

choose polar coordinates r = (\g|,z9, ¢). Carry out the w-integration with residues
and compute the angular integrals to obtain

leg (fL’,y) = Z/ p (e—ipr . ez‘pr) (eiw(p)t _ e—iw(p)t) dp,
0

8r w(p)
where p = |p] and w(p) := /|p?| + m?. Justify this integral as the Fourier transform
of a distribution and show that
% o0 _ P . . . .
S\/ S F ep ipr _ ipr w(p)t iw(p)t d
Vo (z,y) By ; e o) (e ") (e e ) dp

with convergence as a distribution.

(b) Verify (12.2.6)) in the case m = 0 by setting w(p) = p and using (|1.2.33)).
(¢) In order to analyze the behavior away from the light cone, it is most convenient to
take the limit » ™\, 0 and use Lorentz invariance. Show that in this limit,

SYa(2,y) = \0/ e - p eW(P>Le—W(P)t) dp (2.6.51)
T e

:Eelfi w2 —m?2 (e — e7™") dw . (2.6.52)
m
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Compute this integral using [GRJ, formula (3.961.1)] (similar as in the proof of Lem-
ma [1.2.9] Use the relations between Bessel functions [OLBC] (10.27.6), (10.27.11)]
to obtain away from the light cone.
As an alternative method for computing the Fourier integral, one can begin from

the integral representation for Jy in [OLBC (10.9.12)], differentiate with respect
to « and use [OLBC, (10.6.3)].

(d) Combine the results of (b) and (c) to prove (2.2.6). Why is there no additional
contribution at & = 07

(e) Use the series expansion [OLBC, (10.2.2)] to derive (2.2.7).

(f) The series expansion (2.2.7) can also be derived without using Bessel functions. To
this end, one expands (2.6.51)) in powers of m? and computes the Fourier transform
term by term. Verify explicitly that this procedure really gives .

EXERCISE 2.14. This exercise is devoted to the proof of Lemma as given in [F6l
Lemma 2.2].

(a) Use (12.2.24) to derive the identity
0

/ ' SU(. ) VE) (= 2 S0() = =2 5 (SO VSO ay) . (2653)

(b) Apply Lemma and carry out the y-derivative in (2.6.53|) to obtain the formula
in Lemma [2.2.3] Hint: Use the identity

1
2(n+1)

1

OOV (2) = — e

0 (VE) (g =2 ) + (0 E)) (=20

and shift the summation index.

EXERCISE 2.15. In this exercise we collect elementary properties of the ordered expo-
nential.

(a) Assume that the matrix-valued function F' in Definition is commutative in the
sense that

[F(a),F(B)] =0 for all a, 8 € [a, ] .

Show that the ordered exponential reduces to the ordinary exponential,

Pexp ( / " Flo) da> — exp < / " Flo) da) .

Hint: Show inductively that

/ab dto F(to) /t: dt, F(tl).../tj_l it F(t,) = M(/jF(t) dt>n+1.

(b) Assume that F' is continuous on [a,b]. Show that the Dyson series converges abso-
lutely and that

H Pexp </abF(a) da> H < exp </b ()| da> .

Hint: Estimate the integrals and apply (a).
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Show by direct computation that the ordered exponential satisfies the equations

d% Pexp < / bF(a) da) = —F(a) Pexp < / bF(a) da) (2.6.54)
Pexp < / " Fla) da) =1. (2.6.55)

Use the uniqueness theorem for solutions of ordinary differential equations to give
an alternative definition in terms of the solution of an initial-value problem. Use this
reformulation to show the group property

Pexp ( / " Flo) da) Pexp ( /b " Fla) da) ~ Pexp < / " Fla) da> C(2656)

Show that

d b b

7 Pexp (/ F(a) da) = Pexp </ F(a) da) F(b). (2.6.57)
Hint: Differentiate the identity (2.6.56)) in the case ¢ = a and use the group proper-
ties ([2.6.55)) and (2.6.56]).

Show that
Pexp </abF(oz) da>* = Pexp (/ba (- F(a)) da) .

Deduce that if F(«) is an anti-Hermitian matrix, then the ordered exponential is
a unitary matrix. Hint: There are two alternative methods. One method is to
argue using the differential equations (2.6.54)) and (2.6.57)) or with the group prop-
erty. A more computational approach is to take the adjoint of the Dyson series and
reparametrize the integrals.

EXERCISE 2.16. This exercise recalls the concept of local gauge transformations and

gets the connection to the ordered exponential.

(a)

An electromagnetic potential A of the form A; = 9;A with a real-valued function A
is called a pure gauge potential. Show that (i@ + A —m) = U (i@ — m)U !, where U
is the phase factor U = e**. Conclude that every solution of the Dirac equation (i@ +
A—m)lﬁ = (0 can be written in the form 1[) = U, where 1) is a solution of the vacuum
Dirac equation. In other words, pure gauge potentials merely describe local phase
transformations of the wave functions.

Generalize the argument of (a) to the case of non-abelian gauge fields and an addi-
tional gauge potential using the relation

UG+ A—mW)U ' =i + UAU " +iU(JU ") —m 1,

where now U(z) is a unitary matrix (the mass matrix was left out for simplicity).
How does the gauge potential transform under local unitary transformations of the
spinors?

Prove that for a pure gauge potential A = iU(#U~!) the ordered exponential of
Definition [2.2.5| simplifies to

Pexp ( —z'/: AT (y — x)j> — U Uly)~L.
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Hint: Apply the integration-by-parts method of Exercise to the Dyson series.
Alternatively, one can make use of the differential equation (2.6.54) with initial

conditions ([2.6.55|).

EXERCISE 2.17. This exercise illustrates the handling of the tangential derivatives
mentioned before Proposition Let z = pfy + (1 — B)z be a point on the line
segment Ty. Show that

[ o 1 a2 —/Olap(l—a)qf<a(1—ﬁ)(y—:n)+z)

Deduce the identity

o) [ 0] @)
1
— 1—1ﬂ/0 a? (1 —a)t %f(a(l—ﬂ)(y—x)+z) dov .

In the case p,q > 0, integrate by parts to derive the computation rule

y=ap [ lo.ald) @) d =~ [ (plp-Lal0l = alpa—1]0]) £

What is the analogous computation rule in the cases p = 0 and/or g = 07
EXERCISE 2.18. This exercise explains how the Maxwell field tensor and the Maxwell

current arise in the light cone expansion. To this end, we consider the first order pertur-
bation of the massless Green’s function by an electromagnetic potential A,

Aso:=—soAso.
(a) Show that the leading contributions to the light-cone expansion of As,, have the
form

(Aso)(, y) / Ay(2) € ¢ SCD (2, y) (2.6.58)

+ [M 01100496 € 5Ow) (2.6.59)

y
—/ dz[0,0]0] A(z) SO (z, ) (2.6.60)
+ Alz) SO(2,y) +£0(£72) + 0(£7), (2.6.61)

where £ := y — . Hint: First compute s¢ using (2.2.20) and (2.2.24]). Then perform
the light-cone expansion of the first order perturbation by using Lemma and
then by differentiating similar as done in the displayed computation before .
Finally, the resulting formulas can be simplified by using and by integrating
the tangential derivatives by part (see Exercise or the proof of Proposition.
(b) Which of the above contributions are phase-free? Show that the contribution which
is not phase-free can be understood as the first-order contribution to the gauge phase
in 22.57).
(c) Rewrite the phase-free contributions in an explicitly gauge-invariant way.
Hint: In use the identity @A;)(z) & = 9 F;68 — €99; 4. Note that this
generates a tangential derivative (see ) Integrate it by parts as explained in
Exercise [2.17] or in the proof of Proposition [2.2.6]
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(d) Compute the contributions to the above light-cone expansion of the form ~ ¢ --- S,
There is a term involving [JA. Rewrite it in an explicitly gauge-invariant way using
the Maxwell current j; := 9;,A* — OA;.

(e) The reader who wants to get more computational practice may find it instructive to
carry out the light-cone expansion up to the order O(¢2). In particular, there is a
term ~ (OA) S (1), Rewriting the contributions again an explicitly gauge-invariant
form, one thus obtains a contribution ~ 45, SM). In fact, this contribution gives
rise to the Maxwell current in the field equations in the continuum limit.

We note that all these computations are explained in more detail in [F6, Appendix A].

EXERCISE 2.19. (contour integral representation of the residual fermionic projec-
tor) In Exercise (a) we derived a contour integral representation for the operator k
in (2.2.111). Thus it remains to derive a contour integral representation for the opera-
tor p"* as defined by defined by . Verify to second order in perturbation theory
(see Exercise that p™* has the contour integral representation

1 -
P =—— Ry dX.
2me Jr,or_
Remark: This equation indeed holds to every order in perturbation theory. This is a
consequence of an underlying symmetry of the perturbation expansions with mass and
spatial normalizations as explained in [F'T2] Section 3.4].

EXERCISE 2.20. The goal of this exercise is to explore weak evaluation on the light
cone in the example of the massless closed chain of the vacuum (2.4.11f). Thus in view

of (2.4.17)), we want to analyze the integral
oo 2 52y _ el 2
/ ey =) el e (2.6.62)

NS }(t—ia)Q —r2|4

for a test function n € C§°(R) asymptotically as ¢ 0.

(a) Choose r > 0. Show that, changing the integral only by contributions which are
bounded uniformly in e, we may replace n(t) by a test function supported in the
interval (r/2,2r) around the upper light cone.

(b) Use the identity

1 B 1 _ 1 1 1
(t—ig)2—r2 (t—ie—r)(t—ic+r) 2r\t—ic—r t—ic+r
to rewrite the integrand in (2.6.62)) in the form

2

Z np»q(t7 r’ 6)
e’ (t —ie—r)P(t+ic—r)l’

with functions 7, 4(t,7,€) which in the limit € \, 0 converge in C*® to smooth func-
tions np 4(t, ), i.e.

1i\rj(1) PNy, q(t,7,8) = DR 0Pn,.4(t,7) for all a, 5 > 0.
3

Compute the functions 7, ,. Verify that the contribution for p = ¢ = 2 agrees with

the approximation (2.4.16)).
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(¢) We now compute the leading contributions and specify what we mean by “leading.”
First compute the following integrals with residues:

> 1
To(e) = /_OO (t—ic—1r)2(t+ic—1r)? di
Ii(e) !—/OO tor dt .

oo (t—ie—1)2 (t+ie —1)2

> n2,.2(t,7)
/_oo(t—is—r)Q(t+is—r)2 dt
= Io(e) ma2(r, ) + I1(e) (Dma,2) (r, ) + O(e) .

Hint: To estimate the error term, proceed similar as in Exercise m (a).

(d) We now analyze the dependence of the resulting terms on r. To this end, first
compute 122(r,r) and (Jyn22)(r, 7). Verify the rules (2.4.20). Verify the scaling
of the error terms and , where we use the convention that every
derivative of 7 gives rise to a factor 1/¢macro-

(e) Show that the integrals for p < 2 or ¢ < 2 can be absorbed into the error terms.
Also show that the term ~ 2 in can be absorbed into the error terms.

(f) So far we analyzed the integrals with the simplified test functions 7, 4(t,r). Show
that replacing them by 7, 4(t,r,€) changes the integrals only by error terms of the

form (2.4.18) and (2.4.19)).

EXERCISE 2.21. This exercise explains how the identities and can be
derived by explicit computation.
(a) Use together with and the series expansion to derive
explicit formulas for T(® for all [ > 0. Use the relation in the case I = 0 to

also compute 71,
(b) Show that for all n > 0,

21U (z,y) = =47V 4 (smooth contributions) . (2.6.63)

Why do the “smooth contributions” arise?
(c) Verify that the relation remains valid for the ie-regularization. Hint: One
can argue without computations directly with a meromorphic extension using .
(d) Verify the identities by explicit computation. What are the “smooth contri-
butions”? Show that these identities remain valid for the ie-regularization.

Show that

EXERCISE 2.22. (computation of the local trace) Compute P*(z,x) in the Minkowski
vacuum with ie-regularization (see (2.4.1)) and (2.4.2)). How do the vector and scalar
components scale in m and €7 Verify the scaling of the local trace (2.5.1).

EXERCISE 2.23. (scalar potentials and the local trace) Consider a potential B com-
posed of chiral potentials and a scalar potential, i.e. in generalization of (2.2.25]),

B=xLAr+xr AL+ O(z).

(a) Show that the scalar potential can be combined with the mass terms to obtain

a Dirac equation of the form (2.2.10) with B as in (2.2.29)), but now with Y (z)
depending on z. We remark that this so-called dynamical mass matriz was first
introduced in [F'6, Section 2| (also including a pseudoscalar potential); see also [E'7,

Section 2.5].
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(b) Go through the proof of Theorem and convince yourself that the statement
of the theorem remains valid in the presence of a scalar potential if in (2.2.33|) the
matrix Y is replaced by Y (x). Remark: This generalization of Theorem Mgiven
in [F'6, Theorem 2.3].

(c) Use this generalization of Theorem together with the scaling argument in the
proof of Proposition to derive the formula for the local trace .

EXERCISE 2.24. (spectral representation of Agy) Derive the formulas (2.6.11) by a

straightforward computation using (2.6.6)) and (2.6.9).

EXERCISE 2.25. (spectral representation in the continuum limit) Derive (2.6.17)) by
using (2.6.16), (2.6.12) as well as the contraction rules (2.4.44))—(2.4.46)).

EXERCISE 2.26. In this exercise we consider the double null spinor frame in the ex-
ample of the ie-regularization.

(a) Consider a point (£,£) on the upper light cone, i.e. t = |€] (more specifically one may
choose Z = (t,0,0)). Use to and compute z (up to errors of the form (2.4.18))).
Compute the spectral projectors . Verify the relations ([2.6.24]).

(b) Compute the solutions §¢ of the eigenvector equations rmalize them
according to . What is the remaining freedom to modify the eigenvectors.

(c) Choose a space-like unit vector u which is orthogonal to & and £&. What is the
freedom in choosing this vector? Show that by suitably choosing the phases of the
eigenvectors f¢ one can arrange that the relations in hold. What is the
remaining freedom in choosing the frame (§¢)?

(d) The diagram implies in particular that ¢ f = gff_ Explain how this identity
can be understood in view of the error terms .

EXERCISE 2.27. (matriz elements in the double null spinor frame) Compute the
matrix elements §41 (B), 4L (B), 42 (B) and FFE(B) for B given by

_ i (-1)
B = B XLSZ‘T[O] .

Simplify the expression as far as possible. Hint: Use the cyclic property of the trace, the
anti-commutation relations of the Dirac matrices and the contraction rules.

EXERCISE 2.28. (Perturbation of the eigenvalues of the closed chain) The light-cone
expansion can be understood as giving corrections to the fermionic projector of lower
order on the light cone. We now explore how these corrections affect the eigenvalues of
the closed chain, and which of them are compatible with the EL equations. In order to
work in a specific example, we assume that the unperturbed fermionic projector is

Plz,y) = 5 £ T "
(similar as considered in Exercise , whereas the perturbation has a left- and right-
handed component,
AP(z,y) =XL ¥ +XRVR
where vy, and vy are given vectors in Minkowski space.
(a) Compute the corresponding perturbation A)\iy to leading order in the degree on the
light cone. What is the leading degree? Which eigenvalues change, which remain
the same? Hint: Use the usual formula for first order perturbations (see (2.6.44))

and rewrite it in the double null spinor frame.
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(b) For which vectors vz, and vg does the relation [A[Y| = |[A\/Y| hold for all k,I €
{1,...,4}? Show that these relations are a sufficient condition for the EL equations
to be satisfied. What would one need to verify in order to conclude that these

relations are necessary? Hint: Consider (2.6.44) and (2.6.46)). Keep in mind that
the EL equations are evaluated weakly on the light cone.



CHAPTER 3

An Action Principle for an Interacting Fermion System and
its Analysis in the Continuum Limit

ABSTRACT. We introduce and analyze a system of relativistic fermions in a space-time
continuum, which interact via an action principle as previously considered in a discrete
space-time. The model is defined by specifying the vacuum as a sum of Dirac seas
corresponding to several generations of elementary particles. The only free parameters
entering the model are the fermion masses. We find dynamical field equations if and only
if the number of generations is at least three. If the number of generations equals three,
the dynamics is described by a massive axial potential coupled to the Dirac spinors. The
coupling constant and the rest mass of the axial field depend on the regularization; for a
given regularization method they can be computed as functions of the fermion masses.
The bosonic mass term arises as a consequence of a symmetry breaking effect, giving
an alternative to the Higgs mechanism. In addition to the standard loop corrections
of quantum field theory, we find new types of correction terms to the field equations
which violate causality. These non-causal corrections are too small for giving obvious
contradictions to physical observations, but they might open the possibility to test the
approach in future experiments.

3.1. Introduction

In [F7] it was proposed to formulate physics based on a new action principle in
space-time. On the fundamental level, this action principle is defined in so-called discrete
space-time for a finite collection of projectors in an indefinite inner product space (see
also [F10]). An effect of spontaneous symmetry breaking [F'9] leads to the emergence of
a discrete causal structure (see [DFS| for an explanation in simple examples), which for
many space-time points and many particles should go over to the usual causal structure
of Minkowski space (for the connection between discrete and continuum space-times we
also refer to [FP), [F9, [F10] and the survey article [F12]). Furthermore, on a more
phenomenological level, it is shown in [F7, Chapters 4-8] that the action can also be
analyzed in Minkowski space in the so-called continuum limit, where the interaction is
described effectively by classical gauge fields coupled to second-quantized Dirac fields.
Finally, generalizing our approach has led to the mathematical framework of so-called
causal fermion systems (cf. [FGS|] and the references therein).

Apart from deriving the general formalism of the continuum limit, in [F7, Chapters 4—
8] it is shown that for a suitable system involving 24 Dirac seas, the resulting effective
gauge group as well as the coupling of the effective gauge fields to the Dirac fields have
striking similarities to the standard model. However, the detailed form of the effective
interaction so far has not been worked out.

This work is the first of a series of papers devoted to the detailed analysis of our action
principle in the continuum limit and to the derivation of the resulting field equations. In
order to make the presentation as clear and easily accessible as possible, our procedure
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is to begin with small systems, which are composed of only a few Dirac seas, and then
to gradually build up larger and more complicated systems. In the present paper, we
consider a system of several Dirac seas (corresponding to several “generations” of ele-
mentary particles) in the simplest possible configuration referred to as a single sector.
The only free parameters entering the model are the masses of the Dirac particles of each
generation. However, we do not specify the form of the interaction, which is completely
determined by our action principle. Also, we do not put in coupling constants nor the
masses of gauge bosons. The analysis of the model in the continuum limit reveals that we
get dynamical field equations if and only if the number of generations is at least three. If
the number of generations equals three, the dynamics can be described by a massive azial
potential A, coupled to the Dirac equation. The corresponding Dirac and field equations
(stated for notational simplicity for one Dirac particle) become

(i@ +TA,—m)yp =0,  Cojk—Cy Ak = 1272 YTky

where j¥ = 0k Al — OAF is the corresponding axial current (here I' is the pseudoscalar
matrix, which is often denoted by 7°). The coupling constant and the rest mass of the
axial gauge field are described by the constants Cy and Cs, which for a given regularization
method can be computed as functions of the fermion masses. The mass term of the gauge
field arises as a consequence of a symmetry breaking effect, giving an alternative to the
Higgs mechanism. The field equations involve surprising corrections which challenge the
standard model of elementary particle physics: First, the field equations involve additional
convolution terms of the form

— flo) * Ja + 6.fig * AL, (3.1.1)

where fj, are explicit Lorentz invariant distributions. These convolution terms give
rise to small corrections which violate causality. Moreover, we get new types of higher
order corrections to the field equations. We also find additional potentials which are
non-dynamical in the sense that they vanish away from the sources.

In order to make the paper self-consistent, we introduce our fermion systems and the
continuum limit from the basics. However, to avoid an excessive overlap with previous
work, we present a somewhat different point of view, where instead of considering a
discrete space-time or a space-time continuum of finite volume, we work exclusively in
Minkowski space. Furthermore, we always restrict attention to a single sector. For clarity,
we omit the more technical aspects of the regularization, relying instead on results from
the corresponding chapters of the book [F7].

The paper is organized as follows. In Section we introduce our action principle
in a space-time continuum. In Sections [3.3 we review and adapt the methods for
analyzing this action principle in the continuum as developed in [E7]. More precisely, in
Section we describe the vacuum by a system of regularized Dirac seas. We list all the
assumptions on the vacuum state, either motivating them or explaining how they can be
justified. In Section we construct more general fermion configurations in Minkowski
space by modifying and perturbing the vacuum state, also introducing particles and
gauge fields. We also outline the mathematical methods for analyzing the unregularized
fermionic projector with interaction. In Section we explain how interacting systems
are to be regularized, and how to treat the regularization in an effective way. This
leads us to the formalism of the continuum limit, which allows us to analyze our action
principle in the continuum, taking into account the unknown regularization details by
a finite number of free parameters. In the following Sections [3.6H3.10] the continuum
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limit of our action principle is worked out in detail; this is the main part of the paper
where we present our new results. Section [3.6] is devoted to the leading singularities of
the Euler-Lagrange equations on the light cone, where the vacuum contributions (§3.6.1))
are modified by phases coming from the chiral gauge potentials ( The next lower
orders of singularities are analyzed in Section [3.7] Then the currents of the gauge fields
come into play, and we also get a mass term corresponding to the axial gauge field
(§3.7.1). Furthermore, we find a corresponding contribution of the Dirac current (§3.7.2]).
A priori, the different current terms are not comparable, because the gauge currents
have logarithmic poles on the light cone (§3.7.3). But provided that the number of
generations is at least three, these logarithmic poles can be compensated by a local axial
transformation, as is developed in After considering more general local
transformations (§3.7.7)), in §3.7.8 we explain a basic shortcoming of local transformations.
This motivates us to work instead with so-called microlocal transformations, which are
developed in

Section [3.8]is devoted to the derivation and analysis of the field equations. In §3.8.1we
show that the Euler-Lagrange equations corresponding to our action principle give rise to
relations between the Dirac and gauge currents. If the number of generations equals three,
we thus obtain field equations for the axial gauge potential (see Theorem . These
field equations involve non-causal correction terms, which are analyzed and discussed
in §3.8.2]and §3.8.3] In §3.8.4) we explain schematically how the standard loop corrections
of quantum field theory (QFT) appear in our framework, and how loop corrections of
the non-causal terms could be obtained. In we get a connection to the Higgs
mechanism and explain why our model involves no Higgs particle. We finally compute
the coupling constant and the rest mass of the axial field for a few simple regularizations
({B:50).

In Section [3.9] we analyze and discuss further potentials and fields, including scalar
and pseudoscalar potentials, bilinear potentials, as well as the gravitational field and a
conformal axial field. In Section [3.10] we consider nonlocal potentials, which can be used
to satisfy the Euler-Lagrange equations to higher order in an expansion near the origin.

In order not to interrupt the explanations in the main sections by longer calculations,
the more technical parts are worked out in the appendices. Appendix [A]supplements the
estimates needed for the derivation of the Euler-Lagrange equations in the continuum
limit in §3.5.2] All the calculations in the formalism of the continuum limit as needed
in Sections are combined in Appendix [B] which also reviews the general method
as developed in [E'7, Appendix G]. All the formulas given in this appendix have been
obtained with the help of computer algebra. In Appendix [C| we give a general argument
which explains why local transformation cannot be used to compensate the logarithmic
poles of the current terms. In Appendix [D| we compute and analyze the smooth con-
tributions to the fermionic projector as needed in this is done by modifying a
resummation technique first introduced in [F'5]. Finally, in Appendix |[Ef we outline how
our constructions and results can be extended to the setting where the Dirac seas involve
weight factors, as was proposed in [F11] and [FH].

3.2. An Action Principle for Fermion Systems in Minkowski Space

In relativistic quantum mechanics, a fermionic particle is described by a Dirac wave
function v in Minkowski space (A, (.,.)). In order to describe a many-particle system,
we consider an operator P on the Dirac wave functions and interpret the vectors in the
image of P as the occupied fermionic states of the system (for a discussion of the Pauli
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exclusion principle and the connection to the fermionic Fock space formalism see [F7,
Chapter 3 and Appendix A]). We assume that P has an integral representation

(Py)(x) = /M Pla.y) w(y) d'y (3.2.1)

with an integral kernel P(x,y). Moreover, we assume for technical simplicity that P(z,y)
is continuous in both arguments x and ¥; then the integral in is clearly well-defined
if for the domain of definition of P we choose for example the space C3°(AM,SA) of
smooth wave functions with compact support. Moreover, we assume that P is symmetric
with respect to the Lorentz invariant inner product

<thlp> = /M »(x)p(z) d'x (3.2.2)
where 1) = 1149 is the usual adjoint spinor (wT is the complex conjugate spinor). In other
words, we demand that

<Py|p> = <yp|P¢p> for all ¢, ¢ € C5°(AM,SAM) . (3.2.3)
This condition can also be expressed in terms of the kernel by
P(z,9)* = 7" P(x, y)TfyO = P(y,z) forall z,y e M, (3.2.4)

where the dagger denotes the transposed, complex conjugate matrix. We refer to P as
the fermionic projector. The vectors in the image of P are referred to as the physical
wave functions. We point out that for the moment, these wave functions do not need to
be solutions of a Dirac equation.

For any space-time points x and y, we next introduce the closed chain A, by

Agy = P(z,y) P(y,z) . (3.2.5)

It is a 4 x 4-matrix which can be considered as a linear operator on the wave functions
at z. For any such linear operator A we define the spectral weight |A| by

4
A= Il (3.2.6)
1=1

where A{,...,\s are the eigenvalues of A counted with algebraic multiplicities. For
any x,y € A we define the Lagrangian L by
1
Lay[P] = |AZ,] — 1 | Azyl? - (3:2.7)

Integrating over space-time, we can furthermore introduce the functionals

S[p) ormaly //J% L LalP)dzdly
X

T1p| Prmely //m Mt dty.
X

These expressions are only formal because the integrands need not decay for large x or y,
and thus the integrals may be infinite (similar as in classical field theory, where the space-
time integral over the Lagrangian diverges without imposing suitable decay properties at
infinity). The functional S is referred to as the causal action. Our variational principle is

(3.2.8)
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to minimize S under the constraint that 7T is kept ﬁxedﬂ For this minimization, we vary
the fermionic projector in the following sense. In order to prevent trivial minimizers, the
variation should preserve the normalization of the wave functions. This normalization
should be performed with respect to the Lorentz invariant inner product (in a more
abstract language, we thus consider unitary variations in the Krein space as introduced
in Remark . However, we do not want to assume that this inner product is finite
for the wave functions 1 in the image of P (indeed, for physical wave functions, the inner
product <[> is in general infinite because the time integral diverges). Our method
for avoiding the divergences in and is to consider variations which outside
a compact set are the identity.

DEFINITION 3.2.1. An operator U on the Dirac wave functions is called unitary in
a compact region if

(i) <UY |Up> = <[> for all compactly supported 1.
(ii) The operator V := U — 1 has the representation

Vo)) = [ v vmaty
with a smooth integral kernel v(x,y) which has compact support, i.e. there is a
compact set K C M such that
v(z,y) =0 unless x € K and y € K .

Thus introducing a variation of the wave functions by the transformation ¥ — U1, all
the wave functions are changed only in the compact region K C A, in such a way that
all inner products in this region, i.e. all the integrals

[ @ d,
K

remain unchanged. Having introduced a well-defined notion of “varying the fermionic
projector while respecting the inner product (3.2.2),” we can now specify what we mean
by a minimizer.

DEFINITION 3.2.2. A fermionic projector P of the form (3.2.1) is a minimizer of
the variational principle

minimize S for fixed T (3.2.9)
if for any operator U which is unitary in a compact region and satisfies the constraint
/ d4zv/ d'y (}AM[P]]2 — }Azy[UPU—l]f) =0, (3.2.10)
M M
the functional S satisfies the inequality
/ d%/ dby (L‘xy[UPU_l] - Ewy[P]) > 0. (3.2.11)
M M

We point out that, since U changes the wave functions only inside a compact set K, the

integrands in (3.2.10) and (3.2.11)) clearly vanish if z and y are outside K. However, it is
not obvious that the integrals over the region z € K and y € A \ K (and similarly = €

1Clearly, the constraint of keeping 7 fixed is stronger than the boundedness constraint which
merely imposes that 7 must be bounded from above. Working with is preferable when working
out the existence theory [F'13]. However, for what follows here, it makes no difference if T is kept fixed or
only stays bounded, because both variational principles give rise to the same Euler-Lagrange equations.
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M\ K and y € M) exist. By writing and we implicitly demand that
the integrand in and the negative part of the integrand in should be
in L' x M, R).

Before going on, we briefly discuss this action principle and bring it into the context
of previous work. We first remark that, in contrast to [E'7, [F10], we here ignore the
condition that P should be idempotent. This is done merely to simplify the presentation,
anticipating that the idempotence condition will not be of relevance in this paper. The
action principle was first introduced in a discrete space-time in [F7, Section 3.5].
Apart from the obvious replacement of sums by integrals, the action here differs from
that in [E7, Section 3.5] only by an irrelevant multiple of the constraint 7. This has
the advantage that the Lagrangian coincides with the so-called critical case of the
auxiliary Lagrangian as introduced in [F10]; this is the case relevant in our setting of one
sector. Note that this Lagrangian is symmetric (see [F10l eq. (13)]) and non-negative,

Loy|P] = Lo[P]  and  L4y[P] > 0.

Moreover, the action principle can be regarded as an infinite volume limit of the
variational principle in [F13, Section 3] (possibly also in the limit where the number of
particles tends to infinity). In the special case of homogeneous systems, our variational
principle is closely related to the variational principle in infinite volume as considered
in [F13l Section 4]. Working with unitary transformations in a compact region, we can
make sense of the action principle even in infinite space-time volume without assuming
homogeneity; this procedure can be seen in analogy to considering variations of compact
support in the Lagrangian formulation of classical field theory (like a variation JA €
C§° (M, R*) of the electromagnetic potential in classical electrodynamics).

3.3. Assuming a Vacuum Minimizer

Apart from the general existence results in [F10, [F13] and the simple examples
in [DFS, [F13], almost nothing is known about the minimizers of our action principle.
Therefore, before we can do physics, we need to assume the existence of a special mini-
mizer which describes a physically meaningful vacuum. In this section, we compile our
assumptions on this vacuum minimizer, and we outline in which sense and to what extent
these assumptions have been justified in [F11l, [FH]. At the end of this section, we will
explain how to work with these assumptions in practice.

Taking Dirac’s original concept seriously, we want to describe the vacuum by “com-
pletely filled Dirac seas” corresponding to the masses m1,...,my of g generations of
elementary particles (later we will set g = 3, but for the moment it is preferable not to
specify the number of generations). Thus our first ansatz for the integral kernel of the
fermionic projector of the vacuum is the Fourier transform of the projectors ﬁ(% +mg)

on the Dirac states on the lower mass shells,
J dik .
P(x,y) = Z/(QW)A‘ (F +mg) 5(k* — m%) O(—kY) e7hl—v) (3.3.1)
B=1

(Here © is the Heaviside function, and k(x —y) is a short notation for the Minkowski inner
product (k,x —y). The slash denotes contraction with the Dirac matrices, thus f = k7.
We always work in natural units 2z = ¢ = 1, and for the signature of the Minkowski inner
product we use the convention (+ — ——).) We always index the masses in increasing
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order,

mp <mg <...<mg. (3.3.2)
The Fourier integral (3.3.1)) is well-defined as a distribution. If the vector y— = is spacelike
or timelike, the integral (3.3.1)) exists even pointwise. However, if the vector y — z is null,

the distribution P(z, y) is singular (for details see [E7, Section 2.5] or §1.2.5)). In physical
terms, these singularities occur if y lies on the light cone centered at x. Thus we refer to
the singularities on the set where (z —y)? = 0 as the singularities on the light cone. As a
consequence of these singularities, the pointwise product in is ill-defined, and the
Lagrangian has no mathematical meaning. In order to resolve this problem, one
needs to introduce an ultraviolet regularization. In position space, this regularization can
be viewed as a “smoothing” on a microscopic length scale. It seems natural to identify
this microscopic length scale with the Planck length £p, although it may be even smaller.
Thus we always assume that ¢ < ¢p. Likewise, in momentum space the regularization
corresponds to a cutoff or decay on the scale e !, which is at least as large as the Planck
energy Ep = E;l. Clearly, the regularization scale is extremely small compared to the
length scale fpacro Of macroscopic physics, and thus it seems reasonable to expand in
powers of £/lmacro. However, such an expansion would not be mathematically meaningful,
because Taylor series can be performed only in continuous variables (but not in a constant,
no matter how small). Therefore, it is preferable to denote the regularization length by
the variable €, which may vary in the range 0 < & < fpacro- We are thus led to a
one-parameter family of regularizations. We assume that these regularized Dirac sea
configurations are all minimizers. We also compile all assumptions on the regularization
as introduced in [F'7, Chapter 4].

ASSUMPTION 3.3.1. (regularized Dirac sea vacuum) There is a family (P).>0
of fermionic projectors whose kernels P*(z,y) (as defined by (3.2.1))) have the following
properties:

(i) Every P¢(x,y) is a minimizer in the sense of Definition
(ii) Every P¢(z,y) is homogeneous, i.e. it depends only on the variable £ := y — x.
(iii) Taking its Fourier transform,

PE(x,y) = / ATk Pe(k) e~ tk@—w) (3.3.3)
’ (2m)* ' e
P# is a distribution with a vector-scalar structure, i.e.
Pe(k) = (v5(k)~7 + ¢°(k) 1) f*(p) (3.3.4)
with a vector field v°, a scalar field ¢* and a distribution f¢, which are all real-

valued.
(iv) If the regularization is removed, P goes over to P (as given by (3.3.1))), i.e.

g

lim Pe(k) = P(k) =) _(k+mp) 6(k* — m3) O(—k°)
B=1

with convergence in the distributional sense.

The assumptions so far seem natural and are easy to state. In order to understand the
following assumptions, one should notice that the singularities of P(x,y) on the light

cone arise because its Fourier transform P(k) is supported on the mass shells k? = m%,

which are hypersurfaces being asymptotic to the mass cone k? = 0 (for details see [F7,
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Section 4.2]). Thus in order to control the behavior of P¢ near the light cone, we need to

make suitable assumptions on P(w, k) for w ~ —|k| ~ e,

(v) We assume that the distribution Pe is supported on hypersurfaces described by
graphs, i.e. the distribution f¢ in (3.3.4)) should be of the form

Fo(w, k) = Za(w+ I%| +a5(E)) . (3.3.5)
B=1

These hypersurfaces should be asymptotic to the mass cone in the sense that

ag(k) ~e  if k| ~et.
Except for these singularities, Pe (k) is so regular that the singularities as € N\ 0
of P%(x,y) on the light cone are completely described by the behavior of P¢(k) on
the hypersurfaces (3.3.5)), up to corrections of higher order in e. We refer to this
assumption as the restriction to surfaces states.

(vi) On the hypersurfaces (3.3.5) and for |k| ~ =1, the vector field v¢ in (3.3.4) should
be parallel to k, up to a small error term. More precisely, decomposing v¢ as

v° = s°(k) k + (k) (3.3.6)
with a scalar function s°, the vector field w® should be bounded by
|W® (k)| < Eshear where Eshear K 1. (3.3.7)

We refer to eghear as the shear parameter. Considering the effect of this assumption
in position space, we say that the vector component is null on the light cone.

(vii) The functions in either vanish, ¢°(k) = 0 = v°(k), or else ¢°(k) > 0 and the
vector field v® is time-like and past-directed. Furthermore,

v (p)? = 6°(p)?

For a discussion of the assumptions (v) and (vi) we refer to [F'7, Chapter 4]. The con-
dition (vii) requires a brief explanation. This assumption is clearly satisfied without
regularization ([3.3.1)) (in which case we choose v(p) = p/(2w) and ¢ a positive function
which on the mass shells takes the values m,/(2w)). A closely related condition was first
proposed in [E'7, Chapter 4] as the assumption of half-occupied surface states. This condi-
tion was motivated by the wish to realize the Dirac sea configurations with as few occupied
states as possible, noting that the condition (vii) implies that the matrix P¢(k) has rank
at most two. Furthermore, the condition (vii) implies that the image of the matrix P¢ (k)
is negative definite with respect to the inner product ¥¢. From the mathematical point
of view, this definiteness is crucial for our action principle to be mathematically well-
defined (see the reformulation as a causal variational principle in [F13), [FGS] as well
as the general compactness result [F13, Theorem 4.2]). Thus the physical intuition and
the mathematical requirements fit together. Moreover, in the case when If”f(k) does not
vanish, we can choose a suitably normalized orthogonal basis (¢, 1,1 2) of the image
of P%(k) such that (2)*P*(k) = —tp 191 — Yr2Uke. Substituting this representation
into the Fourier integral and using , we obtain

Piag) == [ a3 by, o) Vg 0). (3.3.8)
p=17R?

a=1,2
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where wE,Ba(x) = Ypae P for p = (—|k| — ag(E),E). This representation is helpful
because it shows that the regularized fermionic projector of the vacuum is composed of
negative-energy wave functions; the index a can be thought of as describing the two spin
orientations.

We next outline the approach taken to justify the above assumptions. In [F11]
a class of regularizations is constructed for which the action remains finite when the
regularization is removed (more precisely, this is done by proving that the constructed
regularizations satisfy the so-called assumption of a distributional M P-product). These
regularizations are spherically symmetric, but they break the Lorentz symmetry. How-
ever, after suitably removing the regularization, we obtain a well-defined Lorentz invariant
action principle. This Lorentz invariant action principle is analyzed in [FH]|, and it is
shown that for certain values of the masses and the so-called weight factors (which for
simplicity we do not consider in the main text of this paper; see however Appendix ,
the Dirac sea configuration is indeed a minimizer, in a sense made precise using
the notion of state stability. Following these results, “good candidates” for satisfying
the above assumptions are obtained by regularizing the state stable Dirac sea configura-
tions from [FH] according to the regularization scheme in [F11]. The remaining task for
giving a rigorous justification of Assumption [3.3.1]is to use the freedom in choosing the
regularization such as to obtain a minimizer in the sense of Definition [3.2.2l This task
seems difficult and has not yet been accomplished. In [F13| Theorem 4.2] the existence
of minimizers is proved within the class of homogeneous fermionic projectors; but this
is considerably weaker than being a minimizer in the sense of Definition In tech-
nical terms, the main difficulty is to quantify the influence of the spherically symmetric
regularization on the action, even taking into account contributions which remain finite
when the regularization is removed. Despite this difficult and technically challenging open
problem, it is fair to say that the results of [F11l, FH| show that Dirac sea configurations
tend to make our action small, thus explaining why Assumption [3:3.1] is a reasonable
starting point for the continuum analysis.

We finally explain how to work with the above assumptions in practice. Ideally, the
fields v®, ¢° and the distribution f¢ in could be determined by minimizing our
action , thus giving detailed information on P°. Such a minimization process is
indeed possible (see [F13, Theorem 4.2] for a general existence result and [FP] for a
lattice formulation), but so far has not been analyzed in sufficient depth. Thus for the
time being, there is a lot of freedom to choose the functions in . Our program is
not to make a specific choice but to consider instead general functions v, ¢* and f¢. Our
subsequent analysis will clearly depend on the choice of these functions, and our task is
to look for conclusions which are robust to regularization details. This so-called method
of variable regularization (which is worked out in detail in [E'7, Section 4.1]) leads to the
formalism of the continuum limit which will be explained in Section below.

3.4. Introducing an Interaction

Our next goal is to generalize the regularized fermionic projector P¢ of the previ-
ous section such as to include an interaction. Postponing the treatment of the regu-
larization to Section (3.5 we shall now extend the definition of the fermionic projector
of the vacuum to the case with interaction. We outline the methods developed
in [F3,, [F'5, [F6]; see also [F'7, Chapter 2] or Chapter |2/ in this book.
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3.4.1. A Dirac Equation for the Fermionic Projector. First, it is useful to
recover (3.3.1)) as a solution of a Dirac equation: Replacing the ordinary sum in (3.3.1)

by a direct sum, we introduce the so-called auziliary fermionic projector P*** by
T d'k 2 2 0 ik(z—y)
P (z,y) :5691/(277)4 (k4 mg) 6(k* —m3z) O(=k") e y (3.4.1)

(thus P*"™(x,y) is represented by a 4g x 4g-matrix). It is a solution of the free Dirac
equation

(idy —mY) P*(z,y) =0, (3.4.2)
where the mass matriz Y is composed of the rest masses corresponding to the g genera-
tions,

g
mY = @ mg
B=1

(here m > 0 is an arbitrary mass parameter which makes Y dimensionless and will be
useful for expansions in the mass parameter; see also [E'7, Section 2.3] or Section. The
fermionic projector of the vacuum is obtained from P?"™* by summing over the generation
indices,

g

P= ) (P™)j. (3.4.3)
a,B=1
This summation removes the generation indices, leaving us with the configuration of one
sector. In [F7| this operation is referred to as the partial trace. However, this notion
might be confusing because it suggests that in one should set @ = 8 and sum
over one index (for a more detailed discussion see [E7), paragraph after Lemma 2.6.1}).
In order to avoid this potential source of confusion, in this book we always refer to the
operator in as the the sectorial projection.
The obvious idea for introducing an interaction is to replace the free Dirac equa-
tion by a Dirac equation with interaction,

(i + B —mY) P*(z,y) =0, (3.4.4)

where B is a general perturbation operator, and to introduce the fermionic projector again

forming the sectorial projection (3.4.3). In order to ensure that the resulting fermionic
projector is again symmetric (3.2.3|), we generalize the inner product (3.2.2)) to the wave

functions of the auxiliary Dirac equation by setting
g
<¢3«HX‘¢auX> = Z/ 1/J§ux(x)¢§ux($) d4IL‘ ) (345)
M
B=1

and demand that the auxiliary fermionic projector should be symmetric with respect to
this new inner product,

<Pauxwaux|¢aux> = <¢aux|Paux¢aux> for all ¢auX7 ?baux € C(())o('/%, SL/%)Q .

In order to obtain a coherent framework, we shall always assume that the Dirac operator
is symmetric with respect to this inner product,

<(23 + B — my)waux‘¢aux> = <¢aux|(ia +3B - mY)¢aux>-

This equation gives a condition for the operator B describing the interaction. Apart
from this condition and suitable regularity and decay assumptions, the operator B can
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be chosen arbitrarily; in particular, it can be time dependent. In typical applications, B
is a multiplication or differential operator composed of bosonic potentials and fields. The
choices of B relevant for this work will be discussed in §3.4.5| below.

3.4.2. The Interacting Dirac Sea. Clearly, the Dirac equation has many
different solutions, and thus in order to determine P?*™*, we need to specify of which
one-particle states P*"* should be composed. In the vacuum , this can be done
by taking all the negative-energy solutions, i.e. all states on the lower mass shells {k? =
m%, k% < 0}. Unfortunately, the concept of negative energy does not carry over to the
situation of a time-dependent interaction , because in this case the energy of the
Dirac wave functions is not conserved; this is the so-called external field problem (see [E7,
Section 2.1] or Section . The clue for resolving this problem is the observation that
the negative-energy states in can be characterized alternatively using the causality
of the Dirac Green’s functions in a specific way. This causal approach generalizes to the
situation and makes it possible to extend the concept of the Dirac sea to the time-
dependent setting. It gives rise to a unique definition of the fermionic projector P%? in
terms of a power series in B. More precisely, the so-called causal perturbation expansion
expresses P%? as sums of operator products

[e'e) amax(k)

Pr=3" 3" ¢ CraBCoaB + BChira, (3.4.6)
k=0 a=0

where the factors Cj, are the Green’s functions or fundamental solutions of the free
Dirac equation (3.4.2)), and the ¢, are combinatorial factors (for details see [F3] and [E7,
Sections 2.2-2.3]; for a more recent account on idempotence and unitarity questions
see [FG1, [FT2[). In the language of Feynman diagrams, each summand in is
a tree diagram. These tree diagrams are all finite, provided that B satisfies suitable
regularity and decay assumptions at infinity (see [F'7, Lemma 2.2.2.] or Lemma [2.1.2)).

3.4.3. Introducing Particles and Anti-Particles. The fermionic projector P
is interpreted as a generalization of completely filled Dirac seas to the interacting situ-
ation . In order to bring particles and anti-particles into the system, we add the
projectors on states 11, . . ., ¥, which are not contained in the image of the operator P
(the particle states) and subtract the projectors on states ¢1, ..., ¢,, which are in the
image of P (the anti-particle states),

P (z,y) = P***(x,y) — % > n(x)n(y) + % Z d1(2) i (y) - (3.4.7)
k=1 =1

Then the fermionic projector is again obtained by forming the sectorial projection (3.4.3)).
Here the wave functions in (3.4.7) are to be normalized such that they are orthonormal
with respect to the usual integral over the probability density, i.e.

/ (0w ) (8, Z) dPx = Opper / (oY ) (¢, ) d*x = 61 . (3.4.8)
R3 R3

The factors +5- in (3.4.7)) are needed for the proper normalization of the fermionic states

(for details see [E'T2] or §2.1.7]).
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3.4.4. The Light-Cone Expansion and Resummation. We now outline the
methods for analyzing the fermionic projector in position space (for details see [F'5, [F6]
or Section . The following notion is very useful for describing the structure of the
singularities on the light cone.

DEFINITION 3.4.1. A distribution A(x,y) on M x A is of the order O((y — x)?),
p € Z, if the product

(y— )" A(z,y)

is a reqular distribution (i.e. a locally integrable function). It has the light-cone expan-
sion
Alz,y) = 3 AVl(a,y)

J=90

with gy € Z if the distributions AUl (x,y) are of the order O((y —x)%) and if A is approz-
imated by the partial sums in the sense that for all p > g,

P
A(z,y) — Z Al (2, y) is of the order O((y — z)*2).
J=g0

Thus the light-cone expansion is an expansion in the orders of the singularity on the
light cone. As the main difference to a Taylor expansion, for any fixed x the expansion
parameter (y — z)? vanishes for all y in an unbounded set, namely the whole light cone
centered at x. In this sense, the light-cone expansion is a nonlocal expansion.

For a convenient formulation of the light-cone expansion of the fermionic projector,
it is helpful to work with a generating function, i.e. a power series in a real parameter
a > 0 whose coefficients are functions in (y —x)? which are of increasing order on the light
cone. The first ansatz for such a generating function is the Fourier transform T;(z,y) of
the lower mass shell with k% = q,

4
Ty, y) = / gﬁ’; 5(k? — a) ©(—k?) e—ik—1) (3.4.9)

Carrying out the Fourier integral and expanding the resulting Bessel functions, one ob-
tains

Te) =~ g (o + ) oe)

8r3 \ &2
. | C1y a2y (3410
+ % gt (lOg |CL£2‘ =+ Cj +m @(52) 6(50)) ]' (] + 1)| 4] )

where we again used the abbreviation £ = y — x, and € denotes the sign function (i.e.
€(r) =11if x > 0 and €(z) = —1 otherwise). The real coefficients c; are given explicitly
in [E7, Section 2.5]. Unfortunately, due to the factor log |a&?|, the expression is
not a power series in a. In order to bypass this problem, we simply remove the logarithms
in a by subtracting suitable counter terms,

(€

VTR (3.4.11)

o0
a (—
Tr®(z,y) == To(x,y) — 39,3 log |a| E TG
j=0""
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The resulting distribution 73 ® is a power series in a, and it is indeed the right choice for
our generating function. We denote its coefficients by

d n
) — (L pres
(@) ™

and also introduce TV via the distributional equation

(n=0,1,2,...) (3.4.12)

a=0

DO y) = 5 (y - T y). (3.4.13)
We remark for clarity that removing the logarithmic poles in @ has similarity to an
infrared regularization, because infrared problems also appear when the mass parameters
tend to zero. This is the motivation for using the superscript “reg.” But clearly, this
“regularization” is not related to the ultraviolet regularization in Assumption [3.3.1

Combining Fourier techniques with methods of hyperbolic partial differential equa-
tions, one can perform the light-cone expansion of each summand of the perturbation
series . After suitably rearranging all the resulting contributions, one can partially
carry out the infinite sums. This so-called resummation gives rise to an expansion of the
interacting fermionic projector of the form

o
P (z,y) = Z Z mP* (phase-inserted nested line integrals) x T (z, y)
n=-—1 k
+ P(x,y) + P (x,y) . (3.4.14)

Here the n-summands describe the different orders of the singularities on the light cone,
whereas the k-sum describes all contributions to a given order on the light cone. The
phase-inserted nested line integrals involve B and its partial derivatives, possibly sand-
wiched between time-ordered exponentials of chiral potentials. Since these nested line
integrals are smooth functions in x and y, the series in is a light-cone expansion
in the sense of Definition provided that the k-sum is finite for every n. This is in-
deed the case if B is composed of scalar, pseudoscalar and chiral potentials [F6], whereas
for a more general perturbation operator B this condition still needs to be verified. This
expansion is causal in the sense that it depends on B and its partial derivatives only along
the line segment Zg. The contributions P and P" on the other hand, are not causal
but depend instead on the global behavior of B in space-time. They can be written as
a series of functions which are all smooth in x and y. Their different internal structure
gives rise to the names non-causal low energy contribution and non-causal high energy
contribution, respectively.

For an introduction to the light-cone expansion and the required mathematical meth-
ods we refer to [F'5] and [F6], the exposition in [F7, Section 2.5] or Chapter [2| in this
book. The formulas of the light-cone expansion needed in this work are compiled in

Appendix

3.4.5. Clarifying Remarks. The above constructions require a few explanations.
We first point out that, although we are working with one-particle wave functions, the
ansatz for the fermionic projector describes a many-particle quantum state. In
order to get a connection to the Fock space formalism, one can take the wedge product of
the wave functions ¥ and ¢; to obtain a vector in the fermionic Fock space (for details
see |[F7, Appendix A]). We conclude that (3.4.7]) describes second-quantized fermions.
For the description of entangled states see [F14].
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One should keep in mind that at this stage, the form of the potential B has not been
specified; it can be an arbitrary operator. Indeed, we regard the operator B merely as
a device for modifying or perturbing the fermionic projector. We do not want to pre-
assume which of these perturbations are physically relevant; instead, we want to select
the relevant perturbations purely on the basis of whether they are admissible for mini-
mizers of our action principle . In other words, our action principle should decide
how the physical interaction looks like, even quantitatively in the sense that our action
principle should determine the corresponding field equations. Following this concept, we
should choose B as general as possible, even allowing for potentials which are usually not
considered in physics. We now give a brief overview over the potentials which will be of
relevance in the present work. The most obvious choice is an electromagnetic potentia]EL

B=A. (3.4.15)

More generally, one can choose chiral potentials, which may be non-diagonal in the gen-
erations,

B =xr Ar+xr AL, (3.4.16)
where App = (AiL/R)g with generation indices o, = 1,...,g and a vector index i =

0,...,3 (here xpp = %(]1 FI') are the chiral projectors, and I' = i7%y!y243 is the

usual pseudoscalar matrix). To describe a gravitational field, one needs to choose B as a
differential operator of first order; more precisely,

B=D—id, (3.4.17)

where D is the Dirac operator in the presence of a gravitational field.

The above choices of B are of course motivated by physical fields observed in nature.
However, we point out that we do not assume any field equations. Thus the electromag-
netic potential in does not need to satisfy Maxwell’s equations, in (3.4.16|) we
do not assume Yang-Mills-type equations for the chiral gauge fields, and in the
Finstein equations are not imposed. This is because, as already pointed out above, our
goal is to derive the classical field equations from our action principle (3.2.9)).

Apart from the above choices of B motivated from physics, one can also choose other
physically less obvious operators, like for example scalar or pseudoscalar potentials,

B=>o+iI'= (3.4.18)
with & = @3, 5 = = and «,f = 1,...,9. Furthermore, one can consider a scalar
differential operator, '

B =1i®’0;,

or a higher order differential operator. More specifically, we will find a pseudoscalar
differential potential useful,
B=T (vjaj + 8jvj) :

It is worth noting that one does not need to restrict attention to differential operators.
Indeed, B can also be an integral operator, in which case we talk of nonlocal potentials.
Clearly, one can also take linear combinations of all the above operators B.

Next, it is worth noting that for the moment, we consider B as a-priori given, and
thus at this stage, our system consists of Dirac particles moving in an external field.

2 For convenience we shall always omit the coupling constant e in the Dirac equation. Our convention
is obtained from the usual choice B = e by the transformation A — e *A. The coupling constant clearly
reappears in the Maxwell equations, which we write in natural units and with the Heaviside-Lorentz
convention as 9, A* — OAg = e*Pyitp. As usual, the fine structure constant is given by o = e?/(4w).
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However, our action principle will give relations between the potentials contained
in B and the Dirac wave functions in , and thus these potentials will be influenced
by the Dirac wave functions. This leads to a mutual coupling of the potentials to the
Dirac wave functions, giving rise to a fully interacting system. We also point out that the
potentials and fields contained in B should be regarded as classical. Indeed, in this book
we will always work with classical bosonic fields. However, as is worked out in [F14)
F17, [F20], the framework of the fermionic projector also allows for the description of
second-quantized bosonic fields.

3.4.6. Relation to Other Approaches. Having outlined our approach, we can
now give a short review of related works. In order to get a connection to our description
of the Dirac sea in we begin with the construction of quantum fields in an external
field. Historically, this problem was first analyzed in the Fock space formalism. Klaus
and Scharf [KS1), KS2] considered the Fock representation of the electron-positron field
in the presence of a static external field. They noticed that the Hamiltonian needs
to be regularized by subtracting suitable counter terms which depend on the external
field. They also noticed that the electron-positron field operators in the external field
form a Fock representation on the standard Fock space of free fields only if the external
field satisfies a certain regularity condition. This regularity condition is quite restrictive
and excludes many cases of physical interest (like a magnetic field [NS] and a Coulomb
potential [K1J). In particular, these results show that different external fields in general
give rise to nonequivalent Fock representations of the electron-positron field operators.
More recently, in [HLS2|, [HLS1] the vacuum state was constructed for a system of Dirac
particles with electrostatic interaction in the Bogoliubov-Dirac-Fock approximation. The
conclusion of this analysis is that for mathematical consistency, one must take into account
all the states forming the Dirac sea. Furthermore, the interaction mixes the states in such
a way that it becomes impossible to distinguish between the particle states and the states
of the Dirac sea.

In the time-dependent setting, Fierz and Scharf [E'S] proposed that the Fock repre-
sentation should be adapted to the external field as measured by a local observer. Then
the Fock representation becomes time and observer dependent. This implies that the
distinction between particles and anti-particles no longer has an invariant meaning, but
it depends on the choice of an observer. In this formulation, the usual particle inter-
pretation of quantum states only makes sense for the in- and outgoing scattering states,
but it has no invariant meaning for intermediate times. For a related approach which
allows for the construction of quantum fields in the presence of an external magnetic field
see [DDMS]. In all the above approaches, the Dirac sea leads to divergences, which must
be treated by an ultraviolet regularization and suitable counter terms.

As an alternative to working with Fock spaces, one can use the so-called point splitting
renormalization method, which is particularly useful for renormalizing the expectation
value of the energy-momentum tensor [Ch|. The idea is to replace a function of one
variable T'(z) by a two-point distribution T'(x,y), and to take the limit y — z after
subtracting suitable singular distributions which take the role of counter terms. Analyzing
the singular structure of the counter terms leads to the so-called Hadamard condition (see
for example [FSW]). Reformulating the Hadamard condition for the two-point function
as a local spectral condition for the wave front set [Ral] turns out to be very useful for the
axiomatic formulation of free quantum field theory in curved space-time. As in the Fock
space formalism, in the point splitting approach the particle interpretation depends on
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the observer. This is reflected mathematically by the fact that the Hadamard condition
specifies the two-point distribution only up to smooth contributions, thus leaving the
smooth particle wave functions undetermined. For a good introduction to free quantum
fields in curved space-time we refer to the recent book [BF].

As mentioned at the beginning of §3.4.5] in our approach the connection to the Fock
space formalism is obtained by choosing a basis of the image of the fermionic projector
and taking the wedge product of the basis vectors (for details see [E'7, Appendix A]
or [F'14]). If in this construction the states of the Dirac sea are taken into account, we get
precisely the framework in [F'S]. The connection to the Hadamard condition is even closer.
Indeed, considering the light-cone expansion locally for y near z, the summands in (3.4.14)
coincide precisely with the singular distributions in the Hadamard construction. Since
the non-causal contributions P" and P are smooth functions, we conclude that the
integral kernel of the fermionic projector satisfies the Hadamard condition, provided that
the perturbation expansions for P" and P' converge (a subtle technical problem which
we do not want to enter here). Thus in a given external field, P***(x,y) can be interpreted
as the two-point function, and using the methods of [Ral, BF] one could construct the
corresponding free QFT. This construction has been carried out in [FMR] in the presence
of an external potential.

A major difference of our approach is that our framework allows for the description
of an interacting theory, where the coupling of the fermions to bosonic fields and the
back-reaction of the bosonic fields to the fermions is taken into account. In this setting,
the interaction is described by our action principle . The mathematical framework
is no longer equivalent to standard QFT. In particular, P(z,y) cannot be interpreted as
the two-point function of a corresponding QFT, simply because the notions of QFT can
no longer be used. But we still get a connection to the Feynman diagrams of QFT (as
will be explained in below).

Another major difference of our approach is that the distribution P%%? as defined
by the causal perturbation expansion distinguishes a unique state which can be
interpreted as the fermionic vacuum state where all Dirac seas are completely filled.
Thus working relative to this distinguished state, there is a unique observer independent
particle interpretation, even at intermediate times (see [F'3), Section 5] for a discussion of
this point). At first sight, this distinguished particle interpretation might seem of purely
academic interest, because P*® is defined globally in space-time and is thus not accessible
to a local observer. However, our action principle does have access to quantities
defined globally in space-time, and in this way the distinguished particle interpretation
enters the physical equations. More precisely, P%?® drops out of the Euler-Lagrange
equations corresponding to our action principle, up to terms which are well-defined and
explicitly computable, even including a uniquely determined smooth contribution. In
this way, the arbitrariness of working modulo smooth contributions (in the Hadamard
condition) or modulo regular counter terms (in the Fock space formalism) is removed. The
corresponding smooth contributions to the physical equations will be analyzed in
and Appendix [D| They are nonlocal and violate causality, as will be explained in

A frequently asked question is how our approach relates to Connes’ noncommutative
geometry [C2|. In particular, can our approach be thought of as a Lorentzian version
of noncommutative geometry? Clearly, both approaches have in common that the Dirac
operator plays a central role. Moreover, the light-cone expansion is the Lorentzian ana-
log of local expansions of the resolvent or the heat kernel near the diagonal. A major
difference is that instead of considering the whole spectrum of the Dirac operator, we
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only consider the eigenspaces corresponding to the masses m, of the Dirac particles of
our system. Furthermore, we only take “half the eigenspaces” by constructing Dirac seas,
and we also build in additional particle and anti-particle states . Another major
difference concerns the mathematical structure of our action principle . Namely,
this action cannot be thought of as a spectral action, because it is impossible to express
it in terms of spectral properties of the Dirac operator. This is obvious from the fact
that in (3.2.7) and (3.2.8)) we perform a nonlinear (and even non-analytic) transforma-
tion of the kernel P(z,y) before integrating over = and y. As a consequence, there is
no connection to a regularized trace or Hilbert-Schmidt norm of P. The specific form
of our action principle makes it possible to regard the structures of Minkowski space as
emerging from a self-organization of the wave functions in discrete space time (see [F12]),
an idea which has no correspondence in noncommutative geometry. On the other hand,
noncommutative geometry has deep connections to Riemannian geometry, index theory
and number theory. We conclude that despite superficial similarities, the aims, ideas and
methods of our approach are quite different from those in noncommutative geometry.

3.5. The Continuum Limit

In Section we described the vacuum by a family of regularized fermionic pro-
jectors P°. Our next goal is to use the information on the regularized vacuum to also
regularize the fermionic projector with interaction. We cannot expect that this informa-
tion will suffice to determine the interacting fermionic projector in all details, because it
is unknown how the interaction affects the fermionic projector on the microscopic scale.
But as shown in [F'7, Chapter 4 and Appendix D], there is a canonical method to regular-
ize the formulas of the light-cone expansion . This method also gives a meaning
to composite expressions as needed for the analysis of the action principle introduced
in Section [3:2] In particular, it allows us to analyze the corresponding Euler-Lagrange
equations in the continuum, taking into account the unknown regularization details by a
finite number of free parameters. We now outline this method, relying for all technical
issues on the detailed analysis in [E'7]. The method in is a major improvement and
simplification of the techniques in [F7, Appendix F]. An introduction to the methods is
given in Section [2.4]

3.5.1. Weak Evaluation on the Light Cone. Our method relies on the physically
reasonable assumption of macroscopic potentials and wave functions which states that
both the bosonic potentials in and the fermionic wave functions in vary
only on the macroscopic scale and are thus almost constant on the regularization scale ¢.
Then the idea is to regularize the perturbation expansion in such a way that
the interaction modifies the fermionic projector also only on the macroscopic scale. As
exemplified in [F'7, Appendix D] in the perturbation expansion to first order, this idea
can be realized by demanding that the perturbation expansion should be gauge invariant
and should satisfy a causality condition. Performing the light-cone expansion for the
thus regularized perturbation expansion and using the form of the regularized vacuum
minimizers as specified in Assumption one obtains a simple regularization scheme
for the continuum fermionic projector (3.4.14)), which we now describe.

The non-causal contributions P and P, which are already smooth in z and y, are
not regularized. Likewise, the smooth nested line-integrals are not regularized. Thus we
only regularize the singularities of the factors 7 on the light cone, and this is done by
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the replacement rule

m? T — mr 71 (3.5.1)

where the factors T[;?) (&) are smooth functions defined as Fourier integrals involving
the functions v¢, ¢° and f° in the ansatz . If the sectorial projection is formed,
we clarify the handling of the generation index by accents, where = and * denote the
summation over an upper and lower generation index, respectively More precisely, we
extend the replacement rule (3.5.1]) to (see also [E'7], Section 7.1])

g

STomPYe Y Y T e YY---YT[;T), (3.5.2)

8,715 Yp—1=1
By P p factors Y

and use the notationﬂ

g
0 sa n 0 (n) Je' n (n)
%:lm (55T( ) > m gT[OqZ and lemY 7™ —>mYT[17]Z .

Fortunately, the rather complicated detailed form of the factors T[;?) will not be needed
here, because these functions can always be treated symbolically using the following
simple calculation rules. In computations one may treat the T[;?) like complex functions.
However, one must be careful when tensor indices of factors ¢ are contracted with each
other. Naively, this gives a factor £? which vanishes on the light cone and thus changes
the singular behavior on the light cone. In order to describe this effect correctly, we first

write every summand of the light cone expansion (3.4.14)) such that it involves at most one
factor ¢ (this can always be arranged using the anti-commutation relations of the Dirac

)

calculations, this can be indicated by putting brackets around the two factors, whereas
in the general situation we add an index to the factor ¢, giving rise to the replacement
rule

matrices). We now associate every factor ¢ to the corresponding factor T[;? . In simple

mP ¢ T — mpf[n) T[;]) .

The factors ¢ which are contracted to other factors ¢ are called inner factors. The
contractions of inner factors can be handled with the so-called contraction rules

€ s = 5 (43 + 47) 459
n)\j n’ 1 n’
(& (€ = ( ot EM)> (3.5.4)
) ) _ (nt1) | m(nt2)
2 T = 4(”T[p1 + Ty, > (3:5.5)

which are to be complemented by the complex conjugates of these equations. Here the

(n)

factors 2, can be regarded simply as a book-keeping device to ensure the correct appli-

cation of the rule (3.5.5). The factors T{(Z}) have the same scaling behavior as the T, [;T]L) ,

3 In contrast to the convention in [E7], here we always write out the factors g which count the number

of generations (in [E7], the factor g was absorbed into the factors T[O]) and T(n>) The shorter notation

in [F7] has the disadvantage that reinserting the factors of g in the end is a potentlal source of confusion

and may lead to computational errors. In the convention here, the factors Té") without regularization
always coincide with the distributions (3.4.12) and (3.4.13).
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but their detailed form is somewhat different; we simply treat them as a new class of
symbol In cases where the lower index does not need to be specified we write Tcsn).
After applying the contraction rules, all inner factors £ have disappeared. The remaining
so-called outer factors £ need no special attention and are treated like smooth functions.

Next, to any factor T§") we associate the degree deg T§”) by
degTo(n) =1—n.

The degree is additive in products, whereas the degree of a quotient is defined as the
difference of the degrees of numerator and denominator. The degree of an expression can
be thought of as describing the order of its singularity on the light cone, in the sense
that a larger degree corresponds to a stronger singularity (for example, the contraction
rule increments n and thus decrements the degree, in agreement with the naive
observation that the function z = &2 vanishes on the light cone). Using formal Taylor
expansions, we can expand in the degree. In all our applications, this will give rise to
terms of the form

(a1) (aa) (b1) (bs)
Tier) o plaa) o) ool .
n(z,y) _ with n(z,y) smooth . (3.5.6)
rien . oplen) pldy) o p(ds)

Here the quotient of the two monomials is referred to as a simple fraction.

A simple fraction can be given a quantitative meaning by considering one-dimensional
integrals along curves which cross the light cone transversely away from the origin £ = 0.
This procedure is called weak evaluation on the light cone. For our purpose, it suffices to
integrate over the time coordinate ¢t = £9 for fixed 5 # 0. Moreover, using the symmetry
under reflections & — —&, it suffices to consider the upper light cone t ~ |a . The resulting
integrals will diverge if the regularization is removed. The leading contribution for small &
can be written as

—

| a [e7e% —b 4
/|'f'f‘~E ~ TCS .. 'TO( ) To(bl) e TCE #) = 2 Creg loOg (E‘SD
\

L dtn(t¢) ~ ([, €) ot (357

£l T . oplen) pldy) L plds) GEHE €

where L is the degree and ceg, the so-called regularization parameter, is a real-valued

function of the spatial direction 5 / y§| which also depends on the simple fraction and on
the regularization details (the error of the approximation will be specified below). The
integer r describes a possible logarithmic divergence; we postpone its discussion until
when we need it (see . Apart from this logarithmic divergence, the scalings in
both ¢ and ¢ are described by the degree.

When analyzing a sum of expressions of the form , one must know if the
corresponding regularization parameters are related to each other. In this respect, the
integration-by-parts rules are important, which are described symbolically as follows. On

the factors T§”) we introduce a derivation V by

v = i

4We remark that the functions T{(:]? will be of no relevance in this chapter, because they contribute
to the EL equations only to degree three and lower; see i
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Extending this derivation with the Leibniz and quotient rules to simple fractions, the
integration-by-parts rules states that

(a1) (aa) (b1) (bg)
i) . plaa) pln) g
—0. (3.5.8)
7len . ople) pldy) [ pl(ds)

These rules give relations between simple fractions (the name is motivated by the fact
that when evaluating weakly on the light cone , the rules state that the
integral over a derivative vanishes). Simple fractions which are not related to each by
the integration-by-parts rules are called basic fractions. As shown in [F7, Appendix E],
there are no further relations between the basic fractions. Thus the corresponding basic
reqularization parameters are linearly independent.

We next specify the error of the above expansions. By not regularizing the bosonic
potentials and fermionic wave functions, we clearly miss the

higher orders in €/lacro - (3.5.9)
Furthermore, in (3.5.7) we must stay away from the origin, meaning that we neglect the
higher orders in /] . (3.5.10)

The higher oder corrections in £/|¢] depend on the fine structure of the regularization and
thus seem unknown for principal reasons. Neglecting the terms in (3.5.9)) and (3.5.10)) also
justifies the formal Taylor expansion in the degree. Neglecting the terms (3.5.10)) clearly
makes it necessary to choose |€\ > ¢. Finally, we disregard the higher order corrections
in the parameter egpear in (3.3.7)).

The above symbolic computation rules give a convenient procedure to evaluate com-
posite expressions in the fermionic projector, referred to as the analysis in the continuum
limit: After applying the contraction rules and expanding in the degree, we obtain equa-
tions involving a finite number of terms of the form (3.5.6). By applying the integration-
by-parts rules, we can arrange that all simple fractions are basic fractions. We evaluate
weakly on the light cone and collect the terms according to their scaling in £.
Taking for every given scaling in £ only the leading pole in €, we obtain equations which
involve linear combinations of smooth functions and basic regularization parameters. We
consider the basic regularization parameters as empirical parameters describing the un-
known microscopic structure of space-time. We thus end up with equations involving
smooth functions and a finite number of free parameters. We point out that these free
parameters cannot be chosen arbitrarily because they might be constrained by inequalities
(see the discussion after [F7, Theorem E.1]). Also, the values of the basic regularization
parameters should ultimately be justified by an analysis of vacuum minimizers of our
variational principle (as discussed at the end of Section .

In view of the later considerations in we point out that the above calculation
rules are valid only modulo smooth contributions to the fermionic projector. This can be
understood from the fact that these rules only deal with the terms of the series in ,
but they do not take into account the smooth non-causal high and low energy contribu-
tions. But the above calculation rules affect these smooth contributions as well. To give
a simple example, we consider the distribution 7(®, which according to f
is given by

o__1 (PP ; 2 0
TV = 53 (52 + imd(£%) (¢ )>
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Multiplying by z = £? in the distributional sense gives a constant

1
7O = -~ 3.5.11
On the other hand, the contraction rule (3.5.5)) yields
©0)p(0) _ _ 4(2)
T = —aT) (3.5.12)

The last relation gives much finer information than the distributional equation ,
which is essential when we want to evaluate composite expressions weakly on the light
cone (3.5.7). However, the constant term in does not appear in . The
way to think about this shortcoming is that this constant term is smooth and can thus
be taken into account by modifying the corresponding low energy contribution 1516(:):, )
in . Indeed, this situation is not as complicated as it might seem at first sight.
Namely, the smooth contributions to the fermionic projector need special attention any-
way and must be computed using the resummation technique explained in Appendix [D}
When performing this resummation, we can in one step also compute all the smooth con-
tributions which were not taken into account by the formalism of the continuum limit.
Thus altogether we have a convenient method where we first concentrate on the singular-
ities on the light cone, whereas the neglected smooth contributions will be supplemented
later when performing the resummation.

We note that the above procedure needs to be modified for the description of grav-
ity, because in this case the gravitational constant makes it necessary to have relations
between terms involving different powers of a fundamental length scale. These general-
izations are worked out in Chapter [4]

3.5.2. The Euler-Lagrange Equations in the Continuum Limit. We now re-
turn to the action principle of Section Our goal is to bring the conditions for a
minimizer and into a form suitable for the analysis in the continuum
limit. We begin by considering a smooth family P(7) of fermionic projectors and com-
pute the corresponding first variation of the action. We differentiate with respect
to 7, treating the constraint with a Lagrange multiplier (for the mathematical
justification of this procedure see the related paper [BE]). For convenience, we introduce
the functional

S,[p) oy //Ju Ll dizdly  with  Lu[A] = [A2] — plA]2. (3.5.13)
X

Choosing p = % gives precisely the action (3.2.8), whereas by allowing a general u € R
we take into account the Lagrange multiplier. We thus obtain the condition

0 = 65,[P) = // ReTr { VL, [Asy) 6P () } ' d'y (3.5.14)
A< M
where § P := P’(0). Here we consider P(y,z) via

P(y,x) = P(z,y)* =+"P(z,y)1°

as a function of P(xz,y), and V denotes the gradient where the real and imaginary parts
of P(x,y) are treated as independent variables, i.e.

o of , of
\Y% = —
V133 8ReP($,y)g l@ImP(Ly)g 7

(3.5.15)
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and o, 8 =1,...,4 are spinor indices. Introducing the integral operator R with kernel
R(y,x) :=VL,[Azy], (3.5.16)
we can write as a trace of an operator product,
6S,[P] = Retr (R6P) .

In order to get rid of the real part, it is convenient to replace R by its symmetric part.
More precisely, introducing the symmetric operator () with kernel

Oz, y) = %(R(x, y) + R(y, x)*) , (3.5.17)

we can write the variation as
6Su[P] =2tr (Q 6P) . (3.5.18)

As explained before Definition we want to vary the fermionic projector by
unitary transformations in a compact region. Thus the family of fermionic projectors P(7)
should be of the form

P(r)=U"Y(r)PU(1) (3.5.19)
with a smooth family U(7) of unitary transformations in a fixed compact region K (see
Definition with U(0) = 1. Then the operator B = —iU’(0) has the integral

representation
(Bo)w) = [ Bl vy
M

with a smooth compactly supported integral kernel B € C5°(K x K,C**4). Differenti-

ating (3.5.19) yields that 6P = i[P, B], and substituting this identity into (3.5.18|) and
cyclically commuting the operators inside the trace, we can rewrite the condition (|3.5.14))
as

0=tr ([P, Q]B) .
Since B is arbitrary, we obtain the Euler-Lagrange (EL) equations
\ [P,Q] =0, \ (3.5.20)

stating that two operators in space-time should commute. For more details on the deriva-
tion of the EL equations we refer to [F7, Section 3.5] and

When analyzing the commutator in the continuum limit, the kernel Q(z,y)
can be evaluated weakly using the formula . The subtle point is that, according
to , this weak evaluation formula only applies if x and y stay apart. But writing
the commutator in with integral kernels,

PQUe = [ (P@2)Qe0 - Q@) Pew)dz. @521)

we also integrate over the regions z ~ y and z ~ x where the kernels Q(z,y) and Q(z, 2)
are ill-defined. There are several methods to resolve this difficulty, which all give the
same end result. The cleanest method is the method of testing on null lines. We now
explain the ideas and results of this last method, referring for the rigorous derivation to
Appendix [A| (for other methods of testing see [F7, Appendix F]). The idea is to take the
expectation value of the commutator in for two wave functions ; and 19, one
being in the kernel and one in the image of the operator P. Thus

PYy=0 and = P¢ (3.5.22)
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for a suitable wave function ¢. Then, using the symmetry of P with respect to the
indefinite inner product (3.2.2)), we find

<Y1 [ [P, Q] ¢> = <P | Q> — <1 | QP> = —<ah1 | Qip> . (3.5.23)

Now the commutator has disappeared, and the EL equations (3.5.20]) give rise to the
condition

0=<1|Q2>= //J% P Q(z, y) 1 () Po(y) diadhy . (3.5.24)

The hope is that by choosing suitable wave functions v, and o of the form
having disjoint supports, we can evaluate the expectation value weakly on the
light cone , thus making sense of the EL equations in the continuum limit.

The key question is to what extent the constraints restrict the freedom in
choosing the wave functions 1 and . For clarity, we here explain the situation in the
simplified situation where P is composed of one free Dirac sea of mass m,

4
P(z,y) = / 57:“)4 (F +m) 6(k* —m?) O(—k°) e~ *h@v) (3.5.25)
(but @ can be a general operator for which the methods of Section apply). The
generalization to several generations and a P with general interaction is worked out in
Appendix In order to extract information from and , it is desirable
that the wave functions ¥; and 1, are as much as possible localized in space-time. For
the wave function 1)1, this requirement is easy to fulfill by removing a strip of width Aw
around the lower mass shell in momentum space. For example, we can construct a wave
function supported near the origin by choosing for a given parameter § > 0 a smooth
function 1 supported in the ball of radius ¢ in Euclidean R* and setting

d*k > .
Y1 (z) = /(%)4 (k) XR\[- Aw,Aw] (kﬁo + 1/ k|2 + m2) e~k (3.5.26)

where 7 is the Fourier transform of n, and xj is the characteristic function defined
by xr(x) = 1if x € I and x7(z) = 0 otherwise. In the limit Aw \, 0, the charac-
teristic function in becomes the identity, so that ¥, goes over to 1. Moreover,
for any Aw > 0, the function % is indeed in the kernel of the operator P, because it
vanishes on the lower mass shell. Thus by choosing Aw sufficiently small, we can arrange
that 17 is arbitrarily close to 1 and satisfies the condition in (indeed, in finite
space-time volume one cannot choose Aw arbitrarily small, leading to small corrections
which will be specified in Appendix [A} see Remark .

The construction of 19 is a bit more difficult because ¥ must lie in the image of P,
and thus it must be a negative-energy solution of the Dirac equation (i —m)ys = 0. Due
to current conservation, it is obviously not possible to choose 5 to be localized in space-
time; the best we can do is to localize in space by considering a wave packet. According to
the Heisenberg Uncertainty Principle, localization in a small spatial region requires large
momenta, and thus we are led to considering an ultrarelativistic wave packet of negative
energy moving along a null line £, which does not intersect the ball Bs(0) C R* where 9;
is localized. By a suitable rotation and/or a Lorentz boost of our reference frame (¢, %),
we can arrange that

£={(r,—7+4¢,0,0) with 7 € R}
with £ > 0. For ¥y we take the ansatz

Py = (i@ +m) (e_m(t”) ot +x—1,y, z)) + (small corrections) , (3.5.27)
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FIGURE 3.1. Intersection of the null line £ with the singular set of Q(z,y)

where the smooth function ¢ is supported in 35(6) C R?, and the frequency Q < 0 as
well as the length scales § and ¢ are chosen in the range

SIS ’Q|_1 <IK gvgmacroa m_l . (3528)

The small corrections in are due to the non-zero rest mass, the dispersion and
the condition that 12 must have no contribution of positive energy (for details see Ap-
pendix |A]).

Except for the small corrections to be specified in Appendix [A] the support of the
wave function ¢ in lies in B;(0), and thus it is disjoint from the support B;s(£)
of the wave function ¥y in (3.5.27)). Hence the integrals in only involve the
region x # y where Q(x,y) is well-defined in the continuum limit. Furthermore, the null
line £ intersects the null cone around z in precisely one point y for which [£°] = |5’ ~/
(see Figure [3.1). Since this intersection is transverse, we can evaluate the expectation
value ith the help of . In view of the freedom in choosing the parameter ¢
and the direction of £, we conclude that itself must vanish,

‘ Q(x,y) =0 if evaluated weakly on the light cone . ‘ (3.5.29)

The above consideration is made rigorous in Appendix [A] More precisely, in Proposi-
tion the above arguments are extended to the setting involving several generations
and a general interaction, and the scaling of the correction terms in is specified to
every order in perturbation theory. This proposition applies to our action principle (|3.2.9))
and all interactions to be considered here, thus justifying in all cases of interest
in this book. Moreover, in Remark we consider the corrections to which
arise if the lifetime of the universe is finite. Using that this lifetime can be estimated
by the time from the big bang as known from experiments, we show that the correction
to (3.5.26) can indeed be neglected for our universe.

To summarize, we saw that within the formalism of the continuum limit, the com-
mutator in (3.5.20) vanishes only if Q(z,y) itself is zero. This result is the strongest
condition we could hope for, because in view of it implies that arbitrary first
variations of the action vanish, even if we disregard the constraint that P must be a
projector. We refer to (3.5.29) as the Fuler-Lagrange equations in the continuum limit.
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We finally remark that by replacing the null lines by null geodesics, the above method
could immediately be generalized to situations involving a gravitational field. However,
the estimates of Appendix [A] would become more demanding.

3.6. The Euler-Lagrange Equations to Degree Five

We proceed with the analysis of the EL equations in the continuum limit
using the methods outlined in Sections [3.4] and For clarity, we begin in the vacuum
and then introduce more and more interaction terms. Furthermore, we consider the
contributions to the EL equations to decreasing degree on the light cone. In this section,
we consider the most singular contributions of degree five. The contributions of degree
four will be analyzed in Section whereas the contributions to even lower degree are
discussed in Section [3.91

We point out that many results of this section were already obtained in [F7, Chap-
ters 5 and 6] for more general systems, which however involve only one generation. In
order to lay consistent foundations for the new calculations of Sections we here
present all calculations in a self-contained way.

3.6.1. The Vacuum. In order to perform the light-cone expansion of the fermionic
projector of the vacuum, we first pull the Dirac matrices out of the Fourier integral (3.4.1))

and use (3.4.9) to obtain

g
PP (2, y) = @D (idy +mg) T (yﬂm% (3.6.1)
B=1

After removing the logarithmic mass terms by the replacement T, — T,°%, the light-cone
expansion reduces to a Taylor expansion in the mass parameter a. Restricting attention to
the leading degree on the light cone, it suffices to consider the first term of this expansion.

Using (3.4.13)) and forming the sectorial projection (3.4.3)), we obtain for the regularized
fermionic projector (for the factors of g see Footnote 3| on page [184)

Plz,y) = wg[m + (deg < 2), (3.6.2)

where for notational convenience we omitted the indices -} of the factor &, and where the

(0]
bracket (deg < 2) stands for terms of degree at most one.

Using this formula for the fermionic projector, the closed chain (3.2.5)) becomes

2
Any = 2 (TG ET) + (deg < 3) + (deg < 3), (3.6.3)
where § := £;77. Tts trace can be computed with the help of the contraction rules (3.5.4),

—_— 2
_ g _
Tr(Azy) = (fjf]) [0] [E)] b= ) (2 +72) T[(} Y T[E)] Y + (deg < 3) .
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Next we compute the square of the trace-free part of the closed chain,
1 2 z2+7Z 1) (=1 2
<A:cy T Tr(Azy) ) (gg - ) (T[(o] )T[E)} ))
N2
g' g7, L _ 1) (-1
— & (- D+ G z>2) (r757)
4

_ )2 (=1 (=1)
64(2 Z) (T[o] T[] >

Combining these formulas, we see that to leading degree, the closed chain is a solution of
the polynomial equation

Q}—‘

2 2 2 2
<Azy - 2Ty DT[E)}I)) = (ig (=2 T UT[(O}I)) - (364

We point out that the calculations so far are only formal, but they have a well-defined
meaning in the formalism of the continuum, because to our end formulas we will be able
to apply the weak evaluation formula (3.5.7)). Having this in mind, we can interpret the

roots of the polynomial in (3.6.4)

2

TET T ad *T[(11)<ZT[(} Y)

as the eigenvalues of the closed chain. Using the contraction rule (3.5.5)), these eigenvalues
simplify to (see also [F7, eq. (5.3.20)] or (2.6.15))

A=

Ap T[g(;>qg]> (deg<3), A =g*T VT + (deg < 3). (3.6.5)

The corresponding spectral projectors, denoted by F., are given by

Agy — A Ay — A
F, = rY F. = Ty + .
+ )\Jr ) + A — )\+ )
a short calculation yields (see also [F7, eq. (5.3.21)] or (2.6.16))
Fy =3 (]1 + [;f d ) + ¢(deg <0) + (deg < 0) . (3.6.6)

Since in the formalism of the continuum limit, the factors z and Z are treated as two
different functions, we do not need to worry about the possibility that the denominator
in might vanish. Similarly, we can treat ¢ and £ simply as two different vectors.
Then the matrices F'; and F_ have rank two, so that the eigenvalues A, and A_ are both
two-fold degenerate. A straightforward calculation yields

Apy = A Fy + A_F_ + ¢(deg < 3) + (deg < 3) , (3.6.7)

showing that our spectral decomposition is indeed complete. An important general con-
clusion from (3.6.5)) and (3.6.6) is that in the vacuum, the eigenvalues of the closed chain
form a complex conjugate pair, and are both two-fold degenerate.

We now give the corresponding operator ) which appears in the EL equations of the

continuum limit (3.5.29)).
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PROPOSITION 3.6.1. For the fermionic projector of the vacuum (3.6.2)), the operator Q
as defined by (3.5.17)) and (3.5.16)) takes the form

Qe,y) =i g® (1 — 4p) T TV T + (deg < 5). (3.6.8)

In order not to distract from the main points, we first discuss the consequences of
this result and derive it afterwards. According to the EL equations in the continuum
limit (3.5.29)), the expression (3.6.8) must vanish. This determines the value of the La-

grange multiplier g = +. Thus the action (3.5.13)) reduces to the action in (3.2:8)), and
we conclude that

P is a critical point of S, (3.6.9)

disregarding the constraint 7 = const. This result can be understood immediately from
the form of the Lagrangian and the fact that the eigenvalues of A, form a complex
conjugate pair. Namely, writing the spectral weights in (3.2.7) via (3.2.6) as sums over
the eigenvalues A\Y (both of multiplicity two), we obtain

Lay[P) = (Me] = A .

The expression |A;| — |A\_| clearly vanishes for a complex conjugate pair, and the fact
that it appears quadratically is the reason why even first variations of L, [P] vanish,
explaining .

In the last argument we only used that the eigenvalues of A, form a complex con-
jugate pair. Therefore, we can use this argument to show that () vanishes in a more
general sense: First, a straightforward calculation yields that the eigenvalues of the closed
chain A, form a complex conjugate pair to every degree on the light cone (for details
see [F7, Section 5.3] or Section , and thus () vanishes identically in the formalism
of the continuum limit. Moreover, going beyond the formalism of the continuum limit,
in [F11] it is shown that there are regularizations of the vacuum for which the operator @
vanishes up to contributions which stay finite in the limit € N\, 0. Furthermore, in [F11]
it is shown that restricting attention to such regularizations does not give any constraints
for the regularization parameters cyeg in . Since we are here interested in the singu-
larities of Q(x,y) in the limit & N\, 0 as described by the weak evaluation formula ,
we can in what follows assume that in the vacuum, the operator () vanishes identically.

The remainder of this section is devoted to deriving the result of Proposition [3.6.1
For the derivation it is preferable to bypass the computation of the gradient by
determining @ directly from . For later use, we assume a more general spectral
decomposition of A, with eigenvectors MY, ..., A,Y and corresponding one-dimensional
spectral projectors F'¥, ..., F;Y. This setting can be obtained from by choosing
pseudo-orthonormal bases in the degenerate eigenspaces and letting F° lf Y be the projectors
onto the span of these basis vectors. It is convenient to choose these bases according to
Lemma [2.6.3]

For later use, we next compute the operator () in the general setting of the previous
lemma. Noting that the function £, in depends only on the absolute values of

the eigenvalues, we can write
Lu[Aay] = Lu(IA] - IN]) -

The partial derivatives of the function £,(|A7Y],...,|A}Y|) will be denoted by Dj,.
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LEMMA 3.6.2. Under the assumptions of Lemma the operator @ in (3.5.18)) s
given by

A _
X X )\Zy X

Q(z,y) =Y _ DpLu(IATY], ..., IA)) M’;y' FY P(x,y) . (3.6.10)

k=1 k

PRrOOF. The relation (2.6.39) allows us to compute the variation of the eigenvalues
by a standard first order perturbation calculation without degeneracies,

SN = Te(F™ 5 Ay,) . (3.6.11)
Using that that §|A\| = Re(AdA/|)\|), we can compute the first variation of this function

with the help of (3.6.11)),
4 3Ty

x X >\ X
0Lu[Asy] =Re > DpLy (I, ..., |A]) M%y’ Te(FY §Ayy) - (3.6.12)
k=1

In the last trace we substitute the identity
6Azy = 6P(z,y) P(y,z) + P(x,y) 0P(y, x)
and cyclically commute the arguments to obtain
Tr(FY 6 Azy) = Tr (FY P(z,y) 6P (y, ) + P(y,2)F.Y P(x,y))
=Tr (Fkxy P(z,y) 6P(y,z) + ng P(y, z) 5P(:U,y)) ,

where in the last step we applied (2.6.40). Substituting this formula into (3.6.12)) and
integrating over z and y, we can exchange the names of x and y such that only d P(y, z)

appears. We thus obtain
S, [P] =2 Re// d*z d*y Tr (Q(z,y) 6P(y,x)) (3.6.13)
M

with the integral kernel Q(z,y) given by (3.6.10). Using Lemma one sees that the
operator corresponding to this integral kernel is symmetric (i.e. Q(z,y)* = Q(y,x)). As

a consequence, the integral in (3.6.13)) is real, so that it is unnecessary to take the real
part. Comparing with (3.5.18)), we conclude that the operator with kernel (3.6.10]) indeed

coincides with the operator Q in (3.5.18]). We note that due to the sum in (3.6.10)), it is
irrelevant how the bases were chosen on the degenerate subspaces of Az,. O

PROOF OF PROPOSITION [3.6.1] Let us specialize the general formula (3.6.10]) to our
spectral representation with eigenvalues (3.6.5) and spectral projectors (3.6.6)). First,

from (|3.5.13) we readily obtain that
4
Dl (X, IN1) = 2] = 20 3 [N = 2(1 — dp) [
The product F}Y P(z,y) can be computed with the help of (3.6.2) and (3.6.6) as well as
the relations B B B
£ 8 g =20 ¢ -2 =—-(>—2)¢,

where in the last step we treated the factors ¢ and Z as outer factors and applied the
contraction rules (3.5.3)) and (3.5.4). We thus obtain (see also [F'7, eq. (5.3.23)] or (2.6.17)))

FYYP(z,y) = (deg < 2), FYP(z,y) = % fT[E)]_l) + (deg < 2). (3.6.14)

Substituting these formulas into (3.6.10) and using (3.6.5)), the result follows. O
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3.6.2. Chiral Gauge Potentials. We now begin the study of interacting systems
by introducing chiral potentials. Thus we choose the operator B in the auxiliary Dirac
equation with interaction according to with two real vector fields Ap,
and Agr. Sometimes it is convenient to write B in the form

B=A, +TA4A, (3.6.15)
with a vector potential Ay and an axial potential A, defined by
A, = (AL+AR)/2 and A, = (AL—AR)/Q. (3616)

To the considered highest degree on the light cone, the chiral gauge potentials merely
describe phase transformations of the left- and right-handed components of the fermio-
nic projector (for details see [F6], [E7, Section 2.5] or Section [2.2)). More precisely, the
fermionic projector is obtained from by inserting the phase factors

P(z,y) = % (XL A e*m”é”) g1 + (deg < 2), (3.6.17)
where the functions AE?R are integrals of the chiral potentials along the line segment 7y,
Yo .
AL;/R :L A]L/jo Z:/O AJL/R‘Ty"F(]-_T)CC fj dr . (3618)
Consequently, the closed chain is obtained from (3.6.3) by inserting phase factors,
2 JE—
Agy = - (wve + xrve) (T ) ETG ) + f(deg < 3) + (deg < 3), (36.19)
where y
m;:yR:e—Wﬁ““?>:exp<—2@/ Ag@). (3.6.20)

From one sees that the matrix A,, is invariant on the left- and right-handed
subspaces (i.e. on the image of the operators x; and yxgr). On each of these invariant
subspaces, it coincides up to a phase with the closed chain of the vacuum . Using
these facts, the eigenvalues (X§).e(r,Rr},se{+,~} and corresponding spectral projectors Fy
are immediately computed by

)\i/R = VL/R )\i and Fi/R

with As and Fy as in (3.6.5) and (3.6.6). We conclude that the eigenvalues of the closed

chain are again complex, but in general they now form two complex conjugate pairs.
Since the eigenvalues AL and A\ differ only by a phase, we see that all eigenvalues have
the same absolute value,

ML= M) = AL = AE] (3.6.22)
Writing the Lagrangian (3.2.7) as

LolPl =P () =1 X X (-ng)T Be2s)

;8 ;8 c,c/€{L,R} s,s’e{£}

(where we sum over ¢ € {L, R} and s € {£}), we find that £ vanishes identically. Since
the Lagrangian is quadratic in [A¢| — \)\gi|, also first variations of £ vanish, suggesting
that the operator Q(x,y) should again vanish identically. This is indeed the case, as is
verified immediately by applying Lemmas [2.6.3] and [3.6.2] We conclude that for chiral
potentials, the EL equations in the continuum limit are satisfied to degree five
on the light cone.
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We end this section by explaining how the line integrals in and the phase fac-
tors in (3.6.17) and (3.6.19) can be understood from an underlying local gauge symmetry
(for more details in the general context of non-abelian gauge fields see [E'7, Section 6.1]).
The local phase transformation ¥ (z) — e*®@)i(z) with a real function A describes a
unitary transformation of the wave functions (with respect to the inner product )
Transforming all objects unitarily, we obtain the transformation laws

id+B—mY — M i@+ B —mY)e @ =i+ B —mY + (JA) (3.6.24)
P(z,y) — M) Pz, y)e W) (3.6.25)
Ayy — e M@ P, y)e W) W) py g)e A ) = Agy - (3.6.26)

The transformation of the Dirac operator corresponds to a transformation of the vector
and axial potentials by

Ay = A, 4+ 0A and A, — A, (3.6.27)
These are the familiar gauge transformations of electrodynamics. Using the formula

1 d Y .
AW =A@ = [ FAlpracnadr = [0 € ar.

the phases in can be described similar to in terms of line integrals. This
explains why the phase factors in |D describe the correct behavior under gauge
transformations. According to (3.6.26)), the closed chain A, is gauge invariant. This
is consistent with the fact that in (3.6.19) and (3.6.20) only the axial potential enters,
which according to (3.6.27)) is also gauge invariant.

In order to transform the axial potential, one can consider the local transforma-
tion 9 (z) — e~ TA®) 4(x). In contrast to the above gauge transformation, this transfor-
mation is not unitary (with respect to the inner product ), and the requirement
that the Dirac operator and the fermionic projector must be symmetric operators leads
us to the transformations

i+ B —mY — @ (i + B —mY) A (3.6.28)
=i+ MO (B — mY)e™ @) L T(FA)
P(z,y) = e A0 Pz, y)e M)

Thus the vector and axial potentials transform as desired by
Ay, = A, and Ay — A+ 0A

(and also the term mY is modified, but this is of no relevance for the argument here).
The point is that when we now consider the transformation of the closed chain,

Agy — MA@ Pz, y) MM AW p(y z) TME) (3.6.29)

the local transformations do not drop out. This explains why in (3.6.19) phases involving
the axial potentials appear.

For clarity, we point out that the field tensors and the currents of the chiral gauge
potentials also affect the fermionic projector, in a way which cannot be understood from
the simple gauge transformation laws considered above. The corresponding contributions
to the operator ) will be of degree four, and we shall consider them in the next section.
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3.7. The Euler-Lagrange Equations to Degree Four

We come to the analysis of the EL equations to the next lower degree four on the
light cone. In preparation, we bring the EL equations into a convenient form.

LEMMA 3.7.1. To degree four, the EL equations in the continuum limit (3.5.29) are
equivalent to the equation

A= NED 5 071 70D
a4 T to T

where A denotes the perturbation of the eigenvalues (3.6.21)) to degree two.

R = Y= 0+ (deg < 4) (3.7.1)

PROOF. According to , the eigenvalues to degree three are all non-real. Since
this property is stable under perturbations of lower degree, we can again apply Lem-
mas@ and Noting that before (3.6.9)), we fixed the Lagrange multiplier to u = %,
we consider the Lagrangian ([3.2.7)), which we now write in analogy to as

=t (-
k=1
Then the relation (3.6.10]) can be written as
1 o PV
Qay) = 5 30 {1 = NI} ity B Play)

k=1

According to (3.6.22)), the curly brackets vanish for the unperturbed eigenvalues. This has
the convenient consequence that to degree four, it suffices to take into account the pertur-
bation of the curly brackets, whereas everywhere else we may work with the unperturbed

spectral decomposition 3.6.21,
W
Qz Z AN = 161 % iy B Play) + (deg <)
kl 1

Using (3.6.14)), we see that we only get a contribution if \;, equals AX or A®. Furthermore,
we can apply (2.6.38)), numbering the eigenvalues such that )\f = A},. We thus obtain

c g 1
- ¥ A(\)\ = xS |) Yok > 9T ") + (deg < 4). (3.7.2)
ce{L,R}
The EL equations (3.5.29) imply that the left- and right-handed components of this

expression must vanish separately. Thus, again applying ([2.6.38]), we obtain the sufficient
and necessary condition

<\)\L|7|AR|) = ‘gT( Y1 (deg < 4)=0.

The explicit formulas (3.6.21]) and (3.6.5)) yield the result. O

It is important to observe that the EL equations only involve the difference of the
absolute values of the left- and right-handed eigenvalues. This can immediately be under-
stood as follows. To the leading degree three, the eigenvalues of A, form two complex
conjugate pairs (see ) Since this property is preserved under perturbations, we
can again write the Lagrangian in the form . Hence the Lagrangian vanishes
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identically unless the absolute values of the eigenvalues are different for the two pairs.
This explains the term A(|AL| — [A%]) in (8.7.1).

As explained on page the expression A(|AY| — |AE|) vanishes in the vacuum.
Furthermore, the phase factors in drop out of this expression. But new types of
contributions to the interacting fermionic projector come into play, as we now explain.

3.7.1. The Axial Current Terms and the Mass Terms. An interaction by
chiral potentials as introduced in affects the fermionic projector in a rather
complicated way. For clarity, we treat the different terms in succession, beginning with
the contributions near the origin £ = 0 (the contributions away from the origin will be
considered in Section . For the Taylor expansion around £ = 0 we note that when
evaluated weakly on the light cone (3.5.7]), a simple fraction of degree L has a pole ]a -
This leads us to say that a term of the form (3.5.6)) is of the order k at the origin if the
smooth function 7 vanishes at the origin to the order k + L.

DEFINITION 3.7.2. An expression of the form (3.5.0) is said to be of order o(|£]¥) at
the origin if the function 1 is in the class o((|°] + |€])FTF).

In the next lemma we specify the contributions to the EL equations to degree four on the
light cone, to leading order at the origin.

LEMMA 3.7.3. For an interaction described by vector and axial potentials (3.4.16]),
the expression R as defined by (3.7.1) takes the form

R = —ig, (j{; Ny — m2AF NQ) + (deg < 4) + o(1€]3) , (3.7.3)
where j, is the axial current
ji =08 Al — OAL, (3.7.4)
and Ny, No are the simple fractions
3 -
__9 0)(0) _ o (D p(=1)\ p(0) n(=1) _
M= (11 21T )T — e (3.7.5)
[0]
2 2 rp(—1) 72(0) 72(0) 2 (0) 2 vy (=1 (1) p(=1) 12(0)
Ny = — ﬁ [(gY T[o} T[o] T[ll T[l] +g°YY T[o] T[2] T[o] T[o] ) —cc.|. (3.7.6)
[0]

Here “c.c” denotes the complex conjugate of the preceding simple fraction; the accents

were defined in (3.5.2)).

In order not to distract from the main ideas, we postpone the proof of this lemma to
Appendix [B]and proceed right away with the physical discussion. From the mathematical
point of view, the appearance of the axial current j, is not surprising, because the light-
cone expansion of the fermionic projector involves derivatives of the potentials. In physical
terms, this shows that the axial potential affects the fermionic projector not only via the
phases in , but also via the axial current. The term —i&;, 7Ny is referred to as
the current term. The other term —i&, m2A¥ N, could not appear in ordinary Yang-Mills
theories because it would not be gauge invariant. However, as pointed out after (3.6.28)),
the axial U(1)-transformations do not correspond to a local gauge symmetry, because
they are not unitary. Instead, they describe relative phase transformations of the left-
and right-handed components of the fermionic projector, thereby changing the physics
of the system. Only the phase transformations correspond to a local gauge
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symmetry, and in view of , the term —i&, m2A¥ N, is indeed consistent with this
local U(1)-symmetry.

Since the direction £ can be chosen arbitrarily on the light cone, the condition
implies that the bracket in must vanish,

JE Ny —m2AE N, =0. (3.7.7)

If Ny and N> could be treated as constants, this equation would go over to field equations
for the axial potential A, with rest mass m2N, /Ni. For this reason, we refer to the
term —i&, m2AX Ny in as the mass term. It is remarkable that in our framework,
the bosonic mass term appears naturally, without the need for the Higgs mechanism of
spontaneous symmetry breaking (for a detailed discussion of this point see . We
also point out that the simple fraction Vo involves the mass matrix Y, and thus the mass
term in depends on the masses of the fermions of the system.

In order to make the argument after (3.7.7) precise, we need to analyze the simple
fractions N1 and Ny weakly on the light cone. Before this will be carried out in
we specify how the Dirac current enters the EL equations.

3.7.2. The Dirac Current Terms. As explained in the particles and anti-
particles of the system enter the auxiliary fermionic projector via , where we or-
thonormalize the wave functions according to . Introducing the left- and right-
handed component of the Dirac current by

p Na
Tir = Ukxrey' Ve — Y Sixaey ' ér
pt =1

a decomposition similar to (3.6.16)) leads us to define the axial Dirac current by

To=Y Ty — > aTy 6 (3.7.8)
k=1 =1

The next lemma gives the corresponding contribution to the EL equations, to leading
order at the origin.

LEMMA 3.7.4. Introducing the axial Dirac current by the particle and anti-particle

wave functions in (3.4.7) leads to a contribution to R of the form
R = i€y, JE N3 + (deg < 4) + o(|€] %),

where )
I P e Ve () GV }
Ny = W[T[O] TOTOY el (3.7.9)
T,
(0]
Here the symbol “<” means that we merely give the contribution to R by the Dirac
current, but do not repeat the earlier contributions given in Lemma [3.7.3] The proof of
this lemma is again postponed to Appendix [B]

3.7.3. The Logarithmic Poles on the Light Cone. Combining the results of
Lemmas [3.7.1], [3.7.3] and [3.7.4], the Euler-Lagrange equations give rise to the equation

& (jjf Ny — m2AF Ny — gk Ng) —0,

which involves the axial potential A, (see (3.6.15))), the corresponding axial bosonic cur-
rent (3.7.4) and the axial Dirac current (3.7.8]). At first sight, this equation resembles a
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bosonic field equation, which describes the coupling of the Dirac spinors to the bosonic
field and involves a bosonic mass term. However, the situation is not quite so simple,
because the factors Ny, No and N3 (see (3.7.5)), (3.7.6) and (3.7.9)) have a mathematical
meaning only when evaluated weakly on the light cone (3.5.7). Let us analyze the weak

evaluation in more detail. The simple fraction N3 is composed of the functions T, [(0?),

T[E)]fl) and their complex conjugates, which according to (3.4.10)—(3.4.13|) all have poles
of the order £72 or £€~*. In particular, no logarithmic poles appear, and thus we may

apply (3.5.7) with » = 0 to obtain

|€]+e eg ~
/| OGN = ) 6 T4 () + (dew < 4) (1)
&l—e 5

with a regularization parameter ¢;®, where we omitted error terms of the form (3.5.9)
and (3.5.10). The simple fractions Ny and N2, on the other hand, involve in addition

the functions To(l) and To(l)7 which according to ([3.4.10)—(3.4.12)) involve a factor log |£?|
and thus have a logarithmic pole on the light cone. As a consequence, in (3.5.7]) we also
obtain contributions with » =1,

—

€+ ke 2 4k ~-3
/I dt n &, (Ja Ny —m“A NQ):(deg<4)+O(|§’7)
&|—e

TR (75 (5% + di*® tog(e[é])) — m2ab (7 + di® log(eld]) )],
involving four regularization parameters Cif‘zg and di;zg. Combining the above weak eval-

uation formulas, the freedom in choosing the radius |€] and the spatial direction £/|¢]
implies that the logarithmic and non-logarithmic terms must vanish separately,

JEdE —m2 AN dy® =0 (3.7.10)
G A —m2Ak e = gk e (3.7.11)

where ci/ezg and di;zg are constants depending on the particular regularization.

Unfortunately, the system of equations (3.7.10]) into (3.7.11)) is overdetermined. Thus
turns out to be too restrictive for physical applications, as we now explain. We begin with

the case of a generic regularization for which the constants ¢|*®, ¢;® and d;*® are non-

zero. Thus solving for j, and substituting into , one obtains an algebraic
equation involving J, and A,. This means that either J, must vanish identically, or else
the gauge potential A, is fixed to a constant times J, and thus cannot be dynamical.
Both cases are not interesting from a physical point of view. The basic reason for this
shortcoming is that the bosonic current and mass terms have logarithmic poles on the
light cone, whereas the Dirac current terms involve no such logarithms. Our method for
overcoming this problem is to insert additional potentials into the Dirac equation, with
the aim of compensating the logarithmic poles of the bosonic current and mass terms.
Before entering these constructions in §3.7.4] we now briefly discuss alternative methods
for treating the logarithmic poles.

An obvious idea for reducing the system and to a single equation is
to restrict attention to non-generic regularizations where the constants ¢ and/or d;®
take special values. In particular, it seems tempting to demand that di*® = d3® = 0,

so that (3.7.10]) is trivially satisfied, leaving us with the field equations (3.7.11). This
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method does not work, as the following consideration shows. Differentiating (3.4.11)) and
using ([3.4.10)), one sees that

3278 T = 1og |€2] + co + imO(€2) €(£0) . (3.7.12)

Evaluating near the upper light cone ¥ ~ |¢|, we can apply the relation log|£2?| =
log ‘fo + |f_]‘ + log ‘60 — |§|‘ to obtain

3273 71 — log|2§|+log‘£0 \§|‘+m@ ) 40— 8. (3.7.13)

When evaluating the corresponding simple fraction weakly (3.5.7)), the first term in ((3.7.13|)

gives rise to the log ]ﬂ—dependence, the second term gives the loge-dependence, whereas
all the other terms do not involve logarithms or are of higher order in €. Obviously, the

same is true for the complex conjugate T( ). Since in the vector f is fixed, the van-
ishing of the log |§ |-dependent contribution to the 1ntegral 3.5.7)) implies that the simple

fraction still vanishes if the factors To(l) and To(l) are replaced by constants. Inspecting
the T(M-dependence of (3.7.5) and (3.7.6) and comparing with (3.7.9), we find that

=0 < dy® =0 and =0 = *=0.

Thus if the constants d|™® and dreg in (3.7.10) vanish, then (3.7.10]) becomes trivial as
(3.7.11

desired. But then the constant creg .11)) is also zero, so that the Dirac current drops
out of the field equation. Again, we do not end up with physically reasonable equations.

Sticking to the idea of considering regularizations where the regularization constants
have special values, the remaining method is to assume that all regularization constants
in and vanish. Then the EL equations would be trivially satisfied to
degree four on the light cone, and one would have to proceed to the analysis to degree three
on the light cone. This method does not seem to be promising for the following reasons.
First, it is not clear whether there exist regularizations for which all the regularization
constants in (3.7.10) and (3.7.11)) vanish. In any case, it seems difficult to satisfy all these
conditions, and the resulting regularizations would have to be of a very special form.
This would not be fully convincing, because one might prefer not to restrict the class
of admissible regularizations at this point. Secondly, there is no reason to believe that
the situation to degree three would be better, at least not without imposing additional
relations between regularization constants, giving rise to even more constraints for the
admissible regularizations.

We conclude that assuming special values for the regularization constants in
and does not seem to be a promising strategy. Thus in what follows we shall
not impose any constraints on the regularization constants, which also has the advantage
that our constructions will apply to any regularization. Then the only possible strategy is
to try to compensate the logarithmic poles by a suitable transformation of the fermionic
projector.

3.7.4. A Pseudoscalar Differential Potential. Compensating the logarithmic
poles of the bosonic current and mass terms by a suitable transformation of the fermionic
projector is not an easy task, because it is not at all obvious how such a transformation
should look like. We approach the problem in several steps, following the original path
which eventually led us to the microlocal transformation to be introduced in §3.7.10)]
The most obvious method is to inserting additional potentials into the auxiliary Dirac
equation and to analyze the effect on the fermionic projector. In order to get
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contributions of comparable structure, these potentials should involve a vector field v,
which should be equal either to the axial potential A, or to the corresponding axial
current j, (see Lemma . Since contracting the vector index of v with the Dirac
matrices would again give rise to chiral potentials , we now prefer to contract v
with partial derivatives. Moreover, since we want to compensate contributions which are
odd under parity transformations (i.e. which change signs if we flip the left- and right-
handed components), the resulting operator must involve the pseudoscalar matrix I
The requirement that the Dirac operator should be symmetric with respect to the inner
product leads us to the ansatz involving an anti-commutator

B=T{v7,0;} =27 0; + T (9;07) . (3.7.14)

We refer to this ansatz as a pseudoscalar differential potential. Our ansatz seems unusual
because such differential potentials do not occur in the standard model nor in general
relativity. However, as explained in we are free to modify the Dirac equation
arbitrarily.

The corresponding leading contribution to the fermionic projector is of the form (for

details see equation (B.2.22)) in Appendix

P(z,y) = g & (vi(y) + v (z)) TCY
g Y ; (3.7.15)
Ty ng/ [, (F)] TV + (deg < 2) .

This contribution has a pole of order € * on the light cone and is therefore much more sin-
gular than the desired logarithmic pole. A straightforward calculation shows that (3.7.15
does contribute to the expression R in Lemma and thus we conclude that (3.7.15
is not suitable for compensating the logarithmic pole.

The key for making use of the pseudoscalar differential potential is to observe
that the required logarithmic poles do appear to higher order in a mass expansion. More
precisely, to leading order at the origin, the cubic contribution to the fermionic projector
is

P(z,y) < ﬂfI‘ [v](-S)(x) + O(|§O\ + !5\)} (sffj 7O — 27 T(1)> + (deg < —1), (3.7.16)

where v(®) is a Hermitian matrix composed of v and Y,
v®) =i (VYYY —YuYY +YY0Y —YYY0) (3.7.17)

(for details see equation in Appendix. Thus there is hope that the logarithmic
poles can be compensated, provided that we can arrange that the contributions by
to R of order m®, m and m? in a mass expansion vanish. The last requirement cannot
be met if we consider one Dirac sea, because the term does contribute to R. But
if we consider several Dirac seas, we have more freedom, as the pseudoscalar differential
potential can be chosen differently for each Dirac sea. For example, we can
multiply the potentials acting on the different Dirac seas by real constants gq,

(B)§ = gadag T {v7,8;}  with a,8=1,...,9. (3.7.18)

Using this additional freedom, it is indeed possible to arrange that the contribution ([3.7.15)
drops out of R. This consideration explains why we must consider several generations of
elementary particles.

The critical reader might object that there might be other choices of the operator B
which could make it possible to compensate the logarithmic poles without the need for
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several generations. However, the following consideration shows that is indeed
the only useful ansatz, provided that we work with local operators (for nonlocal oper-
ators see §3.7.10| and Section . The only zero order operator are the chiral poten-
tials ich were already considered in Apart from , the only first
order differential operator involving the vector field v and the pseudoscalar matrix I is

the operator
T {’UjUjk, 8k} 5

where ¢7F = %[’yj ,v¥] are the bilinear covariants. This ansatz can be shown to be useless,
basically because the calculations in the continuum limit give rise to contractions with
the vector &, which vanish (see also . Differential operators of higher order must
involve the wave operator [J, which applied to the Dirac wave functions gives rise to lower
order operators. This shows that it is not useful to consider differential operators of order
higher than one. We conclude that and its generalizations to several generations
(like ) are indeed the only possible anséitze for compensating the logarithmic poles.

We end the discussion by having a closer look at the matrix v(), . Note that
the ansatz (3.7.18)) is diagonal in the generation index and thus commutes with the mass
matrix Y. As a consequence, the matrix v(® vanishes. This means that for compensating
the logarithmic poles, the ansatz (3.7.18]) is not sufficient, but we must allow for non-zero
off-diagonal elements in the generation index. Thus we replace the factors b, in (3.7.18)
by a Hermitian matrix g = <Qg)a,6=1,...,g7 the so-called generation mixing matriz. Later
on, the generation mixing matrix will depend on the space-time point . This leads us

to generalize (3.7.18)) by the ansatz
(B)g =T {g§(z) v/ (2),9;} , (3.7.19)

thus allowing that the pseudoscalar differential potential mixes the generations.

3.7.5. A Vector Differential Potential. Modifying the auxiliary Dirac equa-
tion by a first oder operator (3.7.14]) or (3.7.19) changes the behavior of its solutions
drastically. In particular, it is not clear whether the operator B can be treated pertur-
batively . In order to analyze and resolve this problem, we begin by discussing
the case when the potential v in is a constant vector field, for simplicity for one
Dirac sea of mass m. Then taking the Fourier transform, the Dirac equation reduces to
the algebraic equation

(F — 20T k; —m) (k) = 0. (3.7.20)
Multiplying from the left by the matrix (f — 2il'v’k; + m), we find that the momentum
of a plane-wave solution must satisfy the dispersion relation

k2 — 4 kj)* —m? =0.
Rewriting this equation as
gijk’ikj —-m?=0 with g9 =" — vt

where ¥ = diag(1,—1,—1,—1) is again the Minkowski metric, we see that the new
dispersion relation is the same as that for the Klein-Gordon equation in a space-time with
Lorentzian metric g*. In particular, the characteristics of the Dirac equation become the
null directions of the metric g*. In other words, the light cone is “deformed” to that of
the new metric g%.

This deformation of the light cone leads to a serious problem when we want to compen-
sate the logarithmic poles, as we now discuss. Suppose that we introduce a pseudoscalar
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differential potential which according to (3.7.18)) or (3.7.19)) depends on the generation
index. In the case , the Dirac seas feel different dispersion relations. In partic-
ular, the singularities of the fermionic projector P(x,y) will no longer be supported on
one light cone, but will be distributed on the union of the light cones corresponding to
the Lorentzian metrics gg = 1" — 4v’v}. The ansatz leads to a similar effect
of a “dissociation of the light cone.” In the EL equations, this would lead to large ad-
ditional contributions, which are highly singular on the light cone and can certainly not
compensate the logarithmic poles.

Our method for bypassing this problem is to introduce another differential potential
which transforms the dispersion relation back to that of the Klein-Gordon equation in
Minkowski space. In the case of a constant vector field v and one generation, this can be
achieved by choosing matrices G’ which satisfy the anti-commutation relations

{G",G7} =217 + 8v'v) and {I,G'(z)} =0,
and by modifying (3.7.20) to
(GTkj — 2T kj —m) (k) = 0.

This modification of the Dirac matrices can be interpreted as introducing a constant
gravitational potential corresponding to the metric 7% + 4v’v}. This construction is
extended to the general case as follows. We choose (4g x 4g)-matrices G’ (x)
which are symmetric with respect to the inner product )¢ on the Dirac spinors and

satisfy the anti-commutation relations
{G'(2),G'(z)} =217 + 8g(z)*v'(2) v/ () and {I.G'(z)} =0. (3.7.21)
In the auxiliary Dirac equation we insert the additional operator
B =i(G(z) —+')0; + G/ (z) Ey(z), (3.7.22)
where the matrices F; involve the spin connection coefficients and are not of importance

here (for details see for example [E'7], Section 1.5]). We refer to (3.7.22)) as a vector differ-
ential potential. In the case (3.7.18]), this construction can be understood as introducing

for each Dirac sea a gravitational potential corresponding to the metric 7% + 4g2v? vZ,

whereas in case (3.7.19)]), the interpretation is bit more complicated due to the off-diagonal
terms.

3.7.6. Recovering the Differential Potentials by a Local Axial Transforma-
tion. By introducing the differential potentials and with G7 according
to , we inserted differential operators into the auxiliary Dirac equation .
We will now show that the effect of these operators on the solutions of the auxiliary Dirac
equation can be described by a local transformation

waux(w) — U(JZ) waux(x) s (3723)

which is unitary with respect to the inner product .

Recall that we introduced the vector differential potential with the goal of
transforming the dispersion relation back to the form in the vacuum. Thus if v is a
constant vector field, the combination (3.7.19)+(3.7.22) leaves the momenta of plane-
wave solutions unchanged. This suggests that the sum (3.7.19)+(3.7.22|) might merely
describe a unitary transformation of the Dirac wave functions. Thus we hope that there
might be a unitary matrix U(z) such that

U(id —mY) U™ =id + B.7.14) + (3.7.22) .
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Let us verify that there really is such a unitary transformation. The natural ansatz for U
is an exponential of an axial matrix involving the vector field v and the generation mixing
matrix,

U(z) = exp (—ig(z) [/ vj(z)) . (3.7.24)

Writing out the exponential series and using that (I'y/v;)? = —v?, we obtain

U(x) = cos(ge) 1 — Smgj‘“’) Ty, U(e) = cos(ge) 1 +i Sin(;“’) Ty,  (3.7.25)

where the angle ¢ := v/—v? is real or imaginary (note that (3.7.25)) is well-defined even
in the limit ¢ — 0). A short calculation yields

U,y] _ ,YJU _ Sln(gSO) |:1—\¢ :| 2ZF U] Sln(g(ﬁ)
@ @
and thus
Uid —mY)U ! = iU U0, + Uy (i0,U~ ) = mUYU
— i + 2T Smf“’) U=10; + UA? (i0;UY) — mUY U™

:z'@—i-Fsm(ig@vjaj—i-Qismcp(g@ﬁN@ + U (i0;U ) —mUYU . (3.7.26)

In order to verify that the resulting Dirac operator allows us to recover both
and , we assume that v? is so small that sin(2gp) ~ 2gp and sin?(gy) ~ g?p°.
Then the second summand in (3.7.26]) reduces precisely to the differential operator in the
relation (3.7.19)). The third summand in (3.7.26]) gives precisely the differential operator
in (3.7.22), noting that has the solution G/ = 9 + 2g%#v7 + O(v?). Likewise,
a direct calculation shows that the multiplication operators in and are
contained in the fourth summand in . Writing out the fourth and fifth summands
n (3.7.26)), one finds a rather complicated combination of additional chiral, scalar, pseu-
doscalar and even bilinear potentials. These additional potentials do not cause any prob-
lems; on the contrary, they guarantee that the total transformation of the Dirac wave
functions simply is the local transformation . We conclude that with (3.7.26
we have found a Dirac operator which includes the differential potentials in (|3.7.19
and . It has the nice property that it can easily be treated non-perturbatively by
the simple local transformation . We refer to the transformation with U
according to as the local azial transformation.

The local axial transformation was analyzed in detail in a previous version of the
present work (see arXiv:0908.1542v3 [math-ph]). There are two reasons why the local
axial transformation will no longer be used here. First, the unitarity of (3.7.23]) turns out
not to be essential, as it can be dropped in the more general construction given in
below. Second and more importantly, compensating the logarithmic poles of the current
and and mass terms by a local axial transformation leads to additional contributions
to the fermionic projector of higher order in the local transformation (for details see
Appendix C in arXiv:0908.1542v3 [math-ph]). It turns out that the gauge phases which
appear in these additional contributions (which were not considered in arXiv:0908.1542v3
[math-ph]) enter the EL equations in a way which makes it impossible to satisfy these
equations. This problem was first observed when working out the follow-up paper on
systems involving neutrinos (see Chapter {4)). The method for overcoming this problem
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also led to major revisions of the present paper. The basic problem will be explained
in §3.7.8 and resolved in §3.7.9
Before entering the generalizations and discussing the shortcomings of the local axial
transformation, we now briefly review how the local axial transformation can be used to
compensate the logarithmic poles of the current and mass terms. For simplicity, we only
consider a perturbation expansion to first order in v. Then the transformation
simplifies to
Ulz) =1 —iglp(z) + O(v?). (3.7.27)
Transforming the auxiliary fermionic projector by U and forming the sectorial
projection , we obtain for the perturbation of the fermionic projector the expression

P = —iTy§P +iPgT¥ + O(v?), (3.7.28)

where we denoted the sectorial projection similar to (3.5.2) by accents. Here we always
sum over one index of the generation mixing matrix. Thus it is convenient to introduce
real functions ¢, and d, by

g g
d gi=cg+idg and ) gf=cq—ida, (3.7.29)
a=1 B=1

where the last equation is verified by taking the adjoint of the first and using that g is
Hermitian. Combining these equations with the fact that the auxiliary fermionic projector
of the vacuum is diagonal on the generations, we can write (3.7.28]) as

g
P> (= ilesTy, Pl +{dgTy, Ps} ) +0(0%), (3.7.30)
p=1
where the Pg stand for the direct summands in (3.4.1). The next lemma shows that the
functions cg drop out of the EL equations; the proof is again given in Appendix @

LEMMA 3.7.5. The perturbation of the fermionic proje