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Abstract. The main purpose of this paper is the study of numerical methods for the stabilizing solution of the
matrix equation X+A∗X−1A = Q, where Q is Hermitian positive definite. We construct a smooth curve parameterized
by t ≥ 1 of symplectic pairs with a special structure, in which the curve passes through all iteration points generated by
the known numerical methods, including the fixed-point iteration, the structured preserving doubling algorithm (SDA),
and Newton’s method under some specified condition. In the theoretical section, we give a necessary and sufficient
condition for the existence of this structured symplectic pairs for each parameter t ≥ 1. We also characterize the
behavior of this curve. In the application section, we use this curve to measure the convergence rates of those numerical
methods. Numerical results illustrating these solutions are also presented.

1. Introduction. The nonlinear matrix equations (NMEs)

X +A∗X−1A = Q, (1.1)

where A, Q ∈ Cn×n and Q is Hermitian positive definite, arises in several applications. Various aspects
of the NME, such as solvability, numerical solution, perturbation and applications, are discussed in
[1, 8, 9, 10, 11, 12, 16, 18, 20, 21, 22] and the references therein. Under some conditions, such as the
corresponding rational matrix-valued function

ψ(λ) = Q− λ−1A− λA∗ (1.2)

is regular and positive semi-definite for all λ on the unit circle T, it has been established that the
NME has a unique stabilizing solution X in [9]. It is further known that this unique solution X is
Hermitian positive definite and the maximal solution. Moreover, the stabilizing solution X can be
used to factor ψ(λ) as

ψ(λ) = (λ−1X −A∗)X−1(λX −A), (1.3)

and satisfies det(λX −A) 6= 0 for |λ| > 1. Let

M =

[
A 0
Q −I

]
, L =

[
0 I
A∗ 0

]
. (1.4)

The pencil M− λL is a linearization of matrix polynomial φ(λ) ≡ λψ(λ). It follows from (1.2) or
(1.3) that λ is an eigenvalue of (M,L) if and only if 1/λ̄ is an eigenvalue of (M,L) with the same
multiplicity. Here λ can be 0 or ∞. Because the stabilizing solution X is positive definite, we obtain
from (1.3) that the multiplicity of the unimodular eigenvalue, λ0, of ψ(λ) is even and the length of
Jordan chain corresponding to λ0 is at least 2. The stabilizing solution X of NMEs (1.1) can be
formulated as [

A 0
Q −I

] [
I
X

]
=

[
0 I
A∗ 0

] [
I
X

]
S,

where S = X−1A ∈ Cn×n with ρ(S) ≤ 1.
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The numerical methods for the stabilizing solution X of NMEs (1.1) originate from the fixed-point
iteration [1, 9, 12]

Xk+1 = Q−A∗X−1k A, with X0 = Q. (1.5)

It is proven in [9] that the sequence {Xk} generated by the fixed-point iteration converges to the
stabilizing solution X. Newton’s method has been studied by [12], in which the authors proved that
the convergence is quadratic if ρ(X−1A) < 1. If ρ(X−1A) = 1 and all eigenvalues of X−1A on the unit
circle are semisimple, then the convergence is at least linear with rate 1/2. Recently, the structure
preserving doubling algorithm (SDA) has been studied by [3, 4, 15, 16]. The convergence of SDA is
quadratic if ρ(X−1A) < 1. If ρ(X−1A) = 1 (without any assumption on the unit eigenvalues), it is
shown in [4] that the convergence of SDA is at least linear with rate 1/2. The relation between fixed-
point iteration and SDA has been studied in [3]. It is shown that if the sequence {Xk} is generated
by (1.5), then the sequence {Qk} generated by SDA is {X2k−1}.

Intrinsically, the SDA generates the sequence of matrix pairs of the form

Mk =

[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
A∗k 0

]
,

satisfying Qk = Q∗k, Pk = P ∗k , A0 = A, Q0 = Q and P0 = 0. It is further shown by [15] that
(i) if x is an eigenvector of the matrix pencil M− λL corresponding to an eigenvalue λ0, i.e.,

Mx = λ0Lx, thenMkx = λ2
k

0 Lkx. In other words, the sequence of matrix pairs {(Mk,Lk)}
is eigenvector-preserving and eigenvalue-doubling.

(ii) the pairs {(Mk,Lk)} preserve the symplectic pairs structure, i.e.,

MkJM∗k = LkJL∗k, where J =

[
0 I
−I 0

]
.

Now, let

S =

{([
A 0
Q −I

]
,

[
−P I
A∗ 0

])
| A, Q = Q∗, P = P ∗ ∈ Cn×n

}
(1.6)

be a subset of symplectic pairs with a special structure. Motivated by the eigenvector-preserving
property of the SDA mentioned above, for any A, Q = Q∗ ∈ Cn×n, it is natural to ask whether there
is a unique curve C ≡ {(M(t),L(t))|t ≥ 1} ⊆ S satisfying the eigenvector preserving condition:

EVP. If M
[
U
V

]
= L

[
U
V

]
S, where U, V ∈ Cn×m and S ∈ Cm×m, then

M(t)

[
U
V

]
= L(t)

[
U
V

]
St. (1.7)

Because the solution curve C is in S, the curve C is called a structure-preserving curve. If the unique
structure-preserving curve C exists, then the symplectic pairs (Mk,Lk) generated by SDA are on the
curve C and satisfy M(2k) = Mk, L(2k) = Lk. Therefore, the curve C passes through all iteration
points (Mk,Lk) generated by SDA. To find a smooth curve with a specific structure that passes
through a sequence generated by some numerical algorithm is a topic studied by many researchers,
especially in the study of the so-called Toda flow that connects matrices in each step of the QR-
algorithm (see, e.g., [2, 5, 6, 7, 19] and the works cited therein). In the study of Toda flows, the curve
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is the solution of a nonlinear ordinary differential equation of matrices in which the eigenvalues are
preserved and the eigenvectors vary in t. Rather than the invariance property of Toda flows, the curve
we focus on in this paper that satisfies EVP shall preserve the eigenvectors.

To be more precise, in EVP, we use a matrix function operator St where S ∈ Cm×m and t > 1.
By assuming that the eigenvalues of S on R− ∪ {0} are semi-simple, S can be written as

S = W

[
J 0
0 0

]
W−1. (1.8)

Here, J is an invertible Jordan canonical form and all negative eigenvalues of J are semi-simple. Let
log(z) denote the principle logarithm of nonzero z ∈ C. Because zt = exp(t log(z)) for each nonzero
z ∈ C, it follows from [13, Theorem 1.17] that St, for t ≥ 1, can be defined as follows.
Definition 1.1. Suppose that eigenvalues of S on R−∪{0} are semi-simple and let S have the Jordan
canonical form (1.8). Then, for each t ≥ 1,

St = W

[
J t 0
0 0

]
W−1,

where J t = exp(t log(J)) and log(J) is the principle logarithm of J defined in [13].
Because M− λL is the linearization of the matrix polynomial φ(λ) = λψ(λ), the matrix-valued

function, ψ(λ), plays an important role in the study of NMEs (1.1) (see, e.g., [9]). In this paper, we
make two assumptions regarding ψ(λ):

A1. Every eigenvalue of matrix polynomial φ(λ) = λψ(λ) on R− ∪ {0} is semi-simple.
A2. The function ψ(λ) is positive definite for all |λ| = 1.

It follows from assumption A1 that the matrix function operator St, t ≥ 1, in (1.7) is well-defined.
Assumption A2 leads to the solvability of NMEs (1.1).

The structure-preserving curve problem can be formulated as follows.
Structure-preserving curve problem: Given A, Q = Q∗ ∈ Cn×n satisfying assumptions A1

and A2, find a curve C = {(M(t),L(t))|t ≥ 1} ⊆ S such that EVP holds.
For real case, if the given matrices A and Q = Q> are real, then we may hope that the structure-

preserving curve belongs to a set of real symplectic pairs

SR =

{([
A 0
Q −I

]
,

[
−P I
A> 0

])
| A, Q = Q>, P = P> ∈ Rn×n

}
.

The structure-preserving curve problem in the real case is also considered and can be formulated as
follows.

Structure-preserving curve problem in the real case: Given A, Q = Q> ∈ Rn×n satisfying
assumptions A1 and A2, find a curve C = {(M(t),L(t))|t ≥ 1} ⊆ SR such that EVP holds.

Our first main result in this paper is concerned with the solution curve of the structure-preserving
curve problems in the specified structure of symplectic pairs in S.
Theorem 1.1 (Main Result 1). Let A, Q = Q∗ ∈ Cn×n be given such that they satisfy assumptions
A1 and A2. Suppose that XL is the unique stabilizing solution of NME (1.1) and S1 = X−1L A.
Then, there exist S2 and XS = X∗S ∈ Cn×n, with S2 being similar to S1, such that the solution of the
structure-preserving curve problems can be characterized as

M(t) =

[
A(t) 0
Q(t) −I

]
and L(t) =

[
−P (t) I
A(t)∗ 0

]
3



if and only if 1 6∈ σ(St1S
t
2
∗
), where

P (t) =
(
XS −XLS

t
1S

t
2
∗) (

I − St1St2
∗)−1

,
A(t) = (−P (t) +XL)St1,
Q(t) = XL +A(t)∗St1.

(1.9)

In addition, eigenvalues of St1S
t
2
∗

are real and non-negative for all t ≥ 1.
The matrices S1, S2, XS and XL are completely determined by A and Q. We will construct these

matrices in Section 2. From Main Result 1, we see that 1 6∈ σ(St1S
t
2
∗
) is the necessary and sufficient

condition of the solvability. Because ρ(S1) = ρ(S2) < 1, ρ(St1S
t
2
∗
)→ 0 as t→∞ is implied, and hence,

it holds for the existence of the curve C in the structure-preserving curve problems for all sufficiently
large t. Our second main result is concerned with the boundedness of the solution curve on certain
intervals

E[a,b) = {t ∈ [a, b)| ρ(St1S
t
2
∗
) < 1} (1.10)

as well as the nested set property for these E[a,b)’s.
Theorem 1.2 (Main Result 2). (i) For each k ∈ N, {t + 1| t ∈ E[k,k+1)} ⊆ E[k+1,k+2). (ii) All
positive integers are contained in E[1,∞). (iii) If t ∈ E[1,∞), then 0 ≤ P (t+ 1) ≤ XS and XL ≤ Q(t).

In Main Result 2, we have that the solvability of the structure-preserving curve problems hold for
all positive integers. Our third main result is concerned with the relationship between the solution
curve defined on the positive integers and the known numerical schemes for solving NMEs: the fixed-
point iteration, the SDA, and Newton’s method.
Theorem 1.3 (Main Result 3). Let A, Q = Q∗ ∈ Cn×n be given such that they satisfy assumptions
A1 and A2. Let A(t), Q(t) and P (t) be given in (1.9). Then, (i) {Q(k + 1)}∞k=0 is the sequence
generated by the fixed-point iteration (1.5); (ii) the pairs

(Mk,Lk) =

([
A(2k) 0
Q(2k) −I

]
,

[
−P (2k) I
A(2k)∗ 0

])
, k = 0, 1, 2, . . . ,

are the sequence generated by the SDA; (iii) if we further assume that A∗Q−1A = AQ−1A∗, then
{Q(2k+1 − 1)}∞k=0 is the sequence generated by Newton’s method.

Indeed, the solution curve passes through the orbits of the three existing numerical methods,
and hence, the parameterized curve forms a nature measurement of the convergence speeds of these
methods. This paper is organized as follows. In Section 2, we introduce some preliminary results. The
proofs of Main Results 1, 2 and 3 are given in Sections 3, 4, and 5, respectively. In Section 6, we give
two numerical examples. The first example shows that there exists t > 1 such that 1 ∈ σ(St1S

t
2
∗
). The

second example illustrates that the solution curve Q(t) does not pass through the Newton iterations
in which the condition A∗Q−1A = AQ−1A∗ is not satisfied.

2. Preliminaries. In this section, we shall introduce some notations and definitions and give
some preliminary results related to symplectic matrix pairs. Finally, we shall redescribe those two
structure-preserving curve problems. Throughout this paper, we denote the unit circle in complex
plane by T. For a matrix A ∈ Cn×n, we use σ(A) and ρ(A) to denote the spectrum and spectral
radius of A, respectively. A∗ and A> denote the conjugate transpose and transpose of A, respectively.
For Hermitian matrices A1, A2 ∈ Cn×n, we use A1 > A2 (A1 ≥ A2) to denote that A1−A2 is positive
definitive (positive semi-definite).
Lemma 2.1 (Theorem 1.13 in [13]). Suppose the eigenvalues of S ∈ Cn×n on R− ∪ {0} are semi-
simple. If Y commutes with S, then Y commutes with St for each t ≥ 1.
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Definition 2.1. A matrix pair (M,L) is called a symplectic pair if

MJM∗ = LJL∗, (2.1)

where J =

[
0 I
−I 0

]
. Two symplectic pairs, (M1,L1) and (M2,L2), are called equivalent if there

exists an invertible matrix C ∈ C2n×2n such that M1 = CM2 and L1 = CL2.
Definition 2.2. A subspace U in C2n is called isotropic if x∗J y = 0 for all x, y ∈ U . U is said to be
a Lagrangian subspace if it is a maximal isotropic subspace.

Suppose the columns of

[
U
V

]
∈ C2n×n span a Lagrangian deflating subspace of (M,L) corre-

sponding to (T,K), that is,

M
[
U
V

]
T = L

[
U
V

]
K. (2.2)

A sufficient condition for the invertibility of matrix U in (2.2) is given in the following.

Theorem 2.1. Suppose the columns of

[
U
V

]
∈ C2n×n form a basis of the Lagrangian deflating

subspace of (M,L) corresponding to (T,K). If there exists η0 ∈ T such that ψ(η0) is positive definite,
then U is invertible.

Proof. Because ψ(η0) is positive definite for some η0 ∈ T, it is easily seen from (1.2) and (1.4)
that M− η0L is invertible. From (2.2), we also have that K − η0T is invertible. Then,

(M+ η0L)

[
U
V

]
T = L

[
U
V

]
K + η0L

[
U
V

]
T = L

[
U
V

]
(K + η0T ),

(M+ η0L)

[
U
V

]
K =M

[
U
V

]
K + η0M

[
U
V

]
T =M

[
U
V

]
(K + η0T ).

It follows that (M + η0L)

[
U
V

]
(K − η0T ) = (M− η0L)

[
U
V

]
(K + η0T ). Because M− η0L and

K − η0T are invertible, we have

(M− η0L)−1(M+ η0L)

[
U
V

]
=

[
U
V

]
(K + η0T )(K − η0T )−1,

that is,

(M− η0L)−1(M+ η0L)U ⊆ U , (2.3)

where U = span

{[
U
V

]}
is a Lagrangian deflating subspace of (M,L).

Computing (M− η0L)−1 gives

(M− η0L)−1 =

[
−η̄0ψ−1(η0) ψ−1(η0)

−η̄0(Q− η0A∗)ψ−1(η0) (Q− η0A∗)ψ−1(η0)

]
,

then we have (M− η0L)−1(M+ η0L) =

[
? −2ψ−1(η0)
? ?

]
. Now, we suppose that there is a vector

x ∈ Cn such that Ux = 0, i.e.,

[
0
V x

]
=

[
U
V

]
x ∈ U . From (2.3), we obtain

(M− η0L)−1(M+ η0L)

[
0
V x

]
=

[
−2ψ−1(η0)V x

?

]
∈ U .
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Because U is isotropic, we have

0 = [0, x∗V ∗]J (M− η0L)−1(M+ η0L)

[
0
V x

]
= 2x∗V ∗ψ−1(η0)V x.

Because ψ(η0) is positive definite, this fact implies V x = 0. Hence, x = 0. Therefore, U is invertible.
Under assumption A2, the symplectic pencil M− λL has no eigenvalue on T. Because M− λL

is a linearization of φ(λ) = λψ(λ), the identity ψ(λ) = ψ∗(1/λ̄) implies the generalized eigenvalues
of M− λL occur in pairs (λ0, 1/λ̄0) including (0,∞). From [14, 17], we know that λ and 1/λ̄ have
the same size of Jordan blocks. Suppose that span{Z1} and span{Z2} form the stable and unstable
deflating subspaces of (M∗,L∗), i.e.,

M∗[Z1, Z2]

[
In 0
0 Js

]
= L∗[Z1, Z2]

[
J∗s 0
0 In

]
, (2.4)

where Z1, Z2 ∈ C2n×n and Js ∈ Cn×n consists of stable Jordan blocks, i.e., ρ(Js) < 1. Let

W = J [M∗Z2,L∗Z1] ∈ C2n×2n. (2.5)

It follows from (2.4) that W is invertible. Partition W as

W =

[
W1 W3

W2 W4

]
, (2.6)

where Wi ∈ Cn×n for i = 1, . . . , 4.
Lemma 2.2. The invertible matrix W given in (2.5) satisfies

MW
[
In 0
0 J∗s

]
= LW

[
Js 0
0 In

]
. (2.7)

Proof. Premultiplying (2.4) by LJ and using (2.1), we have

LJM∗[Z1, Z2]

[
In 0
0 Js

]
=MJM∗[Z1, Z2]

[
J∗s 0
0 In

]
.

It follows that

M
[
W1

W2

]
= L

[
W1

W2

]
Js. (2.8)

Similarly, premultiplying (2.4) by MJ and using (2.1) yields

LJL∗[Z1, Z2]

[
In 0
0 Js

]
=MJL∗[Z1, Z2]

[
J∗s 0
0 In

]
.

It follows that

M
[
W3

W4

]
J∗s = L

[
W3

W4

]
. (2.9)

Equation (2.7) follows directly from (2.8), (2.9) and (2.6).
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Lemma 2.2 shows that span

{[
W1

W2

]}
and span

{[
W3

W4

]}
form the stable and unstable deflating

subspaces of (M,L), respectively.
Lemma 2.3. Let D = W∗JW. Then, D ∈ C2n×2n is skew-Hermitian and has the form D =[

0 D1

−D∗1 0

]
, where D1 ∈ Cn×n is invertible that satisfies D1J

∗
s = J∗sD1.

Proof. It follows from (2.4) and (2.5) that

W
[
Js 0
0 In

]
= J [M∗Z2Js,L∗Z1] = JL∗[Z2, Z1].

Consequently, we obtain[
J∗s 0
0 In

]
W∗JW

[
Js 0
0 In

]
=

[
Z∗2
Z∗1

]
LJL∗[Z2, Z1] =

[
Z∗2
Z∗1

]
MJM∗[Z2, Z1]

=

[
Z∗2M
JsZ

∗
1L

]
J [M∗Z2,L∗Z1J

∗
s ] =

[
In 0
0 Js

]
W∗JW

[
In 0
0 J∗s

]
. (2.10)

Comparing each sides of (2.10) and using the fact that ρ(Js) < 1, we seeD =W∗JW =

[
0 D1

−D∗1 0

]
and J∗sD1 = D1J

∗
s . Because both W and J are invertible, it follows that D1 is also invertible. This

completes the proof.
From (2.6) and Lemma 2.3, we have

W ∗1W2 −W ∗2W1 = 0, (2.11a)

W ∗3W4 −W ∗4W3 = 0, (2.11b)

W ∗1W4 −W ∗2W3 = D1. (2.11c)

Equations (2.11a) and (2.11b) show that the stable and unstable deflation subspaces, span

{[
W1

W2

]}
and span

{[
W3

W4

]}
, are isotropic subspaces. That is, they are Lagrangian deflation subspaces. Under

assumption A2, it follows from Theorem 2.1 that W1 and W3 are invertible. Let

XL = W2W
−1
1 ,

XS = W4W
−1
3 .

(2.12)

It is shown in [9] that XL and XS are positive definite and positive semi-definite, respectively. Note
that 0 is not an eigenvalue of the pairM−λL only ifXS is positive definite. Furthermore, XL−XS ≥ 0.
Remark 2.1. Because [

I I
XL XS

]
=W

[
W−11 0

0 W−13

]
is invertible, the Hermitian matrix XL −XS is actually positive definite.

Substituting (2.12) into (2.11c) yields

W ∗1 (XS −XL)W3 = D1. (2.13)
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Let

S1 = W1JsW
−1
1 and S2 = W ∗

−1

3 JsW
∗
3 . (2.14)

Then, (2.7) can be rewritten as[
A 0
Q −I

] [
I I
XL XS

] [
I 0
0 S∗2

]
=

[
0 I
A∗ 0

] [
I I
XL XS

] [
S1 0
0 I

]
. (2.15)

The structure-preserving curve problem and structure-preserving curve problem in the real case
can be redescribed by the following two problems.

Problem SPC. Given A, Q = Q∗ ∈ Cn×n that satisfy the assumptions A1 and A2. For each
t ≥ 1, find A(t), P (t), Q(t) ∈ Cn×n such that

[
A(t) 0
Q(t) −I

] [
I St2

∗

XL XSS
t
2
∗

]
=

[
−P (t) I
A(t)∗ 0

] [
St1 I

XLS
t
1 XS

]
,

P (t)∗ = P (t), Q(t)∗ = Q(t).
(2.16)

where XL, XS, S1, S2 ∈ Cn×n are given in (2.12), (2.14) and satisfy equation (2.15).
Problem SPC-R. Given A, Q = Q> ∈ Rn×n that satisfy the assumptions A1 and A2. For

each t ≥ 1, find A(t), P (t), Q(t) ∈ Rn×n such that
[
A(t) 0
Q(t) −I

][
I St2

>

XL XSS
t
2
>

]
=

[
−P (t) I
A(t)> 0

] [
St1 I

XLS
t
1 XS

]
,

P (t)> = P (t), Q(t)> = Q(t).

(2.17)

where XL, XS, S1, S2 ∈ Rn×n are given in (2.12), (2.14) and satisfy equation (2.15).
Remark 2.2. (i) From (2.15), it is easily seen that when t = 1, equations (2.16)/(2.17) have solution
A(1) = A, Q(1) = Q and P (1) = 0. (ii) In (2.16), we mean St2

∗
by (St2)∗. Here we note that

(St2)∗ 6= (S∗2 )t if S2 has negative eigenvalues.

3. Solving Problem SPC and Problem SPC-R. In this section, we give a necessary and
sufficient condition for the solvability of equations (2.16) and (2.17). Let A, Q = Q∗ ∈ Cn×n satisfy
assumptions A1 and A2. Therefore, there exist Hermitian matrices XL, XS in (2.12) and stable
matrices S1, S2 in (2.14). Here, XL is positive definite, XS is positive semi-definite with XL−XS > 0
and S1, S2 have the same spectrum (i.e., σ(S1) = σ(S2)). To solve equations (2.16)/(2.17), we first
consider the matrix equation[

A(t) 0
Q(t) −I

] [
I St2

∗

XL XSS
t
2
∗

]
=

[
−P (t) I
B(t) 0

] [
St1 I

XLS
t
1 XS

]
, (3.1)

where A(t), B(t), Q(t) and P (t) ∈ Cn×n. Suppose {A(t), B(t), Q(t), P (t)} is a solution of (3.1) that
satisfies A(t) = B(t)∗, P (t) = P (t)∗ and Q(t) = Q(t)∗. It is naturally a solution of (2.16) and vice
versa. In addition, if A(t), B(t), Q(t) and P (t) are real matrices, it is a solution of (2.17). First, we
solve equation (3.1). To this end, we apply a column operation to (3.1) that yields[

A(t) 0
Q(t) −I

] [
I 0
XL (XS −XL)St2

∗

]
=

[
−P (t) I
B(t) 0

] [
St1 I − St1St2

∗

XLS
t
1 XS −XLS

t
1S

t
2
∗

]
.
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It follows that 
P (t)

(
I − St1St2

∗)
= XS −XLS

t
1S

t
2
∗
,

A(t) = (−P (t) +XL)St1,
B(t)

(
I − St1St2

∗)
= (XL −XS)St2

∗
,

Q(t) = XL +B(t)St1.

(3.2)

From (2.15), we have A(1) = B(1)∗ = A, Q(1) = Q and P (1) = 0 is solution of (3.1). It follows from
(3.2) that P (1) = 0 = XS −XLS1S2

∗, which implies

XS = XLS1S2
∗. (3.3)

Lemma 3.1. Eigenvalues of S1S
∗
2 are real, nonnegative and strictly inside the unit circle.

Proof. From (3.3), we have X−1L XS and S1S
∗
2 have the same eigenvalues. Suppose that λ is an

eigenvalue of X−1L XS , then (XS − λXL)x = 0, where x is a the corresponding eigenvector. Then,
x∗XSx− λx∗XLx = 0. Because XL > 0 and XS ≥ 0,

0 ≤ λ =
x∗XSx

x∗XLx
∈ R.

Using the fact that XL > XS , we have λ < 1. The proof is complete.
From (2.14), we have

St1S
t
2
∗

= W1J
t
sW
−1
1 W3J

t
s
∗
W−13 .

Suppose that λ is an eigenvalue of St1S
t
2
∗
, then St1S

t
2
∗ − λI is singular and so is

J tsW
−1
1 W3J

t
s
∗ − λW−11 W3. (3.4)

Multiplying D∗1 from the left of (3.4) and using Lemmas 2.1 and 2.3, we have

J tsD
∗
1W
−1
1 W3J

t
s
∗ − λD∗1W−11 W3 (3.5)

is singular. From (2.13), we obtain

D∗1W
−1
1 W3 = W ∗3 (XS −XL)W3 (3.6)

is Hermitian negative definite. Hence, −D∗1W−11 W3 can be written in the Choleskey factorization
−D∗1W−11 W3 = LL∗. Let

Φ = L−1JsL. (3.7)

From (3.5), we have ΦtΦt
∗ − λI is singular. Hence, we obtain

σ(St1S
t
2
∗
) = σ(ΦtΦt

∗
), (3.8)

where Φ is given in (3.7). We thus have the following consequence.
Theorem 3.1. Eigenvalues of St1S

t
2
∗

are real and nonnegative for any t ≥ 1.
The following lemma is useful to prove the existence of solution curve for Problem SPC.

Lemma 3.2. For each t ≥ 1, we have
(i) (XL −XS)St1 = St2(XL −XS);

9



(ii) (XL −XS)St1S
t
2
∗

=
(
St1S

t
2
∗)∗

(XL −XS) and St1
∗
St2(XL −XS) = (XL −XS)

(
St1
∗
St2
)∗

Proof. (i) Because A(1) = B(1)∗ and P (1) = 0, it follows from (3.2) that

(I − S1S2
∗)∗XLS1 = S2(XL −XS). (3.9)

Applying (3.3) to (3.9) yields

(XL −XS)S1 = S2(XL −XS).

The first assertion of this lemma follows from Lemma 2.1 directly.
(ii) We only prove the first equality. The other assertion can be accordingly obtained. For each

t ≥ 1,

(XL −XS)St1S
t
2
∗

= St2(XL −XS)St2
∗

( by (i))

= St2[St2(XL −XS)]∗

= St2[(XL −XS)St1]∗ ( by (i))

= St2S
t
1
∗
(XL −XS) =

(
St1S

t
2
∗
)∗

(XL −XS).

We thus complete the proof.
The following theorem gives a sufficient condition for the solvability of (2.16).

Theorem 3.2. For each t ≥ 1, if 1 /∈ σ(St1S
t
2
∗
) then (3.1) is uniquely solvable with P (t)∗ = P (t),

B(t) = A(t)∗ and Q(t)∗ = Q(t).
Proof. Because 1 /∈ σ(St1S

t
2
∗
), it follows from (3.2) that (3.1) is uniquely solvable. First, we claim

P (t) is Hermitian. Multiplying (I − St1St2
∗
)∗ from the left of the first equation of (3.2), we get

(I − St1St2
∗
)∗P (t)

(
I − St1St2

∗
)

= (I − St1St2
∗
)∗
(
XS −XLS

t
1S

t
2
∗
)

= XS − (St1S
t
2
∗
)∗XS −XLS

t
1S

t
2
∗

+ (St1S
t
2
∗
)∗XLS

t
1S

t
2
∗
.

To see this claim, it suffices to show that (St1S
t
2
∗
)∗XS +XLS

t
1S

t
2
∗

is Hermitian. From Lemma 3.2, we
have

0 = (XL −XS)St1S
t
2
∗ −

(
St1S

t
2
∗
)∗

(XL −XS)

=
[
(St1S

t
2
∗
)∗XS +XLS

t
1S

t
2
∗
]
−
[
XSS

t
1S

t
2
∗

+ (St1S
t
2
∗
)∗XL

]
.

Hence, (St1S
t
2
∗
)∗XS +XLS

t
1S

t
2
∗

is Hermitian.
Next, we show that B(t) = A(t)∗. Taking the conjugate transpose of the second equation of (3.2)

and using the fact that P (t) is Hermitian, we have

A(t)∗ = St1
∗
(−P (t) +XL)

= St1
∗
(−XS +XLS

t
1S

t
2
∗
)(I − St1St2

∗
)−1 + St1

∗
XL

= St1
∗
(−XS +XLS

t
1S

t
2
∗

+XL −XLS
t
1S

t
2
∗
)(I − St1St2

∗
)−1

= St1
∗
(XL −XS)(I − St1St2

∗
)−1

= (XL −XS)St2
∗
(I − St1St2

∗
)−1 (by Lemma 3.2 (i))

= B(t).
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Finally, we show that Q(t) is Hermitian. Because P (t) = P (t)∗ and B(t) = A(t)∗, we have

B(t)St1 = A(t)∗St1 = (St1)∗(−P (t) +XL)St1

is Hermitian. Hence, Q(t) = XL +B(t)St1 is Hermitian.
Theorem 3.2 shows that 1 /∈ σ(St1S

t
2
∗
) is a sufficient condition for the solvability of (2.16). In the

following theorem, we will see that it is also necessary.
Theorem 3.3. Suppose that 1 ∈ σ(St1S

t
2
∗
) for some t ≥ 1. Then, (3.1) has no solution.

Proof. Suppose 1 ∈ σ(St1S
t
2
∗
) for some specified t. There is a nonzero vector x ∈ Cn such that

St1S
t
2
∗
x = x. From the first equation of (3.2), we obtain that P (t) satisfies

P (t)0 = P (t)(I − St1St2
∗
)x = (XS −XLS

t
1S

t
2
∗
)x = (XS −XL)x.

However, from Remark 2.1 XS −XL is invertible and x is nonzero, which is a contradiction. Hence
(3.1) has no solution at t.

From Theorems 3.2 and 3.3, we have the following consequence for the solvability of Problem
SPC.
Theorem 3.4. The solution curve of Problem SPC can be uniquely characterized as{

(A(t), Q(t), P (t))| t ≥ 1 and 1 /∈ σ(St1S
t
2
∗
)
}
,

where A(t), Q(t) and P (t) are given as in (1.9).
Next, we consider the real case. Suppose that A, Q = Q> ∈ Rn×n satisfy assumptions A1 and

A2. Because M− λL has no eigenvalue on T, it follows from (2.12) and (2.14) that XL, XS , S1 and
S2 are real matrices. We first quote the important property that has been proven in [13, Theorem
1.31].
Theorem 3.5. If A ∈ Rn×n has no eigenvalues on R−, then the principal logarithm of A, log(A), is
a real matrix.

It is easily seen from Definition 1.1 and Theorem 3.5 that St1 and St2 are real matrices for each
t ≥ 1 provided that none of the eigenvalues of S1 are in R−. If 1 /∈ σ(St1S

t
2
∗
), it follows from (1.9)

that A(t), Q(t) and P (t) are real matrices. Then, we have the following result.
Theorem 3.6. Suppose that A, Q = Q> ∈ Rn×n and λψ(λ) has no eigenvalue on R−. The solution
curve of Problem SPC-R can be characterized as{

(A(t), Q(t), P (t))| t ≥ 1 and 1 /∈ σ(St1S
t
2
>

)
}
,

where A(t), Q(t) and P (t) are real and defined in (1.9).
The solvability of (2.16) depends on whether St1S

t∗
2 has eigenvalue 1. In the following, we will see

that it is solvable for t sufficiently large and a lower bound for t can be estimated.
Theorem 3.7. Suppose that the eigenvalues of M− λL are semi-simple. Let

T0 = (log λmin − log λmax) /(2 log ρ(Js)),

where λmax and λmin are, respectively, the maximal and minimal eigenvalues of positive definite matrix
W ∗3 (XL −XS)W3. Then, (2.16) has solution (A(t), Q(t), P (t)) for all t > T0.

Proof. It suffices to show that ρ(St1S
t
2
∗
) < 1 for all t > T0. Suppose that λ is an eigenvalue of

St1S
t
2
∗
. It follows from (3.4)-(3.6) that there is a nonzero vector x with ‖x‖ = 1 such that

J tsW
∗
3 (XL −XS)W3J

t
s
∗
x = λW ∗3 (XL −XS)W3x.
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Because t > T0 and Js is diagonal, ‖J ts
∗
x‖2 < (ρ(Js))

2T0 = λmin/λmax. Hence,

λ =
x∗J tsW

∗
3 (XL −XS)W3J

t
s
∗
x

x∗W ∗3 (XL −XS)W3x
≤ λmax‖J ts

∗
x‖2

λmin
<
λmax

λmin

λmax

λmin
= 1.

By Theorem 3.1, we have λ ≥ 0. So, ρ(St1S
t
2
∗
) < 1 for all t > T0.

4. Behavior of the solution curve. From Theorems 3.2 and 3.3, we have 1 /∈ ρ(St1S
t
2
∗
) as the

necessary and sufficient condition for the solvability of equation (2.16). Because ρ(S1) = ρ(S2) < 1,
we know that ρ(St1S

t
2
∗
) → 0 as t → ∞. Therefore, for each t ∈ E[a,b), (2.16) is solvable, where E[a,b)

is defined in (1.10). In this section, we first characterize the relation between intervals, E[k,k+1) and
E[k+1,k+2), for each k ∈ N. From this property, we consequently have that for each k ∈ N, (2.16) has
a unique solution (A(k), Q(k), P (k)). Furthermore, we also study the monotonicity of {Q(k)}∞k=1 and
{P (k)}∞k=1. The following lemma is useful, and the proof is straightforward.
Lemma 4.1. Suppose that Θ ∈ Cn×n is a Hermitian matrix and Φ ∈ Cn×n satisfies ρ(ΦΦ∗) < 1.
Then, ρ(ΦΘΦ∗) < ρ(Θ).

In the following, we shall see that these E[k,k+1)’s have the “nested set property”.
Theorem 4.1. For each k ∈ N, {t+ 1| t ∈ E[k,k+1)} ⊆ E[k+1,k+2).

Proof. For any t ∈ E[k,k+1), we have ρ(St1S
t
2
∗
) < 1. From (3.8) we have ρ(St+1

1 St+1
2

∗
) =

ρ(Φt+1Φt+1∗) = ρ(Φ(ΦtΦt
∗
)Φ∗). By Lemma 4.1, we obtain

ρ(St+1
1 St+1

2

∗
) < ρ(ΦtΦt

∗
) = ρ(St1S

t
2
∗
) < 1.

Hence, t+ 1 ∈ E[k+1,k+2).
Remark 4.1. (i) Suppose that E[k,k+1) = [k, k+ 1) for some k ∈ N. Theorem 4.1 shows that E[k,∞) =
[k,∞), which means that (2.16) is solvable for t ∈ [k,∞). (ii) From Lemma 3.1, we have 1 ∈ E[1,2).
By Theorem 4.1, it is easily seen that k ∈ E[k,k+1) for each k ∈ N. That is, for any k ∈ N, (2.16) has
a unique solution (A(k), Q(k), P (k)).
Lemma 4.2. For each t ∈ E[1,∞), (XL −XS)(I − St1St2

∗
) and (I − St1

∗
St2)(XL −XS) are Hermitian

positive definite.

Proof. By Lemma 3.2 (ii), we have (XL−XS)(I−St1St2
∗
) and (I−St1

∗
St2)(XL−XS) are Hermitian.

Now, we show that the eigenvalues of those two matrices are positive. Let XL − XS = LL∗ be the
Cholesky factorization of XL −XS . Then, we have

L−1(XL −XS)(I − St1St2
∗
)L−1

∗
= L∗(I − St1St2

∗
)L∗−1,

L−1(I − St1
∗
St2)(XL −XS)L−1

∗
= L−1(I − St1

∗
St2)L.

(4.1)

By Theorem 3.1, we have that

σ(St1
∗
St2) = σ((St1

∗
St2)∗) = σ(St2

∗
St1) = σ(St1S

t
2
∗
).

Because ρ(St1S
t
2
∗
) < 1, it follows from Theorem 3.1 that the eigenvalues of L∗(I − St1St2

∗
)L∗−1 and

L−1(I−St1
∗
St2)L are positive. From (4.1), we obtain that (XL−XS)(I−St1St2

∗
) and (I−St1

∗
St2)(XL−

XS) are Hermitian positive definite.

In the following, we shall see the boundedness of Q(t) and P (t) for t ∈ E[1,∞).
Theorem 4.2. Let t ∈ E[1,∞). Then, P (t + 1) ≤ XS is positive semi-definite. Furthermore, if
A ∈ Cn×n is invertible then P (t+ 1) < XS is positive definite.
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Proof. Because t ∈ E[1,∞), from Theorem 4.1, we have t+ 1 ∈ E[1,∞). Hence P (t+ 1)∗ = P (t+ 1)
exists. Next, we show that P (t + 1) is positive semi-definite. Using the first equation of (3.2) and
equation (3.3), we have

(I − St+1
1 St+1

2

∗
)∗P (t+ 1)

(
I − St+1

1 St+1
2

∗
)

= (I − St+1
1 St+1

2

∗
)∗XL(S1S2

∗ − St+1
1 St+1

2

∗
)

=
[
(I − S1S2

∗)∗ + (S1S2
∗ − St+1

1 St+1
2

∗
)∗
]
XL(S1S2

∗ − St+1
1 St+1

2

∗
)

≥ (I − S1S2
∗)∗XL(S1S2

∗ − St+1
1 St+1

2

∗
)

= (XL −XS)(S1S2
∗ − St+1

1 St+1
2

∗
) (by (3.3))

= (XL −XS)S1(I − St1St2
∗
)S2
∗

= S2(XL −XS)(I − St1St2
∗
)S2
∗. (by Lemma 3.2 (i)) (4.2)

Applying Lemma 4.2 to (4.2), we have P (t + 1) ≥ 0. Next, we show that P (t + 1) ≤ XS . From the
first equation of (3.2) and (3.3), we also have

XS − P (t+ 1) = XS − [(XS −XL)St+1
1 St+1

2

∗
+XS(I − St+1

1 St+1
2

∗
)](I − St+1

1 St+1
2

∗
)−1

= (XL −XS)St+1
1 St+1

2

∗
(I − St+1

1 St+1
2

∗
)−1

= St+1
2 (XL −XS)St+1

2

∗
(I − St+1

1 St+1
2

∗
)−1. (by Lemma 3.2 (i))

This finding implies that

(I − St+1
1 St+1

2

∗
)∗(XS − P (t+ 1))(I − St+1

1 St+1
2

∗
) = (I − St+1

2 St+1
1

∗
)(St+1

2 (XL −XS)St+1
2

∗
)

= St+1
2 [(I − St+1

1

∗
St+1
2 )(XL −XS)]St+1

2

∗
. (4.3)

By Lemma 4.2, we have XS − P (t+ 1) ≥ 0. Therefore, P (t+ 1) ≤ XS is positive semi-definite.
Suppose that A ∈ Cn×n is invertible, then M− λL has no zero eigenvalue, i.e., Js is invertible.

From (2.14), we have S2 is invertible. By (4.2) and (4.3), we obtain that 0 < P (t+ 1) < XS .
Theorem 4.3. Let t ∈ E[1,∞). Then, Q(t) ≥ XL is positive definite. Furthermore, if A ∈ Cn×n is
invertible, then Q(t) > XL.

Proof. Because t ∈ E[1,∞), (I − St1St2
∗
) is invertible. From the first equation of (3.2), we have

XL − P (t) = XL − [(XS −XL) +XL(I − St1St2
∗
)](I − St1St2

∗
)−1

= (XL −XS)(I − St1St2
∗
)−1

= (I − St1St2
∗
)−∗[(I − St1St2

∗
)∗(XL −XS)](I − St1St2

∗
)−1.

From Lemma 4.2, we obtain that XL − P (t) > 0. Using the fact that B(t) = A(t)∗ and the second
and last equations of (3.2), we have

Q(t) = XL +A(t)∗St1 = XL + St1
∗
(XL − P (t))St1.

Because XL − P (t) and XL are positive definite, Q(t) ≥ XL is positive definite. Furthermore, if
A ∈ Cn×n is invertible, then S1 is invertible. Hence, Q(t) > XL.
Remark 4.2. From Theorems 4.2 and 4.3, it is easily seen that the matrices XL and XS defined in
(2.12) are the lower bound of {Q(k)}∞k=1 and upper bound of {P (k)}∞k=1, respectively.

In the following, we shall see that {Q(k)}∞k=1 and {P (k)}∞k=1 also have the monotonicity. The
proof shall be straightforward from the further results in Section 5.
Theorem 4.4. For each k ∈ N, P (k + 1) ≥ P (k) and Q(k) ≥ Q(k + 1).
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5. Applications. The solution curve of Problem SPC is a union of piecewise smooth curves
parameterized by t ∈ I[1,∞). Here

I[1,∞) ≡ {t ∈ [1,∞)| 1 /∈ σ(St1S
t
2
∗
)}.

In Section 4, we study the case for k ∈ N ⊂ I[1,∞). In this section, we shall propose two applications.
First, we develop a new algorithm in which every iteration step reaches the solution curve of Problem
SPC with certain parameters k ∈ N. Second, we use this solution curve to measure the convergence
rates of fixed-point iteration, SDA and Newton’s method for solving NMEs (1.1).

We give a useful result in the following theorem.
Theorem 5.1. Let A, Q ∈ Cn×n satisfy assumptions A1 and A2. Assume that (A(t1), Q(t1), P (t1))
and (A(t2), Q(t2), P (t2)) are on the solution curve of Problem SPC with t1, t2 ∈ I[1,∞). If Q(t1)−
P (t2) is invertible, then t ≡ t1 + t2 ∈ I[1,∞) and A(t) = A(t1)[Q(t1)− P (t2)]−1A(t2),

Q(t) = Q(t2)−A(t2)∗[Q(t1)− P (t2)]−1A(t2),
P (t) = P (t1) +A(t1)[Q(t1)− P (t2)]−1A(t1)∗.

(5.1)

Proof. Writing

M(ti) =

[
A(ti) 0
Q(ti) −I

]
, L(ti) =

[
−P (ti) I
A(ti)

∗ 0

]
, i = 1, 2,

we have

M(ti)

[
I
XL

]
= L(ti)

[
I
XL

]
Sti1 and M(ti)

[
I
XS

]
Sti2
∗

= L(ti)

[
I
XS

]
,

for i = 1, 2. Because Q(t1)− P (t2) is invertible, denote

M∗ =

[
A(t1)[Q(t1)− P (t2)]−1 0
−A(t2)∗[Q(t1)− P (t2)]−1 I

]
, L∗ =

[
I −A(t1)[Q(t1)− P (t2)]−1

0 A(t2)∗[Q(t1)− P (t2)]−1

]
.

It is easy to verify that M∗L(t2) = L∗M(t1). Let

M̂ ≡M∗M(t2) =

[
A(t1)[Q(t1)− P (t2)]−1A(t2) 0

Q(t2)−A(t2)∗[Q(t1)− P (t2)]−1A(t2) −I

]
,

L̂ ≡ L∗L(t1) =

[
−P (t1)−A(t1)[Q(t1)− P (t2)]−1A(t1)∗ I

A(t2)∗[Q(t1)− P (t2)]−1A(t1)∗ 0

]
.

Thus, it is easily seen that

M̂
[

I
XL

]
= L̂

[
I
XL

]
St1+t21 and M̂

[
I
XS

]
(St1+t22 )∗ = L̂

[
I
XS

]
.

By the uniqueness of the solution of (2.16), we obtain t = t1 + t2 ∈ I[1,∞) and

M(t) ≡
[
A(t) 0
Q(t) −I

]
= M̂, L(t) ≡

[
−P (t) I
A(t)∗ 0

]
= L̂,

where A(t), Q(t) and P (t) are given in (5.1).
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Remark 5.1. (i) Suppose that t1, t2 ∈ N. From Theorems 4.2 and 4.3, we have that Q(t1)− P (t2) ≥
XL−XS is positive definite. Hence, the condition of Theorem 5.1 holds. (ii) Suppose that t1 = t2 ∈ N.
The iteration (5.1) is SDA and has been derived in [3, 4, 15, 16].

Suppose (Ak, Qk, Pk) = (A(t1), Q(t1), P (t1)) and (A`, Q`, P`) = (A(t2), Q(t2), P (t2)) are on the
solution curve for Problem SPC at some positive integers t1 and t2, respectively. Note that
(A(1), Q(1), P (1)) = (A,Q, 0) are given initially. By applying (Ak, Qk, Pk) and (A`, Q`, P`) to equa-
tion (5.1) and setting (Ak+1, Qk+1, Pk+1) = (A(t), Q(t), P (t)) with t = t1 + t2, the following algorithm
for solving NME (1.1) can be inductively derived.
Algorithm 5.1. Given A, Q ∈ Cn×n satisfying the assumptions A1 and A2. Let A0 = A,Q0 =
Q,P0 = 0.
For k = 0, 1, . . ., choose ` ∈ {0, 1, . . . , k} and compute

Ak+1= A`(Q` − Pk)−1Ak,

Qk+1= Qk −A∗k(Q` − Pk)−1Ak,

Pk+1= P` +A`(Q` − Pk)−1A∗` .

Similarly, if we apply (A`, Q`, P`) = (A(t1), Q(t1), P (t1)) and (Ak, Qk, Pk) = (A(t2), Q(t2), P (t2))
to (5.1), we have an alternate form of Algorithm 5.1.
Algorithm 5.2. Given A, Q ∈ Cn×n satisfying the assumptions A1 and A2. Let A0 = A,Q0 =
Q,P0 = 0.
For k = 0, 1, . . ., choose ` ∈ {0, 1, . . . , k} and compute

Ak+1= Ak(Qk − P`)−1A`,
Qk+1= Q` −A∗` (Qk − P`)−1A`,
Pk+1= Pk +Ak(Qk − P`)−1A∗k.

Here we note that, at each step k, if the `’s are chosen to be the same for both Algorithms 5.1
and 5.2, then these two algorithms generate the same sequences {(Ak, Qk, Pk)}∞k=0. By setting ` = k,
Algorithms 5.1 and 5.2 are the well-known SDA. In addition,

Ak = A(2k), Qk = Q(2k), Pk = P (2k), (5.2)

where A(·), Q(·) and P (·) are given in (1.9). If we set ` = 0, then Algorithms 5.1 and 5.2 generate
the sequence

Ak+1 = A(Q− Pk)−1Ak = AkQ
−1
k A, (5.3a)

Qk+1 = Qk −A∗k(Q− Pk)−1Ak = Q−A∗Q−1k A, (5.3b)

Pk+1 = A(Q− Pk)−1A∗ = Pk +AkQ
−1
k A∗k. (5.3c)

Here,

Ak = A(k + 1), Qk = Q(k + 1), Pk = P (k + 1). (5.4)

It is easily seen that (5.3b) is the fixed-point iteration (1.5). From (5.2) and (5.4), for a sequence
{Xk} generated by the fixed-point iteration, then the sequence {Qk} generated by SDA is {X2k−1}.
From (5.3c), we have iteration

Pk+1 = A(Q− Pk)−1A∗, with P0 = 0.
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On the other hand, from (2.16), we see that the sequence Pk converges to the positive semi-definite
matrix XS . This finding coincides with the iteration derived in [9]. Therefore, if we let Yk = Q− Pk,
then Yk converges to the maximal solution of dual equation

Y +AY −1A∗ = Q.

Now, we are in a position to prove Theorem 4.4.
Proof. [Proof of Theorem 4.4] First, let Qk = Q(k+ 1) and Yk = Q−P (k+ 1). Hence, {Qk} and

{Yk} are the sequences generated by the fixed-point iteration for X+A∗X−1A = Q and Y +AY −1A∗ =
Q, respectively. It is reported in [9] that both Qk and Yk are monotonically decreasing. Accordingly,
P (k + 1) ≥ P (k) and Q(k) ≥ Q(k + 1) are positive semi-definite.

Next, we consider Newton’s method [12].
Algorithm 5.3. Given A, Q ∈ Cn×n satisfying the assumptions A1 and A2.
Let X0 = Q. For k = 1, 2, . . .,

Compute Lk = X−1k−1A.
Solve Xk − L∗kXkLk = Q− 2L∗kA.

Analogically to the relationship between the fixed-point iteration and the SDA mentioned above,
we may also hope that the iterations {Xk}∞k=0 generated by Newton’s method are the same as
{Q(tk)}∞k=0 for some tk ∈ N. Unfortunately, this result is not true in the general case. We need
an additional assumption:

A3. The equation A∗Q−1A = AQ−1A∗ holds.
Lemma 5.1. Suppose that A, Q ∈ Cn×n satisfy assumption A3 and Q is positive definite. Then
there exists an invertible matrix Γ ∈ Cn×n such that Γ∗QΓ = I and Γ∗AΓ is a diagonal matrix.

Proof. Because Q is positive definite, there exists a lower-triangular matrix L such that Q−1 =
LL∗. From assumption A3, we have

L∗A∗LL∗AL = L∗A∗Q−1AL = L∗AQ−1A∗L = L∗ALL∗A∗L.

Hence, L∗AL is normal. Then, a unitary matrix Υ exists such that Υ∗(L∗AL)Υ is diagonal. Let
Γ = LΥ. We have that Γ∗QΓ = I and Γ∗AΓ is a diagonal matrix.

Suppose that A, Q ∈ Cn×n satisfy assumptions A1, A2 and A3. From Lemma 5.1, there is an
invertible matrix Γ such that Γ∗QΓ = I and Γ∗AΓ is a diagonal matrix. Suppose that {Ak}, {Qk}
and {Pk} are generated by (5.3) with A0 = A, Q0 = Q and P0 = 0. Let

Âk = Γ∗AkΓ, Q̂k = Γ∗QkΓ, P̂k = Γ∗PkΓ, (5.5)

for k = 0, 1, . . .. It follows that {Âk}, {Q̂k} and {P̂k} are diagonal and satisfy

Âk+1 = Â(Q̂− P̂k)−1Âk = ÂkQ̂
−1
k Â,

Q̂k+1 = Q̂k − Â∗k(Q̂− P̂k)−1Âk = Q̂− Â∗Q̂−1k Â,

P̂k+1 = Â(Q̂− P̂k)−1Â∗ = P̂k + ÂkQ̂
−1
k Â∗k.

(5.6)

Lemma 5.2. Suppose that A, Q ∈ Cn×n satisfy assumptions A1, A2 and A3. Then, the sequences
{Ak}, {Qk} and {Pk} generated by (5.3) with A0 = A, Q0 = Q and P0 = 0 satisfy (i) A∗`Q

−1
k A` =

A`Q
−1
k A∗` , (ii) Pk +Qk = Q for all `, k ∈ N.

Proof. From (5.5)-(5.6) and using the fact that Âk, Q̂k and P̂k are diagonal, we have

Γ∗A∗`Q
−1
k A`Γ = Γ∗A∗`Γ(Γ∗QkΓ)−1Γ∗A`Γ = Â∗` Q̂

−1
k Â` = Â`Q̂

−1
k Â∗` = Γ∗A`Q

−1
k A∗`Γ,
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for all `, k ∈ N. This finding proves assertion (i). Next, we show that assertion (ii) holds. Clearly, it
holds true for k = 0. Suppose that (ii) holds for k = m, then for k = m+ 1, we have

Pk +Qk = Pm+1 +Qm+1 = A(Q− Pm)−1A∗ +Q−A∗Q−1m A

= Q+A(Q− Pm)−1A∗ −AQ−1m A∗ (by (i))

= Q+A[(Q− Pm)−1 −Q−1m ]A (by induction hypothesis)

= Q.

Therefore, an induction argument leads to assertion (ii).
Theorem 5.2. Suppose that A, Q ∈ Cn×n satisfy assumptions A1, A2 and A3. If Xk is generated
by Newton’s method, then Xk = Q(2k+1 − 1) where Q(·) is given in (1.9).

Proof. The proof is given by induction on the number k. Let

τk = 2k+1 − 1.

Clearly, when k = 0, the equalities X0 = Q = Q(1) = Q(τ0) hold. Suppose that Xk = Q(τk) when
k = m ∈ N. For k = m+ 1, it follows from (5.3) and Lemma 5.2 that

Q(τk) =Q(τm+1) = Q(2τm + 1) = Q(2τm)−A(2τm)∗[Q− P (2τm)]−1A(2τm)

=Q(2τm)−A(2τm)∗Q(2τm)−1A(2τm). (5.7)

Applying t1 = t2 = τm to (5.1), we have

A(2τm) = A(τm) [Q(τm)− P (τm)]
−1
A(τm),

Q(2τm) = Q(τm)−A(τm)∗ [Q(τm)− P (τm)]
−1
A(τm).

(5.8)

Then, it follows from Lemma 5.2 again that

A(2τm)∗Q(2τm)−1A(2τm)

= A(τm)∗ [Q(τm)− P (τm)]
−1
A(τm)∗Q(2τm)−1A(τm) [Q(τm)− P (τm)]

−1
A(τm)

= A(τm)∗ [Q(τm)− P (τm)]
−1
A(τm)Q(2τm)−1A(τm)∗ [Q(τm)− P (τm)]

−1
A(τm). (5.9)

Substituting (5.8) and (5.9) into (5.7) and using the Sherman-Morrison-Woodbury formula, we obtain

Q(τm)−Q(τm+1) = A(τm)∗
[
Q(τm)−P (τm)−A(τm)Q(τm)−1A(τm)∗

]−1
A(τm). (5.10)

By induction hypothesis, we have Xm = Q(τm). Multiplying X−1m from the right and left of (5.10),
gives

X−1m −X−1m Q(τm+1)X−1m

= Q(τm)−1A(τm)∗
[
Q(τm)− P (τm)−A(τm)Q(τm)−1A(τm)∗

]−1
A(τm)Q(τm)−1.

Applying the Sherman-Morrison-Woodbury formula and using (5.8), it follows that

X−1m −X−1m Q(τm+1)X−1m = −Q(τm)−1 +
[
Q(τm)−A(τm)∗[Q(τm)− P (τm)]−1A(τm)

]−1
= −X−1m +Q(2τm)−1. (5.11)
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From (5.3b) and (5.11), we have

Q(τm+1) = Q(2τm + 1) = Q−A∗Q(2τm)−1A

= Q− 2A∗X−1m A+A∗X−1m Q(τm+1)X−1m A.

This finding implies that Q(τk) = Q(τm+1) satisfies

Q(τm+1)−A∗X−1m Q(τm+1)X−1m A = Q− 2A∗X−1m A.

Hence, we obtain that Xk = Xm+1 = Q(τm+1) = Q(τk). By the mathematical induction, for each
k ∈ N, we have Xk = Q(2k+1 − 1), where Xk is generated by Newton’s method.

6. Numerical results. In this section, we present some numerical results. All numerical ex-
periments are conducted using MATLAB R2010a with double-precision floating-point arithmetic
(eps ≈ 2.22× 10−16).
Example 6.1. We randomly generate two complex matrices A and Q = Q∗ of dimension 11. Choose
a suitable % ∈ R and set Q := Q + %I11 such that A, Q satisfy assumptions A1 and A2. We
compute XL, XS , S1 and S2 by using the QZ algorithm (see (2.15)). Thus, the solution curve
{(A(t), Q(t), P (t)) | t ≥ 1 } can be parameterized by (1.9). In this experiment, we only compute the
solution curves, A(t), Q(t) and P (t), for t ∈ [1, 5]. To measure the accuracy of computed solution
curve of (2.16), we use the absolute residual

Res(t) =

∥∥∥∥[ A(t) 0
Q(t) −I

] [
I St2

∗

XL XSS
t
2
∗

]
−
[
−P (t) I
A(t)∗ 0

] [
St1 I

XLS
t
1 XS

]∥∥∥∥ ,
where ‖ · ‖ is spectral norm. In Figure 6.1, we plot the residual Res(t). From Theorem 3.2, we have
that Q(t) and P (t) are Hermitian matrices. To show this point, we also illustrate ‖Q(t) − Q(t)∗‖
and ‖P (t) − P (t)∗‖ in Figure 6.1. From Theorems 3.2 and 3.3, we know that 1 /∈ σ(St1S

t
2
∗
) is the

necessary and sufficient condition for the solvability of (2.16). On the other hand, it follows from
Theorem 3.1 that ρ(St1S

t
2
∗
) is the maximal eigenvalue of St1S

t
2
∗
. In Figure 6.2, we plot ‖A(t)‖, ‖Q(t)‖

and ‖P (t)‖ and ρ(St1S
t
2
∗
). For this example, we see that there are four points, t1 = 1.1339, t2 = 1.8682,

t3 = 2.3709 and t4 = 2.7123, at which ρ(Sti1 S
ti
2

∗
) = 1. This result implies that the equation (2.16)

has no solution for t = t1, . . . , t4. We also can see that ‖A(t)‖, ‖Q(t)‖ and ‖P (t)‖ in Figure 6.2 blow
up at t = t1, . . . , t4. The intervals E[k,k+1) defined in (1.10) can be observed as

E[1,2) = [1, t1) ∪ (t2, 2), E[2,3) = [2, t3) ∪ (t4, 3),
E[k,k+1) = [k, k + 1), for k = 3, 4 . . . .

It is easily to see that these E[k,k+1)’s satisfy {t+ 1|t ∈ E[k,k+1)} ⊆ E[k+1,k+2) for each k ∈ N, which
has been shown in Theorem 4.1. Therefore, equation (2.16) is solvable for t ≥ 3.
Example 6.2. We randomly generate two complex matrices A and Q = Q∗ of dimension 11. Choose
a suitable % ∈ R and set Q := Q + %I11 such that A, Q satisfy assumptions A1 and A2. In this
example, ρ(St1S

t
2
∗
) < 1 for each t ≥ 1, and hence, E[1,∞) = [1,∞). However, assumption A3 does not

hold. We first compute X1, X2 and X3 by Newton’s method and construct the solution curves, A(t),
Q(t) and P (t), for t ∈ [1, 16] by (1.9). To see the relationship between the solution curve of (2.16)
and Newton’s iterations X1, X2 and X3, we compute

RXi
(t) =

‖Xi −Q(t)‖
‖Xi‖

, for i = 1, 2, 3.
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Fig. 6.1. Res(t), ‖Q(t)−Q(t)∗‖ and ‖P (t)− P (t)∗‖ for t ∈ [1, 5].

Because assumption A3 does not hold, it is not guaranteed that {Q(2k+1 − 1)}∞k=0 is the sequence
generated by Newton’s method as mentioned in Main Result 3. That is, we cannot guarantee that
RX1(3), RX2(7) and RX3(15) are zero. In Figure 6.3, we plot RX1(t), RX2(t) and RX3(t). We see
that the values RX1(t1), RX2(t2) and RX3(t3) are between 10−3 and 10−2 when t1, t2 and t3 are near
3, 6 and 13, respectively.
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