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Abstract. In this paper, we define finite Carlitz multiple polylogarithms and show that
every finite multiple zeta value over the rational function field Fq(θ) is an Fq(θ)-linear
combination of finite Carlitz multiple polylogarithms at integral points. It is completely
compatible with the formula for Thakur MZV’s established in [C14].

1. Introduction

Let A := Fq[θ] be the polynomial ring in the variable θ over the finite field Fq of q
elements with characteristic p, and k be the quotient field of A. We denote by k∞ the
completion of k with respect to the place at infinite. We denote by A+ the set of monic
polynomials in A.

The characteristic p multiple zeta values (abbreviated as MZV’s) were introduced by
Thakur [T04]: for s = (s1, . . . , sr) ∈Nr,

(1.0.1) ζA(s1, . . . , sr) := ∑
1

as1
1 · · · a

sr
r
∈ k∞,

where a1, . . . , ar run over all monic polynomials in A satisfying

degθ a1 > degθ a2 > · · · > degθ ar.

The values above play the positive characteristic analogue of classical multiple zeta val-
ues (see [Zh16]), and they are in fact non-vanishing by Thakur [T09]. One knows further
that MZV’s occur as periods of certain mixed Carlitz-Tate t-motives (see [AT09]).

In the seminal paper [AT90], Anderson and Thakur introduced the nth tensor power
of the Carlitz module and established a deep connection between ζA(n) and the nth
Carlitz polylogarithm for each positive integer n. The nth Carlitz polylogarithm is the
function field analogue of the classical nth polylogarithm defined by the series

Lin(z) :=
∞

∑
i=0

zqi

Ln
i

,

where L0 := 1 and Li := (θ − θq) · · · (θ − θqi
) for i ∈ N. When n = 1, the series above

is the Carlitz logarithm (see [Ca35, Go96, T04]). What Anderson and Thakur showed is
that ζA(n) is a k-linear combination of Lin at some integral points in A.

Inspired by the classical multiple polylogarithms (see [W02, Zh16]), the first author
of the present paper defined for each s = (s1, . . . , sr) ∈ Nr the sth Carlitz multiple
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polylogarithm (abbreviated as CMPL):

(1.0.2) Lis(z1, . . . , zr) := ∑
i1>···>ir≥0

zqi1

1 · · · z
qir

r

Ls1
i1
· · · Lsr

ir

.

Note that in the classical setting, there is a simple identity that a multiple zeta value ζ(s)
is the specialization of the sth multiple polylogarithm (several variables) at (1, . . . , 1).
Using the theory of Anderson-Thakur polynomials [AT90] the first author [C14] derived
an explicit formula expressing ζA(s) as a k-linear combination of Lis at some integral
point (see Theorem 3.2.2) generalizing Anderson-Thakur’s work to arbitrary depth.

The study of this paper is inspired by the work of Kaneko and Zagier [KZ] on finite
multiple zeta values, which are in the Q-algebra

A := ∏
p

Z/(p)
/⊕

p
Z/(p),

where p runs over all prime numbers. In analogy with A , it is natural to define the
k-algebra Ak (see (2.1.1)). One then naturally defines a finite version of Thakur MZV’s
(1.0.1), which we (also) call finite multiple zeta values (abbreviated as FMZV’s) denoted
by ζAk(s). See (2.1.2) for the definition and note that Thakur also defines FMZV’s in [T16]
(see also a variant in [PP15]). In this paper we define a finite version of CMPL’s (1.0.2),
called finite Carlitz multiple polylogarithms (abbreviated as FCMPL’s) and denoted by
LiAk,s(z1, . . . , zr) for s ∈ Nr (see (3.0.5) for the precise definition). We then have that the
FCMPL’s satisfy the stuffle relations (see § 3.1). The main result in this paper is to estab-
lish an explicit formula expressing each FMZV ζAk(s) as a k-linear combination of LiAk,s
at some integral points (see Theorem 3.3.1). It is interesting that the formula for ζAk(s)
completely matches with the formula for ζA(s) (cf. Theorem 3.2.2 and Theorem 3.3.1),
and its proof highly relies on the theory of Anderson-Thakur polynomials [AT90].

At the end of the introduction, we give a list of some interesting problems for future
research.

• Connection bwteen Thakur MZV’s and FMZV’s (cf. [KZ]).
• Non-vanishing problems for FMZV’s (cf. [ANDTR16, T09]).
• Logarithmic and period interpretation of FCMPL’s and FMZV’s (cf. [AT90, AT09]).
• Transcendence theory for FCMPL’s and FMZV’s (cf. [ABP04, P08, C14, C16, CM16,

CP12, CY07, M14, Yu91, Yu97]).
• Relation between FCMPL’s and t-motives (cf. [AT90, AT09, C14]).

2. Finite multiple zeta values

2.1. The definition of FMZV’s. Following Kaneko and Zagier, we define the k-algebra

(2.1.1) Ak := ∏
P

A/(P)
/⊕

P
A/(P),

where P runs over all monic irreducible polynomials in A. In analogy with classical finite
MZV’s, one considers the following finite version of (∞-adic) Thakur MZV’s denoted by
ζAk(s1, . . . , sr) for any r-tuple (s1, . . . , sr) ∈ Nr. One first defines for a monic irreducible
polynomial P ∈ A,

ζAk(s1, · · · , sr)P := ∑
1

as1
1 · · · a

sr
r

mod P ∈ A/(P),
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where the sum runs over all monic polynomials a1, . . . , ar ∈ A satisfying

deg P > deg a1 > · · · > deg ar.

One then defines the finite multiple zeta value abbreviated as FMZV (see also [T16]):

(2.1.2) ζAk(s1, · · · , sr) := (ζAk(s1, · · · , sr)P) ∈ Ak.

We call r the depth and wt(s) := ∑r
i=1 si the weight of the presentation ζAk(s).

The motivation of our study in this paper comes from the identity in [C14] that any
(∞-adic) Thakur MZV is a k-linear combination of Carlitz multiple polylogarithms (ab-
breviated as CMPL’s) at integral points (generalization of the formula of Anderson-
Thakur [AT90] for the depth one case). Our main result is to establish the same identity
for the FMZV’s.

2.2. The algebra of FMZV’s. In [T10], Thakur proved that the Fp-vector space spanned
by MZV’s forms an algebra. Using Thakur’s theory [T10], one finds the same phenom-
enon for FMZV’s in the following theorem. In other words, the k-vector space spanned
by FMZV’s forms a k-algebra that is defined over Fp.

Proposition 2.2.1. Let Z ⊆ Ak be the Fp-vector subspace spanned by all FMZV’s. Then Z
forms an Fp-algebra.

Proof. It suffices to show that for arbitrary s ∈ Nr and s′ ∈ Nr′ , there exists s1, . . . , sm ∈
∪`N` with wt(si) = wt(s) + wt(s′), and f1, . . . , fm ∈ Fp so that

ζAk(s)PζAk(s
′)P =

m

∑
i=1

fiζAk(si)P ∈ A/(P)

for all primes P ∈ A+.
For any r-tuple s = (s1, . . . , sr) and d ∈N, we put

S<d(s) := ∑
1

as1
1 · · · a

sr
r
∈ k,

where the sum runs over all monic polynomials a1, . . . , ar ∈ A satisfying

d > deg a1 > · · · > deg ar.

It follows that

(2.2.2) ζAk(s)P = S<deg P(s) mod P.

Note that [To15, Cor. 2.2.10] implies that S<deg P(s)S<deg P(s
′) is an Fp-linear combination

of some S<deg P(s
′′) with wt(s′′) = wt(s) + wt(s′), where the s′′’s and the coefficients in

Fp are independent of deg P, whence the desired result by modulo P. �

Remark 2.2.3. The authors were informed by Thakur that his student Shuhui Shi has de-
rived several identities on these FMZV’s with k-coefficients, including Proposition 2.2.1.

Remark 2.2.4. The authors were informed by H.-J. Chen that as such the case above, the
techniques in [Chen15] can be used to derive an explicit formula for the product of two
finite single zeta values in terms of linear combinations of some FMZV’s.



4 CHIEH-YU CHANG AND YOSHINORI MISHIBA

3. Finite Carlitz multiple polylogarithms and the main result

In what follows, for any tuple s ∈ Nr we define its associated finite Carlitz multiple
polylogartihm (abbreviated as FCML)

LiAk,s : kr → Ak.

Fixing any r-tuple s = (s1, . . . , sr) ∈ Nr and an r-tuple of independent variables z =
(z1, . . . , zr), we define the quotient ring

Ak,z := ∏
P

A[z]/(P)
/⊕

P
A[z]/(P),

where
A[z] = A[z1, . . . , zr].

We then define

(3.0.5) LiAk,s(z) :=
(
LiAk,s(z1, . . . , zr)P

)
∈ Ak,z,

where

LiAk,s(z1, . . . , zr)P := ∑
deg P>i1>···>ir≥0

zqi1

1 · · · z
qir

r

Ls1
i1
· · · Lsr

ir

mod P ∈ A[z1, . . . , zr]/(P).

We note that P does not divide (θqi − θ) if and only if deg P - i, and hence LiAk,s(z) is well-
defined in Ak,z. Furthermore, LiAk,s(u) is well-defined in Ak for any u = (u1, . . . , ur) ∈ kr

since LiAk,s(u)P is defined in A/(P) for P not dividing the denominators of u1, . . . , ur.
Such as the ∞-adic case, we call r the depth and wt(s) the weight of the presentation
LiAk,s(u).

3.1. Stuffle relations. Let z′ = (z′1, . . . , z′r′) be an r′-tuple of variables independent from
the zi’s of z. For each prime P ∈ A+ we consider the natural multiplication map

A[z]/(P)× A[z′]/(P)→ A[z, z′]/(P),

which induces the following map

(3.1.1) Ak,z ×Ak,z′ → Ak,(z,z′).

We denote by LiAk,s(z) · LiAk,s′(z
′) ∈ Ak,(z,z′) the image of (LiAk,s(z), LiAk,s′(z

′)) ∈ Ak,z ×
Ak,z′ under the map (3.1.1).

Note that since the indexes of the finite sum LiAk,s(z)P are in the total ordered set Z≥0,
the classical stuffle relations (for multiple polylogarithms) work here by componentwise
multiplication. We describe the details as the following.

Given s = (s1, . . . , sr) ∈ Nr and s′ = (s′1, . . . , s′r′) ∈ Nr′ , we fix a positive integer r′′

with max {r, r′} ≤ r′′ ≤ r + r′. We consider a pair consisting of two vectors v, v′ ∈ Zr′′
≥0

which are required to satisfy v + v′ ∈ Nr′′ and which are obtained from the following
ways. One vector v is obtained from s by inserting (r′′ − r) zeros in all possible ways
(including in front and at end), and another vector v′ is obtained from s′ by inserting
(r′′ − r′) zeros in all possible ways (including in front and at end).

One observes from the definition that FCMPL’s satisfy the stuffle relations which are
analogous to the classical case (cf. [W02]):

(3.1.2) LiAk,s(z) · LiAk,s′(z
′) = ∑

(v,v′)
LiAk,v+v′(z

′′),
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where the pair (v, v′) runs over all the possible expressions as above for all r′′ with
max {r, r′} ≤ r′′ ≤ r + r′. For each such v + v′ ∈ Nr′′ , the component z′′i of z′′ is zj if the
ith component of v is sj and the ith component of v′ is 0, it is z′` if the ith component of
v is 0 and the ith component of v′ is s′`, and finally it is zjz′` if the ith component of v is
sj and the ith component of v′ is s′`.

For example, for r = r′ = 1 (3.1.2) yields

LiAk,s(z) · LiAk,s′(z′) = LiAk,(s,s′)(z, z′) + LiAk,(s′,s)(z
′, z) + LiAk,s+s′(zz′).

For r = 1, r′ = 2, one has

LiAk,s(z) · LiAk,(s′1,s′2)
(z′1, z′2) = LiAk,(s,s′1,s′2)

(z, z′1, z′2) + LiAk,(s′1,s,s′2)
(z′1, z, z′2) + LiAk,(s′1,s′2,s)(z′1, z′2, z)

+LiAk,(s+s′1,s′2)
(zz′1, z′2) + LiAk,(s′1,s+s′2)

(z′1, zz′2).

Remark 3.1.3. From the stuffle relations above, we see that the product of LiAk,s(u) and
LiAk,s′(u′) is an Fp-linear combinations of some FCMPL’s of the same weight wt(s) +
wt(s′) at rational points over k.

3.2. The formula for Thakur MZV’s. Let t, x, y be new independent variables. We put
G0(y) := 1 and define polynomials Gn(y) ∈ Fq[t, y] for n ∈N by the product

Gn(y) =
n

∏
i=1

(
tqn − yqi

)
.

For a non-negative integer n, we express n = ∑ niqi (0 ≤ ni ≤ q − 1) as the base q-
expansion. We define the Carlitz factorial Γn+1 := ∏ Dni

i , where D0 := 1 and Di :=

∏i−1
j=0(θ

qi − θqj
) for i ∈N. For n = 0, 1, 2, . . ., we define the sequence of Anderson-Thakur

polynomials Hn ∈ A[t] by the generating function identity(
1−

∞

∑
i=0

Gi(θ)

Di|θ=t
xqi

)−1

=
∞

∑
n=0

Hn

Γn+1|θ=t
xn.

In what follows, we fix an r-tuple of positive integers s = (s1, . . . , sr) ∈ Nr. For each
1 ≤ i ≤ r, we expand the Anderson-Thakur polynomial Hsi−1 ∈ A[t] as

(3.2.1) Hsi−1 =
mi

∑
j=0

uijtj,

where uij ∈ A satisfying

|uij|∞ < q
siq

q−1 and uimi 6= 0.

We put
Js := {0, 1, . . . , m1} × · · · × {0, 1, . . . , mr} .

For each j = (j1, . . . , jr) ∈ Js, we set

uj := (u1j1 , . . . , urjr) ∈ Ar,

and
aj := aj(t) := tj1+···+jr .

Set Γs := Γs1 · · · Γsr ∈ A. The following formula is established in [C14].



6 CHIEH-YU CHANG AND YOSHINORI MISHIBA

Theorem 3.2.2. For each s = (s1, . . . , sr) ∈Nr, we have that

ζA(s) =
1
Γs

∑
j∈Js

aj(θ)Lis(uj).

3.3. The main result. Our main result is to show that the formula above is valid for the
finite level:

Theorem 3.3.1. For each s = (s1, . . . , sr) ∈Nr, we have that

ζAk(s) =
1
Γs

∑
j∈Js

aj(θ)LiAk,s(uj).

For each nonnegative integer i, we let Ai+ be the set of all monic polynomials of

degree i in A. For each i ∈ Z and H = ∑ ujtj ∈ k[t], we define H(i) := ∑ uqi

j tj. To
prove the theorem above, we need the following interpolation formula of Anderson and
Thakur [AT90].

Lemma 3.3.2. Fixing s ∈N, for any nonnegative integer i we have

H(i)
s−1|t=θ

Ls
i

= Γs ∑
a∈Ai+

1
as .

Proof of Theorem 3.3.1. It suffices to verify the identity for the P-component of the both
sides of Theorem 3.3.1 for primes P with deg P � 0. Let P ∈ A+ satisfy P - Γs. By
definition, we have

ζAk(s)P = ∑
a1,...,ar∈A+

deg P>deg a1>···>deg ar

1
as1

1 · · · a
sr
r

mod P = ∑
deg P>i1>···>ir≥0

aj∈Aij+

1
as1

1 · · · a
sr
r

mod P

= ∑
deg P>i1>···>ir≥0

∑
a1∈Ai1+

1
as1

1
· · · ∑

ar∈Air+

1
asr

r
mod P

=
1
Γs

∑
deg P>i1>···>ir≥0

H(i1)
s1−1|t=θ · · ·H

(ir)
sr−1|t=θ

Ls1
i1
· · · Lsr

ir

mod P,

where the last equality comes from Lemma 3.3.2.
By (3.2.1) we have

H(i1)
s1−1|t=θ · · ·H

(ir)
sr−1|t=θ =

m1

∑
j1=0

uqi1

1j1
θ j1 · · ·

mr

∑
jr=0

uqir

rjr θ jr

= ∑
j=(j1,...,jr)∈Js

aj(θ)u
qi1

1j1
· · · uqir

rjr .
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It follows that

ζAk(s)P =
1
Γs

∑
deg P>i1>···>ir≥0

∑
j=(j1,...,jr)∈Js

aj(θ)u
qi1

1j1
· · · uqir

rjr

Ls1
i1
· · · Lsr

ir

mod P

=
1
Γs

∑
j=(j1,...,jr)∈Js

aj(θ) ∑
deg P>i1>···>ir≥0

uqi1

1j1
· · · uqir

rjr

Ls1
i1
· · · Lsr

ir

mod P

=
1
Γs

∑
j∈Js

aj(θ)LiAk,s(uj)P,

whence verifying Theorem 3.3.1.
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