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Abstract. In this paper, we study transcendence theory for Thakur multizeta values in
positive characteristic. We prove an analogue of the strong form of Goncharov’s conjec-
ture. The same result is also established for Carlitz multiple polylogarithms at algebraic
points.

1. Introduction

1.1. Classical multiple zeta values. Multiple zeta values (abbreviated as MZVs) are real
numbers defined by Euler:

ζ(s1, . . . , sr) := ∑
n1>···>nr≥1

1
ns1

1 · · · n
sr
r

,

where s1, . . . , sr are positive integers with s1 ≥ 2. Here r is called the depth and ∑r
i=1 si

is called the weight of the MZV ζ(s1, . . . , sr). These values are generalizations of the
Riemann zeta function at positive integers, and have been much studied in recent years
because of various points of view of their interesting properties. For example, they occur
as periods of the mixed Tate motives, and they occur as values of Feynman integrals
in quantum field theory. We refer the reader to the papers on this subject by Brown,
Deligne, Drinfeld, Goncharov, Hoffman, Kaneko, Terasoma, Zagier etc. See also the
recent advances by Brown [B12] and Zagier [Z12].

It is natural to ask the transcendence nature of these MZVs. However, it is still an open
problem although one knows the transcendence of the Riemann zeta function at even
positive integers because of Euler’s formula. Let Z be the Q-algebra generated by all
MZVs and for w ≥ 2 let Zw be the Q-vector space spanned by the weight w MZVs. It is
well known that Zw1Zw2 ⊂ Zw1+w2 for w1 ≥ 2, w2 ≥ 2. The main motivation of the study
in this paper is from the important conjecture given by Goncharov [Gon97]: Z forms
a graded algebra (graded by weights), i.e., Z = Q⊕w≥2 Zw. The following conjecture
(folklore) is a stronger form of Goncharov’s conjecture.

Conjecture 1.1.1. Let Z be the Q-algebra generated by MZVs, and let Zw be the Q-vector space
spanned by the weight w MZVs for w ≥ 2. Then one has that

(1) Z forms a graded algebra, i.e., Z = Q⊕w≥2 Zw.
(2) Z is defined over Q in the sense that the canonical map Q⊗Q Z→ Z is bijective.
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In other words, to prove their linear independence over Q, one could adopt a strategy
of proving linear independence over Q for these special values although it is still wild
open. The primary purpose of this article is to prove an analogue of the conjecture above
in the setting of multizeta values in positive characteristic.

1.2. Thakur multizeta values. In analogy with the classical MZVs, in his seminal work
[T04] Thakur studied the characteristic p multizeta values (abbreviated as MZVs) in k×∞,
where k is the rational function field Fq(θ) over a finite field Fq and k∞ is the completion
of k at ∞, which is the zero divisor of 1/θ. Let A+ be the monic polynomials in A. For
any r-tuple s = (s1, . . . , sr) ∈Nr, the multizeta value at s is defined by the series

ζA(s) := ∑
1

as1
1 · · · a

sr
r
∈ k∞,

where the sum is over (a1, . . . , ar) ∈ Ar
+ with degθ ai strictly decreasing. Note that ζA(s)

is non-vanishing by the work of Thakur [T09a].
These MZVs are generalizations of the Carlitz zeta values at positive integers [Ca35],

and they occur as periods of mixed Carlitz-Tate motives (explicitly constructed) by the
work of Anderson-Thakur [AT09]. Notice that the weight one MZV is just the Carlitz
zeta value at 1, which exists in this non-archimedean field setting. Note further that
Thakur [T10] showed that a product of two multizeta values of weight w1 and w2 can be
expressed as an Fp-linear combination of MZVs of weight w1 + w2 (see [LR11] for the
explicit expressions).

Our main result in this paper is to prove a precise function field analogue of Conjec-
ture 1.1.1 (stated as Theorem 2.2.1). That is, the k̄-algebra generated by all MZVs forms a
graded algebra (graded by weights) and it is defined over k. As consequences, one has:

• Each nontrivial monomial of MZVs is transcendental over k.
• The ratio of two different weight nontrivial monomials of MZVs is transcendental

over k.
The results above generalize the work of Yu [Yu91, Yu97] for the depth one case, and the
work of Thakur [T09b] on the transcendence of some specific MZVs. We further derive
the following consequences stated as Theorem 2.3.2 and Corollary 2.3.3:

• Let Z1 and Z2 be two MZVs of the same weight. Then either Z1/Z2 ∈ k or Z1 and
Z2 are algebraically independent over k.
• Let Z be a MZV of weight w. Then either Z/π̃w is in k or Z is algebraically

independent from π̃.
Here π̃ is a fundamental period of the Carlitz module, which plays the analogous role
of 2π

√
−1 for the multiplicative group Gm. The last property listed above is called Euler

dichotomy phenomenon (see § 2.3). In particular, every multizeta value of “odd ”weight
w (i.e., (q− 1) - w) is algebraically independent from π̃.

The main goal of transcendence theory for MZVs is to determine all the k̄-algebraic
relations among the MZVs. However, in contrast to the classical case, a nice description
of the full set of identities satisfied by MZVs is not known yet (see [AT09, T10]). As
all k̄-algebraic relations among the MZVs are k̄-linear relations among the monomials
of MZVs, Theorem 2.2.1 has shown that all k̄-algebraic relations are coming from the
k-linear relations among the same weight monomials of MZVs. However, there still
remains the key problem of finding all the k-linear relations among the same weight
monomials of MZVs. Note that the base field k plays the analogue of Q, but unlike
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the classical case the prime field in our setting is Fp, the fixed field of the Frobenius
p-th power operator. However, more Fp-linear relations among MZVs are understood in
[T10].

1.3. Multiple polylogarithms. Classical multiple polylogarithms with several variables
are generalizations of polylogarithms and their specializations at (1, . . . , 1) give the
MZVs. This phenomenon becomes delicate in the function field setting. In [AT90],
Anderson-Thakur established that Carlitz zeta value at n ∈N (ie., the multizeta value of
weight n and depth one) can be expressed as a k-linear combination of the n-th Carlitz
polylogarithm at integral points.

In this article, we define the Carlitz multiple polylogarithms (abbreviated as CMPLs),
and extend the work of Anderson-Thakur to multizeta values. Precisely, using some
results of [AT90, AT09] we show that each MZV is expressed explicitly as a k-linear
combination of CMPLs at integral points (cf. Theorem 5.5.2).

From the definition, one sees that these CMPLs satisfy the stuffle relations (cf. §§ 5.2).
Since MZVs are k-linear combinations of CMPLs at integral points, to prove the analogue
of Conjecture 1.1.1 we prove that the k̄-algebra generated by CMPLs at algebraic points
forms a graded algebra and it is defined over k. This result is addressed as Theorem 5.4.3,
which implies Theorem 2.2.1. As consequences, one further has:

• Each nontrivial monomial of CMPLs at algebraic points is transcendental over k.
• The ratio of two different weight nontrivial monomials of CMPLs at algebraic

points is transcendental over k.
• Let Z1 and Z2 be two nonzero values which are CMPLs at algebraic points. If

Z1 and Z2 are of the same weight, then either Z1/Z2 ∈ k or Z1 and Z2 are alge-
braically independent over k.

Note that as Theorem 5.4.3 implies that all the k̄-polynomial relations among the CM-
PLs at algebraic points are homogenous over k, it is natural to ask how to describe the
k-linear relations among the same weight monomials and we wish to tackle this prob-
lem in the future. Figuring out the problem above would be helpful to understand the
relations among MZVs.

We note that Theorem 5.4.3 reveals an interesting phenomenon, which occurred pre-
viously in the celebrated theorem of Baker asserting that Q-linear independence of
logarithms of algebraic numbers implies the Q-linear independence. This important
theorem has been generalized to the contexts of abelian logarithms by Wüstholz (cf.
[Wüs89a, Wüs89b, BW07]) and also a function field analogue of Wüstholz theory is de-
veloped by Yu [Yu97].

1.4. Outline and some remarks. In § 2, we fix our notation and state our result on
multizeta values. Based on the work of [AT09], one is able to create Frobenius difference
equations for which the specialization of the solution functions gives the desired MZV.
We observe that the case of nonzero values as CMPLs at algebraic points shares the
same property as above. Hence we shall say that such values have the MZ property (see
Definition 3.4.1).

In § 3, we state a general linear independence result for the nonzero values having the
MZ property, which is stated as Theorem 3.4.5. We give a proof of Theorem 3.4.5 in § 4,
and then show in § 5 that the nonzero values as CMPLs at algebraic points have the MZ
property, and hence appeal to Theorem 3.4.5 showing Theorem 5.4.3.
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We mention that the tools of proving algebraic independence using t-motives intro-
duced by Anderson [A86] come from Papanikolas [P08], which can be regarded as a
function field analogue of Grothendieck’s periods conjecture. Using these tools, one has
the algebraic independence results on Carlitz zeta values [CY07], Drinfeld logarithms
at algebraic points [CP12] etc. Although one is able to construct suitable t-motives so
that the given multizeta values or nonzero values as CMPLs at algebraic points occur
as periods of the t-motives (cf. [AT09]), to obtain the more comprehensive algebraic
independence results on multizeta values or CMPLs at algebraic points via Papaniko-
las’ theory one has to compute the dimension of the relevant t-motivic Galois group.
However, the dimension of such t-motivic Galois group relies on the information of the
periods of the t-motive, which is closely related to the description of the rich identities
that multizeta values or CMPLs at algebraic points satisfy. Hence it would be difficult to
compute the dimension of the Galois group in question at this moment.

The overall strategy of showing Theorem 3.4.5 is to use the criterion established by
Anderson-Brownawell-Papanikolas [ABP04] (abbreviated as ABP-criterion). We apply
the ABP-criterion to lift the given k̄-linear relations among the special values in question
to the k̄[t]-linear relations among the solution functions. Then we analyze the coefficients
(functions) as well as the solution functions to show the desired result. Finally, we
emphasize that in this setting using the ABP-criterion opens a door towards the general
linear independence results in question, and it enables one to avoid some difficulties
occurring in the computation of the relevant Galois groups via Papanikolas’ theory.

Acknowledgements. I am grateful to M. Papanikolas, D. Thakur and J. Yu for their care-
ful reading and many helpful comments, and to P. Deligne for pointing out an incorrect
description in an earlier version of this paper. I further thank F. Brown, D. Brownawell,
Y. Taguchi and J. Zhao for many helpful conversations. Most results of this paper were
worked out when I visited Hong Kong University of Science and Technology and IHES.
I thank them for their hospitality and M.-S. Xiong for his kind invitation to visit HUST.
Finally, I am grateful to the referee for providing many helpful comments, which greatly
improve this paper. This article is dedicated to the memory of my father.

2. Main Result for multizeta values

2.1. Notation. In this paper, we adopt the following notation.

Fq = the finite field with q elements, for q a power of a prime number p.
θ, t = independent variables.
A = Fq[θ], the polynomial ring in the variable θ over Fq.
A+ = set of monic polynomials in A.
k = Fq(θ), the fraction field of A.
k∞ = Fq((1/θ)), the completion of k with respect to the place at infinity.
k∞ = a fixed algebraic closure of k∞.
k = the algebraic closure of k in k∞.
C∞ = the completion of k∞ with respect to the canonical extension of ∞.
| · |∞ = a fixed absolute value for the completed field C∞ so that |θ|∞ = q.
deg = function assigning to x ∈ k∞ its degree in θ.
C∞[[t]] = ring of formal power series in t over C∞.
T = ring of power series in C∞[[t]] that are convergent on the closed unit

disc, the Tate algebra over C∞.
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N = set of positive integers.

2.2. Multizeta values. Given any s ∈N and nonnegative integer d, we define the power
sum:

Sd(s) := ∑
a ∈ A+

deg a = d

1
as .

In analogy with the classical multiple zeta values, Thakur [T04] studied the following
multizeta values (which we abbreviate as MZVs): for any r-tuple (s1, . . . , sr) ∈Nr,

ζA(s1, . . . , sr) := ∑
d1>···>dr≥0

Sd1(s1) · · · Sdr(sr) = ∑
1

as1
1 · · · a

sr
r
∈ k∞,

where the second sum is over (a1, . . . , ar) ∈ Ar
+ with deg ai strictly decreasing. We call

this MZV having depth r and weight ∑r
i=1 si. In the case of r = 1, the values above are the

Carlitz zeta values at positive integers. Note that each MZV is nonzero by the work of
Thakur [T09a]. Note further that there is no natural order on polynomials in contrast to
integers, so unlike the classical case, it is not immediately clear that the span of MZVs is
an algebra, but this together with period interpretation was conjectured and then proved
in [T09b, AT09, T10].

Let Z1, . . . , Zn be MZVs of weights w1, . . . , wn respectively. For nonnegative integers
m1, . . . , mn, not all zero, we define the (total) weight of the monomial Zm1

1 . . . Zmn
n to be

n

∑
i=1

miwi.

Let Zw (resp. Zw) be the k̄-vector space (resp. k-vector space) spanned by weight w
MZVs, and let Z (resp. Z) be the k̄-algebra (resp. k-algebra) generated by all MZVs.
Note that by [T09b] we have ZwZw′ ⊆ Zw+w′ . The following result is an analogue of
Conjecture 1.1.1, and its proof is given in § 5.5.3.

Theorem 2.2.1. Let w1, . . . , w` be ` distinct positive integers. Let Vi be a finite set consisting
of some monomials of multizeta values of total weight wi for i = 1, . . . , `. If Vi is a linearly
independent set over k, then the set

{1}
⋃̀
i=1

Vi

is linearly independent over k̄. In particular, we have

(1) Z forms a graded algebra, i.e., Z = k̄⊕w∈N Zw.
(2) Z is defined over k in the sense that the canonical map k⊗k Z → Z is bijective.

Corollary 2.2.2. Each nontrivial monomial of multizeta values is transcendental over k.

Corollary 2.2.3. The ratio of two different weight nontrivial monomials of multizeta values is
transcendental over k.
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2.3. Euler dichotomy. Let π̃ be a fundamental period of the Carlitz module defined in
(3.1.3). In analogy with Euler’s formula for the classical Riemann zeta function at even
positive integers, Carlitz [Ca35] showed that for a positive integer n divisible by q − 1
one has

(2.3.1) ζA(n) = cnπ̃n,

where cn is in k× and can be expressed in terms of Bernoulli-Carlitz numbers and Carlitz
factorials (cf. [Goss96, T04]). We shall call a positive integer n “even” if (q − 1)|n;
otherwise it is called “odd”. Therefore, we shall call a weight w multizeta value Z
Eulerian if the ratio Z/π̃w is in k. Using Theorem 2.2.1 we have following result.

Theorem 2.3.2. Let Z1, Z2 be two multizeta values of the same weight w. Then either the ratio
Z1/Z2 is in k or Z1 and Z2 are algebraically independent over k.

Proof. Suppose that Z1/Z2 /∈ k. Thus, by Theorem 2.2.1 the ratio Z1/Z2 is transcendental
over k. If Z1 and Z2 are algebraically dependent over k, then by Theorem 2.2.1 there exists
a homogenous polynomial F(X, Y) ∈ k[X, Y] of positive degree so that F(Z1, Z2) = 0.
Let d be the total degree of F. Then dividing the equation F(Z1, Z2) = 0 by Zd

2 we see
that the ratio Z1/Z2 satisfies a nontrivial polynomial over k, whence a contradiction. �

Let Z be a MZV of weight w. If the ratio Z/π̃w is algebraic over k, then by Corol-
lary 5.5.5 we have the descent property of Z/π̃w, and hence we derive the following
Euler dichotomy phenomenon from Theorem 2.3.2.

Corollary 2.3.3. Every multizeta value is either Eulerian or is algebraically independent from
π̃. In particular, every multizeta value of “odd ”weight w is algebraically independent from π̃.

Proof. Let Z be a multizeta value of weight w and suppose that Z/π̃w /∈ k. Thus by
Corollary 5.5.5 we have Z/π̃w /∈ k̄. It follows from (2.3.1) that Zq−1/ζA(w(q− 1)) /∈ k̄.
So Theorem 2.3.2 implies the algebraic independence of Zq−1 and ζA(w(q− 1)) over k,
whence the algebraic independence of Z and π̃w (because of (2.3.1)), which implies the
algebraic independence of Z and π̃.

To show the second assertion, we need to only consider q > 2 since all positive integers
are “even” in the case of q = 2. For q > 2 one observes that from the definition (3.1.3)
we have π̃w /∈ k∞ if w is not a multiple of q− 1. Since every MZV is in k∞, every MZV
of “odd” weight is not Eulerian and so the assertion follows from the previous one. �

Remark 2.3.4. Thakur [T04, Thm. 5.10.12] first observed that ζA(2, 1) or ζA(1, 2) is not
Eulerian in the case of q = 2 (note that MZVs and π̃ belong to k∞ in this case), and
hence one of them is algebraically independent from Carlitz zeta values when q = 2. In
other words, there is an MZV which is algebraically independent from all Carlitz zeta
values. This gives a positive answer of the analogous question in [André04, p. 231].

3. Linear independence of special values occurring from difference equations

In this section, the main goal is to establish a linear independence result of certain spe-
cial values occurring from difference equations which is applied to prove Theorem 2.2.1.

3.1. Twisting operators. For any integer n, we define the n-fold twisting on the field of
Laurent series C∞((t)):

C∞((t)) → C∞((t))
f := ∑ aiti 7→ f (n) := ∑ aqn

i ti.
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We note that

(3.1.1)
{

f ∈ k̄(t); f (−1) = f
}
= Fq(t).

Note further that the n-fold twisting is extended to act on Matm×n(C∞((t))) entrywise.
Throughout this paper, we fix a (q− 1)-th root of −θ and denote it by θ̃. The function

Ω(t) := θ̃−q
∞

∏
i=1

(
1− t

θqi

)
has a power series expansion in t, and is entire on C∞ and satisfies the following differ-
ence equation:

(3.1.2) Ω(−1)(t) = (t− θ)Ω(t).

Moreover, the following value

(3.1.3) π̃ :=
1

Ω(θ)

is a fundamental period of the Carlitz module (cf. [AT90, ABP04]).

3.2. Anderson-Brownawell-Papanikolas criterion. We define E to be the ring consisting
of formal power series

∞

∑
n=0

antn ∈ k̄[[t]]

such that

lim
n→∞

n
√
|an|∞ = 0, [k∞ (a0, a1, a2, . . .) : k∞] < ∞.

Then any f in E has an infinite radius of convergence with respect to | · |∞ and has the
property that f (α) ∈ k∞ for any α ∈ k∞. Any function in E is called an entire function
and one observes that Ω ∈ E .

To state and show the main result of this section, we shall review the ABP-criterion
(for abbreviation, ABP stands for Anderson-Brownawell-Papanikolas).

Theorem 3.2.1. (Anderson-Brownawell-Papanikolas, [ABP04, Thm. 3.1.1]) Fix a matrix
Φ ∈ Mat`(k̄[t]) so that det Φ = c(t − θ)s for some c ∈ k̄× and some nonnegative integer s.
Suppose that there exists a vector ψ ∈ Mat`×1(E) satisfying

ψ(−1) = Φψ.

Then for each row vector ρ ∈ Mat1×`(k̄) such that ρψ(θ) = 0, there exists a vector P ∈
Mat1×`(k̄[t]) such that

P(θ) = ρ and Pψ = 0.

The spirit of the ABP-criterion is that every k̄-linear relation among the entries of ψ(θ)
can be lifted to a k̄[t]-linear relation among the entries of ψ.

Remark 3.2.2. In [C09], a refined version of the ABP-criterion which relaxes the condition
of Φ and the specialization of ψ at more algebraic points is given. But here the ABP-
criterion is sufficient for our proof.
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3.3. Some notation. Considering square matrices Mi ∈ Matni(C∞[[t]]) for i = 1, . . . , `,
we define ⊕`

i=1Mi to be the block diagonal matrix M1
. . .

M`

 .

For column vectors v1, . . . , vm with entries in C∞[[t]], we define ⊕m
i=1vi to be the column

vector (
vtr

1 , . . . , vtr
m
)tr .

3.4. A linear independence result.

Definition 3.4.1. A nonzero element Z ∈ k∞
×

is said to have the MZ (Multizeta) property with
weight w if there exists Φ ∈ Matd(k̄[t]) and ψ ∈ Matd×1(E) with d ≥ 2 so that

(1) ψ(−1) = Φψ and Φ satisfies the conditions of the ABP-criterion;
(2) The last column of Φ is of the form (0, . . . , 1)tr (whose entries are zero except the last

entry being 1);
(3) ψ(θ) is of the form (with specific first and last entries):

ψ(θ) =

 1/π̃w

...
cZ/π̃w


for some c ∈ k× ;

(4) for any positive integer N, ψ(θqN
) is of the form:

ψ(θqN
) =

 0
...

(cZ/π̃w)qN


(whose entries are zero except the last entry).

Remark 3.4.2. We will see from Theorem 3.4.5 that any nonzero Z having the MZ property
has a unique weight.

Remark 3.4.3. In §§ 5.1 we introduce the Carlitz multiple polylogarithm Lis associated
to each r-tuple s = (s1, . . . , sr) ∈ Nr, and show in Proposition 5.4.1 that any nonzero
value as Lis at an algebraic point satisfies the MZ property with weight s1 + · · ·+ sr. We
mention that in this situation the d of Definition 3.4.1 is r + 1.

Proposition 3.4.4. Let Z1, . . . , Zn be nonzero values in k∞
×

having the MZ property with
weights w1, . . . , wn respectively. For nonnegative integers m1, . . . , mn, not all zero, the monomial

Zm1
1 · · · Z

mn
n

has the MZ property with weight ∑n
i=1 miwi.

Proof. We consider the Kronecker product:

Φ := Φ⊗m1
1 ⊗ · · · ⊗Φ⊗mn

n and ψ := ψ⊗m1
1 ⊗ · · · ⊗ ψ⊗mn

n .
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Then one has ψ(−1) = Φψ. Since each triple (Φi, ψi, Zi) satisfies (1) − (4) of Defini-
tion 3.4.1, one sees that the triple (Φ, ψ, Zm1

1 · · · Z
mn
n ) satisfies the conditions of Defini-

tion 3.4.1 and hence Zm1
1 · · · Z

mn
n has the MZ property with weight ∑n

i=1 miwi.
�

The main result in this section is stated as follows, and its proof occupies the next
section.

Theorem 3.4.5. Let w1, . . . , w` be ` distinct positive integers. Let Vi be a finite set of values in
k∞
×

having the MZ-property with weight wi, and suppose that Vi is a linearly independent set
over k for i = 1, . . . , `. Then the union

{1}
⋃̀
i=1

Vi

is a linearly independent set over k̄.

4. Proof of Theorem 3.4.5 and a descent property

In this section, we give a proof of Theorem 3.4.5. Let notation and assumptions be
given in Theorem 3.4.5. Without loss of generality, we may assume that w1 > · · · > w`.
Suppose on the contrary that the set

{1}
⋃̀
i=1

Vi

is linearly dependent over k̄. By induction on the weight, we may further assume that
there are nontrivial k̄-linear relations connecting V1 and {1}

⋃`
i=2 Vi. Under such hy-

potheses, we complete the proof in the following two steps.

Step I : We show that V1 is a linearly dependent set over k̄;
Step II : We show that V1 is a linearly dependent set over k, whence a contradiction.

4.1. Proof of Step I. In this step, our goal is to show that V1 is a linearly dependent set
over k̄. Let Vi consist of

{
Zi1, . . . , Zimi

}
of the same weight wi for i = 1, . . . , `. For 1 ≤

i ≤ `, since Zij has the MZ property there exists Φij ∈ Matdij(k̄[t]) and ψij ∈ Matdij×1(E)
(with dij ≥ 2) satisfying Definition 3.4.1 (corresponding to the Zij) for j = 1, . . . , mi.

Define the block diagonal matrix

Φ̃ := ⊕`
i=1

(
⊕mi

j=1(t− θ)w1−wi Φij

)
and the column vector

ψ̃ := ⊕`
i=1

(
⊕mi

j=1Ωw1−wi ψij

)
.

Then one has ψ̃(−1) = Φ̃ψ̃. From Definition 3.4.1, it follows that ψ̃(θ) is of the form:

ψ̃(θ) = ⊕m1
j=1

 1/π̃w1

...
(c1jZ1j/π̃w1)

⊕`
i=2

⊕mi
j=1

 1/π̃w1

...
cijZij/π̃w1


 .
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Note that since w1 > wi for 2 ≤ i ≤ ` and Ω(t) has simple zero at t = θqN
for N ∈ N,

for any positive integer N we see that ψ̃(θqN
) is of the form

(4.1.1) ψ̃(θqN
) = ⊕m1

j=1


0
...
0

(c1jZ1j/π̃w1)qN

⊕`
i=2

⊕mi
j=1


0
...
0
0


 .

Since by assumption {1}
⋃`

i=1
{

Zi1, . . . , Zimi

}
is linearly dependent over k̄, there exists

a nonzero vector ρ for which ρψ̃(θ) = 0. We write

ρ =
(
v11, . . . , v1m1 , . . . , v`1, . . . , v`m`

)
,

where vij ∈ Mat1×dij(k̄) for 1 ≤ j ≤ mi, 1 ≤ i ≤ `. Since we assume that there are non-

trivial k̄-linear relations connecting V1 and {1}
⋃`

i=2 Vi, the last entry of v1s is nonzero
for some 1 ≤ s ≤ m1.

By Theorem 3.2.1 for each 1 ≤ i ≤ ` there exists fij ∈ Mat1×dij(k̄[t]) (for j = 1, . . . , mi)
so that F :=

(
f11, . . . , f1m1 , . . . , f`1, . . . , f`m`

)
satisfies

Fψ̃ = 0 and F(θ) = ρ.

Since by hypothesis the last entry of v1s is nonzero, the last entry of f1s is a nontrivial
polynomial. We pick an integer N sufficiently large for which the last entry of f1s is
non-vanishing at t = θqN

. Specializing the equation Fψ̃ = 0 at t = θqN
and using (4.1.1)

gives rise to a nontrivial k̄-linear relation among

ZqN

11 , . . . , ZqN

1m1
.

Since our field is of characteristic p, by taking the qN-th root from the k̄-linear relation
above we obtain a nontrivial k̄-linear relation among the weight w1 values

{
Z11, . . . , Z1m1

}
,

as claimed.

4.2. Proof of Step II. In this step, our goal is to show that V1 is a linearly dependent
set over k, whence a contradiction and thus we complete the proof of Theorem 3.4.5.
According to Step I above, we have shown that V1 is linearly dependent over k̄. Without
confusion with the notation of double index in Step I, for simplicity we write V1 =
{Z1, . . . , Zm}, and without loss of generality we may assume that m ≥ 2 and

dimk̄ k̄-Span {V1} = m− 1.

Again for simplicity and without confusion with the double index above, we let Φj ∈
Matdj(k̄[t]) and ψj ∈ Matdj×1(E) (with dj ≥ 2) be associated to the value Zj having the
MZ property with weight w1 for j = 1, . . . , m.

Define the block diagonal matrix

Φ := ⊕m
j=1Φj

and define the column vector
ψ := ⊕m

j=1ψj.
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Notice that

(4.2.1) ψ(θ) = ⊕m
j=1

 1/π̃w1

...
cjZj/π̃w1


for some cj ∈ k×, and for N ∈N we have

(4.2.2) ψ(θqN
) = ⊕m

j=1

 0
...

(cjZj/π̃w1)qN

 .

Without loss of generality, we may assume that Z1 ∈ k̄-Span {Z2, . . . , Zm}, and so by
hypothesis {Z2, . . . , Zm} is linearly independent over k̄. By the ABP-criterion (Theo-
rem 3.2.1) there exists vectors fj =

(
fj1, . . . , fjdj

)
∈ Mat1×dj(k̄[t]) for j = 1, . . . , m so that

if we put F := (f1, . . . , fm) then we have

(4.2.3) Fψ = 0, f1d1(θ) = 1 and fjh(θ) = 0 for all 1 ≤ h < dj.

For convenience we shall refer “(i,j)-component of F”to the entry fij with double index
ij.

We divide the vector F by f1d1 , and write G := 1
f1d1

F. Let d := ∑m
j=1 dj. Note that the

vector G is of the form

G = (g11, . . . , 1, . . . , gm1, . . . , gmdm) ∈ Mat1×d(k̄(t)),

where 1 is corresponding to the (1, d1)-component of G, and we have

(4.2.4) Gψ = 0 and gjh(θ) = 0 for all 1 ≤ h < dj.

We use the (−1)-fold twisting action on Gψ = 0, and so obtain G(−1)Φψ = 0. Sub-
tracting this equation from Gψ = 0 we obtain that

(4.2.5)
(

G−G(−1)Φ
)

ψ = 0.

Note that the last column of each matrix Φj is (0, . . . , 0, 1)tr, and hence the (1, d1)-
component of G−G(−1)Φ is zero since the (1, d1)-component of the vector G is 1. We
further note that the (1, ∑

j
i=1 di)-entry of G−G(−1)Φ is equal to

gjdj − g(−1)
jdj

for j = 2, . . . , m.

We claim that gjdj − g(−1)
jdj

= 0 for j = 2, . . . , m.
To prove the claim above, suppose on the contrary that there exists some 2 ≤ j ≤ m

for which gjdj − g(−1)
jdj

is nonzero. We pick an N ∈ N sufficiently large for which all

entries of
(

G−G(−1)Φ
)

are regular at t = θqN
, and gjdj − g(−1)

jdj
is non-vanishing at

t = θqN
. Specializing (4.2.5) at t = θqN

and using (4.2.2) we obtain a nontrivial k̄-linear

relations among ZqN

2 , . . . , ZqN

m because the (1, d1)-component of G−G(−1)Φ is zero. By
taking a qN-th root we obtain a nontrivial k̄-linear relation among Z2, . . . , Zm, whence a
contradiction since we assume that Z2, . . . , Zm are linearly independent over k̄.



12 CHIEH-YU CHANG

Thus by (3.1.1) we have that gjdj ∈ Fq(t) for j = 2, . . . , m. Note that each entry of G
is regular at t = θ. By specializing the equation Gψ = 0 at t = θ and using (4.2.1) and
(4.2.4), we obtain a nontrivial k-linear relation among Z1, . . . , Zm. This contradicts to our
assumption, and hence we finish the proof.

4.3. A descent property. To obtain the Eulerian dichotomy phenomenon (cf. Corol-
lary 2.3.3) we need to establish the following descent property.

Proposition 4.3.1. Let Z1, . . . , Zn be nonzero values in k∞
×

having the MZ property with the
same weight w. If π̃w, Z1, . . . , Zn are linearly dependent over k, then they are linearly dependent
over k.

Proof. Without loss of generality we may assume that Z1, . . . , Zn are linearly independent
over k. Let Φi ∈ Matdi(k[t]) and ψi ∈ Matdi×1(E) be given in Definition 3.4.1 associated
to Zi for i = 1, . . . , n. Let m = 1 + ∑n

i=1 di and define

Φ := (1)⊕n
i=1 Φi ∈ Matm(k[t]) and ψ := (1)⊕n

i=1 ψi ∈ Matm×1(E).

Then we see that ψ(−1) = Φψ and (Φ, ψ) satisfies the conditions of Theorem 3.2.1.
Let bπ̃w + ∑n

i=1 aiZi = 0 for some b, a1, . . . , an ∈ k with b 6= 0 and an 6= 0. For
each 1 ≤ i ≤ n, the last coordinate of ψi(θ) is given by ciZi/π̃w for some ci ∈ k×.
By Definition 3.4.1 (3) and Theorem 3.2.1 there exist f ∈ k[t] and fi = ( fi1, . . . , fidi) ∈
Mat1×di(k[t]) so that for each 1 ≤ i ≤ n,

f (θ) = b, fidi(θ) = ai/ci and fij(θ) = 0 for j = 1, . . . , di − 1,

and Pψ = 0, where P := ( f , f1, . . . , fn) ∈ Mat1×m(k[t]).
Let g = fndn be the last entry of the row vector of fn ∈ Mat1×dn(k[t]) and put P̃ := 1

g P.

We note that f (θ) 6= 0 and g(θ) 6= 0 and that the last entry of P̃ is 1. Using the (−1)-
twisting operation on the equation P̃ψ = 0 and then subtracting it from P̃ψ = 0 we
obtain that

(4.3.2)
(

P̃− P̃(−1)Φ
)

ψ = 0.

Note that the last entry of P̃ − P̃(−1)Φ is zero because of Definition 3.4.1 (2). Now
we pick a sufficiently large integer N so the all the entries of P̃ are regular at t =

θqN
. By using Definition 3.4.1 (4) and specializing (4.3.2) at t = θqN

we derive a k-

linear relation between π̃wqN
, ZqN

1 , . . . , ZqN

n−1, whence obtaining a k-linear relation among
π̃w, Z1, . . . , Zn−1 after taking the qN-th root of the equation. From the hypothesis on
the k-linear independence of π̃w, Z1, . . . , Zn−1 the coefficients of the k-linear equation
obtained above have to be zero, particularly for i = 1, . . . , n− 1,(

f /g− ( f /g)(−1)
)
(θqN

) =
(

fidi /g− ( fidi /g)(−1)
)
(θqN

) = 0 for N � 0.

It follows from (3.1.1) that f /g, fidi /g ∈ Fq(t) for i = 1, . . . , n − 1. By specializing the
equation P̃ψ = 0 at t = θ we obtain the desired result.

�
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5. Linear independence of monomials of Carlitz multiple polylogarithms

In [AT90], Anderson and Thakur showed that the Carlitz zeta value at n ∈ N can be
expressed as a k-linear combination of the n-th Carlitz polylogarithm at integral points in
A (cf. [AT90, §§ 3.9]). In this section, we first define the Carlitz multiple polylogarithms
(abbreviated as CMPLs) and extend the work of Anderson-Thakur to multizeta values.
We then show that the nonzero values which are CMPLs at algebraic points satisfy the
MZ property and hence using Theorem 3.4.5 we derive Theorem 5.4.3.

5.1. Carlitz multiple polylogarithms. We define L0 := 1 and Li := ∏i
j=1(θ − θqj

) for
i ∈N. For n ∈N, the n-th Carlitz polylogarithm is defined by

logn(z) :=
∞

∑
i=0

zqi

Ln
i

.

(Note that in [AT90, Goss96] it is called the n-th Carlitz multilogarithm). It converges on

the disc
{

z ∈ C∞; |z|∞ < q
nq

q−1
}

.

Definition 5.1.1. Given any s = (s1, . . . , sr) ∈ Nr, we define its associated Carlitz multiple
polylogarithm as the following:

Lis(z1, . . . , zr) := ∑
i1>···>ir≥0

zqi1

1 · · · z
qir

r

Ls1
i1
· · · Lsr

ir

.

Note that for any nonnegative integer i and positive integer n, we have

|Ln
i |∞ = q

nq(qi−1)
q−1 .

So the absolute value of the general term in the series Lis(z1, . . . , zr) is given by

(5.1.2) q
q

q−1 (s1+···+sr)|z1/(θ
qs1
q−1 )|q

i1
∞ · · · |zr/(θ

qsr
q−1 )|q

ir
∞ .

Definition 5.1.3. Given s = (s1, . . . , sr) ∈Nr, we denote by

Ds := {u = (u1, . . . , ur) ∈ Cr
∞|Lis(u) converges } ,

the convergence domain of Lis. Note that by non-archimedean analysis Ds is described as

Ds =

{
(u1, . . . , ur) ∈ Cr

∞||u1/(θ
qs1
q−1 )|q

i1
∞ · · · |ur/(θ

qsr
q−1 )|q

ir
∞ → 0 as 0 ≤ ir < · · · < i1 → ∞

}
.

Remark 5.1.4. It might be complicated to explicitly describe Ds in terms of s1, . . . , sr, but
by (5.1.2) it is clear that Lis converges on this smaller polydisc:

D′s :=
{
(u1, . . . , ur) ∈ Cr

∞; |ui|∞ < q
siq

q−1 for i = 1, . . . , r
}

.

Remark 5.1.5. For any u = (u1, . . . , ur) ∈ D′s ∩ (C×∞)r, using (5.1.2) the general term has
a unique maximal absolute value when (i1, . . . , ir) = (r− 1, . . . , 0). It follows that Lis(u)
is non-vanishing. But the author does not know whether or not Lis(u) is non-vanishing
for any u in the convergence domain Ds.
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5.2. Stuffle relations. Note that since the indexes of the series Lis are in the total ordered
set Z≥0, the classical stuffle relations for multiple polylogarithms work here, whence
deducing some natural algebraic relations among the CMPLs at algebraic points (in
Ds ∩ (k

×
)r). We explain more details as the following.

Given s = (s1, . . . , sr) ∈ Nr and s′ = (s′1, . . . , s′r′) ∈ Nr′ , fix a positive integer r′′ with
max {r, r′} ≤ r′′ ≤ r + r′. We consider a pair consisting of two vectors v, v′ ∈ Zr′′

≥0 which
are required to satisfy v + v′ ∈ Nr′′ and which are obtained from the following ways.
One vector v is obtained from s by inserting (r′′− r) zeros in all possible ways (including
in front and at end), and another vector v′ is obtained from s′ by inserting (r′′− r′) zeros
in all possible ways (including in front and at end).

One observes from the definition of the series that the CMPLs satisfy the stuffle rela-
tions which are analogous to the classical case (cf. [W02]):

(5.2.1) Lis(z)Lis′(z
′) = ∑

(v,v′)
Liv+v′(z

′′),

where the pair (v, v′) runs over all the possible expressions as above for all r′′ with
max {r, r′} ≤ r′′ ≤ r + r′. For each such v + v′ ∈ Nr′′ , the component z′′i of z′′ is zj if the
ith component of v is sj and the ith component of v′ is 0, it is z′` if the ith component of
v is 0 and the ith component of v′ is s′`, and finally it is zjz′` if the ith component of v is
sj and the ith component of v′ is s′`.

For example, for r = r′ = 1 (5.2.1) yields

Lis(z)Lis′(z′) = Li(s,s′)(z, z′) + Li(s′,s)(z
′, z) + Lis+s′(zz′).

For r = 1, r′ = 2, one has

Lis(z)Li(s′1,s′2)
(z′1, z′2) = Li(s,s′1,s′2)

(z, z′1, z′2) + Li(s′1,s,s′2)
(z′1, z, z′2) + Li(s′1,s′2,s)(z′1, z′2, z)

+Li(s+s′1,s′2)
(zz′1, z′2) + Li(s′1,s+s′2)

(z′1, zz′2).

5.3. Special series and formulas. Given a polynomial Q := ∑i aiti ∈ k̄[t], we define
‖Q‖∞ := maxi {|ai|∞}. In what follows, we consider some specific series which are
generalizations of the series associated to MZVs studied in [AT09, §§ 2.5].

Lemma 5.3.1. Given a d-tuple s = (s1, . . . , sd) ∈ Nd, let Q := (Q1, . . . , Qd) ∈ k̄[t]d satisfy
that as 0 ≤ id < · · · < i1 → ∞,(

‖ Q1 ‖∞ /|(θ
qs1
q−1 )|∞

)qi1

· · ·
(
‖ Qd ‖∞ /|(θ

qsd
q−1 )|∞

)qid

→ 0.

We define the following series

(5.3.2)
Ls,Q(t) := ∑i1>···>id≥0 (Ωsd Qd)

(id) · · · (Ωs1 Q1)
(i1)

= Ωs1+···+sd ∑i1>···>id≥0
Qd

(id)(t)···Q(i1)
1 (t)(

(t−θq)...(t−θqid )

)sd
...
(
(t−θq)...(t−θqi1 )

)s1

associated to the two d-tuples s and Q. Then Ls,Q is an entire function.
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Proof. Note that

‖Qd
(id)(t)···Q(i1)

1 (t)‖∞

‖
(
(t−θq)...(t−θqid )

)sd
...
(
(t−θq)...(t−θqi1 )

)s1‖∞

= q
q

q−1 (s1+···+sd)
(
‖ Q1 ‖∞ /|(θ

qs1
q−1 )|∞

)qi1

· · ·
(
‖ Qd ‖∞ /|(θ

qsd
q−1 )|∞

)qid

.

So the hypothesis of Q implies that the series Ls,Q(t) is in T. We claim that we can create
a matrix Φ ∈ Matd+1(k[t]) and solve the system of difference equations ψ(−1) = Φψ for
ψ ∈ Mat(d+1)×1(C∞[[t]]) so that

• det Φ|t=0 6= 0 and all the entries of ψ are in the Tate algebra T.
• The last coordinate of ψ is Ls,Q.

Note that the first property enables us to apply [ABP04, Prop. 3.1.1]. It follows that all
the entries are actually in E , and so is Ls,Q by the second property above.

To prove the claim above, we define
(5.3.3)

Φ :=



(t− θ)s1+···+sd 0 0 · · · 0
Q(−1)

1 (t− θ)s1+···+sd (t− θ)s2+···+sd 0 · · · 0

0 Q(−1)
2 (t− θ)s2+···+sd

. . . ...
... . . . (t− θ)sd 0
0 · · · 0 Q(−1)

d (t− θ)sd 1

 ∈ Matd+1(k[t]),

and define the diagonal matrix

Λ :=


Ωs1+···+sd

Ωs2+···+sd

. . .
Ωsd

1

 ∈ Matd+1(E).

For each 1 ≤ j ≤ d, we consider the two j-tuples (s1, . . . , sj) and (Q1, . . . , Qj) and define
Lj+1 to be the series (5.3.2) associated to these two tuples. Then we put

L :=


1
L2
...

Ld+1

 ∈ Mat(d+1)×1(T).

and

(5.3.4) ψ := ΛL ∈ Mat(d+1)×1(T).

Using the functional equation Ω(−1) = (t− θ)Ω we see that Φ and ψ satisfy the desired
claim (cf. [AT09, §§ 2.5]). �

The following lemma is the key formula so that Theorem 3.4.5 applies to CMPLs at
algebraic points.
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Lemma 5.3.5. Given any r-tuple s = (s1, . . . , sr) ∈ Nr, let u = (u1, . . . , ur) ∈ Ds ∩ (k
×
)r.

For each 1 ≤ j ≤ r, we let Lj+1 be the series defined in (5.3.2) associated to the two tuples
(s1, . . . , sj) and (u1, . . . , uj). Then for each 1 ≤ j ≤ r, we have that

Lj+1(θ
qN
) =

(
Li(s1,...,sj)

(u1, . . . , uj)/π̃s1+···+sj
)qN

for any nonnegative integer N.

Proof. For the case N = 0, the result follows from the second expression of Lj+1 in
(5.3.2) and the definition of Li(s1,...,sj)

(u1, . . . , uj). Now, let N be a positive integer. Fixing

1 ≤ j ≤ r, we write Lj+1 = L<N
j+1 + L≥N

j+1, where

L<N
j+1(t) := ∑ i1 > · · · > ij ≥ 0;

ij < N

(
Ωsj uj

)(ij) . . . (Ωs1u1)
(i1)

L≥N
j+1(t) := ∑i1>···>ij≥N

(
Ωsj uj

)(ij) . . . (Ωs1u1)
(i1) .

Now we express L<N
r+1(t) as

L<N
j+1(t) = ∑

i1 > · · · > ij ≥ 0;
ij < N

Ωs1+···+sj uqij

j . . . uqi1

1(
(t− θq) . . . (t− θqij

)
)sj

. . .
(
(t− θq) . . . (t− θqi1 )

)s1
.

We claim that L<N
j+1(θ

qN
) = 0. To prove this claim, we first note that the order of

vanishing of Ωs1+···+sj at t = θqN
is equal to s1 + · · ·+ sj. On the other hand, we observe

that each term in the expression of L<N
j+1(t) above may have pole at t = θqN

of order at

most s1 + · · ·+ sj−1 since ij < N. It follows that each term in the expression of L<N
j+1(t)

above has positive order of vanishing at t = θqN
, whence the claim.

Therefore, we have that Lj+1(θ
qN
) = L≥N

j+1(θ
qN
) (which we will see from the following

that the series L≥N
j+1 converges at t = θqN

). By definition, we express L≥N
j+1 as

L≥N
j+1(t) =

 ∑
i1>···>ij≥0

(
Ωsj uj

)(ij) . . . (Ωs1u1)
(i1)

(N)

,

and hence

L≥N
j+1(θ

qN
) =

 ∑
i1>···>ij≥0

(
Ωsj uj

)(ij) . . . (Ωs1u1)
(i1) |t=θ

qN

=

(
Li(s1,...,sj)

(u1, . . . , uj)

π̃s1+···+sj

)qN

.

�

5.4. Linear independence result. The following proposition establishes that a nonzero
value which is a specialization of CMPL at an algebraic point satisfies the MZ property.

Proposition 5.4.1. Given any r-tuple s = (s1, . . . , sr) ∈ Nr, we let u = (u1, . . . , ur) ∈
Ds ∩ (k̄×)r. If Lis(u) is nonzero, then Lis(u) has the MZ property with weight ∑r

i=1 si.
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Proof. Let Q := (u1, . . . , ur) and consider the series Ls,Q(t) be defined as (5.3.2). Let Φ be
defined as (5.3.3) and ψ be defined as (5.3.4). Notice that by Lemma 5.3.1

ψ =


Ωs1+···+sr

Ωs2+···+sr L2
...

Ωsr Lr
Lr+1

 ∈ Mat(r+1)×1(E),

where Lj+1 is the series (5.3.2) associated to the two tuples (s1, . . . , sj) and (u1, . . . , uj).
By the constructions of Φ and ψ the first two properties of Definition 3.4.1 are satisfied.

By Lemma 5.3.5 we see that the third property of Definition 3.4.1 is satisfied. Note that
Ω has a simple zero at t = θqN

for each N ∈ N and so Lemma 5.3.5 implies that ψ(θqN
)

satisfies the last property of Definition 3.4.1, whence completing the proof.
�

Definition 5.4.2. Given any r-tuple s = (s1, . . . , sr) ∈ Nr, let Z be a nonzero value as a
specialization of Lis at some algebraic point in Ds ∩ (k

×
)r. We define the weight of Z to be

wt(Z) := s1 + · · ·+ sr. Let Z1, . . . , Zn be nonzero values as specializations of some CMPLs at
algebraic points. We define the weight of the monomial Zm1

1 . . . Zmn
n to be

n

∑
i=1

miwt(Zi).

Let Mw (resp. Mw) be the k-vector space (resp. k-vector space) spanned by the total
weight w monomials of CMPLs at algebraic points, and M (resp. M) be the k-algebra
(resp. k-algebra) generated by all CMPLs at algebraic points. Note that the stuffle rela-
tion (cf. § 5.2) implies that Mw1Mw2 ⊂ Mw1+w2 . By applying Theorem 3.4.5 we obtain
the following result.

Theorem 5.4.3. Let w1, . . . , w` be ` distinct positive integers. Let Vi be a finite set consisting of
weight wi monomials of some nonzero values as specializations of Carlitz multiple polylogarithms
at algebraic points for i = 1, . . . , `. If Vi is a linearly independent set over k, then

{1}
⋃̀
i=1

Vi

is linearly independent over k̄. In particular, we have that

(1) M is a graded algebra, i.e., M = k̄⊕w∈N Mw.
(2) M is defined over k in the sense that the canonical map k⊗k M→M is bijective.

Proof. By Proposition 5.4.1 each nonzero value as a specialization of Carlitz multiple
polylogarithm at an algebraic point has the MZ property. It follows that by Proposi-
tion 3.4.4 each nontrivial monomial of such values has the MZ property. Therefore, the
result follows from Theorem 3.4.5. �

5.5. Application to MZVs.
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5.5.1. Review of Anderson-Thakur theory. We put D0 := 1, and Dn := ∏n−1
i=0 (θ

qn − θqi
) for

n ∈N. For any nonnegative integer n, we define the Carlitz factorial

Γn+1 := ∏
i

Dni
i ,

where
n = ∑ niqi (0 ≤ ni ≤ q− 1)

is the base q expansion of n. The following theorem is the key ingredient to connect
MZVs with CMPLs.

Theorem 5.5.1. (Anderson-Thakur, [AT90, 3.7.3, 3.7.4] and [AT09, 2.4.1]) There exists a
sequence of polynomials Hn(t) ∈ A[t] (n = 0, 1, 2, . . .) such that

(Hs−1Ωs)(d) (θ) =
ΓsSd(s)

π̃s

for all nonnegative integers d and s ∈ N. Moreover, when one regards Hn as a polynomial of θ
over Fq[t] then

degθ Hn ≤
nq

q− 1
.

5.5.2. Connection between MZVs and CMPLs. The following result is a generalization of
Anderson-Thakur [AT90, §§ 3.9].

Theorem 5.5.2. Given any r-tuple s = (s1, . . . , sr) ∈ Nr, we let Hn(t) ∈ A[t] be the polyno-
mials in Theorem 5.5.1. Let S be the set of points u = (u1, . . . , ur) ∈ Ar with uj running over
all coefficients of Hsj−1 ∈ A[t] for all j = 1, . . . , r. Note that based on Theorem 5.5.1 any point
u of S belongs to Ds. For each u = (u1, . . . , ur) ∈ S, let uj correspond to the coefficient of tmj in
Hsj−1 and put

au =
r

∏
j=1

θmj = θm1+···+mr .

Then we have

ζA(s1, . . . , sr) =
1

Γs1 · · · Γsr
∑
u∈S

au Lis(u).

Proof. We first note that by Theorem 5.5.1 we have ‖ Hsj−1 ‖∞< q
sjq

q−1 for j = 1, . . . , r. We
take

Q :=
(

Hs1−1, Hs2−1, . . . , Hsr−1
)
∈ A[t]r

and so the series Ls,Q(t) defined in (5.3.2) is an entire function by Lemma 5.3.1. By the
definition of Lr+1 we have

Lr+1(t) = Ωs1+···+sr(t) ∑
i1>···>ir≥0

H(ir)
sr−1(t) · · ·H

(i1)
s1−1(t)(

(t− θq) . . . (t− θqir )
)sr

. . .
(
(t− θq) . . . (t− θqi1 )

)s1
.

So Theorem 5.5.1 implies that

(5.5.3) Lr+1(θ) =
Γs1 · · · Γsr ζA(s1, . . . , sr)

π̃s1+···+sr
.
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We write

Lr+1(t)/Ωs1+···+sr(t) = ∑
i1>···>ir≥0

H(ir)
sr−1(t) · · ·H

(i1)
s1−1(t)(

(t− θq) . . . (t− θqir )
)sr

. . .
(
(t− θq) . . . (t− θqi1 )

)s1
,

and so combining with (5.5.3) we have
(5.5.4)

Γs1 · · · Γsr ζA(s1, . . . , sr) = ∑
i1>···>ir≥0

H(ir)
sr−1(θ) · · ·H

(i1)
s1−1(θ)(

(θ − θq) . . . (θ − θqir )
)sr

. . .
(
(θ − θq) . . . (θ − θqi1 )

)s1
.

Note that the RHS of (5.5.4) equals ∑u∈S au Lis(u). By dividing Γs1 · · · Γsr on the both
sides of (5.5.4) we obtain the desired formula of ζA(s1, . . . , sr). �

Corollary 5.5.5. Given any (s1, . . . , sr) ∈ Nr, we have that if ζA(s1, . . . , sr)/π̃s1+···+sr ∈ k,
then ζA(s1, . . . , sr)/π̃s1+···+sr ∈ k.

Proof. Put w := s1 + · · ·+ sr. By Theorem 5.5.2 ζA(s1, . . . , sr) is a k-linear combination
of CMPLs at algebraic points of weight w. The result follows by Proposition 5.4.1 and
Proposition 4.3.1. �

5.5.3. Proof of Theorem 2.2.1. Now we give a proof of Theorem 2.2.1. By Theorem 5.5.2
we have Zw ⊂Mw for each w ∈N. So Theorem 2.2.1 follows from Theorem 5.4.3.

Remark 5.5.6. We mention that after the results of this paper were obtained in 2012,
recently Mishiba [M14] studied the MZVs of “odd”coordinates with certain restrictions
and proved some algebraic independence results using Papanikolas’ theory. We also
note that the series (5.3.2) with specific Q was first studied in [P08, CY07, AT09] and
later on was studied by Mishiba for Q as a vector of polynomial entries with certain
restriction on norms. However, in [M14] the entireness property of Ls,Q is not studied.
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