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Abstract. Characteristic p multizeta values were initially studied by Thakur, who de-
fined them as analogues of classical multiple zeta values of Euler. In the present paper
we establish an effective criterion for Eulerian multizeta values, which characterizes when
a multizeta value is a rational multiple of a power of the Carlitz period. The resulting
“t-motivic”algorithm can tell whether any given multizeta value is Eulerian or not. We
also prove that if ζA(s1, . . . , sr) is Eulerian, then ζA(s2, . . . , sr) has to be Eulerian. This was
conjectured by Lara Rodrı́guez and Thakur for the zeta-like case from numerical data.
Our methods apply equally well to values of Carlitz multiple polylogarithms at algebraic
points and can also be extended to determine zeta-like multizeta values.

1. Introduction

In this paper we provide an effective criterion to determine when multizeta values in
positive characteristic are Eulerian. Our study is motivated by the celebrated formula
of Euler on special values of the Riemann zeta function at even positive integers: for
m ∈N,

ζ(2m) =
−B2m

(
2π
√
−1
)2m

2(2m)!
,

where B2m ∈ Q are Bernoulli numbers. In particular, we have ζ(2m)/
(
2π
√
−1
)2m ∈ Q

for m ∈ N. For an integer n > 1, Euler’s formula implies (trivially, since ζ(n) is real)
that ζ(n)/(2π

√
−1)n is rational if and only if n is even.

Multiple zeta values (henceforth abbreviated MZV’s), initially studied by Euler as
generalizations of special zeta values, are defined by the reciprocal power sums

ζ(s1, · · · , sr) = ∑
n1>···>nr≥1

1
ns1

1 · · · n
sr
r

,

where s1, . . . , sr are positive integers with s1 ≥ 2. Here r is called the depth and w :=
∑r

i=1 si is called the weight of the presentation ζ(s1, . . . , sr). We call ζ(s1, . . . , sr) Eulerian
if the ratio ζ(s1, . . . , sr)/

(
2π
√
−1
)w is rational (see [T04]). It is a natural question to ask

if there is a criterion for determining which MZV’s of depths at least 2 are Eulerian.
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Let A be the polynomial ring in the variable θ over a finite field Fq with quotient
field k. Let A+ be the set of monic polynomials in A and consider the series, for n ∈N,

ζA(n) := ∑
a∈A+

1
an ∈ Fq((

1
θ
)).

These values, called Carlitz zeta values, are analogues of classical special zeta values. We
note that in this non-archimedean situation the series ζA(1) does converge in Fq((

1
θ )). Let

C be the Carlitz module and π̃ be a fundamental period of C. Recall that in the function
field setting C plays the role of the multiplicative group Gm and π̃ plays the role of
2π
√
−1. We denote by expC(z) = ∑i≥0 zqi

/Di the Carlitz exponential function, and by
Γn+1 ∈ A (for non-negative integers n) the Carlitz factorials (see §4.1 for definitions).

In [Ca35], Carlitz derived an analogue of Euler’s formula. More precisely, we write

z
expC(z)

= ∑
n≥0

BC(n)
Γn+1

zn,

where BC(n) ∈ k are called Bernoulli-Carlitz numbers (see [Go96]). Carlitz established
the formula

(1.0.1) ζA(n) =
BC(n)
Γn+1

π̃n

if n ∈N is even (i.e., (q− 1)|n). We note that π̃n ∈ Fq((
1
θ )) if and only if n is even, and so

Carlitz’s result implies that ζA(n)/π̃n ∈ k if and only if n is even.
In [AT90], Anderson and Thakur related ζA(n) to the last coordinate of the logarithm

of C⊗n (the n-th tensor power of the Carlitz module viewed as a Carlitz-Tate t-motive)
at an explicitly constructed integral point Zn (see §5.1.2). As a consequence, one has
that the rationality of ζA(n)/π̃n is equivalent to Zn being Fq[t]-torsion. In this case,
it is clearly described when Zn is Fq[t]-torsion, and more precisely we have that Zn is
an Fq[t]-torsion point if and only if n is even (see [AT90, Prop. 1.11.2, Cor. 3.8.4] and
[Yu91, Thm. 3.1]). On the other hand, Yu showed that the transcendence of ζA(n)/π̃n is
equivalent to Zn being non-torsion (see [Yu91, Cor. 2.6]), whence deriving that ζA(n)/π̃n

is algebraic over k if and only if ζA(n)/π̃n is in k.
For s = (s1, . . . , sr) ∈Nr, characteristic p multizeta values ζA(s), defined by Thakur [T04],

are generalizations of Carlitz zeta values. We set

ζA(s) := ∑
1

as1
1 · · · a

sr
r
∈ Fq((

1
θ
)),

where the sum is taken over r-tuples of monic polynomials a1, . . . , ar with deg a1 >
· · · > deg ar, r is called the depth and w := s1 + · · ·+ sr is the weight of the presentation
ζA(s). These values are known to be non-vanishing by Thakur [T09a, Thm. 4]. As in the
classical case, Thakur called ζA(s) Eulerian if the ratio ζA (s) /π̃w is in k. We mention that
one encounters here the Eulerian multizeta values such as ζA(q− 1, (q− 1)2), or ζA(q−
1, (q − 1)q, . . . , (q − 1)qr−1) (see [T09b, LRT14, Ch15]), as compared with the classical
Eulerian values ζ(2m, 2m), ζ(2, 2, · · · , 2). In contrast to the classical story, we already
know that these ratios ζA(s)/π̃w are either rational or transcendental over k. Indeed, by
[C14, Cor. 2.3.3] we have that either ζA(s)/π̃w is in k or ζA(s) and π̃ are algebraically
independent over k, generalizing the depth one results of [Yu97, CY07]. However the



EULERIAN MULTIZETA VALUES IN POSITIVE CHARACTERISTIC 3

“irrationality” remains a subtle question, i.e. verifying that a given specific even weight
multizeta value of depth r > 1 is not Eulerian.

The main result of the present paper (Theorem 6.1.1) is to give an effective criterion
for Eulerian multizeta values of arbitrary depth. Inspired by Anderson-Thakur [AT09],
for any r-tuple s = (s1, . . . , sr) ∈ Nr we first explicitly construct an abelian t-module
E′ := E′s defined over A, which is a higher dimensional analogue of a Drinfeld module
introduced by Anderson [A86], and an integral point vs ∈ E′(A) such that ζA(s) is
Eulerian if and only if vs is an Fq[t]-torsion point in E′(A). Furthermore, whenever
ζA(s) is Eulerian we find an explicit polynomial as ∈ Fq[t] that annihilates the integral
point vs. This allows us to establisht an algorithm for determining when a given MZV
is Eulerian or non-Eulerian. When r = 1, for each s ∈N the special point vs is the same
as the special point Zs introduced by Anderson-Thakur previously.

In the classical case, Brown [B12b, Thm. 3.3] gave a sufficient condition for Eulerian
MZV’s in terms of motivic multiple zeta values, which are functions defined on the
motivic period torsor for the motivic Galois group of the mixed Tate motives over Z,
and whose images under the period map are the multiple zeta values in question. Given
any ζ(s1, . . . , sr) with even weight N, if the corresponding motivic multiple zeta value
ζm(s1, . . . , sr) is trivial under the operator D<N given in [B12b, (3.2)], then Brown proves
that ζ(s1, . . . , sr) is Eulerian. We note that Brown’s condition is expected to be necessary
for Eulerian MZV’s but it is still a conjecture in the classical transcendence theory. We
further mention that there is a way in principle to check whether the action of D<N on
ζm(s1, . . . , sr) is vanishing by applying [B12b, (3.4)], but it is not completely effective. We
thank Brown for correspondence regarding this effectivity issue, related details can be
located in [B12a].

Even in the classical case to date there is no conjecture that describes Eulerian MZV’s
precisely in terms of s1, . . . , sr. Having our algorithm it seems still difficult to tell when
the integral point vs is an Fq[t]-torsion point in E′(A) directly in terms of s1, . . . , sr alone.
However an implementation of the algorithm in this paper does reveal a description of
Eulerian MZV’s inductively through the tuple (s1, . . . , sr) which will be discussed in §6.
In particular a notable consequence of the main result is the fact that if ζA(s1, . . . , sr) is
Eulerian, then the r− 1 MZV’s, ζA(s2, . . . , sr), . . . , ζA(sr) are simultaneously Eulerian (see
Corollary 4.2.3). For the classical MZV’s, Brown’s theorem on a sufficient condition for
Eulerian MZV’s implies that ζ(3, 1, . . . , 3, 1) is Eulerian (see [B12a, Rem. 4.8]). However,
ζ(1) does not converge and so a naive analogue of the truncation result for the classical
Eulerian MZV’s does not make sense. It would be interesting to ask whether some sort
analogue of the characteristic p truncation is nevertheless valid for the classical Eulerian
MZV’s without 1 occurring in the coordinates.

The methods of constructing t-modules together with specific integral points which
are developed in this paper also enable us to investigate similar phenomena for zeta-like
multizeta values. As defined by Thakur, ζA(s1, . . . , sr) is called zeta-like if the ratio

ζA(s1, . . . , sr)/ζA(
r

∑
i=1

si)

is in k (equivalently it is algebraic over k by [C14, Thm. 2.3.2]). A criterion for zeta-
like MZV’s (see Theorem 5.3.6) is given in terms of Fq[t]-linear relations for the cor-
responding two integral points on our t-modules. Here we are also able to deduce
the fact that having ζA(s1, . . . , sr) zeta-like implies that ζA(s2, . . . , sr) must be Eulerian
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(see Corollary 4.4.3). This property was originally conjectured by Lara Rodrı́guez and
Thakur [LRT14]. We emphasize particularly that our criterion for zeta-like MZV’s leads
also to an effective algorithm. This has been worked out and implemented by Kuan and
Lin in [KL16].

In [C14], the first author defined Carlitz multiple polylogarithms (abbreviated CMPL’s)
that are generalizations of Carlitz polylogarithms studied in [AT90]. Unlike the classi-
cal case, where there is a simple identity between multiple zeta values and multiple
polylogarithms at (1, . . . , 1), the function field situation is more subtle. Anderson and
Thakur [AT90] showed that each Carlitz zeta value (itself a multizeta value of depth one)
is a k-linear combination of Carlitz polylogarithms at integral points, and it is general-
ized in [C14] that MZV’s of arbitrary depth are k-linear combinations of Carlitz multiple
polylogarithms at integral points. Following the terminology of Eulerian multizeta val-
ues, we call a nonzero value of a CMPL at an algebraic point Eulerian if it is a k-multiple
of π̃ raised to the power of its weight (see §4.3). In Theorem 4.3.2, we give a criterion to
determine which CMPL’s at algebraic points are Eulerian.

The main idea of this work comes from the perspective of t-motives. To handle the
k-linear relations among the MZV’s which interest us, we manage to lift these relations
in a t-motivic way to k(t)-linear relations among specific power series in t (where k
is a fixed algebraic closure of k), which can be viewed as simplified analogue of the
motivic MZV’s in the classical theory. The key tool we use to accomplish the process
is the linear independence criterion of [ABP04, Thm. 3.1.1] (the “ABP-criterion”) that
has been used successfully in the last decade for dealing with transcendence/algebraic
independence questions in positive characteristic. The very fact that our motivic MZV’s
satisfy Frobenius (Galois) difference equations (by work of Anderson-Thakur [AT09])
also enables us to prove that the common denominator of the coefficients of the lifted
relations is in Fq[t]. This denominator gives rise to linear relations for the corresponding
algebraic points under the Fq[t]-action, and we exploit this phenomenon as much as we
can in §§2–3.

The paper is organized as follows. In §2, we first set up the necessary preliminaries
and state the criterion, Theorem 2.5.2, which equates the Fq(θ)-linear dependence of
values of certain special series at t = θ to Fq[t]-linear dependence of elements of certain
Ext1-modules. We apply [ABP04, Thm. 3.1.1] to give a proof of Theorem 2.5.2 in §3.
We then apply Theorem 2.5.2 in §4 to establish the criteria for Eulerian MZV’s, CMPL’s
at algebraic points to be Eulerian and zeta-like MZV’s. Passing to t-modules in §5 we
reformulate these criteria. In §6, we further prove that our criterion for Eulerian MZV’s
yields an algorithm for determining whether any given MZV is Eulerian or non-Eulerian.
A rule specifying all Eulerian multizeta values is drawn from the data collected using
this algorithm.

Acknowledgements. We are grateful to G. Anderson for sharing his unpublished notes
with us on the correspondence of abelian t-modules and dual Anderson t-motives, and
to Y.-H. Lin for writing the Magma code to produce the examples of Eulerian MZV’s.
We thank F. Brown, N. Green, D. Thakur, S. Yasuda, and J. Zhao for helpful comments
and suggestions. We further thank H.-J. Chen and Y.-L. Kuan for helpful discussions.
The first named author thanks JSPS and A. Tamagawa for the financial support to visit
RIMS, where part of this work was carried out. The first and second named authors
thank NCTS for the financial support and for its hospitality. Finally we thank the referee
for carefully reading the manuscript and offering helpful suggestions.



EULERIAN MULTIZETA VALUES IN POSITIVE CHARACTERISTIC 5

2. Preliminaries and statement of the main result

2.1. Notation. We adopt the following notation.

Fq = the finite field with q elements, for q a power of a prime number p.
θ, t = independent variables.
A = Fq[θ], the polynomial ring in the variable θ over Fq.
A+ = set of monic polynomials in A.
k = Fq(θ), the fraction field of A.
k∞ = Fq((1/θ)), the completion of k with respect to the place at infinity.
k∞ = a fixed algebraic closure of k∞.
k = the algebraic closure of k in k∞.
C∞ = the completion of k∞ with respect to the canonical extension of ∞.
| · |∞ = a fixed absolute value for the completed field C∞ so that |θ|∞ = q.
deg = function assigning to x ∈ k∞ its degree in θ.
C∞[[t]] = ring of formal power series in t over C∞.
C∞((t)) = field of Laurent series in t over C∞.
T = ring of power series in C∞[[t]] convergent on |t|∞ ≤ 1, the Tate alge-

bra over C∞.

We consider the following characteristic p multizeta values defined by Thakur [T04]:
for any r-tuple of positive integers (s1, . . . , sr) ∈Nr,

(2.1.1) ζA(s1, . . . , sr) := ∑
1

as1
1 · · · a

sr
r
∈ k∞,

where the sum is over (a1, . . . , ar) ∈ Ar
+ with deg a1 > · · · > deg ar. Thakur [T09a]

showed that each multizeta value is non-vanishing.

2.2. Frobenius modules. For an integer n, we consider the following automorphism of
the field of Laurent series over C∞, which is referred to as n-fold Frobenius twisting:

C∞((t)) → C∞((t)),
f := ∑i aiti 7→ f (n) := ∑i ai

qn
ti.

We extend n-fold Frobenius twisting to matrices with entries in C∞((t)) by twisting entry-
wise.

We let k̄[t, σ] = k̄[t][σ] be the non-commutative k̄[t]-algebra generated by the new
variable σ subject to the relation

σ f = f (−1)σ, f ∈ k̄[t].

We call a left k[t, σ]-module a Frobenius module if it is free of finite rank over k[t]. Mor-
phisms of Frobenius modules are left k[t, σ]-module homomorphisms. We denote by F
the category of Frobenius modules.

For a non-negative integer n, we denote by C⊗n ∈ F the nth tensor power of the
Carlitz motive. The underlying k[t]-module of C⊗n is k[t], on which the action of σ is
given by

σ( f ) := (t− θ)n f (−1), f ∈ C⊗n.

We then denote by 1 := C⊗0, the trivial object of F .
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In what follows, an object M in F is said to be defined by a matrix Φ ∈ Matr(k[t]) if
M is free of rank r over k[t] and the σ-action on a given k[t]-basis of M is represented by
the matrix Φ.

For a Frobenius module M, we consider the tensor product k(t)⊗k[t] M on which σ

acts diagonally. It follows that k(t)⊗k[t] M becomes a left k(t)[σ]-module, where k(t)[σ]

is the twisted polynomial ring in σ over k(t) subject to the relation σh = h(−1)σ for
h ∈ k(t). The following proposition is a slight generalization of [P08, Prop. 3.4.5], but it
is crucial while proving Theorem 2.5.2.

Proposition 2.2.1. For i = 1, 2, let Mi be a Frobenius module of rank ri over k[t] defined
by a given matrix Φi ∈ Matri(k[t]) with respect to a fixed k[t]-basis mi of Mi. Put Mi :=
k(t)⊗k[t] Mi for i = 1, 2, and let f : M1 → M2 be a homomorphism of left k(t)[σ]-modules.

With respect to the bases 1⊗m1 and 1⊗m2, f is represented by a matrix F ∈ Matr1×r2(k[t]).
Suppose that det Φi = ci(t− θ)si for some ci ∈ k

×
and si ∈ Z≥0 for i = 1, 2. Then the common

denominator of the entries of F is in Fq[t].

Proof. (cf. proof of [P08, Prop. 3.4.5]) Note that since f is k(t)[σ]-linear, we have that

F(−1)Φ2 = Φ1F.

For a matrix B ∈ Matr×s(k(t)), we denote by den(B) the monic least common multiple
of the denominators of the entries of B. Since by hypothesis det Φ2 = c2(t − θ)s2 for
some c2 ∈ k

×
and s2 ≥ 0, we find that

den(F)(t− θ)s2 F(−1) = den(F)(t− θ)s2Φ1FΦ−1
2 ∈ Matr1×r2(k[t]).

It follows that den(F(−1)) divides den(F)(t− θ)s2 . As we have den(F(−1)) = den(F)(−1),
it follows that degt

(
den(F(−1))

)
= degt (den(F)). Therefore, it suffices to show that

den(F(−1)) is relatively prime to t− θ, since then den(F(−1)) = den(F), which implies
den(F) ∈ Fq[t].

If t − θ divides den(F(−1)), then t − θq divides den(F). This forces t − θq to divide
den (Φ1F), since otherwise t − θq would divide det Φ1 = c1(t − θ)s1 . Likewise, t − θq

divides den
(
Φ1FΦ−1

2
)
= den(F(−1)). Repeating the same argument above shows that

den(F(−1)) is divisible by each of

t− θ, t− θq, t− θq2
, . . . ,

whence we obtain a contradiction since den(F(−1)) ∈ k[t]. �

2.3. Frobenius modules connected to Carlitz multiple polylogarithms. Given a poly-
nomial Q := ∑i aiti ∈ k̄[t], its Gauss norm is defined as ‖Q‖∞ := maxi {|ai|∞}. For an
r-tuple s = (s1, . . . , sr) ∈ Nr, we let Q := (Q1, . . . , Qr) ∈ k̄[t]r satisfy the hypothesis that
as 0 ≤ ir < · · · < i1 → ∞,

(2.3.1)
(
‖Q1‖∞

/
|θ|qs1/(q−1)

∞

)qi1

· · ·
(
‖Qr‖∞

/
|θ|qsr/(q−1)

∞

)qir

→ 0.
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Throughout this paper, we fix a fundamental period π̃ of the Carlitz module C (see
[Go96, T04]). We put

Ω(t) := (−θ)
−q

q−1
∞

∏
i=1

(
1− t

θqi

)
∈ C∞[[t]],

where (−θ)
1

q−1 is a suitable choice of (q− 1)-st root of −θ so that 1
Ω(θ)

= π̃ (cf. [ABP04,

AT09]). We note that Ω satisfies the functional equation Ω(−1) = (t− θ)Ω. Given r-tuples
s and Q as above, we define the series

(2.3.2)

Ls,Q(t) := ∑
i1>···>ir≥0

(
Ωsr Qr

)(ir) · · · (Ωs1 Q1
)(i1)

= Ωs1+···+sr ∑
i1>···>ir≥0

Qr
(ir)(t) · · ·Q(i1)

1 (t)(
(t− θq) . . . (t− θqir )

)sr . . .
(
(t− θq) . . . (t− θqi1 )

)s1
.

We define E to be the ring consisting of formal power series ∑∞
n=0 antn ∈ k[[t]] such

that
lim

n→∞
n
√
|an|∞ = 0, [k∞ (a0, a1, a2, . . .) : k∞] < ∞.

Then any f in E has an infinite radius of convergence with respect to |·|∞, and func-
tions in E are called entire functions. It is shown in [C14, Lem. 5.3.1] that the series
Ls,Q defined above is an entire function. We note that when Q ∈ (k̄×)r satisfies (2.3.1)
then π̃s1+···+srLs,Q(θ) is the Carlitz multiple polylogarithm Lis evaluated at the algebraic
point Q. See §4.3 for additional details.

Proposition 2.3.3. Let s ∈ Nr and Q ∈ k[t]r satisfy the hypothesis (2.3.1). Then for any
non-negative integer n, we have that

Ls,Q
(
θqn)

= Ls,Q(θ)
qn

.

Proof. The proof is essentially the same as the proof of [C14, Lem. 5.3.5] by changing ui
to Qi. We omit the details. �

Let r be a positive integer. We fix two r-tuples s ∈ Nr and Q ∈ k[t]r satisfying (2.3.1).
We define the matrix Φ = Φs,Q ∈ Matr+1(k[t]),

(2.3.4) Φ :=



(t− θ)s1+···+sr 0 0 · · · 0
Q(−1)

1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 · · · 0

0 Q(−1)
2 (t− θ)s2+···+sr . . . ...

... . . . (t− θ)sr 0
0 · · · 0 Q(−1)

r (t− θ)sr 1

 .

Define Φ′ = Φ′s,Q to be the square matrix of size r cut from the upper left square of Φ:

(2.3.5) Φ′ :=


(t− θ)s1+···+sr

Q(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr

. . . . . .

Q(−1)
r−1 (t− θ)sr−1+sr (t− θ)sr

 .

In what follows, to avoid heavy notation we omit the subscripts s, Q when it is clear
from the context.
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For 1 ≤ ` < j ≤ r + 1, we define the series

(2.3.6) Lj,`(t) := ∑
i`>···>ij−1≥0

(
Ωsj−1 Qj−1

)(ij−1) · · · (Ωs`Q`)
(i`) ∈ E ,

which is the same series in (2.3.2) associated to the two tuples (s`, . . . , sj−1) and (Q`, . . . , Qj−1).
Define Ψ ∈ Matr+1(E ) ∩GLr+1(T) by

(2.3.7) Ψ :=



Ωs1+···+sr

Ωs2+···+srL2,1 Ωs2+···+sr

... Ωs3+···+srL3,2
. . .

...
... . . . . . .

ΩsrLr,1 ΩsrLr,2
. . . Ωsr

L(r+1),1 L(r+1),2 · · · · · · L(r+1),r 1


,

and note that we have Ψ(−1) = ΦΨ (cf. [AT09, §2.5]). Let Ψ′ be the square matrix of size
r cut from the upper left square of Ψ. So then Ψ′(−1) = Φ′Ψ′. Note that Φ defines an
object in F which is a t-motive in the sense of [P08].

2.4. The Ext1-module. We continue the notation from the previous paragraphs. We
denote by M and M′ the objects in F defined by the matrices Φ and Φ′ respectively.
Note that M fits into the short exact sequence of Frobenius modules,

0→ M′ → M � 1→ 0,

and so M represents a class in Ext1
F (1, M′). The group Ext1

F (1, M′) has a natural Fq[t]-
module structure coming from Baer sum and the pushout of morphisms of M′. More
precisely, if M1 and M2 represent classes in Ext1

F (1, M′) and are defined by the two
matrices respectively

Φ1 :=
(

Φ′ 0
v1 1

)
, Φ2 :=

(
Φ′ 0
v2 1

)
,

then the Baer sum M1 +B M2 is the object in F defined by the matrix(
Φ′ 0

v1 + v2 1

)
.

Furthermore, for any a ∈ Fq[t] multiplication by a induces an endomorphism of M′, and
so the pushout a ∗M1 ∈ F , which is defined by the matrix(

Φ′ 0
av1 1

)
,

thus inducing a left Fq[t]-module structure on Ext1
F (1, M′).

2.5. The main theorem. We continue with the notation as above, but assume that r ≥ 2.
We let w := ∑r

i=1 si and let Q ∈ k[t] satisfy ‖Q‖∞ < |θ|wq/(q−1)
∞ . We further assume that

the series Lw,Q(t) ∈ E associated to w and Q is non-vanishing at t = θ. We let N ∈ F
be the Frobenius module that is defined by the matrix

(2.5.1)
(

Φ′ 0
uw 1

)
∈ Matr+1(k[t]),
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where uw :=
(

Q(−1)(t− θ)w, 0, . . . , 0
)
∈ Mat1×r(k[t]). Then N represents a class in

Ext1
F (1, M′).

The following result gives a criterion for the k-linear dependence of the specific val-
ues

{
Ls,Q(θ), Lw,Q(θ), 1

}
, which is applied to the settings of Eulerian MZV’s, Eulerian

CMPL’s at algebraic points, and zeta-like MZV’s in §4. Its proof occupies the next sec-
tion.

Theorem 2.5.2. Let r ≥ 2 be a positive integer. We fix two r-tuples s ∈ Nr and Q ∈ k[t]r
satisfying (2.3.1). Let M and M′ be the objects in F defined by the matrices Φ and Φ′, as in
(2.3.4) and (2.3.5). For 1 ≤ ` < j ≤ r + 1, we let Lj,` be defined as in (2.3.6) and suppose that
it satisfies the non-vanishing hypothesis

(2.5.3) Lj,`(θ) 6= 0.

We let w := ∑r
i=1 si and let Q ∈ k[t] satisfy ‖Q‖∞ < |θ|wq/(q−1)

∞ and Lw,Q(θ) 6= 0. Let
N ∈ F be defined by the matrix given in (2.5.1). Then the following hold.

(a) The set
{
Ls,Q(θ), Lw,Q(θ), 1

}
is linearly dependent over k if and only if the classes of

M and N are Fq[t]-linearly dependent in Ext1
F (1, M′), i.e., there exists a, b ∈ Fq[t] (not

both zero) so that a ∗M +B b ∗ N represents a trivial class in Ext1
F (1, M′).

(b) If
{
Ls,Q(θ), Lw,Q(θ), 1

}
are linearly dependent over k, then each of Lr+1,2(θ), . . . , Lr+1,r(θ)

is in k.

Remark 2.5.4. Let notation and hypotheses be given as above. If c1Ls,Q(θ) + c2Ls,Q(θ) +
c3 = 0 with c1, c2, c3 ∈ k and c1 6= 0, then we can find a, b ∈ Fq[t] with a 6= 0 so that a ∗
M +B b ∗ N represents a trivial class in Ext1

F (1, M′) as can be seen from the construction
of a in the proof of Theorem 2.5.2 (a) (⇒) (note that in this situation fr+1(θ) 6= 0 in
§§ 3.2).

Remark 2.5.5. Note that the k-linear dependence of
{
Ls,Q(θ), Lw,Q(θ), 1

}
is equivalent

to the k-linear dependence of
{

π̃wLs,Q(θ), π̃wLw,Q(θ), π̃w}. We mention that the val-
ues π̃wLs,Q(θ), π̃wLw,Q(θ) satisfy the MZ property with weight w in the sense of [C14,
Def. 3.4.1]), and hence by [C14, Prop. 4.3.1] we have that

{
Ls,Q(θ), Lw,Q(θ), 1

}
are lin-

early dependent over k if and only if they are linearly dependent over k. We further
apply [C14, Prop. 4.3.1] for {π̃wLs,Q(θ), π̃w} and hence we have that Ls,Q(θ) ∈ k if and
only if Ls,Q(θ) ∈ k.

For the applications to Eulerian MZV’s and Eulerian CMPL’s at algebraic points we
single out the following result, which is a special case of the theorem above.

Corollary 2.5.6. Let notation and assumptions be given as in Theorem 2.5.2. Then we have that
Ls,Q(θ)(= Lr+1,1(θ)) is in k if and only if M represents a torsion element in the Fq[t]-module
Ext1

F (1, M′).

Proof. The proof of (⇒) is given in the case (II) of the proof of (⇒) of Theorem 2.5.2(a).
The proof of (⇐) follows from the proof of (⇐) of Theorem 2.5.2(a) by putting b = 0. �
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3. Proof of Theorem 2.5.2

3.1. A remark. For a, b ∈ Fq[t], the Frobenius module a ∗M +B b ∗ N is defined by the
matrix

(3.1.1) X :=
(

Φ′ 0
u 1

)
∈ Matr+1(k[t]),

where u :=
(

bQ(−1)(t− θ)w, 0, . . . , 0, aQ(−1)
r (t− θ)sr

)
∈ Mat1×r(k[t]). It follows that the

Frobenius module a ∗M +B b ∗ N represents a trivial class in Ext1
F (1, M′) if and only if

there exists δ1, . . . , δr ∈ k[t] so that

(3.1.2)


1

1
. . .

δ1 · · · δr 1


(−1)

X =

(
Φ′

1

)
1

1
. . .

δ1 · · · δr 1

 ,

which is equivalent to that

δ1 := δ
(−1)
1 (t− θ)w + δ

(−1)
2 Q(−1)

1 (t− θ)w + bQ(−1)(t− θ)w;

δ2 := δ
(−1)
2 (t− θ)s2+···+sr + δ

(−1)
3 Q(−1)

2 (t− θ)s2+···+sr ;
...

δr−1 := δ
(−1)
r−1 (t− θ)sr−1+sr + δ

(−1)
r Q(−1)

r−1 (t− θ)sr−1+sr ;

δr := δ
(−1)
r (t− θ)sr + aQ(−1)

r (t− θ)sr .

(3.1.3)

3.2. Proof of Theorem 2.5.2 (a)(⇒). Suppose that
{
Ls,Q(θ), Lw,Q(θ), 1

}
are linearly de-

pendent over k. Our goal is to find a, b ∈ Fq[t] (not both zero) and δ1, . . . , δr ∈ k[t]
satisfying the equations (3.1.3).

Define the matrix

Φ̃ :=

1
Φ

Q(−1)(t− θ)w, 0, . . . , 0 1

 ∈ Matr+3(k[t])

and put

ψ̃ :=



1
Ωs1+···+sr

Ωs2+···+srL2,1
...

Lr+1,1
Lw,Q

 .

Then we have the difference equations ψ̃(−1) = Φ̃ψ̃. Note that Lr+1,1 = Ls,Q.
Case (I). Lr+1,1(θ) /∈ k (which is equivalent to Lr+1,1(θ) /∈ k by Remark 2.5.5). Since{

Ls,Q(θ), Lw,Q(θ), 1
}

are linearly dependent over k, by [ABP04, Thm. 3.1.1] there exists

f = ( f0, f1, . . . , fr+2) ∈ Mat1×(r+3)(k[t])
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so that fψ̃ = 0 and f(θ)ψ̃(θ) = 0, which describes a nontrivial k-linear relation among{
Ls,Q(θ), Lw,Q(θ), 1

}
. Note that

f1(θ) = · · · = fr(θ) = 0.

Now we assume that fr+2(θ) 6= 0. Note if fr+2(θ) = 0, then we have that

{Ls,Q(θ) = Lr+1,1(θ), 1}

are linearly dependent over k, i.e., Lr+1,1(θ) ∈ k, and this case will be included in the
case (II) below.

If we put f̃ := 1
fr+2

f ∈ Mat1×(r+3)(k(t)), then all entries of f̃ are regular at t = θ.

Considering the Frobenius twisting-action (·)(−1) on the equation f̃ψ̃ = 0 and subtracting
the resulting equation from f̃ψ̃ = 0, we obtain

(3.2.1)
(

f̃− f̃(−1)Φ̃
)

ψ̃ = 0.

Explicit calculations show that f̃− f̃(−1)Φ̃ = (B, B1, . . . , Br+1, 0), where

B := f0
fr+2
− ( f0

fr+2
)(−1)

B1 := f1
fr+2
−
(

f1
fr+2

)(−1)
(t− θ)w −

(
f2

fr+2

)(−1)
Q(−1)

1 (t− θ)w −Q(−1)(t− θ)w;

B2 := f2
fr+2
−
(

f2
fr+2

)(−1)
(t− θ)s2+···+sr −

(
f3

fr+2

)(−1)
Q(−1)

2 (t− θ)s2+···+sr ;

...

Br := fr
fr+2
−
(

fr
fr+2

)(−1)
(t− θ)sr −

(
fr+1
fr+2

)(−1)
Q(−1)

r (t− θ)sr

Br+1 :=
(

fr+1
fr+2

)
−
(

fr+1
fr+2

)(−1)
.

(3.2.2)

We claim that B = B1 = · · · = Br+1 = 0. Assuming this claim first, we see that

(3.2.3)


1

1
. . .

f0/ fr+2 · · · fr+1/ fr+2 1


(−1)

Φ̃ =

1
Φ

1




1
1

. . .
f0/ fr+2 · · · fr+1/ fr+2 1

 .

Let M̃ be the Frobenius module defined by the matrix Φ̃. Then the equation (3.2.3) gives
a left k(t)[σ]-module homomorphism between k(t)⊗k[t] (1⊕M⊕ 1) and k(t)⊗k[t] M̃. It
follows from Proposition 2.2.1 that the denominator of each fi/ fr+2 is in Fq[t] for i =
0, . . . , r + 1. Now we let b ∈ Fq[t] be the common denominator of f0/ fr+2, . . . , fr+1/ fr+2,
and take δi := b fi/ fr+2 ∈ k[t] for i = 1, . . . , r. Note that the vanishing of Br+1 implies
fr+1/ fr+2 ∈ Fq(t) and hence a := b fr+1/ fr+2 ∈ Fq[t]. Multiplying by b on the both
sides of (3.2.2) one finds exactly the identities (3.1.3), which imply that a ∗ M +B b ∗ N
represents a trivial class in Ext1

F (1, M′).
To prove the claim above, we consider (3.2.1), which is expanded as

(3.2.4) B + B1Ωs1+···+sr + B2Ωs2+···+srL2,1 + · · ·+ BrΩsrLr,1 + Br+1Lr+1,1 = 0.
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For each 1 ≤ ` < j ≤ r + 1 and any non-negative integer n, by Proposition 2.3.3

(3.2.5) Lj,`(θ
qn
) = Lj,`(θ)

qn
,

which is nonzero by hypothesis. Since B and each Bi are rational functions in k(t), B
and Bi are defined at t = θqn

for sufficiently large integers n. We further note that Ω has
a simple zero at t = θqi

for each positive integer i. Specializing (3.2.4) at t = θqn
shows

that B(θqn
) = Br+1(θ

qn
) = 0 for any n � 0 because of Lr+1,1(θ) /∈ k. It follows that

B = Br+1 = 0.
Next, dividing (3.2.4) by Ωsr and then specializing at t = θqn

, we see from (3.2.5) that
Br(θqn

) = 0 for all sufficiently large integers n. It follows that Br = 0. Furthermore,
using (3.2.4) and repeating the arguments above we can show that Br−1 = · · · = B1 = 0,
whence the desired claim.

Case (II). Lr+1,1(θ) ∈ k. In this case, we apply [ABP04, Thm. 3.1.1] to the difference
equations

ψ :=


1

Ωs1+···+sr

Ωs2+···+srL2,1
...

Lr+1,1




(−1)

=

(
1

Φ

)
1

Ωs1+···+sr

Ωs2+···+srL2,1
...

Lr+1,1


for the k-linear dependence of {1, Lr+1,1(θ)}. So there exists f = ( f0, f1, . . . , fr+1) ∈
Mat1×(r+2)(k[t]) for which fψ = 0 and f(θ)ψ(θ) = 0 represents the k-linear dependence
of 1 and Lr+1,1(θ). Then the arguments are similar in this case as in the previous one
when putting f̃ := 1

fr+1
f, and we omit them. Moreover, they exactly show that the class of

M is an a-torsion element in Ext1
F (1, M′), where a ∈ Fq[t] is the common denominator

of f0/ fr+1, . . . , fr/ fr+1 in this case.

3.3. Proof of Theorem 2.5.2 (a)(⇐) and (b). Suppose that there exist a, b ∈ Fq[t] (not
both zero) for which a ∗M +B b ∗ N represents a trivial class in Ext1

F (1, M′). Note that
a ∗M +B b ∗ N is defined by the matrix given in (3.1.1). Let Ψ′ be the square matrix of
size r cut from the upper left square of Ψ, so that Ψ′(−1) = Φ′Ψ′. Define

Y :=



Ωs1+···+sr

Ωs2+···+srL2,1 Ωs2+···+sr

... Ωs3+···+srL3,2
. . .

...
... . . . . . .

ΩsrLr,1 ΩsrLr,2
. . . Ωsr

aL(r+1),1 + bLw,Q aL(r+1),2 · · · · · · aL(r+1),r 1


,

and note that Y(−1) = XY.
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Since the class of a ∗ M +B b ∗ N is trivial in Ext1
F (1, M′), there exist δ1, . . . , δr ∈ k[t]

satisfying (3.1.2). Putting

δ :=


1

1
. . .

δ1 · · · δr 1


and Y′ := δY, we then have Y′(−1) =

(
Φ′

1

)
Y′. Since also(

Ψ′
1

)(−1)

=

(
Φ′

1

)(
Ψ′

1

)
,

it follows from [P08, §4.1.6] that there exist ν1, . . . , νr ∈ Fq(t) so that

Y′ =
(

Ψ′
1

)(
Ir

ν1, . . . , νr 1

)
.

This then implies that

ν1 = δ1Ωs1+···+sr + δ2Ωs2+···+srL2,1 + · · ·+ δrΩsrLr,1 + aLr+1,1 + bLw,Q;

ν2 = δ2Ωs2+···+sr + δ3Ωs3+···+srL3,2 + · · ·+ δrΩsrLr,2 + aLr+1,2;
...

νr−1 = δr−1Ωsr−1+sr + δrΩsrLr,r−1 + aLr+1,r−1;

νr = δrΩsr + aLr+1,r.

(3.3.1)

We note that in fact each νi is in Fq[t], since the right-hand side of each equation above
is in the Tate algebra T. For any positive integer n, by specializing both sides of (3.3.1)
at t = θqn

and using (3.2.5) together with the fact that Ω has a simple zero at t = θqn
, we

obtain that

ν1(θ)
qn

= ν1(θ
qn
) =

(
a(θ)Lr+1,1(θ) + b(θ)Lw,Q(θ)

)qn
;

ν2(θ)
qn

= ν2(θ
qn
) = (a(θ)Lr+1,2(θ))

qn
;

...

νr−1(θ)
qn

= νr−1(θ
qn
) = (a(θ)Lr+1,r−1(θ))

qn
;

νr(θ)
qn

= νr(θ
qn
) = (a(θ)Lr+1,r(θ))

qn
.

(3.3.2)

Since we are working in characteristic p, taking the qn-th root of both sides of (3.3.2)
shows that Lr+1,1(θ)(= Ls,Q(θ)), Lw,Q(θ) and 1 are linearly dependent over k, and each
of Lr+1,2(θ), . . . , Lr+1,r(θ) is rational in k.

4. Applications to multizeta values and multiple polylogarithms

In this section, we apply Theorem 2.5.2 to establish criteria for MZV’s and CMPL’s at
algebraic points to be Eulerian and for MZV’s to be zeta-like.
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4.1. Anderson-Thakur polynomials. Define D0 = 1 and Di := ∏i−1
j=0

(
θqi − θqj)

for i ∈N.
For a non-negative integer n, we express n as

n =
∞

∑
i=0

niqi (0 ≤ ni ≤ q− 1, ni = 0 for i� 0),

and we recall the definition of the Carlitz factorial,

Γn+1 :=
∞

∏
i=0

Dni
i ∈ A.

We put G0(y) := 1 and define polynomials Gn(y) ∈ Fq[t, y] for n ∈N by the product

Gn(y) =
n

∏
i=1

(
tqn − yqi

)
.

Note that Gn+1(yq) = (t− yq)qn+1
Gn(y)q.

For n = 0, 1, 2, . . . we define the sequence of Anderson-Thakur polynomials Hn ∈ A[t]
by the generating function identity(

1−
∞

∑
i=0

Gi(θ)

Di|θ=t
xqi

)−1

=
∞

∑
n=0

Hn

Γn+1|θ=t
xn.

We note that for 0 ≤ n ≤ q− 1 we have Hn = 1. We have made a change of notation by
t ← T, θ ← y from [AT90, (3.7.1)] in order to match better the notation in [AT09], [C14].
It is shown in [AT90, 3.7.3] that when one regards Hn as a polynomial in θ over Fq[t],
one has degθ Hn ≤ nq

q−1 , whence

(4.1.1) ‖Hn‖∞ ≤ |θ|nq/(q−1)
∞ .

The crucial identity developed in [AT90], [AT09] is that

(Hs−1Ωs)(d)(θ) =
ΓsSd(s)

π̃s , ∀s ∈N, d ∈ Z≥0

where Sd(s) is the power sum

Sd(s) := ∑
a∈A+

deg a=d

1
as ∈ k.

It follows that if we put Q = (Hs1−1, . . . , Hsr−1), then by (4.1.1) Q satisfies the hypothesis
(2.3.1). Furthermore, specialization of the series

Ls,Q := ∑
i1>···>ir≥0

(Ωsr Hsr−1)
(ir) · · ·

(
Ωs1 Hs1−1

)(i1)
at t = θ is equal to

Γs1 · · · Γsr ζA(s1, . . . , sr)/π̃s1+···+sr .
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4.2. A criterion for Eulerian MZV’s. We continue with the notation defined in the pre-
vious section. Given s = (s1, . . . , sr) ∈ Nr, we let Q = (Hs1−1, . . . , Hsr−1) and M (resp.
M′) be defined by Φ as in (2.3.4) (resp. by Φ′ as in (2.3.5)). For this choice of Q each
series Lj,` defined in (2.3.6) evaluates at t = θ as

Lj,`(θ) = Γs` · · · Γsj−1ζA(s`, . . . , sj−1)/π̃s`+···+sj−1 .

These values are non-vanishing by the work of Thakur [T09a, Thm. 4], and so it satisfies
the non-vanishing hypothesis (2.5.3). In particular,

Lr+1,1(θ) = Γs1 · · · Γsr ζA(s1, . . . , sr)/π̃s1+···+sr

Lr+1,2(θ) = Γs2 · · · Γsr ζA(s2, . . . , sr)/π̃s2+···+sr

...

Lr+1,r(θ) = Γsr ζA(sr)/π̃sr .

(4.2.1)

Note that the hypotheses in Theorem 2.5.2 are satisfied and thus applying Corol-
lary 2.5.6 in this situation, we obtain the following criterion to determine when a given
multizeta value is Eulerian.

Theorem 4.2.2. The multizeta value ζA(s1, · · · , sr) is Eulerian if and only if the class of M is a
torsion element in the Fq[t]-module Ext1

F (1, M′).

Applying Theorem 2.5.2(b), we obtain additional information about when a given
multizeta value is Eulerian.

Corollary 4.2.3. Let (s1, . . . , sr) ∈ Nr with r ≥ 2. Suppose that ζA(s1, . . . , sr) is Eulerian.
Then the following hold.

(a) Each of the multizeta values

ζA(s2, . . . , sr), ζA(s3, . . . , sr), . . . , ζA(sr)

is also Eulerian.
(b) Each ζA(si) is also Eulerian for i = 1, . . . , r. That is, each si is divisible by q− 1.

Proof. Using (4.2.1), part (a) follows from Theorem 2.5.2(b). For part (b), we note that
π̃n ∈ k∞ if and only if (q − 1) | n. If ζA(s1, . . . , sr) is Eulerian, then part (a) implies
that so are ζA(s2, . . . , sr), ζA(s3, . . . , sr), . . . , ζA(sr). Therefore, we have the divisibility
relations

(q− 1) | (s1 + · · ·+ sr), . . . , (q− 1) | (sr−1 + sr), (q− 1) | sr.
It follows that each si is divisible by q− 1 for i = 1, . . . , r, and so each ζA(si) is Eulerian
by the original results of Carlitz [Ca35]. �

4.3. Application to multiple polylogarithms at algebraic points. We now consider Car-
litz multiple polylogarithms [C14], which are generalizations of Carlitz polylogarithms [Ca35,
AT90]. We state a criterion to determine when a nonzero Carlitz multiple polylogarithm
at an algebraic point is Eulerian and show how to deduce it from Corollary 2.5.6.

Define L0 := 1 and Li := (θ − θq) · · · (θ − θqi
) for i ∈ N. Given an r-tuple of positive

integers s = (s1, . . . , sr) ∈ Nr, its associated Carlitz multiple polylogarithm, abbreviated
CMPL, is defined by

(4.3.1) Lis(z1, . . . , zr) := ∑
i1>···>ir≥0

zqi1

1 · · · z
qir

r

Ls1
i1
· · · Lsr

ir

.
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We further denote by

Ds := {u = (u1, . . . , ur) ∈ Cr
∞ | Lis(u) converges},

the convergence domain of Lis. We can describe Ds as

Ds =

{
u ∈ Cr

∞

∣∣∣ ∣∣u1/(θ
qs1
q−1 )

∣∣qi1

∞ · · ·
∣∣ur/(θ

qsr
q−1 )

∣∣qir

∞ → 0 as 0 ≤ ir < · · · < i1 → ∞
}

.

The weight of Lis is defined to be wt(s) := ∑r
i=1 si and its depth is defined to be r. We do

not know whether Lis(u) is non-vanishing for arbitrary u ∈ Ds, but it is non-vanishing
when u lies in the smaller domain

D′s :=
{
(u1, . . . , ur) ∈ Cr

∞ | |ui|∞ < q
siq

q−1 for i = 1, . . . , r
}

(see [C14, Remark 5.1.5]).
As a generalization of the work of Anderson and Thakur [AT90], the first author of

the present paper showed that for any s = (s1, . . . , sr) ∈ Nr, ζA(s1, . . . , sr) is a k-linear
combination of Lis at some integral points in Ar ∩Ds [C14, Thm. 5.5.2]. From now on, we
fix an r-tuple s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ (k̄×)r ∩Ds, and suppose that
Lis(u) 6= 0. Following the terminology for multizeta values, we shall call Lis(u) Eulerian
if the ratio Lis(u)/π̃wt(s) lies in k. Note that it is shown in [C14] that Lis(u)/π̃wt(s) ∈ k̄
if and only if Lis(u)/π̃wt(s) ∈ k.

We put Q := u = (u1, . . . , ur) and let M (resp. M′) be the Frobenius module defined
by Φ as in (2.3.4) (resp. Φ′ as in (2.3.5)). For 1 ≤ i < j ≤ r, we put

Lisij(uij) := Li(si,...,sj)
(ui, . . . , uj).

Note that in this setting we have Ls,Q(θ) = Lis(u)/π̃wt(s), and hence Lis(u) is Eulerian
if and only if Ls,Q(θ) ∈ k. Applying Corollary 2.5.6 and Theorem 2.5.2(b), we obtain the
following result.

Theorem 4.3.2. For any s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ (k̄×)r ∩Ds, we let M
and M′ be defined as above. Suppose that Lisij(uij) is nonzero for all 1 ≤ i < j ≤ r. Then we
have

(a) Lis(u) is Eulerian if and only if M represents a torsion element in the Fq[t]-module
Ext1

F (1, M′).
(b) If Lis(u) is Eulerian, then each of Li(s2,...,sr)(u2, . . . , ur), . . . , Lisr(ur) is also Eulerian.

4.4. Applications to zeta-like multizeta values. In this section we apply Corollary 2.5.6
to confirm a conjecture of Lara Rodrı́guez and Thakur. As defined by Thakur a multizeta
value ζA(s1, . . . , sr) with weight w := ∑r

i=1 si is called zeta-like if the ratio ζA(s1, . . . , sr)/ζA(w)
is algebraic over k. Note that if ζA(s1, . . . , sr) is zeta-like, then by [C14, Cor. 2.3.3] the
ratio ζA(s1, . . . , sr)/ζA(w) is actually in k.

4.4.1. Zeta-like MZV’s. For a multizeta value ζA(s1, . . . , sr), Lara Rodrı́guez and Thakur [LRT14]
conjectured the following assertion.

Conjecture 4.4.1. If ζA(s1, . . . , sr) is zeta-like, then ζA(s2, . . . , sr) is Eulerian.

In what follows, we confirm this conjecture stated as Corollary 4.4.3, which is a conse-
quence of the following theorem. For more conjectures concerning zeta-like MZV’s, we
refer the reader to [LRT14].
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4.4.2. The setting and results. Given s = (s1, . . . , sr) ∈ Nr, put Q = (Hs1−1, . . . , Hsr−1)
and Q := Hw−1, where {Hn} be the Anderson-Thakur polynomials given in §4.1 and
w := ∑r

i=1 si. Note that

Lw,Q(θ) =
ΓwζA(w)

π̃w ,

and so by (4.1.1) the conditions of Theorem 2.5.2 are satisfied.
Let M ∈ F (resp. N ∈ F ) be defined by Φ given in (2.3.4) (resp. by the matrix given

in (2.5.1)). Then applying Theorem 2.5.2 we have the following criterion.

Theorem 4.4.2. Let s = (s1, . . . , sr) ∈Nr with r ≥ 2, and let notation be given as above. Then
we have that {ζA(s1, . . . , sr), ζA(w), π̃w} are linearly dependent over k if and only if the classes
of M and N are Fq[t]-linearly dependent in Ext1

F (1, M′).

Corollary 4.4.3. If ζA(s1, . . . , sr) is zeta-like, then each of

ζA(s2, . . . , sr), ζA(s3, . . . , sr) . . . , ζA(sr)

is Eulerian. In particular, each of s2, . . . , sr is divisible by q− 1.

Proof. Note that

Ls,Q(θ) = Γs1 · · · Γsr ζA(s1, . . . , sr)/π̃w, Lw,Q(θ) = ΓwζA(w)/π̃w

and for each 2 ≤ ` ≤ r,

Lr+1,`(θ) = Γs` · · · Γsr ζA(s`, . . . , sr)/π̃s`+···+sr .

Since by hypothesis ζA(s1, . . . , sr) is zeta-like, the result follows from Theorem 2.5.2(b).
�

Remark 4.4.4. In this remark, we give an algebraic illustration for the result in the corol-
lary above. For an r-tuple s = (s1, . . . , sr) ∈Nr with r ≥ 2 and w := ∑r

i=1 si, we continue
the notation Ms, Ns, M′s above but we add the subscript s to emphasize that these objects
are associated to s. We put s′ := (s2, . . . , sr) and let Ms′ , M′s′ be those objects above asso-
ciated to s′. It is shown in the proof of Theorem 6.1.1 that one has the exact sequences
of Fq[t]-modules fitting into the following commutative diagram (via Theorem 5.2.1):

0 // Ext1
F (1, C⊗w) //

∼=
��

Ext1
F (1, M′s)

π // //

∼=
��

Ext1
F

(
1, M′s′

)
//

∼=
��

0

0 // C⊗w/(σ− 1)C⊗w // M′s/(σ− 1)M′s
π′ // // M′s′/(σ− 1)M′s′ // 0,

and note that π(Ms) = Ms′ .
Denote by {m1, . . . , mr} the given k[t]-basis of M′s on which the action of σ is repre-

sented by Φ′s given in (2.3.5) for the chosen Q above. Then by Theorem 5.2.1 we have
that Ns ∈ Ext1

F (1, M′s) is identified with Q(−1)(t− θ)wm1 in M′s/(σ− 1)M′s , and which
is mapped to zero under π′ since π′ is induced from the natural projection M′s � M′s′
given by ∑r

i=1 gimi 7→ ∑r
i=2 gimi. It follows from the commutative diagram above that

Ns ∈ Ker π.
Suppose that ζA(s) is zeta-like. Then by Remark 2.5.4 there exist a, b ∈ Fq[t] with

a 6= 0 so that a ∗ Ms + b ∗ Ns represents a trivial class in Ext1
F (1, M′s). It follows that

π (a ∗Ms + b ∗ Ns) = a ∗ Ms′ represents a trivial class in Ext1
F

(
1, M′s′

)
, and hence by

Theorem 4.2.2 ζA(s
′) is Eulerian.
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5. Operating on t-modules

The purpose of this section is to reformulate our criteria via t-modules.

5.1. The structure of rational torsion points of C⊗n.

5.1.1. Definition of t-modules. We first review the definition of t-modules [A86]. Let τ =
(x 7→ xq) : C∞ → C∞ be the Frobenius q-th power operator and let C∞[τ] be the twisted
polynomial ring in τ over C∞ subject to the relation τα = αqτ for α ∈ C∞. For a
positive integer d, a d-dimensional t-module is a pair (E, φ), where E is the d-dimensional
algebraic group Gd

a and φ is an Fq-linear ring homomorphism

φ : Fq[t]→ Matd(C∞[τ])

so that when we write φt = α0 + ∑i αiτ
i with αi ∈ Matd(C∞), α0 − θ Id is a nilpotent

matrix. In this way, E(C∞) is equipped with an Fq[t]-module structure via the map φ.
For a subring R ⊂ C∞ containing A, we say that the t-module E is defined over R if αi
lies in Matd(A) for all i ≥ 0.

For any d-dimensional t-module (E, φ), Anderson [A86] showed that one has the Fq-
linear function expE : Cd

∞ → Cd
∞ satisfying that for z = (z1, . . . , zd)

tr and any a ∈ Fq[t],
• expE(z) ≡ z (mod degree q)
• expE(∂φa(z)) = φa (expE(z)),

where ∂φa is the differential of the morphism φa at the identity element of E. If expE is
surjective, then E is called uniformizable.

5.1.2. Anderson-Thakur special points. For a positive integer n, the n-th tensor power of
the Carlitz Fq[t]-module denoted by C⊗n is an n-dimensional t-module defined over A
together with the Fq-linear ring homomorphism

[·]n : Fq[t]→ Matn(C∞[τ])

given by
[t]n = θ In + Nn + Enτ,

where

Nn :=


0 1 · · · 0
... . . . . . . ...
... . . . 1
0 · · · · · · 0

 , En :=


0 · · · · · · 0
...

...
...

...
1 · · · · · · 0

 .

Note that for n = 1, the definition above is the Carlitz Fq[t]-module C. It is shown
in [AT90, Cor. 2.5.8] that C⊗n is uniformizable and the kernel of expC⊗n is a rank one
Fq[t]-module (via the ∂[a]n-action) with a generator of the form

λn =

 ∗...
π̃n

 ∈ Cn
∞.

To find the connection with ζA(n), Anderson and Thakur defined the following special
points (see [AT90, (3.8.2)]).
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Definition 5.1.1. For each positive integer n, we let Hn−1 ∈ A[t] be the Anderson-Thakur
polynomial in §4.1. We write Hn−1 = ∑i≥0 hniθ

i with hni ∈ Fq[t]. Then we define

Zn := ∑
i≥0

[hni]n


0
...
0
θi

 ∈ C⊗n(A)

and call it an Anderson-Thakur special point.

It is shown in [AT90, Thm. 3.8.3] that there exists a vector of the form

zn =


∗
...
∗

ΓnζA(n)


so that

expC⊗n(zn) = Zn.

Remark 5.1.2. For a positive integer n even, we put

a :=
Γn+1

Γn
den BC(n)|θ=t,

where den BC(n) denotes the denominator of the n-th Bernoulli-Carlitz number. Then
by the formula (1.0.1) of Carlitz, the property that Ker expC⊗n is a rank one Fq[t]-module,
the functional equation expC⊗n(∂[a]nz) = [a]n

(
expC⊗n(z)

)
and [Yu91, Thm. 2.3], we see

that Zn is an a-torsion point in C⊗n(A).

5.1.3. The structure of C⊗n(k)tor. For any nonzero polynomial f ∈ Fq[t], denote by C⊗n[ f ]
the set of f -torsion elements:

C⊗n[ f ] :=
{

x ∈ C⊗n(k) = k
n | [ f ]n(x) = 0

}
.

We further define the set of rational torsion points of C⊗n:

C⊗n(k)tor :=
{

x ∈ C⊗n(k) = kn | [ f ]n(x) = 0 for some nonzero f ∈ Fq[t]
}

.

Note that in [AT90, Prop. 1.11.2] Anderson and Thakur showed that C⊗n(k)tor is trivial
if n is odd (ie., (q− 1) - n). The following result is the structure of C⊗n(k)tor when n is
even, and we thank Y.-L. Kuan for providing us a proof of the following lemma.

Lemma 5.1.3. Let n be a positive integer divisible by q− 1. We decompose n = p`n1
(
qh − 1

)
where p - n1 and h is the greatest integer such that (qh − 1) | n. Then

C⊗n(k)tor = ∏
deg P|h

C⊗n[Pp` ],

where the product runs through all monic irreducible polynomials P ∈ Fq[t] with deg P | h. In
particular, the Fitting ideal of the finite Fq[t]-module C⊗n(k)tor is generated by (tqh − t)p` .
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Proof. For any nonzero f ∈ Fq[t], let
(
Fq[t]/ f

)×n be the group of the n-th powers
of elements of

(
Fq[t]/ f

)×. By [AT90, Prop. 1.11.1] one knows that the Galois group
Gal (k (C⊗n[ f ]) /k) is isomorphic to

(
Fq[t]/ f

)×n. It follows that C⊗n[ f ] ⊆ C⊗n(k) if and
only if the group

(
Fq[t]/ f

)×n is trivial.
Note that the group

(
Fq[t]/P

)×n is non-trivial if deg P - h. Thus, to prove the lemma
it suffices to show that the group (Fq[t]/Pp`)×n is trivial and (Fq[t]/Pp`+1

)×n is non-
trivial for any monic irreducible polynomial P with deg P | h. Suppose that deg P | h.
Let (Fq[t]/Pp`)(1) be the kernel of the natural map from (Fq[t]/Pp`)× to (Fq[t]/P)×.
Then the group (Fq[t]/Pp`)× is isomorphic to the direct product of (Fq[t]/P)× and
(Fq[t]/Pp`)(1). Since deg P | h, the group (Fq[t]/P)×n is trivial. Note that every element
in (Fq[t]/Pp`)(1) can be represented by a polynomial of the form a = 1 + bP with b ∈
Fq[t]. Then

an =
(
(1 + bP)p`

)n1(qh−1)
=
(

1 + bp`Pp`
)n1(qh−1)

≡ 1 (mod Pp`),

and hence the group (Fq[t]/Pp`)×n is trivial. On the other hand, we now consider
a = 1 + P. Since (Fq[t]/Pp`+1

)(1) is a p-group, an 6= 1 in (A/Pp`+1
)(1) if and only if

ap` 6= 1 in (Fq[t]/Pp`+1
)(1). As it is clear that ap` 6≡ 1 (mod Pp`+1

), the proof of the
desired result is completed. �

5.2. The Ext1-modules and t-modules. In this subsection, we will give an identification
between certain Ext1-modules and t-modules. The key ingredient and ideas exhibited
here are not new; actually they are due to G. Anderson, who shared his unpublished
notes with the authors. Elements of these constructions are also presented in the works
of Hartl and Pink [HP04] and Taelman [Ta10]. In what follows, we fix two r-tuples
s = (s1, . . . , sr) ∈ Nr and Q ∈ k[t]r satisfying (2.3.1). Associated these two r-tuples, we
let M (resp. M′) be the Frobenius module defined by Φ as in (2.3.4) (resp. Φ′ as in
(2.3.5)).

Theorem 5.2.1. Let {m1, . . . , mr} be a k[t]-basis of M′ on which the σ-action is presented by
the matrix Φ′. Let M ∈ Ext1

F (1, M′) be defined by the matrix(
Φ′ 0

f1, . . . , fr 1

)
.

Then the map

µ := (M 7→ f1m1 + · · ·+ frmr) : Ext1
F (1, M′)→ M′/(σ− 1)M′

is an isomorphism of Fq[t]-modules.

Proof. We first show that the map µ is well-defined. Suppose that M is trivial in Ext1
F (1, M′).

Equivalently, there exists u1, . . . , ur ∈ k[t] so that(
Ir

u1, . . . , ur 1

)(−1) ( Φ′
f1, . . . , fr 1

)
=

(
Φ′

1

)(
Ir

u1, . . . , ur 1

)
.
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The equation above is equivalent to

( f1, . . . , fr)(m1, . . . , mr)
tr =

(
(u1, . . . , ur)− (u(−1)

1 , . . . , u(−1)
r )Φ′

)
(m1, . . . , mr)

tr,

which is equivalent to

( f1, . . . , fr)(m1, . . . , mr)
tr = (σ− 1)

(
(−u1, . . . ,−ur)(m1, . . . , mr)

tr) .

So we have shown that µ is well-defined and also that µ is one to one. It is clear that µ
is Fq[t]-linear and also surjective. �

Now let us consider the n-th tensor power of the Carlitz module. The Frobenius
module associated to C⊗n is the n-th tensor power of the Carlitz motive denoted by
C⊗n := k[t], on which σ acts by

σ( f ) = (t− θ)n f (−1), f ∈ C⊗n.

As a k[σ]-module, C⊗n is free of rank n with basis
{
(t− θ)n−1, . . . , t− θ, 1

}
. From this

observation, it is not hard to check that the Frobenius module M′ fixed as above is a free
left k[σ]-module of rank d := (s1 + · · ·+ sr) + (s2 + · · ·+ sr) + · · ·+ sr, and{

(t− θ)s1+···+sr−1m1, · · · , (t− θ)m1, m1, . . . , (t− θ)sr−1mr, . . . , (t− θ)mr, mr

}
is a k[σ]-basis of M′. We further observe that (t − θ)N M′/σM′ = (0) for N � 0 and
hence M′ is an Anderson t-motive in the sense of [P08], which is called a dual t-motive
in [ABP04].

For such M′, we can identity M′/(σ − 1)M′ with the direct sum of d copies of k as
follows. Fixing a k[σ]-basis ν1, . . . , νd of M′ given as above, we can express any m ∈ M′
as

m =
d

∑
i=1

uiνi, ui ∈ k[σ],

and then we define ∆ : M′ → Matd×1(k) by

(5.2.2) ∆(m) :=

δ(u1)
...

δ(ud)

 ,

where

δ

(
∑

i
ciσ

i = ∑
i

σicqi

i

)
= ∑

i
cqi

i .

It follows that ∆ is a morphism of Fq-vector spaces with kernel (σ− 1)M′. We note that
if (a1, . . . , ad)

tr ∈ Matd×1(k), then there is a natural lift to M′, since

∆(a1ν1 + · · ·+ adνd) =

a1
...

ad

 .

As t(σ− 1)M′ ⊆ (σ− 1)M′, the map ∆ induces an Fq[t]-module structure on Matd×1(k).
We denote by (E′, ρ) the t-module defined over k with E′(k) identified with Matd×1(k),
on which the Fq[t]-module structure is given by

ρ : Fq[t]→ Matd(k[τ])
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so that

∆(t(a1ν1 + · · ·+ adνd)) = ρt

a1
...

ad

 .

For example, we consider C⊗n. As a k[σ]-module, C⊗n is free of rank n with basis{
(t− θ)n−1, . . . , t− θ, 1

}
. We let

∆n : C⊗n → Matn×1(k)

be defined as above with respect to this basis. For (a1, . . . , an)tr ∈ Matn×1(k), we let

f = a1(t− θ)n−1 + · · ·+ an−1(t− θ) + an,

so that ∆n( f ) = (a1, . . . , an)tr. Now

t f = (θa1 + a2)(t− θ)n−1 + · · · (θan−1 + an)(t− θ) + (aq
1 + θan) + (σ− 1)

(
aq

1

)
,

and thus multiplication by t on Matn×1(k) is given by

t ·

a1
...

an

 = ∆n(t f ) = [t]n

a1
...

an

 .

In this way we identify C⊗n/(σ− 1)C⊗n and C⊗n(k) as Fq[t]-modules. This identification
between an abelian t-module over k and the quotient of its associated dual t-motive
modulo σ− 1 is due entirely to Anderson. One sees it in [ABP04, §4] (see especially the
functor “ f (mod σ− 1)” in §4.1). See also [BP, §4.6], [CP11], [CP12] for other instances
of this phenomenon for Drinfeld modules.

To summarize, we have the following result.

Theorem 5.2.3 (Anderson). Let M′ be the Frobenius module defined by the matrix Φ′ in (2.3.5).
Let (E′, ρ) be the t-module with E′(k) identified with Matd×1(k), which is equipped with the
Fq[t]-module structure via ρ : Fq[t] → Matd(k[τ]) through the map ∆ as above. Then we have
the following isomorphism of Fq[t]-modules

M′/(σ− 1)M′ ∼= E′(k),

and in fact E′ is the t-module associated to the Anderson dual t-motive M′.

Remark 5.2.4. Combining the two theorems above we have that Ext1
F (1, M′) ∼= E′(k) as

Fq[t]-modules. Examples of this type of isomorphism were also studied by Ramachan-
dran and the second author [PR03] for extensions of tensor powers of the Carlitz module.
See also [S97, p. 529], [Ta10]. We further mention that in fact M′ is a rigid analytically
trivial Anderson t-motive as we have Ψ′(−1) = Φ′Ψ′ and so the corresponding t-module
E′ is uniformizable.

5.3. Reformulation of the criteria via t-modules.

Proposition 5.3.1. Let n be a positive integer. Then for any nonzero polynomial f ∈ A[t], we
have ∆n( f ) ∈ C⊗n(A). Equivalently, there exist a1, . . . , an ∈ A and g ∈ C⊗n so that

f = a1(t− θ)n−1 + · · ·+ an + (σ− 1)g.



EULERIAN MULTIZETA VALUES IN POSITIVE CHARACTERISTIC 23

Proof. We write f = ∑ fiθ
i with fi ∈ Fq[t]. Then via the Fq[t]-linear map ∆n we have

∆n(∑
i

fiθ
i) = ∑

i
[ fi]n∆n(θ

i) = ∑
i
[ fi]n

0
...
θi

 ∈ C⊗n(A).

�

Proposition 5.3.2. Let M′ be the Frobenius module defined by the matrix Φ′ in (2.3.5) with a
k[t]-basis m1, . . . , mr. Let {ν1, . . . , νd} be the k[σ]-basis of M′ given by

{
(t− θ)s1+···+sr−1m1, · · · , (t− θ)m1, m1, . . . , (t− θ)sr−1mr, . . . , (t− θ)mr, mr

}
.

Let Ξ be the set consisting of all elements in M′ of the form ∑d
i=1 eiνi, where ej = ∑n σnunj with

each unj ∈ A. Then for any nonzero f ∈ A[t] and any 1 ≤ ` ≤ r, we have that f m` ∈ Ξ.

Proof. We first prove the case when ` = 1. We divide f by (t− θ)s1+···+sr and write

f = g1(t− θ)s1+···+sr + γ1,

where g1, γ1 ∈ A[t] with degt γ1 < s1 + · · ·+ sr. So f m1 = g1σm1 + γ1m1 = σg(1)1 m1 +
γ1m1. Note that by expanding γ in terms of powers of (t − θ) we see that γ1m1 is an
A-linear combination of {ν1, . . . , νs1+···+sr}.

Next we divide g(1)1 ∈ A[t] by (t− θ)s1+···+sr and write

g(1)1 = g2(t− θ)s1+···+sr + γ2,

where g2, γ2 ∈ A[t] with degt γ2 < s1 + · · ·+ sr. So

σg(1)1 m1 = σ
(

g2(t− θ)s1+···+sr + γ2
)

m1 = σ2g(1)2 m1 + σγ2m2.

By expanding γ2 in terms of powers of (t − θ) we see that σγ2m2 ∈ Ξ. By dividing
g(1)2 by (t− θ)s1+···+sr and continuing the procedure as above inductively we eventually
obtain that f m1 ∈ Ξ.

Now for ` ≥ 2 we suppose that multiplication by any element of A[t] on mi belongs
to Ξ for 1 ≤ i ≤ `− 1. We prove that f m` ∈ Ξ by the induction on the degree of f in t,
and note that the result is valid when degt f ≤ s` + · · ·+ sr − 1 by expanding f in terms
of powers of (t− θ). So we suppose that degt f ≥ s` + · · ·+ sr.

We divide f by (t− θ)s`+···+sr and write

f = g1(t− θ)s`+···+sr + γ1,
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where g1, γ1 ∈ A[t] with degt γ1 < s` + · · ·+ sr. It follows that

f m` = g1(t− θ)s`+···+sr m` + γ1m`

= g1

{
σm` − H(−1)

s`−1−1(t− θ)s`−1+···+sr m`−1

}
+ γ1m`

= g1

{
σm` −

{
σHs`−1−1m`−1

− H(−1)
s`−1−1H(−1)

s`−2−1(t− θ)s`−2+···+sr m`−2

}}
+ γ1m`

...

= g1

{
σm` +

`−1

∑
i=1

(−1)iσβ1 · · · βim`−i

}
+ γ1m`,

where βi := Hs`−i−1 ∈ A[t] for i = 1, . . . , `− 1. It follows that

f m` = σg(1)m` +
`−1

∑
i=1

(−1)iσg(1)β1 · · · βim`−i + γ1m`.

However, by expanding γ1 in terms of powers of (t− θ) we see that γ1m` ∈ Ξ, and by
hypothesis ∑`−1

i=1 (−1)iσg(1)β1 · · · βim`−i ∈ Ξ. Thus, to prove the desired result we are
reduced to proving that g(1)m` ∈ A[t], which is valid by the induction hypothesis since
degt g(1) = degt g < degt f . �

Remark 5.3.3. By (5.2.2) we see that ∆(Ξ) ⊆ E′(A).

Now we put Q = (Hs1−1, . . . , Hsr−1), where Hi are the Anderson-Thakur polynomials
(see §4.1). We let vs ∈ E′(k) be image of M under the composition of isomorphisms

Ext1
F (1, M′) ∼= M′/(σ− 1)M′ ∼= E′(k).

Precisely,

vs := ∆
(

H(−1)
sr−1 (t− θ)sr mr

)
.

Theorem 5.3.4. For each r-tuple s = (s1, . . . , sr) ∈Nr, we have that
(a) The associated t-module E′ given above is defined over A;
(b) The point vs is an integral point in E′(A).

Proof. (a). Recall that M′ is the Frobenius module defined by Φ′ as in (2.3.5) with k[t]-
basis m1, . . . , mr. Put d = (s1 + · · ·+ sr) + · · ·+ sr and let {ν1, . . . , νd} be the k[σ]-basis of
M′ given by{

(t− θ)s1+···+sr−1m1, · · · , (t− θ)m1, m1, . . . , (t− θ)sr−1mr, . . . , (t− θ)mr, mr

}
.

We identify M′/(σ− 1)M′ with Matd×1(k) via the map ∆ with respect to ν1, . . . , νd.
Given any point (a1, . . . , ad)

tr ∈ E′(k), its corresponding element in M′/(σ− 1)M′ has
a representative of the form a1ν1 + · · ·+ adνd. We claim that the element

t
( d

∑
i=1

aiνi

)
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can be expressed as ∑d
i=1 biνi ∈ Ξ for which each bi is a of the form bi = ∑j σjcj so that

cj is an A-linear combination of q(·)-th powers of the a′ns. Then via the map ∆, the claim
implies that the t-module E′ is defined over A.

We observe that if some

νi /∈ S :=
{
(t− θ)s1+···+sr−1m1, . . . , (t− θ)sr−1+sr−1mr−1, (t− θ)sr−1mr

}
,

then
taiνi = ai(t− θ)νi + θaiνi = aiνi−1 + θaiνi.

Therefore we reduce the claim to the case of νi ∈ S . To simplify the notation, we denote

νi1 = (t− θ)sr−1mr, . . . , νir = (t− θ)s1+···+sr−1m1.

Now given any 1 ≤ ` ≤ r we consider tai`νi` = ai` t(t− θ)sr−(`−1)+···+sr−1mr−(`−1). Apply-
ing Proposition 5.3.2 to t(t− θ)sr−(`−1)+···+sr−1mr−(`−1) we see that tai`νi` can be written
as the form

ai`

d

∑
j=1

(
∑
ej

σej bej

)
νj =

d

∑
j=1

(
∑
ej

σej aqej

i`
bej

)
νj

for some bej ∈ A, whence the desired result follows.
(b). Note that

H(−1)
sr−1 (t− θ)sr mr = σHsr−1mr − H(−1)

sr−1 H(−1)
sr−1−1(t− θ)sr−1+sr mr−1

...

= H(−1)
sr−1

{
σmr +

r−1

∑
i=1

(−1)iσβ1 · · · βimr−i

}

= σHsr−1mr +
r−1

∑
i=1

(−1)iσHsr−1β1 · · · βimr−i,

where βi := Hsr−i−1 ∈ A[t] for i = 1, . . . , r− 1. Applying Proposition 5.3.2 to the right-
hand side of the equation above we see that

H(−1)
sr−1 (t− θ)sr mr ∈ Ξ.

Since vs = ∆
(

H(−1)
sr−1 (t− θ)sr mr

)
, the result follows from Remark 5.3.3. �

It follows that combining Theorems 4.2.2, 4.4.2, 5.2.1, and 5.2.3 we have the following
criteria.

Theorem 5.3.5. For any s = (s1, . . . , sr) ∈Nr, we have the following equivalence.
(1) ζA(s) is Eulerian.
(2) vs is an Fq[t]-torsion point in the t-module E′(A).

Finally Theorem 4.4.2 can now be transformed into the following concrete form:

Theorem 5.3.6. Given s = (s1, . . . , sr) ∈Nr with w := ∑r
i=1 si, put Q := (Hs1−1, . . . , Hsr−1)

and Q := Hw−1, where {Hn} be the Anderson-Thakur polynomials given in §4.1. Let M ∈ F
(resp. N ∈ F ) be defined by Φ given in (2.3.4) (resp. by the matrix given in (2.5.1)). Let M′ ∈
F be defined by Φ′ given in (2.3.5) with a k[t]-basis {m1, . . . , mr}, and (E′, ρ) be the t-module
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associated to M′. Put vs = ∆
(

H(−1)
sr−1 (t− θ)sr mr

)
∈ E′(A) and us = ∆

(
H(−1)

w−1 (t− θ)wm1

)
∈

E′(A). Then we have:
(a) If w is not divisible by q− 1, then we have that ζA(s) is zeta-like if and only if there exists

a, b ∈ Fq[t] (not both zero) so that ρa(vs) + ρb(us) = 0 in the t-module E′(A).
(b) If w is divisible by q− 1, then there exists nonzero a ∈ Fq[t] so that ζA(s) is zeta-like if

and only if ρa(vs) = 0 in the t-module E′(A).

Proof. Note that if w is not divisible by q − 1, then π̃w /∈ k∞ and hence the k-linear
dependence of {ζA(s), ζA(w), π̃w} is equivalent to that ζA(s)/ζA(w) ∈ k . Thus, the
result (a) follows from Theorem 4.4.2 and the identification Ext1

F (1, M′) ∼= E′(k). When
w is divisible by q− 1, we note that the zeta-like MZV’s are the same as Eulerian MZV’s
because of (1.0.1), and hence the result (b) follows from Theorem 5.3.5. �

Remark 5.3.7. In the case when the weight of ζA(s) is not divisible by q − 1, the two
integral points us and vs are not Fq[t]-torsion elements inside E′(A). If ζA(s) is zeta-
like, Fq[t]-linear relations between us and vs in Theorem 5.3.6 (a) can be actually found.
See [KL16].

6. The algorithm and rule specifying Eulerian MZV’s

Fix the base finite field Fq, as we are in positive characteristic p, multizeta values
satisfy ζA(s)

p = ζA(s1, . . . , sr)p = ζA(ps1, . . . , psr). Thus to investigate whether a given
MZV is Eulerian we may restrict ourselves to consider only primitive tuples s, in the
sense that not all si are divisible by p. As first example of Eulerian MZV of depth > 1,
we cite e.g. Thakur [T09b, Thm. 5, Thm. 4]

ζA(q− 1, (q− 1)2) =
1

[1]q−1 ζA(q2 − q),

where the Carlitz notation: [`] := θq` − θ, is adopted, and the depth two Eulerian MZV

ζA(q` − 1, q`(q− 1)) = ζA(q` − 1)ζA(q− 1)q` − ζA(q`+1 − 1).

This last relation has been extended inductively to arbitrary depth by Chen [Ch15] ,
yielding Eulerian MZV of arbitrary depth r with respect to any Fq. See (6.2.1).

Having Theorem 5.3.5 in our possession, we now write down an efficient algorithm
for deciding whether any given MZV is Eulerian.

6.1. The algorithm. In accordance with Corollary 4.2.3, we only consider the case of all
si divisible by q− 1 when working on Eulerian MZVs. The following theorem offers an
algorithm for Eulerian MZV’s.

Theorem 6.1.1. For any s = (s1, . . . , sr) ∈Nr with all si divisible by q− 1, we let

wi = sr−i + sr−i+1 + · · ·+ sr

for i = 1, . . . , r− 1. Let (E′, ρ) be the t-module and vs be the integral point in E′(A) given in
Theorem 5.3.6. We decompose

wi = p`i ni(qhi − 1)
so that p - ni and hi is the greatest integer for which qhi − 1 | wi. Put

a = (tqhr−1 − t)p`r−1 · · · (tqh1 − t)p`1 Γsr+1

Γsr

den(BC(sr))|θ=t.
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Then we have that ζA(s) is Eulerian if and only if ρa(vs) = 0.

Proof. Note that (⇐) follows from Theorem 5.3.5. We prove the result (⇒) by induction
on the depth r. When r = 1, we write s = s ∈N. We claim that vs is essentially the same
as the special point Zs in Definition 5.1.1, and so the result is valid by Remark 5.1.2. In
this case, we note that M′ = C⊗s and vs = ∆(H(−1)

s−1 (t− θ)s). We further note that

H(−1)
s−1 (t− θ)s ≡ Hs−1 mod (σ− 1),

which implies

vs := ∆
(

H(−1)
s−1 (t− θ)s

)
= ∆ (Hs−1) .

Let Hs−1 = ∑i≥0 hsiθ
i with hsi ∈ Fq[t]. Since the map ∆ induces an Fq[t]-module isomor-

phism between C⊗s/(σ− 1)C⊗s and C⊗s(k), and ∆ maps θ to the vector (0, · · · , 0, θi)tr ∈
C⊗s(A), we see that

vs = ∆ (Hs−1) = ∆

(
∑
i≥0

hsiθ
i

)
= ∑

i≥0
[hsi]n


0
...
0
θi

 = Zs.

So the result is valid by Remark 5.1.2.
Suppose that the result is valid for depth less than r. Let Φ′′ be the square matrix of

size r − 1 cut from the right lower square of Φ′ in (2.3.5), and let M′′ be the Frobenius
module defined by Φ′′. Therefore we have the exact sequence of Frobenius modules

0→ C⊗(s1+···+sr) → M′ � M′′ → 0.

For each s ∈ N, it is not hard to see that the Fq[t]-linear map (σ− 1) : C⊗s → C⊗s is
injective, and hence arguments of induction on r show that the Fq[t]-linear map (σ− 1) :
M′′ → M′′ is also injective. It follows that the snake lemma implies the exact sequence
of Fq[t]-modules

0→ C⊗(s1+···+sr)/(σ− 1)C⊗(s1+···+sr) → M′/(σ− 1)M′ � M′′/(σ− 1)M′′ → 0

Denote by (E′′, φ) the t-module underlying M′′/(σ − 1)M′′, and so we have the exact
sequence of Fq[t]-modules

0→ C⊗(s1+···+sr)(k)→ E′(k) � E′′(k)→ 0.

Denote by π the projection map E′(k) � E′′(k) given by

(a1, . . . , ad)
tr 7→ (aw+1, . . . , ad)

tr,

where d := (s1 + · · ·+ sr) + (s2 + · · ·+ sr) + · · ·+ sr and w := ∑r
i=1 si.

Put s′ = (s2, . . . , sr). We claim that vs′ = π(vs). Assume this claim first. We write
a = (tqhr−1 − t)p`r−1 b, where

b := (tqhr−2 − t)p`r−2 · · · (tqh1 − t)p`1 Γsr+1

Γsr

den(BC(sr))|θ=t,

then by the induction hypothesis we see that 0 = φb(vs′) = π(ρb(vs)) and hence

ρb(vs) ∈ Ker π = C⊗(s1+···+sr)(k).



28 CHIEH-YU CHANG, MATTHEW A. PAPANIKOLAS, AND JING YU

Since by Theorem 5.3.4 E′ and E′′ are defined over A and vs, vs′ are integral points,
ρb(vs) ∈ C⊗(s1+···+sr)(k)tor. Thus the result follows by Lemma 5.1.3.

Finally, we note that the claim above follows from the following commutative diagram

M′ ∆ // //

����

E′(k)

π����

M′′ ∆ // // E′′(k),

where M′ � M′′ is the projection map given by ∑r
i=1 fimi 7→ ∑r

i=2 fimi with fi ∈ k[t]. �

For any s = (s1, . . . , sr) ∈ Nr, let u = (u1, . . . , ur) ∈ (k×)r ∩Ds satisfy the hypotheses
of Theorem 4.3.2. Applying the same arguments above we obtain the following result.

Corollary 6.1.2. For any s = (s1, . . . , sr) ∈ Nr with all si divisible by q − 1, let u =
(u1, . . . , ur) ∈ (k×)r ∩Ds satisfy the hypotheses of Theorem 4.3.2. Put w0 := sr and write

w0 = p`0n0(qh0 − 1)

so that p - n0 and h0 is the greatest integer for which qh0 − 1 | w0. Let (h1, `1), . . . , (hr−1, `r−1)
be defined in Theorem 6.1.1. Put Q := u and let M′ be the Frobenius module defined by the
matrix (2.3.5) with a k[t]-basis {m1, . . . , mr}. Let (E′, ρ) be the t-module underlying associated
to M′ and vs := ∆

(
u(−1)

r (t− θ)sr mr

)
. Define a := ∏r−1

i=0 (t
qhi − t)p`i ∈ Fq[t]. Then we have

that the value Lis(u) is Eulerian if and only if ρa(vs) = 0.

Proof. The proof is outlined as

• The t-module (E′, ρ) is defined over k and vs is rational point in E′(k) using the
fact u ∈ (k×)r ∩Ds and following the arguments in Theorem 5.3.4.
• Note that for r = 1, we have E′ = C⊗sr from §5.2.
• In the case r = 1, we have that vs is an Fq[t]-torsion point in E′(k) if and only if

vs is (tqh0 − t)p`0 -torsion by Lemma 5.1.3.
• The result follows by following the induction arguments in the proof of Theo-

rem 6.1.1.

�

6.1.1. The algorithm. Here we provide the algorithm from Theorem 6.1.1. Given any
s = (s1, . . . , sr) ∈Nr with each si divisible by q− 1, we list the essential steps as follows.

(I) Compute the Anderson-Thakur polynomials Hs1−1, . . . , Hsr−1.
(II) Put Q = (Hs1−1, . . . , Hsr−1) and let M′ be the Frobenius module defined by Φ′

as in (2.3.5) with k[t]-basis m1, . . . , mr. Put d = (s1 + · · ·+ sr) + · · ·+ sr and let
{ν1, . . . , νd} be the k[σ]-basis of M′ given by

(t− θ)s1+···+sr−1m1, . . . , (t− θ)m1, m1, . . . , (t− θ)sr−1mr, . . . , (t− θ)mr, mr.

Identify M′/(σ− 1)M′ with Matd×1(k) via ν1, . . . , νd.
(III) Write down the t-action on M′/(σ− 1)M′, and so giving a t-module structure on

Matd×1(k), which we denote by (E′, ρ).
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(IV) Consider H(−1)
sr−1 (t − θ)sr mr ∈ M′/(σ − 1)M′, which corresponds to an integral

point vs = (a1, . . . , ad)
tr ∈ E′(A) from the decomposition H(−1)

sr−1 (t − θ)sr mr ≡
∑d

i=1 aiνi (mod σ− 1).
(V) Define the polynomial a as in Theorem 6.1.1, and then compute ρa(vs). If it is

zero, then ζA(s1, . . . , sr) is Eulerian; otherwise, ζA(s1, . . . , sr) is non-Eulerian.

6.1.2. Examples of (E′, ρ) and vs. We provide some examples of the explicit forms of
(E′, vs). The following are two examples associated to Eulerian MZV’s, i.e., vs is Fq[t]-
torsion in E′(A).

(1) Let q = 3, s = (2, 4). Then (E′, ρ) associated to ζ(2, 4) is given by

ρt =


θ 1 0 0 0 0 0 0 0 0
0 θ 1 0 0 0 0 0 0 0
0 0 θ 1 0 0 0 0 0 0
0 0 0 θ 1 0 0 0 0 0
0 0 0 0 θ 1 0 0 0 0
τ 0 0 0 0 θ 2τ 0 0 0
0 0 0 0 0 0 θ 1 0 0
0 0 0 0 0 0 0 θ 1 0
0 0 0 0 0 0 0 0 θ 1
0 0 0 0 0 0 τ 0 0 θ


and

vs = (0, 0, 1, 0, 1, (θ + 2θ3), 2, 0, 2, (2θ + θ3))tr.

(2) Let q = 2, s = (1, 2, 4). Then (E′, ρ) associated to ζ(1, 2, 4) is given by

ρt =



θ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 θ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 θ 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 θ 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 θ 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 θ 1 0 0 0 0 0 0 0 0 0 0
τ 0 0 0 0 0 θ τ 0 0 0 0 0 τ 0 0 0
0 0 0 0 0 0 0 θ 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 θ 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 θ 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 θ 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 θ 1 0 0 0 0
0 0 0 0 0 0 0 τ 0 0 0 0 θ τ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 θ 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 θ 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 θ 1
0 0 0 0 0 0 0 0 0 0 0 0 0 τ 0 0 θ


and

vs = (0, 0, 0, 0, 1, 1, (θ + θ2), 0, 0, 0, 1, 1, (θ + θ2), 0, 1, 1, (θ + θ2))tr.

The following are two examples associated to non-Eulerian MZV’s, vs is not Fq[t]-
torsion in E′(A).

(3) Let q = 3, s = (4, 2). Then (E′, ρ) associated to ζ(4, 2) is given by

ρt =


θ 1 0 0 0 0 0 0
0 θ 1 0 0 0 0 0
0 0 θ 1 0 0 τ 0
0 0 0 θ 1 0 0 0
0 0 0 0 θ 1 τ 0
τ 0 0 0 0 θ (θ+2θ3)τ 0
0 0 0 0 0 0 θ 1
0 0 0 0 0 0 τ θ


and

vs = (0, 0, 1, 0, 1, (θ + 2θ3 ), 0, 1)tr.
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(4) Let q = 3, s = (2, 2, 2). Then (E′, ρ) associated to ζ(2, 2, 2) is given by

ρt =



θ 1 0 0 0 0 0 0 0 0 0 0
0 θ 1 0 0 0 0 0 0 0 0 0
0 0 θ 1 0 0 0 0 0 0 0 0
0 0 0 θ 1 0 0 0 0 0 0 0
0 0 0 0 θ 1 0 0 0 0 0 0
τ 0 0 0 0 θ 2τ 0 0 0 τ 0
0 0 0 0 0 0 θ 1 0 0 0 0
0 0 0 0 0 0 0 θ 1 0 0 0
0 0 0 0 0 0 0 0 θ 1 0 0
0 0 0 0 0 0 τ 0 0 θ 2τ 0
0 0 0 0 0 0 0 0 0 0 θ 1
0 0 0 0 0 0 0 0 0 0 τ θ


and

vs = (0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1)tr.

6.2. Searching for the rules governing Eulerian MZV’s. Lara Rodrı́guez and Thakur [LRT14]
have given conjectures on which r-tuples (s1, . . . , sr) may occur for Eulerian MZV’s. Fur-
thermore, they also provided conjectural formulas for these special values. Computa-
tions based on implementing the above algorithm in Magma (by Yi-Hsuan Lin) have led
us to the following description of Eulerian MZV’s in arbitrary depth.

Fix prime power q, and call the sequence of r-tuples below Eulerian r-tuples with
respect to Fq:

Euler1 := (q− 1) and Eulerr+1 := (q− 1, q Eulerr) ∈Nr+1.

For each depth r, we introduce a sequence of r-tuples in Nr as follows:

Eulerr(`) := (q` − 1, q` Eulerr−1), for r > 1, ` ≥ 1,

and Euler1(`) := (q` − 1). Call this the canonical sequence of depth r with respect to Fq.
The corresponding MZV’s ζA(Eulerr(`)) are all Eulerian. This follows from the Euler-
Carlitz formula(1.0.1) and the following inductive formula of Chen [Ch15] for all r ≥ 2
and ` ≥ 1:

(6.2.1) ζA(Eulerr(`)) = ζA(q` − 1)ζA(Eulerr−1)
q` − ζA(Eulerr−1(`+ 1)).

Note that when q = 2, all depth one Carlitz zeta values ζA(n) are Eulerian, and ζA(s) is
Eulerian if and only if it is zeta-like. The following Eulerian multizeta values of arbitrary
depth r > 1 and weight 2r−1 have been found by Lara Rodrı́guez and Thakur [LRT14]:

(6.2.2) ζA(1, s) := ζA(1, 1, 2, . . . , 2r−1) =
1

[1]2r−1 [2]2r−2 · · · [r]
ζA(2r−1).

For q ≥ 3, we predict that the primitive Eulerian MZV’s of depth r ≥ 2 are precisely:
(1) The canonical family with every depth r ≥ 2, ` ≥ 1,

ζA(Eulerr(`)), of weight qr+`−1 − 1,

(2) An extra family in depth r = 2, ` ≥ 1,

ζA(q`(q− 1), q`+2 − 1− q`(q− 1)), of weight q`+2 − 1.

(3) An exceptional primitive Eulerian MZV in depth r = 2,

ζA(q− 1, (q− 1)2), of weight q2 − q.
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Thus for q ≥ 3 there should exist depth r > 1 primitive Eulerian MZV’s only in weights
q2 − q (depth 2), and q` − 1 (in any depth) for ` ≥ r. For depth r = 2, only in weights
q2 − q, q2 − 1, and each weight has only one primitive Eulerian MZV. For weight q` − 1,
` ≥ 3, each weight has two primitive Eulerian MZV’s, coming from the two families in
(1) and (2). Lara Rodrı́guez and Thakur [LRT14] have also given precise formulas (valid
for any q) for the family (2):

ζA(q`(q− 1), q`+2 − 1− q`(q− 1)) =
1

[1]q`(q−1)
ζA(q`+2 − 1).

In the case q = 2, we predict that the primitive Eulerian MZV’s are given by:
(1) The canonical family with every depth r ≥ 2, ` ≥ 1,

ζA(Eulerr(`)), of weight 2r+`−1 − 1.

(2) The extra family in depth r = 2, ` ≥ 1,

ζA(2`, 2`+2 − 1− 2`) weight 2`+2 − 1.

(3) Three exceptional primitive Eulerian MZV in depth r = 2:

ζA(1, 1), ζA(1, 3) = ζA(1, 2r − 1) =
(

1
[1][2]

+
1
[1]

)
ζA(4), and

ζA(3, 5) =
[2]2 + 1
[1]4[2]

ζA(8).

Thus primitive Eulerian pairs exist only in weights, 2, 3, 4, 7, 8, 2` − 1, ` ≥ 4. For
each weight 2` − 1, ` ≥ 3, there are exactly two primitive Eulerian pairs from the
two families. For weights 2, 3, 4, 8, each weight has only one primitive Eulerian
pair.

(4) There are exceptional primitive Eulerian MZV’s for depth r > 2 : ζA(1, s), where
s is a primitive Eulerian tuple of depth r − 1 and weight either 2r or 2r−1. Thus
for depth r > 3, in each weight 2r, 2r−1 there is only one exceptional primitive
Eulerian MZV. In the case of depth 3, there are two exceptional primitive Eulerian
of weight 8, and one exceptional primitive Eulerian of weight 4.

The exceptional sequence of primitive Eulerian MZV’s of weight 2r−1, r > 1, is
the one given in (6.2.2). That the above exceptional sequence of primitive MZV’s
of weight 2r consists only of Eulerians (first conjectured by Lara Rodrı́guez and
Thakur [LRT14]) is a consequence of the following formula of Chen [Ch15] :

ζA(1, s) = ζA(1, 3, 22, . . . , 2r−1) = ζA(1)ζA(1, 2, . . . , 2r−1) + ζA(1, 1, 2, . . . , 2r−2)2.

When r = 2, this last equality also goes back to Thakur [T09b, Thm. 8]
All MZV’s in the above list have been confirmed to be Eulerian by [Ch15] and [LRT14].

Our computations suggest that the above list exhausts all primitive Eulerian multizeta
values for Fq[θ]. In other words, any r-tuple s of depth r > 1, not accounted by our
list above should give non-Eulerian ζA(s). Previously in [LRT14], Lara Rodrı́guez and
Thakur had also collected data basing on continued fraction computations to decipher
the occurrence of Eulerian MZV’s, and made precise conjectures characterizing Eulerian
tuples. Their conjectures agree with the above list. Our “t-motivic” algorithm for de-
termining Eulerian multizeta values is rooted by an entirely different principle, runs a
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bit more efficiently and is completely algebraic. It allows us to do computations induc-
tively for higher depth because of the key Corollary 4.2.3, thereby leading to the above
description which we believe is a complete list.

Summary of data certified by our computations
All tuples s of depth r and weights w within the following respective bounds have been
checked for the Eulerian property. The answers agree with the description above and the
MZV’s in the complementary part of the list above are non-Eulerian. When 3 ≤ q ≤ 11,
all tuples having their weights within the bounds below have been checked, with no
restriction on their depths except q = 2.

q = 2, depth = 2, weight ≤ 256

q = 2, depth = 3, 4, 5, weight ≤ 128
q = 2, depth = 6, weight ≤ 64

q = 3, weight ≤ 243
q = 4, weight ≤ 256

q = 5, 7 weight ≤ q3

8 ≤ q ≤ 23, weight ≤ q2
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