AN EFFECTIVE CRITERION FOR EULERIAN MULTIZETA VALUES
IN POSITIVE CHARACTERISTIC
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ABSTRACT. Characteristic p multizeta values were initially studied by Thakur, who de-
fined them as analogues of classical multiple zeta values of Euler. In the present paper
we establish an effective criterion for Eulerian multizeta values, which characterizes when
a multizeta value is a rational multiple of a power of the Carlitz period. The resulting
“t-motivic”algorithm can tell whether any given multizeta value is Eulerian or not. We
also prove that if {4(s1,...,s,) is Eulerian, then {4 (s, .. .,s;) has to be Eulerian. This was
conjectured by Lara Rodriguez and Thakur for the zeta-like case from numerical data.
Our methods apply equally well to values of Carlitz multiple polylogarithms at algebraic
points and can also be extended to determine zeta-like multizeta values.

1. INTRODUCTION

In this paper we provide an effective criterion to determine when multizeta values in
positive characteristic are Eulerian. Our study is motivated by the celebrated formula
of Euler on special values of the Riemann zeta function at even positive integers: for
m € N,

_ —Bow 2mv/=1)""

{(2m) S

where By, € Q are Bernoulli numbers. In particular, we have {(2m)/ (27tv/—1) e Q
for m € IN. For an integer n > 1, Euler’s formula implies (trivially, since (n) is real)
that {(n)/(27ty/—1)" is rational if and only if 7 is even.

Multiple zeta values (henceforth abbreviated MZV’s), initially studied by Euler as
generalizations of special zeta values, are defined by the reciprocal power sums

(o)=Y

51 “ 0 Sr’
ny>>n>1 M ny

where s4,...,s, are positive integers with s; > 2. Here r is called the depth and w :=
Yi_qs;is called the weight of the presentation {(sy,...,s,). We call {(sy,...,s,) Eulerian

if the ratio {(s1,...,s)/ (27‘(\/ —1)w is rational (see [To4]). It is a natural question to ask
if there is a criterion for determining which MZV’s of depths at least 2 are Eulerian.

Date: May 26, 2016.

2010 Mathematics Subject Classification. Primary 11R58, 11J93; Secondary 11Gog, 11M32, 11M38.

Key words and phrases. Multizeta values, Eulerian, Carlitz tensor powers, Carlitz polylogarithms,
Anderson-Thakur polynomials.

The first author was partially supported by a Golden-Jade fellowship of the Kenda Foundation and
MOST Grant 102-2115-M-007-013-MY5. The second author was partially supported by NSF Grant DMS-
1200577. The third author was partially supported by MOST Grant 102-2119-M-002-002.

1



2 CHIEH-YU CHANG, MATTHEW A. PAPANIKOLAS, AND JING YU

Let A be the polynomial ring in the variable 6 over a finite field ]Fq with quotient
tield k. Let A be the set of monic polynomials in A and consider the series, for n € IN,

Ca(n) = T € Fyl(5)

n
LZEA+ a

These values, called Carlitz zeta values, are analogues of classical special zeta values. We
note that in this non-archimedean situation the series {4 (1) does converge in IF;((5)). Let
C be the Carlitz module and 7t be a fundamental period of C. Recall that in the function
tield setting C plays the role of the multiplicative group G;,, and 7 plays the role of

271/ —1. We denote by exp(z) = Lo 29 / D; the Carlitz exponential function, and by
I'h+1 € A (for non-negative integers n) the Carlitz factorials (see §4.1 for definitions).
In [Ca3s5], Carlitz derived an analogue of Euler’s formula. More precisely, we write
z BC(n) ,,

/4

where BC(n) € k are called Bernoulli-Carlitz numbers (see [Gog6]). Carlitz established
the formula
BC(n)

(1.0.1) Ca(n) = T "

if n € N is even (i.e., (1 — 1)|n). We note that 72" € FF4((3)) if and only if 1 is even, and so
Carlitz’s result implies that {4 (n)/ 7" € k if and only if n is even.

In [AT90], Anderson and Thakur related {4(n) to the last coordinate of the logarithm
of C®" (the n-th tensor power of the Carlitz module viewed as a Carlitz-Tate t-motive)
at an explicitly constructed integral point Z, (see §5.1.2). As a consequence, one has
that the rationality of {4(n)/7" is equivalent to Z, being IF,[t]-torsion. In this case,
it is clearly described when Z, is IF,[t]-torsion, and more precisely we have that Z,, is
an [F,[t]-torsion point if and only if n is even (see [ATgo, Prop. 1.11.2, Cor. 3.8.4] and
[Yug1, Thm. 3.1]). On the other hand, Yu showed that the transcendence of {4 (n)/7" is
equivalent to Z, being non-torsion (see [Yug1, Cor. 2.6]), whence deriving that {4 (n)/ 7"
is algebraic over k if and only if {4(n) /7" is in k.

Fors = (s1,...,s;) € IN', characteristic p multizeta values { 4 (s), defined by Thakur [To4],
are generalizations of Carlitz zeta values. We set

Cals) =) L !

& Ay € Fql(5))
where the sum is taken over r-tuples of monic polynomials ay,...,a, with dega; >
.-+ > dega,, r is called the depth and w := s1 + - - - + 5, is the weight of the presentation
Ca(s). These values are known to be non-vanishing by Thakur [Toga, Thm. 4]. As in the
classical case, Thakur called {4 (s) Eulerian if the ratio {4 (s) /7t is in k. We mention that
one encounters here the Eulerian multizeta values such as {4(q — 1, (g — 1)?), or {a(q —
1,(g—1)g,...,(g —1)g 1) (see [Togb, LRT14, Ch15]), as compared with the classical
Eulerian values {(2m,2m), {(2,2,---,2). In contrast to the classical story, we already
know that these ratios {4 (s)/ 7T are either rational or transcendental over k. Indeed, by
[C14, Cor. 2.3.3] we have that either {4(s)/7" is in k or {4(s) and 7 are algebraically
independent over k, generalizing the depth one results of [Yugy, CYoy]. However the
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“irrationality” remains a subtle question, i.e. verifying that a given specific even weight
multizeta value of depth r > 1 is not Eulerian.

The main result of the present paper (Theorem 6.1.1) is to give an effective criterion
for Eulerian multizeta values of arbitrary depth. Inspired by Anderson-Thakur [ATog],
for any r-tuple s = (s1,...,5,) € IN” we first explicitly construct an abelian f-module
E’ := E] defined over A, which is a higher dimensional analogue of a Drinfeld module
introduced by Anderson [A86], and an integral point vs € E’(A) such that {4(s) is
Eulerian if and only if v, is an [F,[t]-torsion point in E’(A). Furthermore, whenever
C(s) is Eulerian we find an explicit polynomial a; € IF,[t] that annihilates the integral
point v,. This allows us to establisht an algorithm for determining when a given MZV
is Eulerian or non-Eulerian. When r = 1, for each s € IN the special point v, is the same
as the special point Z; introduced by Anderson-Thakur previously.

In the classical case, Brown [Bi2b, Thm. 3.3] gave a sufficient condition for Eulerian
MZV’s in terms of motivic multiple zeta values, which are functions defined on the
motivic period torsor for the motivic Galois group of the mixed Tate motives over Z,
and whose images under the period map are the multiple zeta values in question. Given
any ((s1,...,5-) with even weight N, if the corresponding motivic multiple zeta value
¢™(s1,...,8y) is trivial under the operator Dy given in [B12b, (3.2)], then Brown proves
that {(sq,...,s,) is Eulerian. We note that Brown'’s condition is expected to be necessary
for Eulerian MZV’s but it is still a conjecture in the classical transcendence theory. We
further mention that there is a way in principle to check whether the action of Dy on
{™(s1,...,sr) is vanishing by applying [B12b, (3.4)], but it is not completely effective. We
thank Brown for correspondence regarding this effectivity issue, related details can be
located in [B12a].

Even in the classical case to date there is no conjecture that describes Eulerian MZV’s
precisely in terms of sy, ...,s,. Having our algorithm it seems still difficult to tell when
the integral point v, is an IF,[t]-torsion point in E’'(A) directly in terms of sy, ..., s, alone.
However an implementation of the algorithm in this paper does reveal a description of
Eulerian MZV’s inductively through the tuple (s1,...,s,) which will be discussed in §6.
In particular a notable consequence of the main result is the fact that if {4(s1,...,s,) is
Eulerian, then the r — 1 MZV’s, {a(s2,-..,5¢),...,{a(sr) are simultaneously Eulerian (see
Corollary 4.2.3). For the classical MZV’s, Brown’s theorem on a sufficient condition for
Eulerian MZV’s implies that {(3,1,...,3,1) is Eulerian (see [B12a, Rem. 4.8]). However,
¢(1) does not converge and so a naive analogue of the truncation result for the classical
Eulerian MZV’s does not make sense. It would be interesting to ask whether some sort
analogue of the characteristic p truncation is nevertheless valid for the classical Eulerian
MZV’s without 1 occurring in the coordinates.

The methods of constructing t-modules together with specific integral points which
are developed in this paper also enable us to investigate similar phenomena for zeta-like
multizeta values. As defined by Thakur, {4(sq,...,s,) is called zeta-like if the ratio

7

Za(se---,8r)/2a()_si)

i=1

is in k (equivalently it is algebraic over k by [C14, Thm. 2.3.2]). A criterion for zeta-
like MZV’s (see Theorem 5.3.6) is given in terms of IF,[t]-linear relations for the cor-
responding two integral points on our t-modules. Here we are also able to deduce
the fact that having {4(sy,...,s,) zeta-like implies that {4(sy,...,sr) must be Eulerian



4 CHIEH-YU CHANG, MATTHEW A. PAPANIKOLAS, AND JING YU

(see Corollary 4.4.3). This property was originally conjectured by Lara Rodriguez and
Thakur [LRT14]. We emphasize particularly that our criterion for zeta-like MZV’s leads
also to an effective algorithm. This has been worked out and implemented by Kuan and
Lin in [KL16].

In [C14], the first author defined Carlitz multiple polylogarithms (abbreviated CMPL’s)
that are generalizations of Carlitz polylogarithms studied in [AT9o]. Unlike the classi-
cal case, where there is a simple identity between multiple zeta values and multiple
polylogarithms at (1,...,1), the function field situation is more subtle. Anderson and
Thakur [AT9o] showed that each Carlitz zeta value (itself a multizeta value of depth one)
is a k-linear combination of Carlitz polylogarithms at integral points, and it is general-
ized in [C14] that MZV’s of arbitrary depth are k-linear combinations of Carlitz multiple
polylogarithms at integral points. Following the terminology of Eulerian multizeta val-
ues, we call a nonzero value of a CMPL at an algebraic point Eulerian if it is a k-multiple
of 7t raised to the power of its weight (see §4.3). In Theorem 4.3.2, we give a criterion to
determine which CMPL’s at algebraic points are Eulerian.

The main idea of this work comes from the perspective of t-motives. To handle the
k-linear relations among the MZV’s which interest us, we manage to lift these relations
in a t-motivic way to k(t)-linear relations among specific power series in t (where k
is a fixed algebraic closure of k), which can be viewed as simplified analogue of the
motivic MZV’s in the classical theory. The key tool we use to accomplish the process
is the linear independence criterion of [ABPo4, Thm. 3.1.1] (the “ABP-criterion”) that
has been used successfully in the last decade for dealing with transcendence/algebraic
independence questions in positive characteristic. The very fact that our motivic MZV’s
satisfy Frobenius (Galois) difference equations (by work of Anderson-Thakur [ATog])
also enables us to prove that the common denominator of the coefficients of the lifted
relations is in IF,[t]. This denominator gives rise to linear relations for the corresponding
algebraic points under the IF,[t]-action, and we exploit this phenomenon as much as we
can in §§2-3.

The paper is organized as follows. In §2, we first set up the necessary preliminaries
and state the criterion, Theorem 2.5.2, which equates the IF;(6)-linear dependence of
values of certain special series at t = 6 to IF,[t]-linear dependence of elements of certain

Ext'-modules. We apply [ABPos4, Thm. 3.1.1] to give a proof of Theorem 2.5.2 in §3.
We then apply Theorem 2.5.2 in §4 to establish the criteria for Eulerian MZV’s, CMPL’s
at algebraic points to be Eulerian and zeta-like MZV’s. Passing to t-modules in §5 we
reformulate these criteria. In §6, we further prove that our criterion for Eulerian MZV’s
yields an algorithm for determining whether any given MZV is Eulerian or non-Eulerian.
A rule specifying all Eulerian multizeta values is drawn from the data collected using
this algorithm.
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2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

2.1. Notation. We adopt the following notation.

IF, = the finite field with g elements, for g a power of a prime number p.
0, t = independent variables.

A = IF,[6], the polynomial ring in the variable 6 over F,.

Ay = set of monic polynomials in A.

k = IF,;(0), the fraction field of A.

koo = TF,((1/8)), the completion of k with respect to the place at infinity.
koo = a fixed algebraic closure of keo.

k = the algebraic closure of k in ke.

Cwo = the completion of ke with respect to the canonical extension of co.
|-l = a fixed absolute value for the completed field Cs so that [0]e = 4.
deg = function assigning to x € ke its degree in 6.

Co[t] = ring of formal power series in t over Ce.

Cw((t)) = field of Laurent series in f over Ce,.

T = ring of power series in Cu [[t] convergent on |f|e < 1, the Tate alge-

bra over Ce.

We consider the following characteristic p multizeta values defined by Thakur [To4]:
for any r-tuple of positive integers (s1,...,s,) € N,

1
(2.1.1) gA(Sl,...,Sr) :Zﬁ Ekoo,
al PR ar
where the sum is over (ay,...,ar) € A’ with dega; > --- > dega,. Thakur [Toga]

showed that each multizeta value is non-vanishing.

2.2. Frobenius modules. For an integer n, we consider the following automorphism of
the field of Laurent series over Co,, which is referred to as n-fold Frobenius twisting:

Col(t) — Cwlt),
f=Xatt = f0 = Ya0
We extend n-fold Frobenius twisting to matrices with entries in Co ((#)) by twisting entry-
wise.
We let k[t,0] = k[t][c] be the non-commutative k[t]-algebra generated by the new
variable ¢ subject to the relation

of = fVe, fekl.
We call a left k[t, o]-module a Frobenius module if it is free of finite rank over k[t]. Mor-
phisms of Frobenius modules are left k[t, c]-module homomorphisms. We denote by .%
the category of Frobenius modules.

For a non-negative integer 1, we denote by C*" € # the nth tensor power of the
Carlitz motive. The underlying k[t]-module of C®" is k[t], on which the action of ¢ is
given by

o(f) = (t—-0)"fY, fec

We then denote by 1 := C®Y, the trivial object of .7.
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In what follows, an object M in . is said to be defined by a matrix ® € Mat, (k[t]) if

M is free of rank r over k[t] and the g-action on a given k[t|-basis of M is represented by
the matrix ®. B
For a Frobenius module M, we consider the tensor product k() D M on which ¢

acts diagonally. It follows that k(t) Ry M becomes a left k(t)[o)-module, where k(t)|c]

is the twisted polynomial ring in o over k(t) subject to the relation oh = h(-V¢ for

h € k(t). The following proposition is a slight generalization of [Po8, Prop. 3.4.5], but it
is crucial while proving Theorem 2.5.2.

Proposition 2.2.1. For i = 1,2, let M; be a Frobenius module of rank r; over k[t] defined
by a given matrix ®; € Mat,, (k[t]) with respect to a fixed k[t|-basis m; of M;. Put .#; =
k(t) @y Mi for i = 1,2, and let f : M — > be a homomorphism of left k(t)[o]-modules.

With respect to the bases 1 @ my and 1 ® my, f is represented by a matrix F € Mat,, «r, (k[t]).

Suppose that det ®; = c;(t — 0)% for some ¢; € K ands; € Z>q fori = 1,2. Then the common
denominator of the entries of F is in IF,|[t].

Proof. (cf. proof of [Po8, Prop. 3.4.5]) Note that since f is k(t)[c]-linear, we have that

F-V®, = &;F.

For a matrix B € Mat,(k(t)), we denote by den(B) the monic least common multiple
of the denominators of the entries of B. Since by hypothesis det®; = cy(t — 0)*2 for

some ¢y € k" and s, > 0, we find that
den(F)(t — 6)2F(=) = den(F)(t — 0)2®; F®, ' € Mat,, ., (k[1]).

It follows that den(F(~1)) divides den(F)(t — 6)%2. As we have den(F(~1) = den(F)(-1),
it follows that deg,(den(F(=V)) = deg, (den(F)). Therefore, it suffices to show that
den(F(~1) is relatively prime to t — 6, since then den(F(~1)) = den(F), which implies
den(F) € IF,t].

If t — 6 divides den(F(~1), then t — 67 divides den(F). This forces t — 87 to divide
den (®1F), since otherwise t — 07 would divide det®; = c;(f — 0)*1. Likewise, t — 61
divides den(®1Fd,') = den(F (=1)). Repeating the same argument above shows that
den(F(~1)) is divisible by each of

F—0t—01t—0T ...

whence we obtain a contradiction since den(F(~1)) € k[t]. O

2.3. Frobenius modules connected to Carlitz multiple polylogarithms. Given a poly-
nomial Q := Y ;a;t' € k[t], its Gauss norm is defined as ||Ql|c := max; {|a;|e}. For an
r-tuple s = (sq,...,8,) € N’, we let Q := (Qy,...,Q,) € k[t]" satisfy the hypothesis that
as0<i, < <ip = oo,

1\ 41 N
(2.3.1) <|IQ1HOO/|9|Z§1/(’1 1)) (HQer/w‘z?/(q 1)> o
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Throughout this paper, we fix a fundamental period 7 of the Carlitz module C (see
[Gog6, To4]). We put

=4 2 t
Q(t) == (—0)1 1-—) € Cxlt],
0= o (1 5 ) € Calt
where (—9)‘1%1 is a suitable choice of (g — 1)-st root of —@ so that ﬁ = 7t (cf. [ABPog,
ATog]). We note that () satisfies the functional equation Q(~1) = (t — §)Q). Given r-tuples
s and 9 as above, we define the series
Zah)= Y (0vQ)" - (ano)™
i1>"'>i720
_ Qsl—i-m—i-s, Z Qr(‘ir) (t) . lel)(t) | ‘
im0 (E=09) . (F—07"))" . ((t—07)...(t—07"))"

We define & to be the ring consisting of formal power series Y°° ;a,t" € k[t] such
that

(2.3.2)

lim v |an|oo — 0, [koo (610,611,612,. . .) : koo] < 0.
n—oo

Then any f in & has an infinite radius of convergence with respect to |-|e, and func-
tions in & are called entire functions. It is shown in [C14, Lem. 5.3.1] that the series
%, defined above is an entire function. We note that when Q € (k*)" satisfies (2.3.1)
then 771715 &, (0) is the Carlitz multiple polylogarithm Li; evaluated at the algebraic
point 9. See §4.3 for additional details.

Proposition 2.3.3. Let s € IN" and Q € k[t|" satisfy the hypothesis (2.3.1). Then for any
non-negative integer n, we have that

Zia(07) = Zia(0)7.

Proof. The proof is essentially the same as the proof of [C14, Lem. 5.3.5] by changing u;
to Q;. We omit the details. O

Let r be a positive integer. We fix two r-tuples s € N" and 9 € k[t]” satisfying (2.3.1).

We define the matrix ® = ®, o € Mat,1(k[t]),

(£ —g)stter 0 0 0

Qg—l) (t _ 9)51+...+Sr (t _ 6)52+"'+5r 0 o 0

(2.3.4) @ = 0 Qg_l)(t _ 9)52+"'+SV :
: (k-0 0

0 e 0 Qﬁ_l)(t —0) 1

Define @' = @, , to be the square matrix of size r cut from the upper left square of ®:
-1) feeits So+--ts
o ()
(2.3.5) @' = .
QS:})(t _ 9)5,,14—5, (t—6)s

In what follows, to avoid heavy notation we omit the subscripts s, Q when it is clear
from the context.
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For 1 </ <j<r+1, we define the series

(2.3.6) Luty= ¥ (@) (@) e s,

l‘[>"'>l‘]'_1 >0

which is the same series in (2.3.2) associated to the two tuples (s, ...,s;_1) and (Qy, ..., Qj_1)-

Define ¥ € Mat,1(&) NGL,41(T) by
Q1+ +sr
Q52+"’+5r9g21 QS22+ +sr

( ) . : QS3+"'+Sr$3/2
2.3.7 = . . .. .. ’

0%, O %o . QS
Lr41)1 L2 0 Ly 1

and note that we have ¥(-1) = ®Y¥ (cf. [AToy, §2. 5]). Let ¥’ be the square matrix of size

r cut from the upper left square of ¥. So then ¥/(-1) = ®'¥’. Note that ® defines an
object in .# which is a t-motive in the sense of [Po8].

2.4. The Ext!'-module. We continue the notation from the previous paragraphs. We
denote by M and M’ the objects in .# defined by the matrices ® and &’ respectively.
Note that M fits into the short exact sequence of Frobenius modules,

0O->M ->M—>1-0,

and so M represents a class in Ext}; (1, M'). The group Ext;(1, M’) has a natural F,|[t]-
module structure coming from Baer sum and the pushout of morphisms of M'. More
precisely, if M; and M, represent classes in Ext';(1,M’) and are defined by the two

matrices respectively
P 0 P 0
P1 = (Vl 1) o P2i= (vz 1) ’

then the Baer sum M; +p Mj is the object in .% defined by the matrix

P’ 0
vi+vy 1)/)°
Furthermore, for any a € ]Fq[ ] multiplication by 4 induces an endomorphism of M’, and
so the pushout a * My € %, which is defined by the matrix

d 0
aviy 1/’
thus inducing a left IF,[f]-module structure on Ext’; (1, M').

2.5. The main theorem. We continue with the notation as above, but assume that » > 2.

We let w := Y'_; s; and let Q € k[t] satisfy ||Q[|e < |9|wq/ 71 We further assume that
the series .%, (t) € & associated to w and Q is non-vanishing at t = 6. We let N € .%#
be the Frobenius module that is defined by the matrix

(2.5.1) (fu/] (1)> € Mat, 1 (k[t]),
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where u, := (Q(_l)(t — 6)“’,0,...,0) € Maty,,(k[t]). Then N represents a class in
Ext; (1, M').

The following result gives a criterion for the k-linear dependence of the specific val-
ues { % a(0), Z,0(0),1}, which is applied to the settings of Eulerian MZV’s, Eulerian
CMPL’s at algebraic points, and zeta-like MZV’s in §4. Its proof occupies the next sec-
tion.

Theorem 2.5.2. Let r > 2 be a positive integer. We fix two r-tuples s € IN" and Q € k[t]"
satisfying (2.3.1). Let M and M’ be the objects in .F defined by the matrices ® and &', as in
(2.3.4) and (2.3.5). For 1 < £ <j<r+1, welet £, be defined as in (2.3.6) and suppose that
it satisfies the non-vanishing hypothesis

(25.3) Z;0(0) # 0.

We let w := Y'_;s; and let Q € k[t] satisfy ||Q|le < |9|wq/ T and Zwo(0) # 0. Let
F be defined by the matrix given in (2.5.1). Then the following hold.

(a) The set {Zq(0), Lw,q(0),1} is linearly dependent over k if and only if the classes of
M and N are Fy[t)-linearly dependent in Ext'; (1, M'), i.e., there exists a,b € Fq[t] (not
both zero) so that a x M +p b x N represents a trivial class in Ext'; (1, M').

(b) If { Z:a(0), Lu,o(0),1} are linearly dependent over k, then each of £5112(0), ..., Lry1,-(0)
is in k.

Remark 2.5.4. Let notation and hypotheses be given as above. If ¢1.%; q(0) + 2%, o(0) +
c3 = 0 with c1,¢2,¢3 € k and ¢; # 0, then we can find a,b € IF;[t] with a # 0 so that a *
M +pb* N represents a trivial class in Ext'; (1, M’) as can be seen from the construction
of a in the proof of Theorem 2.5.2 (a) (=) (note that in this situation f,1(6) # 0 in

8§ 3.2).

Remark 2.5.5. Note that the k-linear dependence of {,2”5 a(0), Zw0(0),1} is equivalent
to the k-linear dependence of {".%, o(0), %%, 0(0), 7¥}. We mention that the val-
ues 1Y%, q(0), %, 0(0) satisfy the MZ property w1th weight w in the sense of [C14,
Def. 3.4.1]), and hence by [C14, Prop. 4.3.1] we have that {.% (), %, o(6),1} are lin-
early dependent over k if and only if they are linearly dependent over k. We further
apply [C14, Prop. 4.3.1] for {74 o(0), T} and hence we have that .Z; () € k if and
only if %, () € k.

For the applications to Eulerian MZV’s and Eulerian CMPL’s at algebraic points we
single out the following result, which is a special case of the theorem above.

Corollary 2.5.6. Let notation and assumptions be given as in Theorem 2.5.2. Then we have that
Zen(0)(= Z1411(0)) is in k if and only if M represents a torsion element in the IF[t]-module

Extl; (1, M').

Proof. The proof of (=) is given in the case (II) of the proof of (=) of Theorem 2.5.2(a).
The proof of (<) follows from the proof of (<) of Theorem 2.5.2(a) by putting b = 0. O
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3. PROOF OF THEOREM 2.5.2

3.1. A remark. For a, b € F,|t], the Frobenius module a + M +p b * N is defined by the
matrix

(3.1.1) X = (cﬁ’ (1)) € Mat, 1 (k[t]),

where u := (bQ(_l)(t —0)v,0,.. .,O,aQﬁfl)(t — 9)57) € Maty ., (k[t]). It follows that the

Frobenius module 2 x* M +p b« N represents a trivial class in Ext; (1, M’) if and only if
there exists 4y, ...,d, € k[t] so that

1 =D 1
G1.2) b x= (") o,
5 - (5; 1 5 - 5; 1
which is equivalent to that
sri= 0y (E— )"+, QI (= 0)" +bQC D (£ — )
55 1= 60 (¢ — gytror 4 5TV QED (¢ — gyt
(3.1.3)
Dt =gyt 15 70QI (¢ — gyt
Ut —0) +aQ " V(t — ).

3.2. Proof of Theorem 2.5.2 (a)(=). Suppose that { %, q(0), %, 0(6),1} are linearly de-

pendent over k. Our goal is to find a,b € F,t] (not both zero) and 6y, ...,5, € k[t]
satisfying the equations (3.1.3).
Define the matrix

1
D= @ € Mat, 3(k[t])
Q-V(t—0)»,0,...,0 1

1
Qs1++sr
5 Qs+ 2 |

and put

Zri11
-iﬂw,Q

Then we have the difference equations 1}7(_1) = <T>1;bv. Note that £, 111 = % q.
Case (). Z111(0) ¢ k (which is equivalent to .Z,11(0) ¢ k by Remark 2.5.5). Since
{La(0), ZLu,(0),1} are linearly dependent over k, by [ABPo4, Thm. 3.1.1] there exists

f= (fo, f1 -+, frea) € Maty, (13 (K[H])
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so that fy = 0 and f(0)(f) = 0, which describes a nontrivial k-linear relation among
{La(0), Zu0(0),1}. Note that

fi(8) = = £,(6) =0.
Now we assume that f,;2(6) # 0. Note if f,12(6) = 0, then we have that
{Z0(0) = Z411(0),1}

are linearly dependent over k, i.e., %11(0) € k, and this case will be included in the
case (II) below.

If we put f := ﬂLﬁf € Matlx(r+3)(E(t)), then all entries of f are regular at t = 0.

Considering the Frobenius twisting-action (-)(~1) on the equation f§ = 0 and subtracting
the resulting equation from fy = 0, we obtain

(3.2.1) (f - f<—1>éf>) $=0.

Explicit calculations show that f—f-Vop = (B,By,...,B:11,0), where
B :— _fo —( fo )(—1)

=75 (5
(=1) w =1 (-1 w — w
Bi= o () -0 () Q-9 -Qt o)
 f £ Y st _ [\ D) Soetsr.
By= o () o () Qe

(3.2.2)

b= () o= (7)o e

Bri1:= <fr+2 N fr+2>(1)'
B

We claim that B = B; = - - - = B,;1 = 0. Assuming this claim first, we see that
1 1) 1
1 (1 1
(3-2.3) . ¢ = P : .
fO/fH-Z f7‘+1/fr+2 1 fO/fr—i-Z fr+1/fr+2 1

Let M be the Frobenius module defined by the matrix ®. Then the equation (3.2.3) gives
a left k(t)[c]-module homomorphism between k(t) e (1®M®1) and k(1) e M. Tt
follows from Proposition 2.2.1 that the denominator of each f;/ f,1> is in IF4[t] for i =
0,...,7+ 1. Now we let b € IF4[t] be the common denominator of fo/ fr42,..., fre1/ frio,
and take 0; := bf;/f,+2 € k[t] fori = 1,...,r. Note that the vanishing of B,,; implies
fre1/ fre2 € Fy(t) and hence a := bf,1/f,42 € Fy[t]. Multiplying by b on the both
sides of (3.2.2) one finds exactly the identities (3.1.3), which imply that a * M +pb* N
represents a trivial class in Ext; (1, M').
To prove the claim above, we consider (3.2.1), which is expanded as

(3.2.4) B+ By Q¥ 4 Byt 4 4 BOY L 4 By L1 = 0.
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For each 1 </ < j < r+1 and any non-negative integer n, by Proposition 2.3.3

n n

(3-2:5) Z(07) = Z,(0)7,

which is nonzero by hypothesis. Since B and each B; are rational functions in k(t), B
and B; are defined at t = 61" for sufficiently large integers n. We further note that Q) has
a simple zero at t = 67 for each positive integer i. Specializing (3.2.4) at t = 69" shows
that B(8") = B,,1(67") = 0 for any n > 0 because of .%,,11(0) ¢ k. It follows that
B =B,+1 =0.

Next, dividing (3.2.4) by Q° and then specializing at t = 61", we see from (3.2.5) that
B,(an) = 0 for all sufficiently large integers n. It follows that B, = 0. Furthermore,
using (3.2.4) and repeating the arguments above we can show that B,_; = --- = B; =0,
whence the desired claim.

Case (II). .Z,111(0) € k. In this case, we apply [ABPo4, Thm. 3.1.1] to the difference
equations

1 (=1 1
Q1+ +sr Q1+ +sr
g | Q2T _ (1 CD) Qette g |
ZLi11 L1

for the k-linear dependence of {1,.Z,.11(6)}. So there exists f = (fo, f1,..., fr+1) €
Maty, (;42) (k[t]) for which f = 0 and £(8)y(0) = 0 represents the k-linear dependence
of 1 and .%,111(6). Then the arguments are similar in this case as in the previous one

when putting f := fyLHf’ and we omit them. Moreover, they exactly show that the class of

M is an a-torsion element in Ext; (1, M’), where a € F[t] is the common denominator
of fo/ fr+1,..., fr/ fr+1 in this case.

3.3. Proof of Theorem 2.5.2 (a)(<=) and (b). Suppose that there exist a,b € Fg[t] (not
both zero) for which a + M +p b * N represents a trivial class in Ext';(1, M’). Note that
a*x M +pbx* N is defined by the matrix given in (3.1.1). Let ¥’ be the square matrix of
size r cut from the upper left square of ¥, so that ¥/(~1) = ®'¥’. Define

QS1t sy
QSZ+...+Sr$2 1 QSZ_’_...J'_SV
053+---+sr$32
Y = . ' s
eriﬂnl er"%’,z Qsr
1L 0L 4Ly, 0 o a1

and note that Y(=1) = XY.
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Since the class of a* M +p b * N is trivial in Ext;(1, M), there exist éy,...,6, € k[t]
satisfying (3.1.2). Putting

1

and Y’ := Y, we then have Y/'(-1) = (¢ 1) Y. Since also

(") =)

it follows from [Po8, §4.1.6] that there exist vy, ..., v, € F4(t) so that
g’ I
! r
Y _< 1) (Vl,...,l/r 1)'

v = 51051+"'+Sr + 52052+"'+Sr.,?2/1 4+ -4 érQSr 1 + aZ’Jrl,l + bgw/Q’
vy = 52052+"'+57 + 53QSS+-..+579%’2 4+ 4+ 5rQSr 2 + ﬂ$+1,2;

This then implies that

(3.3.1)
Vo1 = 6 QT 15,0 L+ a Ly ,1;
vy =6 +aLiq
We note that in fact each v; is in FF,[t], since the right-hand side of each equation above
is in the Tate algebra T. For any positive integer 1, by specializing both sides of (3.3.1)

att = 07" and using (3.2.5) together with the fact that () has a simple zero at t = 87", we
obtain that

(3-3:2) :
v (0)7 = v, 1 (07) = (a(0) Lrs1,-1(0)7
v (0)7 = v, (07) = (a(0).L41,(0))" .

Since we are working in characteristic p, taking the g"-th root of both sides of (3.3.2)
shows that .2, 11 1(0)(= % a(0)), Lu,o(0) and 1 are linearly dependent over k, and each
of Z112(0),...,%41,(0) is rational in k.

4. APPLICATIONS TO MULTIZETA VALUES AND MULTIPLE POLYLOGARITHMS

In this section, we apply Theorem 2.5.2 to establish criteria for MZV’s and CMPL’s at
algebraic points to be Eulerian and for MZV’s to be zeta-like.
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4.1. Anderson-Thakur polynomials. Define Dy = 1and D; : Hl ! (9‘7 - 9‘7]) fori € IN.
For a non-negative integer 1, we express 1 as

n= Zniqi 0<n; <g—1,n=0fori>0),
and we recall the definition of the Carlitz factorial,
FTI+1 = HD?Z € A
i=0

We put Go(y) := 1 and define polynomials G, (y) € Fyt, y] for n € IN by the product

n

Guly) =TT (" 7).

i=1

Note that G,i1(y7) = (t — )" Gp(y)".
For n =0,1,2,... we define the sequence of Anderson-Thakur polynomials H, € A[t]
by the generating function identity

-1
i G(G) i s Hn
(1 a Z Dil‘ﬂztxq > B Z <
i=0

=0 Fn—i—l ‘9:15

We note that for 0 < n < g — 1 we have H, = 1. We have made a change of notation by
t < T, 0 < y from [AT9o, (3.7.1)] in order to match better the notation in [ATog], [C14].
It is shown in [AT90 3 7.3] that when one regards H, as a polynomial in 6 over FF[t],

one has degy, H, < 1, whence

(4.1.1) [ Hylloo < |9|”‘7/ 9-1)

The crucial identity developed in [ATgo], [ATo9] is that

IS
(Hs_1Q°) 4 () = % Vs € N,d € Z
where S;(s) is the power sum
1
Sd(S) = Z E € k.
acAy
dega=d

It follows that if we put Q = (Hg,—1, ... Sr_l) then by (4.1.1) Q satisfies the hypothesis
(2.3.1). Furthermore, specialization of the series

Sa= Y (H, ). (QoH, )™
i1> >0y >0

at t = 0 is equal to
Fsl A rsrCA(Sll . .,Sr)/ﬁsl—’_“.—i_sr.
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4.2. A criterion for Eulerian MZV’s. We continue with the notation defined in the pre-
vious section. Given s = (sy1,...,5,) € N, we let Q = (H,,—1,...,Hs,—1) and M (resp.
M') be defined by @ as in (2.3.4) (resp. by @’ as in (2.3.5)). For this choice of Q each
series .Zj ; defined in (2.3.6) evaluates at t = 6 as

Z0(0) =Ts, -+ Ts; ,Galse,. .. s5-0) /7T

These values are non-vanishing by the work of Thakur [Toga, Thm. 4], and so it satisfies
the non-vanishing hypothesis (2.5.3). In particular,

D%’Jrl,l(g) =Ty - T, Ca(s1,-- -,Sr)/ﬁ51+--~+5r

0%’4-1,2(9) = r52 ce I‘SrgA(SZI o ,Sr)/ﬁ52+"'+sf
(4.2.1)

Zf—l—l,r(g) = rsrgA(Sr)/ﬁfsr-

Note that the hypotheses in Theorem 2.5.2 are satisfied and thus applying Corol-
lary 2.5.6 in this situation, we obtain the following criterion to determine when a given
multizeta value is Eulerian.

Theorem 4.2.2. The multizeta value (A (s1, - - - ,Sr) is Eulerian if and only if the class of M is a
torsion element in the F,[t|-module Ext (1, M').

Applying Theorem 2.5.2(b), we obtain additional information about when a given
multizeta value is Eulerian.

Corollary 4.2.3. Let (s1,...,s;) € IN" with r > 2. Suppose that {a(s1,...,Sr) is Eulerian.
Then the following hold.

(a) Each of the multizeta values

gA(SZ/ .- -IST)/ CA(S3/ .- -151’)/ R gA(SI’)
is also Eulerian.
(b) Each {a(s;) is also Eulerian for i =1, ...,r. That is, each s; is divisible by g — 1.

Proof Using (4.2.1), part (a) follows from Theorem 2.5.2(b). For part (b), we note that
" € koo if and only if (9 —1) | n. If z; A(s1,...,s;) is Eulerian, then part (a) implies
that so are {a(sa,...,5r), Ca(s3,...,S¢),...,Ca(s). Therefore, we have the divisibility
relations

@@= [(s1+-+5) ..., (a-1)| (Sr 1+57), (4—1) [ s
It follows that each s; is divisible by g — 1 for i = 1,...,r, and so each {4(s;) is Eulerian
by the original results of Carlitz [Ca35]. O

4.3. Application to multiple polylogarithms at algebraic points. We now consider Car-
litz multiple polylogarithms [C14], which are generalizations of Carlitz polylogarithms [Ca35,
ATgo]. We state a criterion to determine when a nonzero Carlitz multiple polylogarithm
at an algebraic point is Eulerian and show how to deduce it from Corollary 2.5.6.

Define Ly := 1 and L; := (8 —89)---(§ — 87) for i € N. Given an r-tuple of positive
integers s = (s1,...,s,) € IN’, its associated Carlitz multiple polylogarithm, abbreviated
CMPL, is defined by

i

qu Zqu
) o 1 T Zr

(431) ng(Zl, cen ,Zr) = Z Sl—Lsr
i1>->0,>0 ~i i
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We further denote by
Dg := {u=(uy,...,u) € C, | Lis(u) converges},
the convergence domain of Li;. We can describe ID; as

‘7

DEZ{UECZO |Ll1/ 711 ‘ql ‘Mr/ 1

- —>Oas()§ir<---<i1—>oo}.

The weight of Li, is defined to be wt(s) := Y7, s; and its depth is defined to be r. We do
not know whether Lis(u) is non-vanishing for arbitrary u € D, but it is non-vanishing
when u lies in the smaller domain

Siq
D, := {(ul,...,ur) € CL | |uiloo < giTfori= 1,...,1’}

(see [C14, Remark 5.1.5]).

As a generalization of the work of Anderson and Thakur [ATgo], the first author of
the present paper showed that for any s = (s1,...,5:) € IN", {a(s1,...,5r) is a k-linear
combination of Lis at some integral points in A" NID, [C14, Thm. 5.5.2]. From now on, we
fix an r-tuple s = (s1,...,s,) € N"and u = (uy,...,u,) € (k*)" NDs, and suppose that
Lis(u) # 0. Following the terminology for multizeta values, we shall call Lis(u) Eulerian
if the ratio Lig(u) /A" lies in k. Note that it is shown in [C14] that Lis(u) /A" € k
if and only if Lig(u)/7A""®) € k.

We put Q :=u = (uy,...,u,) and let M (resp. M’) be the Frobenius module defined
by ® as in (2.3.4) (resp. ¥’ as in (2.3.5)). For 1 <i < j <r, we put

Liﬁl’j (uZ]) = Li(Si,...,S]') (ui’ ccv u])

Note that in this setting we have %, o(0) = Lis(u)/7A"*), and hence Lis(u) is Eulerian
if and only if .Z, o(0) € k. Applying Corollary 2.5.6 and Theorem 2.5.2(b), we obtain the
following result.

Theorem 4.3.2. Forany s = (s1,...,s;) € N and u = (uy,...,u,) € (k*)" N1D;, we let M
and M’ be defined as above. Suppose that Lis; (w;j) is nonzero for all 1 < i < j < r. Then we
have

(a) Lis(u) is Eulerian if and only if M represents a torsion element in the IF,[t]-module
Extl; (1, M').
(b) If Lig(u) is Eulerian, then each of Li(s,,.. 5, (up,...,uy),...,Lis (u,) is also Eulerian.

4.4. Applications to zeta-like multizeta values. In this section we apply Corollary 2.5.6

to confirm a conjecture of Lara Rodriguez and Thakur. As defined by Thakur a multizeta
value (4(s1,...,s,) withweightw := Y!_; s; is called zeta-like if the ratio {4 (s1,...,5r)/Ca(w)
is algebraic over k. Note that if {4(sq,...,s,) is zeta-like, then by [C14, Cor. 2.3.3] the
ratio {4 (s1,...,5r)/Ca(w) is actually in k.

4-4.1. Zeta-like MZV’s. For a multizeta value {4 (s1, ..., Sr), Lara Rodriguez and Thakur [LRT14]
conjectured the following assertion.

Conjecture 4.4.1. If {4(s1,...,5;) is zeta-like, then {A(sy, ..., sy) is Eulerian.

In what follows, we confirm this conjecture stated as Corollary 4.4.3, which is a conse-
quence of the following theorem. For more conjectures concerning zeta-like MZV’s, we
refer the reader to [LRT14].
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4.4.2. The setting and results. Given s = (s1,...,s;) € N’, put Q = (Hs—1,...,Hs,—1)
and Q := Hy_1, where {H,} be the Anderson-Thakur polynomials given in §4.1 and
w =Y ;5;. Note that

gw,Q (9) _ ngA (w) ,

ﬁw
and so by (4.1.1) the conditions of Theorem 2.5.2 are satisfied.
Let M € .7 (resp. N € .%) be defined by ® given in (2.3.4) (resp. by the matrix given
in (2.5.1)). Then applying Theorem 2.5.2 we have the following criterion.

Theorem 4.4.2. Let s = (s1,...,s,) € IN" with r > 2, and let notation be given as above. Then
we have that {{A(s1,...,5r),Ca(w), T} are linearly dependent over k if and only if the classes
of M and N are Fo[t]-linearly dependent in Exty (1, M).

Corollary 4.4.3. If (a(s1, ..., ) is zeta-like, then each of
gA(S2,...,Sr),gA(Sg,...,Sr) ...,gA(Sr)

is Eulerian. In particular, each of s, ..., s, is divisible by q — 1.
Proof. Note that
Zea(0) =Ts, - Ts.0als1,.-.,5) /T, Lp,0(0) = Twla(w) /7
and for each2 </ <,
Lri10(0) =Ts, - Ts.Ca(Se, ..., 8) /T,

Since by hypothesis {4(s1,...,sr) is zeta-like, the result follows from Theorem 2.5.2(b).
U

Remark 4.4.4. In this remark, we give an algebraic illustration for the result in the corol-
lary above. For an r-tuple s = (s1,...,5,) € N" withr > 2 and w := }/_; 5;, we continue
the notation M, N5, M above but we add the subscript s to emphasize that these objects
are associated to s. We put s’ := (s,...,s,) and let My, M_, be those objects above asso-
ciated to s’. It is shown in the proof of Theorem 6.1.1 that one has the exact sequences
of IF;[t]-modules fitting into the following commutative diagram (via Theorem 5.2.1):

0 — Ext}; (1,C®%) ——— Ext!; (1, M}) —— Ext}; (1, M},) ——0

lg jg | lu

0—=C®%/ (0 —1)C% —— ML/ (0 — 1)M}, —"> M.,/ (¢ — 1)M], —=0,

5/
and note that w(M;) = M.

Denote by {mj,...,m,} the given k[t]-basis of M’ on which the action of ¢ is repre-
sented by @, given in (2.3.5) for the chosen 9 above. Then by Theorem 5.2.1 we have
that N, € Ext}; (1, M)) is identified with Q=1 (t — 6)¥my in M./ (o —1)M. , and which
is mapped to zero under 77’ since 7’ is induced from the natural projection My — M,
given by Y gim; — Y, gim;. It follows from the commutative diagram above that
N; € Ker 7.

Suppose that {4(s) is zeta-like. Then by Remark 2.5.4 there exist a,b € FF4[t] with
a # 0 so that a * M, + b * N, represents a trivial class in Extl; (1, M%). It follows that
mm(a*Ms+b*N,) = a* M,y represents a trivial class in Ext) (1, M), and hence by
Theorem 4.2.2 { 4(s’) is Eulerian.
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5. OPERATING ON {-MODULES

The purpose of this section is to reformulate our criteria via t-modules.
5.1. The structure of rational torsion points of C*",

5.1.1. Definition of t-modules. We first review the definition of t-modules [A86]. Let T =
(x = x7) : Coo — Co be the Frobenius g-th power operator and let Co[7] be the twisted
polynomial ring in T over Cs subject to the relation Ta = a7 for &« € Cw. For a
positive integer d, a d-dimensional t-module is a pair (E, ¢), where E is the d-dimensional
algebraic group GY and ¢ is an [F,-linear ring homomorphism

¢ : Fy[t] = Maty(Cuo[7])

so that when we write ¢; = &g + Y; &;7° with a; € Maty(Cw), &g — 01, is a nilpotent
matrix. In this way, E(Ce) is equipped with an IF;[t]-module structure via the map ¢.
For a subring R C Cs containing A, we say that the -module E is defined over R if «;
lies in Mat,(A) for all i > 0.

For any d-dimensional t-module (E, ¢), Anderson [A86] showed that one has the FF-

linear function expy : C% — CY, satisfying that for z = (z1,...,z4)" and any a € F[t],
¢ expp(z) = z (mod degree q)
® expg(9¢a(z)) = ¢a (expg(z)),

where d¢, is the differential of the morphism ¢, at the identity element of E. If expy is
surjective, then E is called uniformizable.

5.1.2. Anderson-Thakur special points. For a positive integer n, the n-th tensor power of
the Carlitz IF,[t]-module denoted by C*” is an n-dimensional t-module defined over A
together with the IF;-linear ring homomorphism

[-]n : Fy[t] = Mat, (Ceo[T])

given by
[t]n = 01, + N, + Eu7,
where
0 1 --- 0 0 --- --- 0
N, := , Ep:=
: o1 : :
0 -+« --- 0 1 v oo 0

Note that for n = 1, the definition above is the Carlitz FF,[t]-module C. It is shown
in [ATgo, Cor. 2.5.8] that C®" is uniformizable and the kernel of expcs, is a rank one
IF;[t]-module (via the d[a],-action) with a generator of the form

*
A= | eCL.
7’:[1’1

To find the connection with { 4 (#), Anderson and Thakur defined the following special
points (see [AT9o, (3.8.2)]).
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Definition 5.1.1. For each positive integer n, we let H, 1 € Alt] be the Anderson-Thakur
polynomial in §4.1. We write H,_1 = Y ;>0 hyi0" with hy,; € Fy[t]. Then we define

0
i>0
and call it an Anderson-Thakur special point.

It is shown in [ATgo, Thm. 3.8.3] that there exists a vector of the form

rngA(n)
so that
expeon(zn) = Zn.

Remark 5.1.2. For a positive integer n even, we put

r
a:= 1’1“ denBC (1) |g—,

n

where den BC(n) denotes the denominator of the n-th Bernoulli-Carlitz number. Then
by the formula (1.0.1) of Carlitz, the property that Ker expce. is a rank one [F,[t]-module,
the functional equation expcen(9[a]yz) = [a], (expcen(2z)) and [Yug1, Thm. 2.3], we see
that Z, is an a-torsion point in C*"(A).

5.1.3. The structure of C®" (k)or. For any nonzero polynomial f € IF4[t], denote by C*"[f]
the set of f-torsion elements:

CoM[f] = {x € C"(k) = K" | [flu(x) = 0}
We further define the set of rational torsion points of con.
C®"(k)or := {x € C®"(k) = k" | [f]n(x) = 0 for some nonzero f € F,[t]}.

Note that in [AT9o, Prop. 1.11.2] Anderson and Thakur showed that C®" (k)i is trivial
if n is odd (ie., (9 — 1) 1 n). The following result is the structure of C*"(k)ir when n is
even, and we thank Y.-L. Kuan for providing us a proof of the following lemma.

Lemma 5.1.3. Let n be a positive integer divisible by q — 1. We decompose n = p‘ny (q" — 1)
where p t ny and h is the greatest integer such that (q" — 1) | n. Then

C®n(k)t0r = H C®n[Ppl]’
deg P|h

where the product runs through all monic irreducible polynomials P € IF4[t] with deg P | h. In
particular, the Fitting ideal of the finite IFq[t]-module C®" (k)ior is generated by (tqh - t)PZ.
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Proof. For any nonzero f € F,[t], let (IF[t]/f)*" be the group of the n-th powers
of elements of (IF,[t]/ f)>< By [AT9o, Prop. 1.11.1] one knows that the Galois group
Gal (k (C®"[f]) /k) is isomorphic to (IFg[t]/f)"". It follows that C®"[f] C C®"(k) if and
only if the group (IFq[t]/f) ™" is trivial.

Note that the group (IF4[t]/P) “" is non-trivial if deg P { h. Thus, to prove the lemma
it suffices to show that the group (IF,[t]/ PPZ)X” is trivial and (IF,[t]/ PPM)X” is non-
trivial for any monic irreducible polynomial P with degP | h. Suppose that deg P | h.
Let (qu[t]/Ppé)(l) be the kernel of the natural map from (]Fq[t‘]/Pp[)>< to (IF,[t]/P)*.
Then theégroup (I, [t]/ PPY* s isomorphic to the direct product of (IF,[t]/P)* and
(F,[t]/P?")(V). Since deg P | h, the group (F,[t]/P)*" is trivial. Note that every element
in (IF,[t]/ sz)(l) can be represented by a polynomial of the form a = 1+ bP with b €
IF;[t]. Then

ni(q"—1)

. <(1 n bP)pe>n1(qh_1) _ <1 N bpzppz) _1 (mod sz)’

and hence the group (IF,[t]/ PP')*" is trivial. On the other hand, we now consider
a = 1+ P. Since (]Fq[t]/PPEH)(l) is a p-group, a" # 1 in (A/Pp“l)(l) if and only if

a? #1in (IFq[t]/PPéH)(l). As it is clear that a? # 1 (mod PPM), the proof of the
desired result is completed. O

5.2. The Ext!-modules and t-modules. In this subsection, we will give an identification
between certain Ext'-modules and t-modules. The key ingredient and ideas exhibited
here are not new; actually they are due to G. Anderson, who shared his unpublished
notes with the authors. Elements of these constructions are also presented in the works
of Hartl and Pink [HPo4] and Taelman [Ta1io]. In what follows, we fix two r-tuples

s = (s1,...,5) € N" and Q € k[t]" satisfying (2.3.1). Associated these two r-tuples, we
let M (resp. M’) be the Frobenius module defined by ® as in (2.3.4) (resp. @’ as in

(2.3.5)).

Theorem 5.2.1. Let {my,...,m,} be a k[t]-basis of M’ on which the o-action is presented by
the matrix ®'. Let M € Ext;(1, M') be defined by the matrix

(flr-q-)irfr (1))

pi= (M fimy +---+ fim,)  Ext (1, M) — M’/ (e — 1)M’

Then the map

is an isomorphism of IF,[t]-modules.

Proof. We first show that the map y is well-defined. Suppose that M is trivial in Extl (1, M").
Equivalently, there exists uy,...,u, € k[t] so that

I Ve (P I
uy, ... uy 1 fi,o- fr 1) 1 Uy, ..., uy 1)°
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The equation above is equivalent to

(i ) (ma, .. my) = ((ul,...,ur) . (u§—1>,...,u£‘”)q>') (my, ..., m)",

which is equivalent to

(fr,oor fr)(ma, oo ,mp)® = (0= 1) ((—uq, ..., —up)(mq, ..., mp)").
So we have shown that u is well-defined and also that u is one to one. It is clear that u
is IF,[t]-linear and also surjective. O

Now let us consider the n-th tensor power of the Carlitz module. The Frobenius
module associated to C®" is the n-th tensor power of the Carlitz motive denoted by
C®" := k[t], on which ¢ acts by

o(f) = (t=0)"fY, fecom
As a k[o]-module, C®" is free of rank n with basis {(t—6)""1,...,t—6,1}. From this
observation, it is not hard to check that the Frobenius module M’ fixed as above is a free
left k[c]-module of rank d := (s1+---+s,)+ (so+---+5s;)+---+5;, and

{(t — o)t Ty (b= ) my,my, .., (E—0)  my,, (E— G)mr,mr}

is a k[o]-basis of M’. We further observe that (t — 0)NM’' /oM’ = (0) for N > 0 and
hence M’ is an Anderson t-motive in the sense of [Po8], which is called a dual t-motive
in [ABPog].

For such M/, we can identity M’/ (¢ — 1)M’ with the direct sum of d copies of k as

follows. Fixing a k[c]-basis vy, ..., vy of M’ given as above, we can express any m € M’
as

d
=Y uv, u;€klo],
i—1

and then we define A : M’ — Maty,; (k) by

6(u1)
(5.2.2) A(m) :< s )
6(ug)

where ‘ ‘
§<Zciai = Zaic?i) = Zc?l.
i i i

It follows that A is a morphism of F;-vector spaces with kernel (o — 1)M’. We note that
if (a,...,a;7)" € Matyyq(k), then there is a natural lift to M’, since

aj
Alavy + -+ +agvy) = () .
aq

Ast(c —1)M' C (0 —1)M’, the map A induces an FF4[t]-module structure on Mat; (k).
k

We denote by (E’,p) the t-module defined over k with E’(k) identified with Maty, (k),
on which the IF;[t]-module structure is given by

o : Fy[t] — Maty(k[7])

~.
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so that

a
A(t(avy + - - - +agvy)) = ps ( : ) :

aq

For example, we consider C®". As a k[o]-module, C*" is free of rank n with basis
{(t—0)""1,...,t—6,1}. We let

Ayp : C®" — Mat, 1 (k)
be defined as above with respect to this basis. For (a1,...,a,)" € Mat,, 1 (k), we let
f=a(t—0)""14+ - Fa, 1(t—0)+ay,
so that A, (f) = (ay,...,a,)". Now
tf = (0ay +ap)(t—0)" 1 + - (Bay—1 + an) (t — 0) + (a] + 0a,) + (o — 1) (a)),

and thus multiplication by t on Mat,, 1 (k) is given by

a 1
t'(f) An(tf)[t]n(f)~

In this way we identify C®" /(0 —1)C®" and C®" (k) as IF,[t]-modules. This identification
between an abelian t-module over k and the quotient of its associated dual t-motive
modulo ¢ — 1 is due entirely to Anderson. One sees it in [ABPog4, §4] (see especially the
functor “f (mod o —1)” in §4.1). See also [BP, §4.6], [CP11], [CP12] for other instances
of this phenomenon for Drinfeld modules.

To summarize, we have the following result.

Theorem 5.2.3 (Anderson). Let M’ be the Frobenius module defined by the matrix ®' in (2.3.5).

Let (E',p) be the t-module with E'(k) identified with Maty1(k), which is equipped with the

IF, [t]-module structure via p : F;[t] — Mat,(k[T]) through the map A as above. Then we have
the following isomorphism of I, [t]-modules

M /(e —1)M" = E'(k),
and in fact E' is the t-module associated to the Anderson dual t-motive M'.

Remark 5.2.4. Combining the two theorems above we have that Ext'; (1, M’) = E'(k) as
IF;[t]-modules. Examples of this type of isomorphism were also studied by Ramachan-
dran and the second author [PRo3] for extensions of tensor powers of the Carlitz module.
See also [S97, p. 529], [Ta10]. We further mention that in fact M’ is a rigid analytically
trivial Anderson t-motive as we have ¥/(-1) = &%’ and so the corresponding t-module
E’ is uniformizable.

5.3. Reformulation of the criteria via f-modules.

Proposition 5.3.1. Let n be a positive integer. Then for any nonzero polynomial f € Alt], we
have Ay (f) € C®"(A). Equivalently, there exist ay, ..., a, € A and g € C®" so that

f:al(t—é)”*l—i—---—l—an—i—((7—1)g.
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Proof. We write f = Y f;6 with f; € F4[t]. Then via the IF,[t]-linear map A, we have

0

An(Zfiei) = Z[fi]nAn(@i) = Z[fz]n D€ C¥"(A).
1 1 1 91

O

Proposition 5.3.2. Let M’ be the Frobenius module defined by the matrix @' in (2.3.5) with a
k[t)-basis my, ..., m,. Let {v1,...,v4} be the k[c]-basis of M' given by

{(t —g)stts Ty (b= O)my,my, .., (E—0)  my, ., (E— 0)my, mr} .

Let B be the set consisting of all elements in M’ of the form Zfl:l ejv;, where e; =3, 0"'uy,; with
each u,; € A. Then for any nonzero f € Alt] and any 1 < £ <'r, we have that fm, € E.

Proof. We first prove the case when ¢ = 1. We divide f by (t — 6)%17 %% and write

f=81(t=0)1T T 4,

where g1mnm € A[t] with degt 71 < 81 —+ -+ 5. So fml = q10m; +’)/1m1 — O'ggl)ml +

y1m1. Note that by expanding -y in terms of powers of (f — 0) we see that y;m; is an
A-linear combination of {vy,..., Vs 4.4, }.

Next we divide ggl) € A[t] by (t — 0)511 " *5 and write

4 = -0,
where g7, 72 € A[t] with deg, y2 < s1+ -+ 5. So

ogiVmy = o (g2(t— 05 4 4) my = 2gMmy + oyamy.

By expanding 1, in terms of powers of (¢ — ) we see that oy,my € E. By dividing

gél) by (t — 0)%17 "5 and continuing the procedure as above inductively we eventually

obtain that fm; € &.

Now for ¢ > 2 we suppose that multiplication by any element of A[t] on m; belongs
to Z for 1 <i < ¢ —1. We prove that fm, € Z by the induction on the degree of f in ¢,
and note that the result is valid when deg, f < s+ --- +s, — 1 by expanding f in terms
of powers of (t — ). So we suppose that deg, f > s, + - - + 5.

We divide f by (t — 0)%" "5 and write

f=g(t =0y 4oy,
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where g1, 71 € A[t] with deg, y1 < sy + - -- +s,. It follows that

frmg = g1 (t—0)"" " rmy 4 yymy
1
=81 {Umf — Hgé,l)_ﬂt — )1 +S’me-1} +y1my
= gl{amﬁ - {UHsf,l—ﬂW—l

~H ) (= 6y o m g |

sp-1—177"spo—1

01 ,
=81 {‘TW + ) (=1)'ops- "ﬁime—i} + y1my,
i—1

where B; := H,, .1 € Aft] fori=1,...,¢ — 1. It follows that

-1 ,
fmg =ogWmy+ Y (—=1)'ogMBy -+ Bimy_i + yimy.
i=1
However, by expanding 77 in terms of powers of (f — 0) we see that y3my € E, and by
hypothesis Y/~ 1(—1)'cgM By --- Bimy_; € E. Thus, to prove the desired result we are
reduced to proving that ¢V m, € A[t], which is valid by the induction hypothesis since
deg, ¢! = deg, g < deg, f. O

Remark 5.3.3. By (5.2.2) we see that A(E) C E'(A).
Now we put Q = (Hs,_1,...,Hs,—1), where H; are the Anderson-Thakur polynomials

(see §4.1). We let v; € E'(k) be image of M under the composition of isomorphisms
Ext (1, M) = M'/(c —1)M' = E'(k).
Precisely,
Ve i=A (H(__ll)(t - B)Srmr> .

Sr

Theorem 5.3.4. For each r-tuple s = (s1,...,s,) € IN”, we have that

(a) The associated t-module E' given above is defined over A;
(b) The point v is an integral point in E'(A).

Proof. (a). Recall that M’ is the Frobenius module defined by @’ as in (2.3.5) with E[t]—
basis my,...,m;. Putd = (s +---+s;) + - - +s, and let {vy,...,v;} be the k[c]-basis of
M’ given by

{(t — o)t Ty (b= ) my,my, ., (= 0) T my, L, (E— 0)my, mr} )

We identify M’/ (0 —1)M’ with Mat;, (k) via the map A with respect to vy, ..., v4.

Given any point (ay,...,a4)" € E'(k), its corresponding element in M’/ (¢ — 1) M’ has
a representative of the form ayvy + - - - + a4v45. We claim that the element

t (lé am)
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can be expressed as 2?21 b;v; € E for which each b; is a of the form b; = Y gl ¢j so that

¢j is an A-linear combination of q"")-th powers of the a/,s. Then via the map A, the claim
implies that the +-module E’ is defined over A.
We observe that if some

Vi ¢ S = {(t gyt (b — @) S L (f— G)Sf’lmr} ,

then
tayv; = a;(t — 0)v; + O0a;v; = av;_1 + Oa;v;.
Therefore we reduce the claim to the case of v; € .. To simplify the notation, we denote

Vip = (t — 9)57—1mr, ceey Vi = (t _ 9)51+"'+Sr_1m1,

Now given any 1 < / < r we consider ta;,v;, = a;,t(t — 9)57*<H>+'"+S’_1m,_(4_1). Apply-

ing Proposition 5.3.2 to t(t — )% (-0t 1y,

as the form

r—(¢—1) we see that ta; v;, can be written
d d w

e; _ e; .

ai ) | Lot | vi =), | Loa b | v;
=L\ =1 \¢

j=1
for some bej € A, whence the desired result follows.

(b). Note that
H (8= 0)*m, = oH,, ym, — HOVHTY (8= 0)%1F5rm,

sp—1 sp—177s,_1—1

r—1 )
= H§;11) {O’mr + 2(—1)1751 e ,Bimr—i}
i=

r—1 )
= aHsr,lmr + Z(_l)lUHsrfl,Bl .- -,Bimr_,-,
i=1
where B; := H; .1 € Aft] fori =1,...,r — 1. Applying Proposition 5.3.2 to the right-
hand side of the equation above we see that

H) (t—6)m, € E.
Since v = A (H S(:_ll) (t— G)Sfmr> , the result follows from Remark 5.3.3. O

It follows that combining Theorems 4.2.2, 4.4.2, 5.2.1, and 5.2.3 we have the following
criteria.

Theorem 5.3.5. For any s = (sy,...,s,;) € IN", we have the following equivalence.
(1) Ca(s) is Eulerian.
(2) v, is an IFy[t]-torsion point in the t-module E'(A).
Finally Theorem 4.4.2 can now be transformed into the following concrete form:

Theorem 5.3.6. Given s = (s1,...,s,) € N withw := Y ;s;, put Q := (Hg;—1,...,Hs 1)
and Q := Hy,_1, where {H,} be the Anderson-Thakur polynomials given in §4.1. Let M € .F
(resp. N € F) be defined by ® given in (2.3.4) (resp. by the matrix given in (2.5.1)). Let M’ €
F be defined by ® given in (2.3.5) with a k[t]-basis {my,...,m,}, and (E', p) be the t-module
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associated to M'. Put v, = A (Hé__ll)(t — G)S’mr> € E'(A)andus = A (Hz(u__ll)(t - 9)wm1) €
E'(A). Then we have:
(a) If wis not divisible by q — 1, then we have that { 4(s) is zeta-like if and only if there exists
a,b € TFy[t] (not both zero) so that p,(Vs) + pp(us) = 0 in the t-module E'(A).
(b) If w is divisible by q — 1, then there exists nonzero a € Fy[t| so that {4 (s) is zeta-like if
and only if p,(vs) = 0 in the t-module E'(A).

Proof. Note that if w is not divisible by g — 1, then &% ¢ ko and hence the k-linear
dependence of {Ca(s),la(w), T} is equivalent to that {4(s)/la(w) € k . Thus, the
result (a) follows from Theorem 4.4.2 and the identification Ext'; (1, M’) = E/(k). When
w is divisible by g — 1, we note that the zeta-like MZV’s are the same as Eulerian MZV’s
because of (1.0.1), and hence the result (b) follows from Theorem 5.3.5. O

Remark 5.3.7. In the case when the weight of {4(s) is not divisible by g — 1, the two
integral points u; and v, are not IF,[t]-torsion elements inside E'(A). If {4(s) is zeta-

like, IF,[t]-linear relations between u; and v, in Theorem 5.3.6 (a) can be actually found.
See [KL16].

6. THE ALGORITHM AND RULE SPECIFYING EULERIAN MZV’s

Fix the base finite field IF;, as we are in positive characteristic p, multizeta values
satisfy {a(s)? = Ca(s1,...,5:)" = Ca(ps1,-..,psr). Thus to investigate whether a given
MZV is Eulerian we may restrict ourselves to consider only primitive tuples s, in the
sense that not all s; are divisible by p. As first example of Eulerian MZV of depth > 1,
we cite e.g. Thakur [Togb, Thm. 5, Thm. 4]

1
Cala =10 = 1)) = g=lald® — )
where the Carlitz notation: [/] := 07 — 0, is adopted, and the depth two Eulerian MZV

240" = 1,4'(q = 1) = 840" = DZalg = D = 2alg"™ = 1),
This last relation has been extended inductively to arbitrary depth by Chen [Ch15] ,
yielding Eulerian MZV of arbitrary depth r with respect to any IF;. See (6.2.1).
Having Theorem 5.3.5 in our possession, we now write down an efficient algorithm
for deciding whether any given MZV is Eulerian.

6.1. The algorithm. In accordance with Corollary 4.2.3, we only consider the case of all
s; divisible by 4 — 1 when working on Eulerian MZVs. The following theorem offers an
algorithm for Eulerian MZV’s.

Theorem 6.1.1. For any s = (s1,...,s;) € IN" with all s; divisible by g — 1, we let
W; = Sr—i+S—iy1+ - +5
fori=1,...,r —1. Let (E',p) be the t-module and v be the integral point in E'(A) given in
Theorem 5.3.6. We decompose
w; = pin;(q" — 1)
so that p { n; and h; is the greatest integer for which g" — 1 | w;. Put
- r- r
a= (11" P t)P“;r—“den(BC(sr)n@:t.

Sy
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Then we have that { o(s) is Eulerian if and only if pa(vs) = 0.

Proof. Note that (<) follows from Theorem 5.3.5. We prove the result (=) by induction
on the depth r. When r = 1, we write s = s € IN. We claim that v; is essentially the same

as the special point Z; in Definition 5.1.1, and so the result is valid by Remark 5.1.2. In

this case, we note that M’ = C® and v; = A(H, §:11 ) (t — 0)%). We further note that

HS(:ll)(t —0)°=H;_1mod (0 —1),
which implies
Vo= A (ngl”(t - 9)5) = A(Hs_q).

Let Hi_1 = Y50 hs;0' with hy; € IF;[t]. Since the map A induces an IF;[t]-module isomor-

phism between C®* /(0 — 1)C® and C**(k), and A maps 6 to the vector (0, --,0,6))" €
C®5(A), we see that

0
Vg — A (Hsfl) = A (2 hSi9i> — Z[hsi]n O = ZS-
i>0 i>0 Qi

So the result is valid by Remark 5.1.2.

Suppose that the result is valid for depth less than r. Let ®” be the square matrix of
size r — 1 cut from the right lower square of @’ in (2.3.5), and let M" be the Frobenius
module defined by ®”. Therefore we have the exact sequence of Frobenius modules

0 — CE®Ert=ts) 5 pM/ o M — 0.

For each s € IN, it is not hard to see that the [F,[t]-linear map (¢ — 1) : C®® — C®9 is
injective, and hence arguments of induction on r show that the IF,[t]-linear map (o —1) :
M" — M" is also injective. It follows that the snake lemma implies the exact sequence
of IF,[t]-modules

O N C®(Sl++5r)/(0—_ 1)C®(51++5r) N M//(O,_l)M/ s M///(O__ 1)M// N 0
Denote by (E”,$) the t-module underlying M”/(c —1)M”, and so we have the exact
sequence of IF,[t]-modules

0 — CBbrtts) (k) — E'(k) — E" (k) — 0.

Denote by 7 the projection map E’(k) — E” (k) given by
(a1,...,a9)" = (apyr,...,a9)",

whered := (s1+---+5s,)+(so+---+s)+ ---+s,andw:= )] ;5.
Put s’ = (sp,...,5;). We claim that v, = 7t(vs). Assume this claim first. We write

a= (tthfl - t)p[Hb, where

- . T
b= (tqh 2 _ t)P/ 2. (tth - t)F’[1 ij—“den(BC(Sr)”e:t,

Sr

then by the induction hypothesis we see that 0 = ¢}, (vy) = 7(op(Vs)) and hence
pb(Vs) € Kert = C®(Sl+"'+s,)(E)'
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Since by Theorem 5.3.4 E' and E” are defined over A and v, v, are integral points,

0p(vs) € CEE1H+5) (k). Thus the result follows by Lemma 5.1.3.
Finally, we note that the claim above follows from the following commutative diagram

M —2- F'(k)

|k

M & (E)
where M’ — M" is the projection map given by Y-I_, fim; — YI_, fym; with f; € k[t]. O

For any s = (s1,...,s;) € N, letu = (uy,...,u,) € (k*)" N D, satisfy the hypotheses
of Theorem 4.3.2. Applying the same arguments above we obtain the following result.

Corollary 6.1.2. For any s = (s1,...,s,) € IN" with all s; divisible by q — 1, let u =
(u,...,ur) € (k)" NDg satisfy the hypotheses of Theorem 4.3.2. Put wy := s, and write

wo = pne(q" — 1)

so that p { ng and hy is the greatest integer for which g" — 1 | wq. Let (hy,€1), ..., (h—1,4r—1)
be defined in Theorem 6.1.1. Put Q := u and let M’ be the Frobenius module defined by the
matrix (2.3.5) with a k[t]-basis {my,...,m,}. Let (E’, p) be the t-module underlying associated
to M' and vy := A <u£71)(t — 9)S’mr>. Define a := Hlt(}(t”’h" — P e IF, [t]. Then we have
that the value Lis(u) is Eulerian if and only if ps(vs) = 0.

Proof. The proof is outlined as

e The t-module (E’, p) is defined over k and v is rational point in E’(k) using the
fact u € (k*)" N D, and following the arguments in Theorem 5.3.4.

e Note that for r = 1, we have E/ = C®* from §5.2.

e In the case r = 1, we have that v, is an [F,[f]-torsion point in E’(k) if and only if
v is (#7° — £)P°-torsion by Lemma 5.1.3.

e The result follows by following the induction arguments in the proof of Theo-
rem 6.1.1.

O

6.1.1. The algorithm. Here we provide the algorithm from Theorem 6.1.1. Given any
s = (s1,...,5r) € IN" with each s; divisible by g — 1, we list the essential steps as follows.

(I) Compute the Anderson-Thakur polynomials Hy, _1, ..., Hs,_1.

(II) Put Q = (Hs—1,...,Hs,—1) and let M’ be the Frobenius module defined by &’
as in (2.3.5) with k[t]-basis my,...,m,. Putd = (s; +---+5,) +--- +5, and let
{v1,...,v4} be the k[c]-basis of M’ given by

(t—0)v Ly (b= 0)my,my, ..., (t—0) " my, .., (t— 0)my, m,.
Identify M’/ (o — 1)M’ with Matg, (k) via vy, ..., v4.
(IIT) Write down the t-action on M’/ (¢ — 1)M’, and so giving a t-module structure on

Mat;..1(k), which we denote by (E’, p).
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(IV) Consider ng__ll) (t—0)m, € M'/(0c —1)M’, which corresponds to an integral
point v¢ = (a1,...,a4)" € E'(A) from the decomposition ng__ll)(t —0)rm, =
Zle a;v; (mod o — 1).

(V) Define the polynomial a as in Theorem 6.1.1, and then compute p,(vs). If it is
zero, then {4(sy,...,S,) is Eulerian; otherwise, {4 (s1,...,S;) is non-Eulerian.

6.1.2. Examples of (E’,p) and v,. We provide some examples of the explicit forms of
(E',vs). The following are two examples associated to Eulerian MZV’s, i.e., v, is IF,[t]-

torsion in E'(A).
P

(1) Letg = 3,5 = (2,4). Then (E/,
v = (0,0,1,0,1, (0 4+ 26%),2,0,2, (20 + 6°))*.
(2) Letg=2,5 = (1,2,4). Then (E/,

associated to {(2,4) is given by

Ot

cooconocococo —
coocococococoor
cocococoo~o
cocococo—oo
coococom—ocoo
coocom—oooo
FcoasNooooo
comroocoocoo
co—ocoocoocoo
Rrocoocoocoo

and

) associated to {(1,2,4) is given by

Pt =

OO OO
OO~ —~
[eleleleleleleleleloleloleleiny )
OO OTROO
coocococoocOoocOoocOoOTIROOD QO
OO0 ODTDRrOOOO
OO0 OTRrOODOOO
OO OO OO0
QOO OTPRODODODODOOO
[slelelelelelels s delelelelelelole]
[elelelelelels Y Helelelelelelelele)]
[slelelelels i elelelelelelelelole]
OO ODRrOODODODDODDODOOOOO
N OO OO0 OO0
SO TRrOOOODODODODDODOOOOO
[l elelelelelelolelelelelolele)
Sl elelelelelelelelolelelo el o)

and
v, = (0,0,0,0,1,1, (6 + 6%),0,0,0,1,1, (6 + 6%),0,1,1, (8 + 6%))*.

The following are two examples associated to non-Eulerian MZV’s, v, is not IF,[t]-
torsion in E'(A).

(3) Let g = 3,5 = (4,2). Then (E’,p) associated to {(4,2) is given by

10000 0 0

001000 0 0

000100 t 0

_ | oo00610 0 0

Pt= 1000061 T 0

7000086 (6+20%)7 0

000000 6 1

000000 7 6

and
ve = (0,0,1,0,1, (6 +26°),0,1)".
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(4) Let g =3,5 = (2,2,2). Then (E’,p) associated to {(2,2,2) is given by

Pt =

cocococOoA cooOoD
cocococococooco—
cocococoococoT—O
cocococococoTRoO
cocococoo~ooO
cocoocoa—oooco
codqocoxsNooooo
cocoTocooooO
cooca~ococooooco
cos—ooococOoooO
«oNococordocoocoo
EEY Y tel=l=l=l=l=]=]=)

and
vs = (0,0,0,0,0,1,0,0,0,2,0, 1)“.

6.2. Searching for the rules governing Eulerian MZV’s. Lara Rodriguez and Thakur [LRT14]
have given conjectures on which r-tuples (sy, ...,s,) may occur for Eulerian MZV’s. Fur-
thermore, they also provided conjectural formulas for these special values. Computa-
tions based on implementing the above algorithm in Magma (by Yi-Hsuan Lin) have led
us to the following description of Eulerian MZV’s in arbitrary depth.

Fix prime power g, and call the sequence of r-tuples below Eulerian r-tuples with
respect to IFy:

Euler; := (7 —1) and Euler,,; := (g — 1,qEuler,) € N" "1,
For each depth r, we introduce a sequence of r-tuples in IN” as follows:
Euler, (/) := (qﬂ — 1,q£ Euler, 1), for r > 1, { > 1,

and Euler; (¢) := (g —1). Call this the canonical sequence of depth r with respect to IFy.
The corresponding MZV’s { 4(Euler,(¢)) are all Eulerian. This follows from the Euler-
Carlitz formula(1.0.1) and the following inductive formula of Chen [Ch15] for all r > 2
and ¢ > 1:

(6.2.1) Ca(Euler,(0)) = Za(q" — 1)Ca(Euler,_1)" — {4(Euler, 1 (£ +1)).

Note that when g = 2, all depth one Carlitz zeta values { 4 () are Eulerian, and { 4(s) is
Eulerian if and only if it is zeta-like. The following Eulerian multizeta values of arbitrary
depth r > 1 and weight 2'~! have been found by Lara Rodriguez and Thakur [LRT14]:

1 -
12 222 1] Za(2 .

For g > 3, we predict that the primitive Eulerian MZV’s of depth r > 2 are precisely:

(6.2.2) 0a(l8) :=10a(1,1,2,...,27 1) =

(1) The canonical family with every depthr > 2, ¢ > 1,
A (Euler,(¢)), of weight g1 -1,
(2) An extra family in depthr =2,/ > 1,
Ca(a'(q=1),9"" =1-9(q - 1)), of weight "2 — 1.
(3) An exceptional primitive Eulerian MZV in depth r = 2,
Ca(q—1,(9—1)%), of weight ¢ —q.
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Thus for g > 3 there should exist depth r > 1 primitive Eulerian MZV’s only in weights
7% — q (depth 2), and g* — 1 (in any depth) for ¢ > r. For depth r = 2, only in weights
q2 —q, qz — 1, and each weight has only one primitive Eulerian MZV. For weight qé —1,
¢ > 3, each weight has two primitive Eulerian MZV’s, coming from the two families in
(1) and (2). Lara Rodriguez and Thakur [LRT14] have also given precise formulas (valid
for any g) for the family (2):

1
Calg' (@ =102 =1-q"(9 1) = - —=Ca(d" = ).

Ty
In the case g = 2, we predict that the primitive Eulerian MZV’s are given by:
(1) The canonical family with every depthr > 2,/ > 1,

{ a(Euler,(£)), of weight 2"+(-1 1,
(2) The extra family in depthr =2, ¢ > 1,

7a(25,2%2 -1 - 2) weight 242 — 1.
(3) Three exceptional primitive Eulerian MZV in depth r = 2:
3 p p p

Ca(1,1), Ca(1,3)=Ca(1,2"-1) = (m]W + %)CA(AL), and

2
(a(3,5) = [[21]]4—[+2ng<8)-

Thus primitive Eulerian pairs exist only in weights, 2, 3, 4,7, 8, 20— 1, ¢ > 4. For

each weight 2¢ — 1, ¢ > 3, there are exactly two primitive Eulerian pairs from the

two families. For weights 2, 3, 4, 8, each weight has only one primitive Eulerian
air.

(4) %here are exceptional primitive Eulerian MZV’s for depth v > 2: {4(1,s), where
s is a primitive Eulerian tuple of depth r — 1 and weight either 2" or 2"~!. Thus
for depth r > 3, in each weight 2’, 2"~ there is only one exceptional primitive
Eulerian MZV. In the case of depth 3, there are two exceptional primitive Eulerian
of weight 8, and one exceptional primitive Eulerian of weight 4.

The exceptional sequence of primitive Eulerian MZV’s of weight 2", r > 1, is
the one given in (6.2.2). That the above exceptional sequence of primitive MZV’s
of weight 2" consists only of Eulerians (first conjectured by Lara Rodriguez and
Thakur [LRT14]) is a consequence of the following formula of Chen [Ch15] :

0a(l,8) = Ca(1,3,2%,...,27 1) = 0a(1)§a(1,2,...,27 ) + 0a(1,1,2,..., 27722
When r = 2, this last equality also goes back to Thakur [Togb, Thm. 8]

All MZV’s in the above list have been confirmed to be Eulerian by [Ch15] and [LRT14].
Our computations suggest that the above list exhausts all primitive Eulerian multizeta
values for IF;[f]. In other words, any r-tuple s of depth » > 1, not accounted by our
list above should give non-Eulerian 4 (s). Previously in [LRT14], Lara Rodriguez and
Thakur had also collected data basing on continued fraction computations to decipher
the occurrence of Eulerian MZV’s, and made precise conjectures characterizing Eulerian
tuples. Their conjectures agree with the above list. Our “t-motivic” algorithm for de-
termining Eulerian multizeta values is rooted by an entirely different principle, runs a
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bit more efficiently and is completely algebraic. It allows us to do computations induc-
tively for higher depth because of the key Corollary 4.2.3, thereby leading to the above
description which we believe is a complete list.

Summary of data certified by our computations

All tuples s of depth r and weights w within the following respective bounds have been
checked for the Eulerian property. The answers agree with the description above and the
MZV’s in the complementary part of the list above are non-Eulerian. When 3 < g <11,
all tuples having their weights within the bounds below have been checked, with no
restriction on their depths except g4 = 2.

g =2, depth =2, weight < 256
g =2, depth =3,4,5, weight <128
g =2, depth =6, weight < 64
g =3, weight <243
g =4, weight <256
q=>5,7 weight < g°
8 <g<23, weight< g
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