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We consider in this work hexagonal grids for two-dimensional applications. A finite volume-based finite
difference approach to solving Laplacian-related differential equations on hexagonal grids is developed.
Both ordinary and compact hexagonal seven-point schemes are investigated. Theoretical properties of
the associated linear algebraic systems are determined. These methods are applied to solve PDEs on both
regular and curved domains, successfully exhibiting linear and spiral wave propagations in regular domains
and curved wave in a reversed C-type domain.

Keywords: compact scheme; hexagonal finite volume; finite difference; monodomain model; reaction-
diffusion

2010 AMS Subject Classifications: 65M06; 65M08

1. Introduction

Hexagonal finite volumes (FVs) is of interest in a recent study of the electrophysiology of human
heart [13], which explored the origin of U-wave in electrocardiogram (ECG) and adopted hexag-
onal subdomains in their computations. However, it was a pure algebraic approach in obtaining
the ECG without coupling diffusion. Actually, heart electrical activity can be described by a sys-
tem of reaction-diffusion (R-D) equations. Computer modelling has become a powerful tool and
numerical simulation can provide detailed observations for electrical activities of the heart. It is a
useful tool for understanding the mechanism of heart rhythm dynamics. We refer to [4] for general
references.

We consider in this work hexagonal grids for two-dimensional applications, and investi-
gate FV-based finite difference (FD) technique in solving differential equations. Both ordinary
second-order and compact fourth-order seven-point methods are developed and analysed, with
applications to Poisson equation and R-D systems. A construction algorithm is described for
practical applications. With such, the proposed method can be easily implemented on regular
and irregular computational domains. In addition to solving several test problems with known
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solutions and justifying the methods accordingly, we solve the monodomain model and simu-
late electrical wave propagation on a two-dimensional cardiac tissue. Linear wave propagation
is observed on both regular and irregular geometric domains, while spiral wave propagation is
observed on an approximated square domain.

Note that the left ventricle of the heart can be approximated by an ellipsoid of revolution (see
Figure 2 in [7]) and hexagonal FVs are relatively easy to construct for such domains. We can
apply the hexagonal finite volume method (FVM) to an electrophysiological simulation of the
cardiac tissue on the horizontal cross-section or the apex to the base longitudinal section of the left
ventricle of the heart. This will simplify the geometric modelling and direct numerical simulation
yielding a significant reduction in computational costs.

As for the remaining sections, the notations and terminologies of regular hexagons are intro-
duced in Section 2. For regular hexagons in general positions, a FV approach to solving the
Poisson equation is discussed in Section 2.1. This suggests in Section 2.2 an ordinary seven-point
scheme for discretisation of the two-dimensional Laplacian. Furthermore, a fourth-order hexag-
onal compact seven-point scheme is derived. Application of general conforming hexagonal FVs
are made easy with a construction algorithm, which we proposed in Section 2.3. Applications
to solving differential equations are described in Section 3, in which four variations of seven-
point schemes are analysed for evolution equations. Numerical experiments and observations are
discussed in Section 4, and conclusions drawn in the final section. Some rigorous arguments
involving trigonometric identities and a lower bound estimate of the seven-point Laplacian are
presented respectively in Appendices 1 and 2.

2. Hexagonal grid method

For two-dimensional applications of configurations consisting of cartesian type (regular)
hexagons, we denote by r the radius (also edge length) of hexagons and h = (

√
3/2)r half of

the centre-to-centre distance. Relevant numerics of the coordinates of centres and vertices are
given in Tables 1 and 2, based on two configurations with one indicated in Figure 1(a). The area
of a hexagon is |�| = (3

√
3/2)r2 = 2

√
3h2.

For a hexagon in general configuration with phase angle ϕ, we consider the centre P0 = (x0, y0)

and its six neighbours (Figure 1(b)),

Pj = (xj, yj) = (x0, y0) + 2h(cos θj, sin θj), θj = ϕ + π

6
+ jπ

3
, j = 1, . . . , 6.

Table 1. Hexagon in configuration type I.

Phase angle: ϕ = 0

Centre point ieven iodd

cx(i, j) (1.5i − 0.5)r

cy(i, j) 2jh (2j − 1)h

Vertices Vk = (vx(i, j, k), vy(i, j, k)), k = 1, 2, . . . , 6

vx(i, j, k) cx(i, j) + r cos

(
ϕ + kπ

3

)
, k = 1, 2, . . . , 6

vy(i, j, k) cy(i, j) + r sin

(
ϕ + kπ

3

)
, k = 1, 2, . . . , 6

Neighbour centres Pk = Vk + Vk+1 − P0, k = 1, 2, . . . , 6
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1988 D. Lee et al.

Table 2. Hexagon in configuration type II.

Phase angle: ϕ = −π

6

Centre point jeven jodd

cx(i, j) 2ih (2i − 1)h

cy(i, j) (1.5j − 0.5)r

Vertices Vk = (vx(i, j, k), vy(i, j, k)), k = 1, 2, . . . , 6

vx(i, j, k) cx(i, j) + r cos

(
ϕ + kπ

3

)
, k = 1, 2, . . . , 6

vy(i, j, k) cy(i, j) + r sin

(
ϕ + kπ

3

)
, k = 1, 2, . . . , 6

Neighbour centres Pk = Vk + Vk+1 − P0, k = 1, 2, . . . , 6
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Figure 1. Type I hexagonal FVs and neighbourhood, phase angle ϕ = 0. (a) Net of hexagons, in three-colour ordering,
(b) Neighbourhood.

2.1 Hexagonal FV approach

In application of FVM [21], a differential equation is solved in an averaged form. We consider
Poisson equation and its integral formulation

∇(k∇u) = f ,
1

|�|
∫∫

�

div(k∇u) dx dy = 1

|�|
∫∫

�

f dx dy.

The domain integral of the divergence yields a boundary integral of the normal flux, which is
then reduced to a discrete approximation. The specialisation to a hexagonal FV with unit constant
diffusivity (k = 1), reads

1

|�|
∫∫

�

div(k∇u) dx dy = 1

|�|
∫

∂�

k
∂u

∂−→n dγ (t) ≈ 1

|�|
6∑

i=1

(
k

∂u

∂−→n (mi)

)
|�γi|

≈ 1

2
√

3h2

6∑
i=1

u(Pi) − u(P0)√
3r

r = 1

h2

1

6

6∑
i=1

(u(Pi) − u(P0)),

where |�γi| denotes the length of the ith boundary edge and mi the mid-point of that edge. The
boundary integral is thus approximated by a discrete seven-point stencil. It turns out a surprise
that the mid-point rule, seemingly just a (local) second-order approximation to each line integral,
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International Journal of Computer Mathematics 1989

achieves the same order of global accuracy for the whole boundary (and domain) integral. We
discuss and prove this from a different perspective next.

2.2 Hexagonal FD approach

Consider Poisson equation in the simplest form, �u = uxx + uyy = f (x, y).

Theorem 2.1 (Second-order hexagonal ordinary seven-point (H7) scheme) The differential
relation uxx(x0, y0) + uyy(x0, y0) = f (x0, y0) is approximated by the discrete hexagonal ordinary
seven-point scheme

1

h2

⎛
⎝−u(x0, y0) + 1

6

6∑
j=1

u(xj, yj)

⎞
⎠ = f (x0, y0), (1)

which is second-order accurate, that is,

uxx + uyy = 1

h2

(
1

6

6∑
i=1

u(Pi) − u(P0)

)
− h2

4
(uxxxx + 2uxxyy + uyyyy) + O(h4) (2)

= 1

h2

(
1

6

6∑
i=1

u(Pi) − u(P0)

)
+ O(h2). (3)

Proof For sufficiently smooth u, we obtain formally

1

6

6∑
j=1

(u(Pj) − u(P0)) = 1

6

6∑
j=1

∑
1≤m+n

(2h)m+n
(∂m

x ∂n
y u(P0))

m!n! cosm θj sinn θj

=
∑

1≤m+n

⎛
⎝(2h)m+n

(∂m
x ∂n

y u(P0))

m!n!
1

6

6∑
j=1

cosm θj sinn θj

⎞
⎠

= (2h)2

4
(uxx + uyy) + (2h)4

64
(uxxxx + 2uxxyy + uyyyy) + O(h6).

Here we appeal to Lemmas A.2 and A.3 (with ϕ replaced by ϕ + π/6) in Appendix 1. Thus proves
the Theorem. �

Remark 1 The error analysis requires C6- and C4-smoothness of u for Equations (2) and (3),
respectively. Making use of the estimate, we gain further by a bootstrapping strategy.

Theorem 2.2 (Fourth-order hexagonal compact seven-point (H7c) scheme as deferred correction)

1

h2

(
−u(P0) + 1

6

6∑
i=1

u(Pi)

)
= 3

4
f (P0) + 1

24

6∑
i=1

f (Pi) + O(h4). (4)
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1990 D. Lee et al.

Proof We proceed with Equation (2).

f (P0) = (uxx + uyy)(P0)

= 1

h2

(
1

6

6∑
i=1

u(Pi) − u(P0)

)
− h2

4
(fxx + fyy)(P0) + O(h4)

= 1

h2

(
1

6

6∑
i=1

u(Pi) − u(P0)

)
− h2

4

(
1

h2

(
1

6

6∑
i=1

f (Pi) − f (P0)

)
+ O(h2)

)
+ O(h4)

= 1

h2

(
1

6

6∑
i=1

u(Pi) − u(P0)

)
+ 1

4
f (P0) − 1

24

6∑
i=1

f (Pi) + O(h4).

The assertion follows after rearrangement. �

Remark 2 The special case of type II hexagons, embedded in a mesh consisting of equilateral
triangles, was discussed in [9]. Equation (2) in this cited reference is almost identical to the H7c
scheme we proposed, and was used there to derive amazing fast Fourier transform methods in a
direct method approach, which we believe may be extended to multi-block situations for parallel
computations.

This implicit solution (Equation (4)) yields conveniently associated matrix properties which
will be discussed in Section 3. We refer to [5,14] for compact schemes on rectangular
grids. Comparisons among these hexagonal (and rectangular) FD schemes are discussed in
Section 4.

2.3 General (non-regular) conforming hexagonal FVs

For general hexagonal FV applications, we propose a procedure for the construction of the dis-
crete geometry and local topology. This is applicable to (and essential for) irregular domains
approximated by hexagons. The algorithm applies to regular domains as well. We require
only

Hypothesis 2.3 (Minimal assumptions for practical applications)

• The FVs are conforming, i.e. two neighbour cells share exactly two vertices (and the connecting
edge).

• Input data consists of only a list of cell centres.

We state the following for general applications.

Algorithm 1 (Effective construction of general hexagonal FVs)

(1) Construct the edges as to bisect the centre–centre connecting line segments. These edges are
confined to the intersections with neighbour edges in the next step.

(2) Vertices are defined as the intersections of neighbour edges around each centre.
(3) In order to index vertices without repetitions, we run the scan a second time and eliminate

repeated vertices.
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International Journal of Computer Mathematics 1991

(4) Set (Define) the neighbourhood topology and identify boundary cells.
(5) Re-number to separate interior and boundary cells, and generate a linear list (efficient) for

later operations.

To perform computation using hexagonal FVs in solving practical problems, more algorithms and
(consistent) data structures can be designed as natural follow-up to this fundamental algorithm.
All these algorithms extends obviously to quadrilateral FVs.

Remark 3 On a lattice of hexagons as shown in Figure 1(a), three-colour algorithm is applicable
to (FV) centre nodes, and applies as well to irregular domains embedded in a cartesian mesh. It
guides multi-block iterations in solving both static and transient problems. Further study will be
published elsewhere because of limitation of space.

3. Computation of differential equations on hexagonal grids

Here we consider ordinary and compact seven-point schemes (H7,H7c) for solving two-
dimensional Laplacian-related problems.

3.1 Application in solving two-dimensional Poisson equation

The hexagonal seven-point stencil consists of negative diagonal and positive weights off the
diagonal. For a Dirichlet problem, this immediately implies that the discrete seven-point two-
dimensional Laplacian on hexagonal FVs satisfies the discrete maximum principle, which in
turn implies the stability of classical linear iterative methods such as GS or SSOR. We note the
negation of the matrix is symmetric positive-definite and actually an M-matrix. Modern conjugate
gradient-like iterative methods perform very well in sparse format. For a Neumann problem, the
typical rank-one projection approach works well.

Aiming at applications mostly in non-cartesian type regions, we will use iterative methods
exclusively. We refer to [3] for further details in relevant matrix theory, and [15] for iterative
methods. Pickering’s [9] work is recommended for fast method in production runs on rectangular
domains.

3.2 Application in solving time-dependent problems

We consider a system of R-D equations

ut = D1(uxx + uyy) + f (u, v),

vt = D2(vxx + vyy) + g(u, v),
(5)

with non-negative constant diffusivities. For simplicity, we describe algorithms for a single
component,

ut = D(uxx + uyy) + f (u, v),

with positive constant diffusivity. Proper initial and boundary conditions are assumed. In appli-
cation of a two-level time-marching procedure with ht denoting the temporal stepsize, we note
the following.
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1992 D. Lee et al.

Example 3.1 (Fourth-order fully implicit scheme)

3

4

un+1
P0

− un
P0

ht
+ 1

24

6∑
i=1

un+1
Pi

− un
Pi

ht
= D

h2

(
−un+1

P0
+ 1

6

6∑
i=1

un+1
Pi

)
+ 3

4
f n+1
P0

+ 1

24

6∑
i=1

f n+1
Pi

,

or

(
3

4
+ Dht

h2

)
un+1

P0
+

(
1

24
− Dht

6h2

) 6∑
i=1

un+1
Pi

= 3

4
(un

P0
+ htf

n+1
P0

) + 1

24

6∑
i=1

(un
Pi

+ htf
n+1
Pi

).

In matrix form,

(
Q1 + Dht

h2
Q2

)
un+1 = Q1un + htQ1f n+1,

K4un+1 = un + htf
n+1,

(6)

with

Q1 = 3

4
I + 1

24
E, Q2 = I − 1

6
E, and K4 = I + Dht

h2
Q−1

1 Q2.

Here the incidence matrix E, related to the neighbourhood topology of all the hexagon centres,
may include or exclude ghost cells up to proper interpretation. To apply successive substitutions
(SS), we consider

un+1,0 := un,

un+1,k := �un+1,k−1 := K−1
4 un+1,k−1 + htK

−1
4 f (un+1,k−1, vn+1,k−1), k = 1, 2, . . . .

(7)

Our primary interest is in applications on irregular domains, we note only the following for linear
stability.

(1) In the pure diffusion case (f = 0), the discrete seven-point (negative) Laplacian (Q2) is an
M-matrix as noted in the previous subsection, and Q1 an averaging operator with positive
weights. All of these imply that K4 is an M-matrix and inverse-positive. It is easily seen that
K4 is strictly diagonally dominant and ‖K4‖ > 1, ‖K−1

4 ‖ < 1. The scheme is unconditionally
stable and preferable to the next semi-implicit one.

Actually, the square matrices Q1, Q2 and E share the same basis vectors. To be precise and
prepare for future work, let

σm = min SpecQ2
, σM = max SpecQ2

.

Then, by Gershgorin circles,

0 < σm ≤ SpecQ2
≤ σM ≤ 2. (8)

It follows that

−(σM − 1) ≤ SpecE/6 ≤ 1 − σm and
1

2
≤ 1 − σM

4
≤ SpecQ1

≤ 1 − σm

4
.
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Therefore,

1

1/σm − 1/4
≤ SpecQ−1

1 Q2
≤ 1

1/σM − 1/4
≤ 1

1/2 − 1/4
= 4.

We note the estimation (Appendix 2) that

σm = O(h2). (9)

Then

1 + O(ht) ≈ 1 + Dht

h2

1

1/σm − 1/4
≤ SpecK4

≤ 1 + Dht

h2

1

1/σM − 1/4
≤ 1 + 4Dht

h2
,

and

SpecK−1
4

< 1 − Dht

h2

1

1/σm − 1/4
≈ 1 − O(ht).

(2) In general, if, (i) the orbit (u, v) stays invariant in a bounded domain, and (ii) the reaction
terms are in C1 class, it follows that all the quantities

‖f ‖∞, ‖fu‖∞, ‖fv‖∞, ‖g‖∞, ‖gu‖∞, ‖gv‖∞

are finite, and a small time step suffices. For example, choose ht as small as to make valid the
following estimate of the contraction rate

‖D�‖ ≤ ‖K−1
4 ‖(1 + ht(‖fu‖∞ + ‖fv‖∞))

< ‖K−1
4 ‖ + (1 − ‖K−1

4 ‖)
2

= (1 + ‖K−1
4 ‖)

2
< 1.

This amounts to choosing

ht <
(1/‖K−1

4 ‖ − 1)

2(‖fu‖∞ + ‖fv‖∞)
.

We note for practical applications that the primitive variables are usually non-dimensionalised
close to unity magnitude.

Up to the above analysis and notations (overloaded usage of E), discussion of the remaining
examples will be brief.

Example 3.2 (Fourth-order semi-implicit scheme)

3

4

un+1
P0

− un
P0

ht
+ 1

24

6∑
i=1

un+1
Pi

− un
Pi

ht
= D

h2

(
−un

P0
+ 1

6

6∑
i=1

un
Pi

)
+ 3

4
f n
P0

+ 1

24

6∑
i=1

f n
Pi

.

Hence

Q1un+1 =
(

Q1 − Dht

h2
Q2

)
un + htQ1f n,

un+1 = A4un + htf
n, with A4 = I − Dht

h2
Q−1

1 Q2.

(10)

D
ow

nl
oa

de
d 

by
 [

T
un

gh
ai

 U
ni

ve
rs

ity
],

 [
D

an
le

e]
 a

t 1
2:

02
 0

3 
Ju

ne
 2

01
5 



1994 D. Lee et al.

(1) Pure diffusion case. In practice, the above equations are uniquely solvable at all time steps,
provided that A4 is nonsingular. We expect

1

2
≤ 1 − 4Dht

h2
≤ 1 − Dht

h2

1

1/σM − 1/4
≤ SpecA4

≤ 1 − Dht

h2

1

1/σm − 1/4
≈ 1 − O(ht).

The left-most inequality holds in the above on the sufficient condition that,

ht ≤ h2

8D
, (11)

which also implies the positivity of Q1 − (Dht/h2)Q2 in Equation (10). For any single run
using ht as just described, the iteration (also error propagation) matrix (A4) remains uniformly
bounded below 1.0 in operator norm, at all time steps. The scheme is thus conditionally stable.
When the spatial resolution is refined, we actually set ht as small as proportional to (a fraction
of) h4, due to the accuracy requirement of a fourth-order method.

We refer to [18] for estimation of Laplacian eigenvalues on a single hexagon.
(2) With the reaction term, the SS procedure at each time step reads

un+1,0 := un,

un+1,k := �un+1,k−1 := A4un+1,k−1 + htf (u
n, vn), k = 1, 2, . . . .

(12)

Here the functional iteration map has a constant derivative, D� = A4, and ‖D�‖ = ‖A4‖.
The convergence behaviour is identical to the case of pure diffusion.

Replacing the averaging operator (Q1) by the identity map in the previous two examples, we
obtain the next two.

Example 3.3 (Second-order implicit scheme)

un+1
P0

− un
P0

ht
= D

h2

(
−un+1

P0
+ 1

6

6∑
i=1

un+1
Pi

)
+ f n+1

P0
,

i.e. (
1 + Dht

h2

)
un+1

P0
− Dht

6h2

6∑
i=1

un+1
Pi

= un
P0

+ htf
n+1
P0

.

Therefore

K2un+1 = un + htf
n+1
P0

, with K2 =
(

1 + Dht

h2

)
I − Dht

6h2
E = I + Dht

h2
Q2. (13)

The matrix K2 is symmetric with positive diagonal entities and negative or zero off-diagonal
entities, and endowed with all the qualitative properties as K4. In particular, eigenvalues of K2

and K−1
2 are all positive, with ‖K2‖ > 1 and ‖K−1

2 ‖ < 1. This implicit scheme is unconditionally
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stable in the pure diffusion case. Similar to Example 3.1, we apply

un+1,0 := un

un+1,k := �un+1,k−1 := K−1
2 un+1,k−1 + htK

−1
2 f (un+1,k−1, vn+1,k−1), k = 1, 2, . . .

(14)

in the general case, and choose time steps to satisfy

‖D�‖ ≤ ‖K−1
2 ‖(1 + ht(‖fu‖∞ + ‖fv‖∞)) <

(1 + ‖K−1
2 ‖)

2
< 1.

It is sufficient to choose

ht <
(1/‖K−1

2 ‖ − 1)

2(‖fu‖∞ + ‖fv‖∞)
.

Here

1 + O(ht) ≈ 1 + Dht

h2
σm ≤ SpecK2

≤ 1 + Dht

h2
σM ≤ 1 + 2Dht

h2
,

and

SpecK−1
2

≤ 1

1 + (Dht/h2)σm
< 1 − Dht

h2
σm ≈ 1 − O(ht).

Example 3.4 (Second-order explicit scheme)

un+1
P0

− un
P0

ht
= D

h2

(
−un

P0
+ 1

6

6∑
i=1

un
Pi

)
+ f n

P0
,

i.e.

un+1
P0

=
(

1 − Dht

h2

)
un

P0
+ Dht

6h2

6∑
i=1

un
Pi

+ htf
n
P0

.

Then

un+1 = A2un + htf
n
P0

, with A2 =
(

1 − Dht

h2

)
I + Dht

6h2
E = I − Dht

h2
Q2. (15)

The iteration matrixA2 is symmetric and strictly diagonally dominant, provided that ht < h2/(2D),
which serves as the stability condition in case of pure diffusion. Indeed, choosing ht < h2/(4D)

ensures a geometric convergence rate less than 1/2. On the occurrence of reaction terms, we have
a straight assignment

un+1 := �un := A2 un + htf (u
n, vn). (16)

It follows that D� = A2 and ‖D�‖ = ‖A2‖. The stability behaviour is identical to the pure
diffusion case, up to the estimate

1 − 2Dht

h2
≤ 1 − Dht

h2
σM ≤ SpecA2

≤ 1 − Dht

h2
σm ≈ 1 − O(ht).

Remark 4 There are two concerns in all the examples just discussed : solvability at a single time
step and error-diminishing in the evolution. The matrices K4 and K2 being strictly diagonally
dominant with any stepsize ht , Equations (10) and (13) are numerically easily solvable. However,
small ht are chosen as analysed to make possible a contraction map, so as to diminish potential
errors in the initial or boundary data and propagated (any kind) errors at intermediate steps.
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This less-than-one contraction rate also contributes in the two conditionally stable examples. Our
preference is the SS procedure, and refer to [8] for direct methods.

The schemes, Equations (6), (10) and (13), are thoroughly tested in Sections 4.3, 4.4.1,
and Equations (13) and (15) in Section 4.4.2. Both smooth and non-smooth problems will be
encountered.

4. Numerical experiments and discussions

4.1 Code description

We describe firstly our software tools developed and used in numerical experiments. Both two-level
FD and method of line (MOL) methods are designed. We give some details.

(1) Grid structure. Cartesian type uniform grids are deployed for rectangular domains. Irregular
domains are initially embedded in a cartesian grid to yield an approximation to the geometry
by the procedure of Algorithm 1.

(2) FVs. Boundary-fitted conforming cell-centred FVM is applied. Both hexagonal type I,II, and
(orthogonal) quadrilateral FVs are taken. These are denoted by Hexa I, Hexa II and Quad
in Table 3, and are designed as linearly linked with no (cartesian) structure assumed. The
FV type is denoted as 2D for rectangular domains if using structured cartesian half-integral
nodes.

(3) Numerical methods. In case of time-dependent problems, two-level Crank-Nicolson (C-N)
scheme is endowed with parameter αCN = 0, 0.5 or 1.0 (explicit, classical C-N, or implicit).
Also designed is the MOL approach with many choices of the integrator. Only results of
rkf45 and trapezoid methods are presented.

(4) Numerical schemes. Standard five-point (Q5) and compact nine-point (Q9c) FD schemes are
both designed using 2D or Quad FVs. For Hexa I and II FVs, the options are H7 and H7c
schemes.

(5) Language. All the above are implemented in both C and MATLAB. The integration routines
we adopted, in the C language, is from the source [11], and ode45 [17] in ©MATLAB.

These are summarised in Table 3.

4.2 Validation of hexagonal grid methods on Poisson equation

The proposed ordinary (H7, Equation (1)) and compact (H7c, Equation (4)) seven-point schemes
are, in theory, exact for polynomials of degrees less than four and six, respectively. Our numerical
result (not shown) justifies these are indeed second and fourth-order for monomials. Another

Table 3. Software description. All codes listed are implemented in both C and MATLAB.

Temporal Spatial
Model Structure of FVs discretisation Numerical method discretisation Applicable domain

1 2D FD C-N Q5, Q9c Cartesian
2 2D MOL rkf 45, trapezoid Q5, Q9c Cartesian
3 Quad FD C-N Q5, Q9c Cartesian, irregular
4 Quad MOL rkf 45, trapezoid Q5, Q9c Cartesian, irregular
5 Hexa I,II FD C-N H7, H7c Cartesian, irregular
6 Hexa I,II MOL rkf 45, trapezoid H7, H7c Cartesian, irregular
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Table 4. Accuracy in solving Poisson equation by hexagonal ordinary and compact seven-point (H7,H7c) schemes,
ratioM (ratio2) refers to maximal (normalised 2-) norm of errors on grid. The iterative solver is Bi-CGSTAB. Both relative
and absolute tolerance are 1.0e−14.

Eq. Scheme FVs nx, ny Maximal res Maximal error ratioM Two-norm error ratio2 Iter

A H7 Hexa I 20 3.3e−13 1.6e−03 6.6e−04 56
A H7 Hexa I 40 1.3e−12 3.9e−04 4.1 1.5e−04 4.4 119
A H7 Hexa I 80 5.7e−12 9.5e−05 4.1 3.7e−05 4.0 226
A H7 Hexa II 80 6.1e−12 2.3e−05 8.3e−06 219

A H7c Hexa I 20 2.8e−13 3.5e−06 1.8e−06 57
A H7c Hexa I 40 1.5e−12 2.2e−07 15.9 1.1e−07 16.3 114
A H7c Hexa I 80 5.5e−12 1.3e−08 16.9 6.7e−09 16.4 219
A H7c Hexa II 80 2.5e−10 3.7e−09 1.9e−09 210

G H7 Hexa I 20 1.5e−11 7.2e−04 4.2e−04 64
G H7 Hexa I 40 8.8e−11 1.8e−04 4.0 1.0e−04 4.2 121
G H7 Hexa I 80 2.9e−10 4.4e−05 4.1 2.5e−05 4.0 230
G H7 Hexa II 80 2.9e−10 2.4e−05 1.3e−05 241

G H7c Hexa I 20 1.2e−11 3.9e−08 2.4e−08 64
G H7c Hexa I 40 7.3e−11 2.5e−09 15.6 1.4e−09 17.1 120
G H7c Hexa I 80 2.6e−10 1.5e−10 16.7 8.8e−11 15.9 241
G H7c Hexa II 80 3.1e−10 6.5e−11 3.7e−11 229

two test problems were chosen, problem A and G from [12] in domain [0, 1]2 and [1, 2]2. The
Bi-CGSTAB [15] iterative method was used in solving the discrete linear system. The result
(Table 4) shows the correct order of convergence of each scheme in both the discrete maximal
and normalised two-norms of errors at spatial nodes. We mention briefly that

(1) The iteration count grows linearly with respect to the mesh size in uni-direction, as expected
in solving the discrete diffusion system.

(2) Computation on type II hexagonal FVs are faster and slightly more accurate than on type I,
probably due to the same index (order) scheme in our design.

We note the Bi-CGSTAB method outperforms several other iterative methods in run-time effi-
ciency. The Laplacian is a component of the R-D system which we discuss next. The Bi-CGSTAB
method is applied in all subsequent computations.

4.3 Validation of hexagonal grid methods on R-D system

We solve examples of the R-D system (Equation (5)) by methods derived from Equations (6),
(10) and (13). Ths following discussion refers to Table 5.

(1) A non-homogeneous Dirichlet problem. Here analytic solution exists

u(t, x, y) = e−(2π2+1)t sin πx sin πy,

v(t, x, y) = εu(t, x, y).

The parameter values are ε = 0.01, D1 = D2 = 1.0, and reaction terms f (u, v) =
−v/ε, g(u, v) = −εu.

(2) A non-homogeneous Neumann problem. The analytic solution is

u(t, x, y) = e−(2π2+1)t cos πx cos πy,

v(t, x, y) = ε u(t, x, y).

The parameters and reaction terms are identical to the previous.
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Table 5. Accuracies in solving R-D systems by (i) ordinary implicit seven-point, (ii) fully and (iii) semi-implicit compact
seven-point schemes. The timespan is from 0 to 0.5. Type I hexagons are used.

Problem Scheme nstep Grid-size itNL max-u-err Ratio

1 H7-implicit 500 12 × 10 19,469 9.260e−06 5.14
1 H7-implicit 2000 24 × 20 65,874 1.803e−06 1.0
1 H7-implicit 8000 48 × 40 240,878 4.026e−07 1.0/4.48

1 H7c-full-im 500 12 × 10 1000 4.248e−06 20.54
1 H7c-full-im 8000 24 × 20 16,000 2.068e−07 1.0
1 H7c-full-im 128,000 48 × 40 256,000 1.023e−08 1.0/20.22

1 H7c-semi-im 500 12 × 10 1000 3.473e−06 16.90
1 H7c-semi-im 8000 24 × 20 16,000 2.055e−07 1.0
1 H7c-semi-im 128,000 48 × 40 256,000 1.568e−08 1.0/13.10

2 H7-implicit 500 12 × 10 16,812 5.134e−05 9.65
2 H7-implicit 2000 24 × 20 55,182 5.321e−06 1.0
2 H7-implicit 8000 48 × 40 181,859 8.810e−07 1.0/6.04

2 H7c-full-im 500 12 × 10 5541 4.497e−05 24.29
2 H7c-full-im 8000 24 × 20 77,359 1.851e−06 1.0
2 H7c-full-im 128,000 48 × 40 1,392,010 1.417e−07 1.0/13.06

2 H7c-semi-im 500 12 × 10 7761 4.310e−05 24.87
2 H7c-semi-im 8000 24 × 20 109,615 1.733e−06 1.0
2 H7c-semi-im 128,000 48 × 40 1,517,042 1.391e−07 1.0/12.46

We solve these equations on approximated unit squares. Analytic solutions are used to provide
the non-homogeneous Dirichlet/Neumann boundary condition on the zig-zagging global bound-
ary. We note the BVs of primitive variables at the ghost cells are obtained by (only) second-order
approximation using the Neumann data. This is for ease of implementation of our general-purpose
code.

The simulation time is from 0.0 to tend = 0.5. We note the following.

(1) Algorithm. In a two-level temporal FD methods, nonlinear fixed-point iteration (SS) is applied
to solving the coupled system, Equation (5). The computation at each time step ends if two
successive iterates differ less than 1.0e−13 in discrete maximal norm.

(2) Complexity. We denote by itNL the accumulated number of nonlinear iterations. The iteration
matrix being static (constant), the op-count (operation count) is then proportional to (itNL ·
nx · ny). As observed in Table 5, itNL is roughly proportional to the number of time steps,
which in turn is proportional to (nx · ny) for implicit H7 scheme, and proportional to (nx · ny)

2

for both fully implicit and semi-implicit H7c schemes. We conclude that the op-count is
proportional to (nx · ny)

2 for the former method, and (nx · ny)
3 for the latter two.

(3) Efficiency. As shown in the rightmost (Ratio) column in the table, the H7 method is second-
order accurate, while the H7c methods (fully implicit or semi-implicit) are (roughly) fourth-
order. Accordingly, the compact schemes (H7c) are more cost-effective than the ordinary
seven-point (H7) scheme, in cases of the smooth problems tested here.

(4) Practical issues. We will not comment on further possible rule(s) which might be extracted
from these two particular problems, except pointing out that the restoration character of the
reaction terms (endowed with negative gradients) makes the fully implicit scheme numeri-
cally better conditioned than the semi-implicit one. Finally, we note the temporal and spatial
meshsizes in Table 5 satisfy the suggested constraint, Equation (11), very closely.

A non-smooth problem is considered next.
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4.4 Application to electrical wave propagation in cardiac tissue

The cardiac electrical activity can be described with a macroscopic scale by including membrane
ionic current and transmembrane potential. The resulting governing equations are the so-called
bidomain equations [19], which consist of an elliptic partial differential equation and a parabolic
differential equation, coupled with a system of nonlinear ordinary differential equations for ionic
dynamics. As noted in [22], solving bidomain equations is computationally expensive. Under the
assumption of equal anisotropies, the system of bidomain equations is reduced to monodomain
equations, as an R-D system. For electrical wave propagation, differences between bidomain
and monodomain equations are relatively small [10]. The system of monodomain equations is
numerically efficient and accepted by many in study of electrical wave propagation of cardiac
tissue [1,16,20].

In this work, we use the simpleAliev-Panfilov [1] model for ionic current activity of myocardium
cell. The model, explicitly formulated below for ease of reading, is used to simulate the pulse
shape and the restitution property of the canine myocardium with satisfactory precision. The
monodomain equations coupled with the Aliev-Panfilov model yields

∂u

∂t
= ∇(M∇u) − (ku(u − a)(u − 1) + uv + Ist),

∂v

∂t
= −

(
ε + μ1

v

u + μ2

)
(v + ku(u − a − 1)).

(17)

Here the dimensionless variable u stands for the normalised transmembrane potential ranging
from 0 to 1, and variable v describes the dynamics of slow inward current. The conductivity
tensor, M, is constant diagonal for the cardiac tissue we tested here, while Ist represents current
of the stimulation. The stimulation plan (a Heaviside function in space) consists of a start time
(1.0), the duration (10.0/12.9) and strength (−3.0). The term ku(u − a)(u − 1) determines the
initial upstroke of the action potential of myocardium cell, and the repolarisation dynamics of the
potential is properly described by the function. The parameter values are [20] k = 8.0, a = 0.1,
ε = 0.01, μ1 = 0.13 and μ2 = 0.3. Although the parameters used in the Aliev-Panfilov model do
not have a specific physiological meaning but are chosen properly to reproduce some important
characteristics of myocardium tissue. We mention that the matrix M can be chosen non-constant
diagonal or general symmetric, depending on purpose of numerical modelling (e.g. in a computer-
aided sensitivity analysis).

4.4.1 Validation of hexagonal grid methods on monodomain equation

Simulations are conducted by using three methods:

(1) fully implicit compact seven-point scheme, Equation (6),
(2) semi-implicit compact seven-point scheme, Equation (10), and
(3) implicit ordinary seven-point H7 scheme, Equation (13).

Test results of these are shown in the first three blocks in Table 6. The fourth block shows result
using the H7 scheme on a doubly refined mesh. The overall average wave speeds, summarised
in last row within each block in the table, suggest improvement in accuracy on the fine grid in
the last two blocks using the H7 scheme. The first two (H7c) schemes are more accurate than the
third one, but the cost-performance (not shown) is not so great.
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Table 6. Simulated wave speeds using (i) fully, (ii) semi-implicit compact seven-point and (iii) implicit ordinary
seven-point schemes on evolution equations. The timespan is from 0 to 150, numbers of time steps are 22,500 or 90,000
(last block), spatial resolutions are 60 × 50 or 120 × 100 (last block).

Case Wave Speeds and Deviations

Fully-implicit compact stencil
Average speed on j-mesh, j = 1 . . . 5 1.459 1.467 1.467 1.465 1.454
One-norm deviation on j-mesh, j = 1 . . . 5 0.004 0.003 0.003 0.002 0.002
Average speed on i-mesh, i = 2 . . . 5 1.458 1.464 1.464 1.462
One-norm deviation on i-mesh, i = 2 . . . 5 0.005 0.005 0.004 0.006
Overall average and deviation, i, j = 2 : 5, 1 : 5 1.462 0.005

Semi-implicit compact stencil
Average speed on j-mesh, j = 1 . . . 5 1.458 1.465 1.465 1.464 1.452
One-norm deviation on j-mesh, j = 1 . . . 5 0.004 0.002 0.004 0.002 0.003
Average speed on i-mesh, i = 2 . . . 5 1.458 1.460 1.463 1.462
One-norm deviation on i-mesh, i = 2 . . . 5 0.005 0.006 0.004 0.006
Overall average and deviation, i, j = 2 : 5, 1 : 5 1.461 0.005

Implicit ordinary stencil
Average speed on j-mesh, j = 1 . . . 5 1.315 1.323 1.323 1.323 1.308
One-norm deviation on j-mesh, j = 1 . . . 5 0.003 0.002 0.002 0.002 0.004
Average speed on i-mesh, i = 2 . . . 5 1.317 1.318 1.319 1.320
One-norm deviation on i-mesh, i = 2 . . . 5 0.006 0.007 0.003 0.007
Overall average and deviation, i, j = 2 : 5, 1 : 5 1.319 0.006

Implicit ordinary stencil
Doubly refined spatial mesh
Average speed on j-mesh, j = 1 . . . 5 1.494 1.499 1.499 1.499 1.491
One-norm deviation on j-mesh, j = 1 . . . 5 0.002 0.003 0.003 0.003 0.002
Average speed on i-mesh, i = 2 . . . 5 1.498 1.495 1.498 1.495
One-norm deviation on i-mesh, i = 2 . . . 5 0.004 0.002 0.004 0.002
Overall average and deviation, i, j = 2 : 5, 1 : 5 1.497 0.003

The designated stimulation plan (Ist in Equation (17)) of current application is far away
from being C6-smooth. We will use the ordinary seven-point methods exclusively in subsequent
investigations.

4.4.2 More tests

To demonstrate the capability of hexagonal FVs in the study of wave phenomena, the remaining
test cases consist of three categories described briefly in Table 7.

(1) Test 1–4. The goal is to investigate linear wave propagation (Figures 2 and 3) in cardiac tissue
in an approximated square domain. Here a uni-direction linear wave started initially at the left
edge of the domain, caused by electrical stimulation at the whole edge in a short time frame.
The measured conduction velocities of the resulting linear waves (Tables 8–11) in these four
tests are comparable with data obtained from the literature [20]. Our results indicate a trend
in convergence.

(2) Test 5–9. Linear wave started initially as in the first category tests, it was then followed in a
later time by a second stimulation at the first half of the top edge, resulting in a self-sustained
spiral wave, Figure 4.

(3) Test 10, 11. This last category deals with computation in a reversed C-type domain (Figure 5),
which represents a horizontal cross-section of left ventrical cardiac tissue [13].

For all test runs, computational domains consist of rectangular or hexagonal FVs. Twenty-five
tracers are deployed. The calculated values of variables u and v are recorded at these tracers at
various times.
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Table 7. Test run description of wave phenomena using monodomain equations.

Test Domain tend Grid Grid Size Method Code Wave

1 Square 100 Cartesian 100 × 100 FD, C-N C Linear
2 Square 100 Cartesian 100 × 100 MOL,rkf45 C Linear
3 Square 100 Hexa I 120 × 100 FD, C-N C Linear
4 Square 100 Hexa I 120 × 100 MOL,rkf45 C Linear

5 Square 140 Cartesian 100 × 100 FD, C-N C Spiral
6 Square 140 Cartesian 100 × 100 MOL,rkf45 C Spiral
7 Square 140 Hexa II 100 × 120 FD, C-N C Spiral
8 Square 140 Hexa I 120 × 100 FD, C-N M Spiral
9 Square 140 Hexa I 120 × 100 MOL,rkf45 C Spiral

10 C-type 70 Hexa II 100 × 120 FD, C-N M Curved
11 C-type 70 Hexa II 100 × 120 MOL,rkf45 C Curved

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

u

t

 u at 25 tracers 

 u01 
 u02 
 u03 
 u04 
 u05 
 u06 
 u07 
 u08 
 u09 
 u10 
 u11 
 u12 
 u13 
 u14 
 u15 
 u16 
 u17 
 u18 
 u19 
 u20 
 u21 
 u22 
 u23 
 u24 
 u25 

Figure 2. Linear wave recorded at 25 tracers on 50 × 60 type II hexagonal grid.

Figure 3. Linear wave on square via type I hexagons using MOL. Surface and contour plots. (a) Frame 100, (b) Frame
200, (c) Frame 350, (d) Frame 450.

4.4.3 Results and discussion

We discuss in more details below.

(1) Test 1–4. Two references, test 1 and 2, were carried out on a 120-by-120 sized square domain,
with computation on standard boundary-fitted cell-centred FVs, i.e. on rectangular cartesian
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Table 8. Linear wave computation by various FVs and methods. n ≈ 25, �t = 1.0e − 2, �t/(�x)2 ≈ 4.34e − 4.

Case Model Method Option FV tend nx , ny Speed Deviation

1 1 FD αCN0.5 2D 50 25, 25 0.718 0.0
2 1 FD αCN1.0 2D 50 25, 25 0.720 0.0
3 1 FD αCN0.0 2D 50 25, 25 0.716 0.0
4, 5 2 MOL Trapezoid, rkf45 2D 50 25, 25 0.718 0.0

6 3 FD αCN0.5 Quad 50 25, 25 0.718 0.0
7 3 FD αCN1.0 Quad 50 25, 25 0.720 0.0
8 3 FD αCN0.0 Quad 50 25, 25 0.716 0.0
9,10 4 MOL Trapezoid, rkf45 Quad 50 25, 25 0.718 0.0

11 5 FD αCN0.5 Hexa II 50 25, 30 0.770 0.018
12 5 FD αCN1.0 Hexa II 50 25, 30 0.773 0.018
13 5 FD αCN0.0 Hexa II 50 25, 30 0.766 0.018
14,15 6 MOL Trapezoid, rkf45 Hexa II 50 25, 30 0.770 0.018

16 5 FD αCN0.5 Hexa I 50 30, 25 1.018 0.021
17 5 FD αCN1.0 Hexa I 50 30, 25 1.022 0.021
18 5 FD αCN0.0 Hexa I 50 30, 25 1.013 0.021
19,20 6 MOL Trapezoid, rkf45 Hexa I 50 30, 25 1.018 0.021

Table 9. Linear wave computation by various FVs and methods. n ≈ 50, �t = 2.5e − 3, �t/(�x)2 ≈ 4.34e − 4.

Case Model Method Option FV tend nx , ny Speed Deviation

1 1 FD αCN0.5 2D 50 50, 50 1.240 0.003
2 1 FD αCN1.0 2D 50 50, 50 1.248 0.002
3 1 FD αCN0.0 2D 50 50, 50 1.234 0.002
4, 5 2 MOL Trapezoid, rkf45 2D 50 50, 50 1.240 0.003

6 3 FD αCN0.5 Quad 50 50, 50 1.240 0.004
7 3 FD αCN1.0 Quad 50 50, 50 1.248 0.002
8 3 FD αCN0.0 Quad 50 50, 50 1.233 0.002
9,10 4 MOL Trapezoid, rkf45 Quad 50 50, 50 1.240 0.004

11 5 FD αCN0.5 Hexa II 50 50, 60 1.238 0.006
12 5 FD αCN1.0 Hexa II 50 50, 60 1.247 0.006
13 5 FD αCN0.0 Hexa II 50 50, 60 1.231 0.005
14,15 6 MOL Trapezoid, rkf45 Hexa II 50 50, 60 1.238 0.006

16 5 FD αCN0.5 Hexa I 50 60, 50 1.364 0.010
17 5 FD αCN1.0 Hexa I 50 60, 50 1.373 0.010
18 5 FD αCN0.0 Hexa I 50 60, 50 1.356 0.009
19,20 6 MOL Trapezoid, rkf45 Hexa I 50 60, 50 1.364 0.010

(half-integral) nodes. These are FD codes using either C-N method (test 1) or MOL by rkf45
(test 2).

Test 3 (4) is using type I hexagonal FVs approximating the square domain, with computation
done by FD (MOL) method. Time plots of the dependent variables at twenty-five tracers are
shown in Figure 2. Visualisation by MATLAB of test 4 is seen as Figure 3. These figures
indicate clearly a linear wave solution. Plots of tests 1–3 are similar and omitted.

More were examined to validate our methods and implementations. The wave speeds are
calculated at (up to) 25 tracers by backward Euler scheme in time as listed in Tables 8–11, in
which gradually finer spatial resolutions are taken. The average conduction velocities (mea-
sured at relevant tracers) and their deviations are recorded. The simulations were conducted
based on four different temporial-spatial discretisations. The first two models (test 1,2) were
thought to be more robust. To our surprise, the Hexa II results are compatible to the results
on rectangular and general Quad FVs, while the Hexa I results converge even faster than all
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Table 10. Linear wave computation by various FVs and methods. n ≈ 100, �t = 2.5e − 3, �t/(�x)2 ≈ 1.736e − 3.

Case Model Method Option FV tend nx , ny Speed Deviation

1 1 FD αCN0.5 2D 150 100,100 1.461 0.003
2 1 FD αCN1.0 2D 150 100,100 1.472 0.014
3 1 FD αCN0.0 2D 150 100,100 1.461 0.003
4 2 MOL Trapezoid 2D 150 100,100 1.461 0.003
5 2 MOL rkf45 2D 150 100,100 1.462 0.003

6 3 FD αCN0.5 Quad 150 100,100 1.462 0.003
7 3 FD αCN1.0 Quad 150 100,100 1.464 0.001
8 3 FD αCN0.0 Quad 150 100,100 1.459 0.005
9,10 4 MOL Trapezoid, rkf45 Quad 150 100,100 1.462 0.003

11 5 FD αCN0.5 Hexa II 150 100,120 1.463 0.004
12 5 FD αCN1.0 Hexa II 150 100,120 1.466 0.002
13 5 FD αCN0.0 Hexa II 150 100,120 1.461 0.004
14,15 6 MOL Trapezoid, rkf45 Hexa II 150 100,120 1.463 0.004

16 5 FD αCN0.5 Hexa I 150 120,100 1.521 0.011
17 5 FD αCN1.0 Hexa I 150 120,100 1.525 0.010
18 5 FD αCN0.0 Hexa I 150 120,100 1.519 0.011
19 6 MOL Trapezoid Hexa I 150 120,100 1.522 0.011
20 6 MOL rkf45 Hexa I 150 120,100 1.521 0.011

Table 11. Linear wave computation by various FVs and methods. n ≈ 200 or 400, �t = 6.25e − 4, or 1.5625e − 4,
ratio �t/(�x)2 ≈ 1.736e − 3 for all cases.

Case Model Method Option FV tend nx , ny Speed Deviation

1 1 FD αCN0.5 2D 150 200,200 1.555 0.001
2 1 FD αCN1.0 2D 150 200,200 1.556 0.001
3 1 FD αCN0.0 2D 150 200,200 1.554 0.001
4, 5 2 MOL Trapezoid, rkf45 2D 150 200,200 1.555 0.001

6 3 FD αCN0.5 Quad 150 200,200 1.555 0.001
7 3 FD αCN1.0 Quad 150 200,200 1.556 0.000
8 3 FD αCN0.0 Quad 150 200,200 1.554 0.002
9,10 4 MOL Trapezoid, rkf45 Quad 150 200,200 1.555 0.001

11 5 FD αCN0.5 Hexa II 150 200,240 1.555 0.001
12 5 FD αCN1.0 Hexa II 150 200,240 1.555 0.001
13 5 FD αCN0.0 Hexa II 150 200,240 1.554 0.001
14,15 6 MOL Trapezoid, rkf45 Hexa II 150 200,240 1.555 0.001

16 5 FD αCN0.5 Hexa I 150 240,200 1.578 0.014
17 5 FD αCN1.0 Hexa I 150 240,200 1.579 0.015
18 5 FD αCN0.0 Hexa I 150 240,200 1.577 0.014
19,20 6 MOL Trapezoid, rkf45 Hexa I 150 240,200 1.578 0.014

21 1 FD αCN0.0 2D 100 400,400 1.580 0.000
22 3 FD αCN0.0 Quad 100 400,400 1.580 0.000
23 5 FD αCN0.0 Hexa II 100 400,480 1.580 0.001
24 5 FD αCN0.0 Hexa I 100 480,400 1.595 0.018

Figure 4. Spiral wave on square via type II hexagons using FD. Surface and contour plots. (a) Frame 200, (b) Frame
300, (c) Frame 400, (d) Frame 500.
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Figure 5. Linear wave on curved domain via type II hexagons using MOL. Surface and contour plots. (a) Frame 010,
(b) Frame 100, (c) Frame 200, (d) Frame 350.

other tested methods, including those based on structured cartesian (2D) grids. The authors
make a strong point that

hexagonal FVs are valuable in simulations of two-dimensional wave phenomena.
(2) Test 5–9. These are simulations of spiral waves with some results shown in Figure 4, for test 7.

The simulation time is up to 140 for all computations.
Test 5 is a reference case for spiral wave on the square domain, deployed with 100-by-100

rectangular FV nodes. FD method in a Crank–Nicolson variation is applied.Another reference
is test 6 by MOL. The surface and contour plots of these two referential cases are in good
agreement, but not shown because of limitation of space. Test 7 runs on 100-by-120 type II
hexagons by FD, with result in Figure 4, showing a self-sustained spiral wave. This and the
previous two rectangular grid tests produced quite similar patterns in all phases, indicating
the capability of hexagonal FVs in numerical modelling.

Tests 8 and 9 run on 120-by-100 type I hexagons by FD and M-code (test 8) or MOL and
C-code (test 9). The plots of these two tests are also in very good agreement.

(3) Test 10, 11. A (reversed) C-type domain is taken here. Type II hexagons are adopted as is
in test 7. The grid sizes on the background are the same. The calculated results are thus
conceivable. The programs are written in MATLAB via C-N scheme for test 10, and in C-
language via rkf45 for test 11. Calculated results of these two successfully show a travelling
wave through the curved domain. The figures show very similar evolutions, thus validating
our implementations and the findings. Evolution of the wave and shape of the curved domain
is shown in Figure 5 for test 11.

We mention that for the horizontal section of the left ventricle case, we can introduce the
fibre anisotropy effect; that is, the fibre direction is tangent to the circumferential shells of
every transmural layer (endocardium, mid-myocardium, epicardium) (see [6]) and the conduction
velocity is faster along this tangent direction which can be implemented by adjusting the diffusion
coefficients matrix for further studies.

5. Conclusions

In this work, we develop an FV-based FD approach to solving Laplacian-related differential
equations on regular hexagonal grids with a general phase angle. Explicit leading error term in
the error estimation are derived. Both ordinary and compact hexagonal seven-point schemes are
investigated. Theoretical properties of the associated linear (linearised) algebraic systems in solv-
ing static (time-dependent) problems are determined. Fundamental algorithm for construction of
linearly linked hexagonal FVs are formulated and used to design MOL-FD and FD-FD simula-
tion software, which can solve systems of differential equations involving general geometry by
embedding into a cartesian grid.
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Test results on static Poisson problems and smooth R-D systems confirm all theoretical pre-
dictions. Additionally, we apply the method to solve a system of equations on a two-dimensional
cardiac tissue. The dynamics of electrical wave propagation are observed. Both linear and spi-
ral waves are exhibited on a square-like domain using a variant of the monodomain equations.
Also successfully demonstrated is a linear wave propagation in a reversed C-type domain. All
computational methods and results are thoroughly and carefully examined.

The hexagonal FV approach is of great value in application to numerical heart modelling. We
think this holds true for a variety of applications in two-dimensional irregular domains.
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Appendix 1. Hexagon related trigonometric identities

To complete the proof of Theorem 2.1 for a hexagon with phase angle ϕ, we note firstly

Lemma A.1

6∑
j=1

cos(kθj) =
6∑

j=1

sin(kθj) = 0, 1 ≤ k ≤ 5,

1

6

6∑
j=1

cos(6θj) = cos(6ϕ),
1

6

6∑
j=1

sin(6θj) = sin(6ϕ).

Proof Note

6∑
j=1

eikθj = eikϕ

6∑
j=1

ei(kjπ/3) = eikϕ ei(kπ/3)(1 − ei(6kπ/3))

1 − ei(kπ/3)
= 0, 1 ≤ k ≤ 5.

The case k = 6 is readily proved in the first part of the above identity. �

The next two lemmas are used in proving Theorem 2.1.

Lemma A.2

1

6

6∑
j=1

cosk(θj) = 1

6

6∑
j=1

sink(θj) =

⎧⎪⎨
⎪⎩

0, k = 1, 3, 5,
1
2 , k = 2,
3
8 , k = 4,

and

1

6

6∑
j=1

cos6 θj = 1

32
(10 + cos(6ϕ)),

1

6

6∑
j=1

sin6 θj = 1

32
(10 − cos(6ϕ)).

Proof These are valid by Lemma A.1 and the following trigonometric identities:

cos2 θ = 1
2 (1 + cos 2θ), sin2 θ = 1

2 (1 − cos 2θ),

cos3 θ = 1
4 (3 cos θ + cos 3θ), sin3 θ = 1

4 (3 sin θ − sin 3θ),

cos4 θ = 1
8 (3 + 4 cos 2θ + cos 4θ), sin4 θ = 1

8 (3 − 4 cos 2θ + cos 4θ),

cos5 θ = 1
16 (10 cos θ + 5 cos 3θ + cos 5θ), sin5 θ = 1

16 (10 sin θ − 5 sin 3θ + cos 5θ),

cos6 θ = 1
32 (10 + 15 cos 2θ + 6 cos 4θ + cos 6θ), sin6 θ = 1

32 (10 − 15 cos 2θ + 6 cos 4θ − cos 6θ).

�

Lemma A.3 N = n + m, 1 ≤ n ≤ N − 1,

N = 1, 3, 5, . . .
1

6

6∑
j=1

sinn θj cosm θj = 0.

N = 2, n = 1, m = 1,
1

6

6∑
j=1

sin1 θj cos1 θj = 0.

N = 4, n = 1, m = 3,
1

6

6∑
j=1

sin1 θj cos3 θj = 0.
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N = 4, n = 3, m = 1,
1

6

6∑
j=1

sin3 θj cos1 θj = 0.

N = 4, n = 2, m = 2,
1

6

6∑
j=1

sin2 θj cos2 θj = 1

8
.

N = 6, n = 1, m = 5,
1

6

6∑
j=1

sin1 θj cos5 θj = 1

32
sin(6ϕ).

N = 6, n = 5, m = 1,
1

6

6∑
j=1

sin5 θj cos1 θj = 1

32
sin(6ϕ).

N = 6, n = 2, m = 4,
1

6

6∑
j=1

sin2 θj cos4 θj = 1

32
(2 − cos 6ϕ).

N = 6, n = 4, m = 2,
1

6

6∑
j=1

sin4 θj cos2 θj = 1

32
(2 + cos 6ϕ).

N = 6, n = 3, m = 3,
1

6

6∑
j=1

sin3 θj cos3 θj = − 1

32
sin(6ϕ).

Proof The neighbour nodes Pj’s, 1 ≤ j ≤ 6, are invariant under reflection with respect to the central node P0. With
indices periodically extended, we obtain, for odd N ,

6∑
j=1

sinn θj cosm θj =
6∑

j=1

sinn θj+3 cosm θj+3 =
6∑

j=1

sinn(π + θj) cosm(π + θj)

= (−1)n+m
6∑

j=1

sinn θj cosm θj = 0.

The remaining cases follow from Lemma A.1 and the following identities:

sin1 θ cos1 θ = 1
2 sin 2θ , sin3 θ cos3 θ = 1

32 (3 sin 2θ − sin 6θ).

sin2 θ cos2 θ = 1
8 (1 − cos 4θ), sin1 θ cos5 θ = 1

32 (5 sin 2θ + 4 sin 4θ + sin 6θ),

sin1 θ cos3 θ = 1
8 (2 sin 2θ + sin 4θ), sin5 θ cos1 θ = 1

32 (5 sin 2θ − 4 sin 4θ + sin 6θ),

sin3 θ cos1 θ = 1
8 (2 sin 2θ − sin 4θ), sin2 θ cos4 θ = 1

32 (2 + cos 2θ − 2 cos 4θ − cos 6θ),

sin4 θ cos2 θ = 1
32 (2 − cos 2θ − 2 cos 4θ + cos 6θ),

These are easily verified, with appropriate choices of α in the substitutions sin α = (eiα − e−iα)/(2i) and cos α =
(eiα + e−iα)/2. This proves the lemma and Theorem 2.1. �

We remark that the proof of Theorem 2.1 is largely reduced for special cases with ϕ = 0, −π/6 in the presence of
some symmetries.

Appendix 2. Lower eigen value bound of hex-seven-point Laplacian

We prove the assertion, Equation (9), for a geometric discretisation which consists of (subset of) a cartesian mesh of
regular hexagons. For comparison, we consider a uniform FD grid of size (nx + 1) · (ny + 1) on the unit square. Interior
nodes are indexed by column, i.e. index := j + (i − 1)ny, 1 ≤ i ≤ nx , 1 ≤ j ≤ ny. The re-scaled discrete (negative) five-
point Laplacian with homogeneous Dirichlet boundary condition is represented by a block-tridiagonal matrix, Lap5 =
trid(−I, 4I − T, −I), in terms of the symmetric bi-shift operator T := ST + S := trid(1, 0, 1), and the (forward) shift
S := trid(0, 0, 1). Here the block size is ny-by-ny.
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Lap7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

6 −1 0 0 0
−1 6 −1 0 0
0 −1 6 −1 0
0 0 −1 6 −1
0 0 0 −1 6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎠ 0 0 0

⎛
⎜⎜⎜⎜⎝

−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

6 −1 0 0 0
−1 6 −1 0 0
0 −1 6 −1 0
0 0 −1 6 −1
0 0 0 −1 6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ 0 0

0

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

6 −1 0 0 0
−1 6 −1 0 0
0 −1 6 −1 0
0 0 −1 6 −1
0 0 0 −1 6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎠ 0

0 0

⎛
⎜⎜⎜⎜⎝

−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

6 −1 0 0 0
−1 6 −1 0 0
0 −1 6 −1 0
0 0 −1 6 −1
0 0 0 −1 6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

0 0 0

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
−1 −1 0 0 0
0 −1 −1 0 0
0 0 −1 −1 0
0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

6 −1 0 0 0
−1 6 −1 0 0
0 −1 6 −1 0
0 0 −1 6 −1
0 0 0 −1 6

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D
ow

nl
oa

de
d 

by
 [

T
un

gh
ai

 U
ni

ve
rs

ity
],

 [
D

an
le

e]
 a

t 1
2:

02
 0

3 
Ju

ne
 2

01
5 



International Journal of Computer Mathematics 2009

The matrix representation of re-scaled discrete seven-point Laplacian, on an indexed-by-column cartesian grid of type
I hexagons (Figure 1(a) without colour labels), reads (with nx = ny = 5)
That is

Lap7 = trid(−I − P, 6I − T, − I − PT ) ≡ 2I + Lap5 + P, (A1)

with perturbation P := diag(−P, 0, −PT ), where P := S, or ST alternatingly between odd- and even-row blocks.
Therefore the Bauer-Fike [2] theorem, applied to the diagonalizable matrix Lap5, yields

max
σ∈SpecLap7

min
μ∈Spec2I+Lap5

{|σ − μ|} ≤ ‖P‖∞ = 2, (A2)

which, together with the fact that,

SpecLap5
=

{
4 − 2 cos

(
pπ

nx + 1

)
− 2 cos

(
qπ

ny + 1

) ∣∣∣∣1 ≤ p ≤ nx , 1 ≤ q ≤ ny

}
,

implies

O((nx + 1)−2 + (ny + 1)−2) ≈ 4 − 2 cos

(
π

nx + 1

)
− 2 cos

(
π

ny + 1

)
= min SpecLap5

≤ min SpecLap7
.

It is obvious this argument (Equations (A1) and (A2)) is valid, at matrix level, with various permuted P in many general
situations. Finally, we note for a type I hexagon cartesian mesh approximating the unit square, we choose h = 1/(

√
3nx +√

3
−1

), and h = 1/(2nx) for a type II mesh. Thus proves the assertion.

Remark A.1 The argument and notation (Lap5) above was simplified by having assumed the usual FD integral nodes
for convenience. Actually, cell-centre FV approach is taken in all our work.

As such, in case of homogeneous Dirichlet B.C. on the square domain, boundary values (at centres of ghost cells) are
set via second-order interpolation as negations of the adjacent interior values. To eliminate optionally the dependence on
the BVs, we can shift the loads to weights on diagonal entities of the matrix, instead of moving BVs to the right-hand
side of the linear system. Consequently, several 4’s on the diagonal of the five-point Laplacian are increased to 5 or 6, and
increasing from 6’s to 7, 8, 9 or 10 for the hex-seven-point Laplacian, depending on the connectivities at interior nodes to
ghost cells.

However, such changes on the diagonal only make slightly larger the upper bound estimate of eigen values, i.e. σM = 2
achieved in Equation (8) while preserving the same eigen basis. Actually, in this setup with slightly more weighted
diagonal,

SpecLap5
=

{
4 − 2 cos

(
pπ

nx

)
− 2 cos

(
qπ

ny

)∣∣∣∣ 1 ≤ p ≤ nx , 1 ≤ q ≤ ny

}
,

with associated eigen basis

Up,q :=
(

Up,q
i,j = sin

(
(i − 0.5)pπ

nx

)
· sin

(
(j − 0.5)qπ

ny

))
i=1:nx ,
j=1:ny .

, 1 ≤ p ≤ nx , 1 ≤ q ≤ ny.

The (asymptotic) lower bound estimates are still valid.
We note the homogeneous Neumann and some Robin cases can be analysed similarly at matrix level. For example, the

eigen system of homogeneous Neumann problem (at half-integral nodes) are solved by complete eigen pairs,

λp,q = 4 − 2 cos

(
(p − 1)π

nx

)
− 2 cos

(
(q − 1)π

ny

)
,

Up,q
i,j = cos

(
(i − 0.5) · (p − 1)π

nx

)
· cos

(
(j − 0.5) · (q − 1)π

ny

)
,

with 1 ≤ p ≤ nx , 1 ≤ q ≤ ny.
We will not go into details in the design of operations on the zigzagging boundary cells at the algorithms and data

structures level.
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