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COMPLETE SOLUTION TO SEVEN-POINT SCHEMES

OF DISCRETE ANISOTROPIC LAPLACIAN ON

REGULAR HEXAGONS

Daniel Lee

We consider in this work hexagonal seven-point schemes for two-dimensional

diagonal-form Laplacian. Ordinary and compact seven-point stencils are in-

vestigated by even-odd decompositions. The result gives explicit complete

solutions to both ordinary and compact hexagonal seven-point schemes for

all phase angles.

1. INTRODUCTION

Hexagonal finite volumes (Hex FVs) are of interest in some recent works. In
the study of the origin of U-wave in ECG (electrocardiogram) [1], hexagonal sub-
regions are adopted, but only pure algebraic relations are considered. In numerical
simulation [2] of human heart electrophysiology, Hex FV based finite difference
(FD) methods are developed and analyzed, leading to discrete ordinary and com-
pact seven-point schemes of the standard Laplacian with applications to Poisson
equations and reaction-diffusion systems. The work [2] showed advantages of Hex
FVs over square grids in studies of wave phenomena propagated in curved domains,
while the theoretic and numerical investigations were extended in a separate work
to semi-linear Poisson equations involving anisotropic Laplacian on nets of regu-
lar hexagons of two specific orientations. In the current work, the schemes for
anisotropic Laplacian are further generalized to regular hexagons of all orienta-
tions. The basic theory is as complete as possible. Things not discussed in this
paper include, among others, numerical examples of PDEs, grid generations and
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practical issues about boundary values. In some limitted scope, these can be found
in our previous work.

Aiming at two-dimensional applications involving anisotropic Laplacian (e.g.,
[5]), we consider discretization on hexagons for solving the linear partial differential
equation involving diagonal-form Laplacian,

Lap u ≡ Lu := D1uxx +D2uyy = f(x, y),(1)

with positive constants D1 and D2. The applications include both static and time-
dependent problems. For the current work, we confine our discussion to the equa-
tion subject to Dirichlet type boundary condition on a net of (regular) hexagons
with an arbitrary phase angle. We introduce regular hexagons in general config-
urations together with the associated local geometry and neighborhood topology.
Discretizations based on both ordinary and compact seven-point schemes are ana-
lyzed.

In two-dimensional applications of configurations consisting of (subset of)
Cartesian type regular hexagons, we denote the radius of hexagons by r, the height

by h
(

=

√
3

2
r
)

, and the center-to-center distance by d(= 2h). Near a typical center

node, P0 = (x0, y0), the six neighbor (center) nodes are

Pj = (xj , yj) = (x0, y0) + d(cos ξj , sin ξj), ξj = ϕ+
jπ

3
+
π

6
, 1 ≤ j ≤ 6.(2)

Here the phase angle, ϕ, is the configurarion parameter. Two particular instances
are called type I (ϕ = 0) and type II (ϕ = −π/6) for convenience. Hexagon centers
in lattices of these two types are indexed as for an orthogonal Cartesian mesh as
shown in Table 1, while the geometry and neighborhood of a general Hex FV shown
in Table 2. Indexing rules are illustrated in Figs. 1(a), 1(b), and 2(a), 2(b).

For convenience, we abuse the notations and denote FV centers in a neigh-
borhood (Figs. 2(a), 2(b)) by an ordered list,

Type I : {Pj}
6
j=0 = {P, P

N
, P

NW
, P

SW
, P

S
, P

SE
, P

NE
},

Type II : {Pj}
6
j=0 = {P, P

NE
, P

NW
, P

W
, P

SW
, P

NW
, P

E
}.

(3)

We note for applications that a two-dimensional irregular domain may be ap-
proximated by a sequence of (not necessarily Cartesian) nets of hexagons. Actually,
our work in numerical modeling of ECG depends on this (Algorithm 1 in ([2])).

Phase angle Type I, ϕ = 0 Type II, ϕ = −π/6

Center point ieven iodd jeven jodd

cx(i, j) (1.5i− 0.5)r 2ih (2i− 1)h
cy(i, j) 2jh (2j − 1)h (1.5j − 0.5)r

Table 1. Lattices of type I and II regular hexagons.
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Phase angle ϕ ∈ R

Vertices Vk = (vx(∗, k), vy(∗, k)) , k = 1, 2, · · · , 6.
vx(∗, k) cx(∗) + r cos(ϕ+ kπ

3 )
vy(∗, k) cy(∗) + r sin(ϕ+ kπ

3 )
Neighbor centers Pk = Vk + Vk+1 − P0, k = 1, 2, · · · , 6.

Table 2. Local geometry at a regular hexagon : six vertices and neighbor centers.

(a) Type I lattice (b) Type II lattice

Figure 1. Lattice of regular hexagons in natural order by columns

(a) Type I neighborhood (b) Type II neighborhood

Figure 2. Regular hexagonal FV neighborhood.

In the special case of solving an isotropic Laplacian (Eq.(1) with D1 = D2 =
D), the divergence theorem is applied to an integral version of the equation, in
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obviously interpreted notations,
∫∫

Ω

f dxdy =

∫∫

Ω

∇ · (D1ux, D2uy) dxdy =

∫

∂Ω

−→n · (D1ux, D2uy) dγ(4)

=

6
∑

i=1

∫

ViVi+1

−→ni · (D1ux, D2uy) dγi = D

6
∑

i=1

∫

ViVi+1

∂u

∂−→ni

dγi

Discretization of each of the line integrals by mid-point rule implies the con-
struction of an ordinary hexagonal seven-point scheme. The locally second-order
quadrature actually yields a (global) second-order approximation, and a fourth-
order compact scheme is obtained with more effort [2].

However, the analytic part of the argument does not apply directly in case
of a general anisotropic Laplacian (D1 6= D2), for which the intuition would still
suggest the application of the mid-point or the trapezoid rule to each line integral.
One needs then proper estimates of the gradient at FV vertices or mid-points of
edges in terms of values of u at several local center nodes. Instead, we take an
algebraic approach in the current work to extend the previous results for all phase
angles ϕ and positive D1, D2.

We note that, (i) spectral analysis of iterative methods solving the discrete
anisotropic Laplacian on a net of hexagons seems not as easy as the analysis on
square grids, since finite trigonometric series is incomplete for the error analysis
(even) on a single regular hexagon ([3],[4]), and (ii) for Hex FVs of types I and II,
convergence of schemes developed in the current work were analyzed via numerical
investigation together with matrix properties by kind of comparison in a separate
work.

As for the remaining sections, basics and main results of hexagonal stencils
are introduced in Section 2, while ordinary seven-point scheme detailed in Section
3, and compact seven-point scheme in Section 4. Briefly discussed in Section 5 is a
cell-vertex FV approach. Conclusion is given in the final section. The appendices
include some barycentric relations in Appendix A and a formal proof of convergence
with leading error terms of the ordinary seven-point method in Appendix B.

2. DISCRETE HEXAGONAL SEVEN-POINT LAPLACIAN

At a Hex FV, a compact hexagonal seven-point (H7c) scheme refers to the
discrete algebraic expression,

6
∑

j=0

AjuPj
=

6
∑

j=0

Rj(Lu)Pj
.(5)

An ordinary seven-point (H7) scheme corresponds to the special case that R0 =
1, R1 = R2 = · · · = R6 = 0. The stencils {Aj , Rj}

6
j=0 are constants, hopefully
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determined by interpolation conditions that the above defining equations hold exact
on a properly chosen subset of low-degree shifted monomials (for slightly better
numerical stability), {(x − x0)

m(y − y0)
n | 0 ≤ m,n, m + n ≤ 6}, and by a

normalization constraint,

6
∑

j=0

Rj = 1, or equivalently, R0 = 1−

6
∑

j=1

Rj ,(6)

which is needed for uniqueness because of scale-invariance of Eq.(5).

We note the (half-turn) symmetry in the local geometry,

Pj+3 − P0 = −(Pj − P0), j = 1, 2, 3.(7)

Without loss of generalities, we assume P0 = (x0, y0) = (0, 0) and consider standard
monomials. By this reduction, the corresponding interpolation conditions are

(8)
6

∑

j=0

Ajx
m
j y

n
j =

6
∑

j=0

Rj

(

D1m(m− 1)xm−2
j ynj +D2n(n− 1)xmj y

n−2
j

)

, m, n ≥ 0,

up to proper interpretation. An immediate consequence,

A0 = −

6
∑

j=1

Aj ,(9)

is implied by the first interpolant (m = n = 0, u(x, y) = 1). All other cases
(m + n > 0) actually involve only {A1, A2, ..., A6}. In view of Eqs.(6,9), we focus
mostly on {Aj , Rj}

6
j=1 in the rest of the discussion.

The seven-point methods (H7 and H7c) are expected to be at least of second-
order. We collect in Table 3 the interpolation conditions on monomials of degrees
up to four for easy reference. Although, our software is implemented in a unified
manner using SVD or LU, based on Eq.(8).

Refering to Table 3, we observe the following.

1. For an H7 scheme, the stencil {Rj}
6
1 is trivial and the RHS (Lu-term) vanishes

on almost all monomials except (m,n) ∈ {(2, 0), (0, 2)} .

2. For an H7c with symmetric R′

js (Eq.(10)), the RHS vanishes on cubic mono-

mials, and {Rj}
6
j=1 appear explicitly only if m+ n ≥ 4.

2.1. Even-odd decomposition of stencils

A general H7c scheme consists of 14 coefficients. In addition to the normal-
ization constraint, we need 13 (independent) interpolation conditions.
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Case m,n u Lu LHS RHS

1 0,0 1 0
∑6

0
Aj 0

2 1,0 x 0
∑

3

1
(Aj − Aj+3)xj 0

3 0,1 y 0
∑

3

1
(Aj − Aj+3)yj 0

4 2,0 x2 2D1

∑

3

1
(Aj + Aj+3)x

2
j 2D1

∑

6

0
Rj = 2D1

5 0,2 y2 2D2

∑

3

1
(Aj + Aj+3)y

2
j 2D2

∑

6

0
Rj = 2D2

6 1,1 xy 0
∑3

1
(Aj + Aj+3)xjyj 0

7 3,0 x3 6D1x
∑

3

1
(Aj − Aj+3)x

3
j 6D1

∑

3

1
(Rj −Rj+3)xj

8 0,3 y3 6D2y
∑3

1
(Aj − Aj+3)y

3
j 6D2

∑3

1
(Rj −Rj+3)yj

9 2,1 x2y 2D1y
∑

3

1
(Aj − Aj+3)x

2
jyj 2D1

∑

3

1
(Rj −Rj+3)yj

10 1,2 xy2 2D2x
∑3

1
(Aj − Aj+3)xjy

2
j 2D2

∑3

1
(Rj −Rj+3)xj

11 4,0 x4 12D1x
2

∑

3

1
(Aj + Aj+3)x

4
j 12D1

∑

3

1
(Rj +Rj+3)x

2
j

12 0,4 y4 12D2y
2

∑3

1
(Aj + Aj+3)y

4
j 12D2

∑3

1
(Rj +Rj+3)y

2
j

13 3,1 x3y 6D1xy
∑3

1
(Aj + Aj+3)x

3
jyj 6D1

∑3

1
(Rj +Rj+3)xjyj

14 1,3 xy3 6D2xy
∑

3

1
(Aj + Aj+3)xjy

3
j 6D2

∑

3

1
(Rj +Rj+3)xjyj

15 2,2 x2y2 2D1y
2+

∑3

1
(Aj + Aj+3)x

2
jy

2
j 2

∑3

1
(Rj +Rj+3)(D2x

2
j +D1y

2
j )

2D2x
2

Table 3. Interpolation conditions (Eq.(8)) on monomials for hexagonal seven-point

methods. Stated expressions depend only on that x0 = y0 = 0 and the geometric

symmetry (xj+3, yj+3) = −(xj, yj), j = 1, 2, 3. The algebraic system decouples

accordingly, up to the even-odd decompositions of stencils. For an H7 scheme,

R0 = 1, R1 = R2 = · · · = R6 = 0.

In view of the geometric symmetry (Eq.(7)), we expect symmetric stencils,
that is, calculations would produce a (unique) solution satisfying

Aj+3 = Aj , Rj+3 = Rj , j = 1, 2, 3.(10)

The prediction is nearly correct, as will be stated in the main result shortly.

Definition 1. The (even) symmetric and the asymmetric parts of the stencils
{Aj}

6
0 and {Rj}

6
0 are, respectively,

Asym
:=

{

A0,
Aj + Aj+3

2

}

≡

{

A0,
A1 + A4

2
,
A2 + A5

2
,
A3 + A6

2
,
A4 + A1

2
,
A5 + A2

2
,
A6 + A3

2

}

,

Rsym
:=

{

R0,
Rj + Rj+3

2

}

≡

{

R0,
R1 + R4

2
,
R2 + R5

2
,
R3 + R6

2
,
R4 + R1

2
,
R5 + R2

2
,
R6 + R3

2

}

,

Aasym
:=

{

0,
Aj − Aj+3

2

}

≡

{

0,
A1 − A4

2
,
A2 − A5

2
,
A3 − A6

2
,
A4 − A1

2
,
A5 − A2

2
,
A6 − A3

2

}

,

Rasym
:=

{

∗,
Rj − Rj+3

2

}

≡

{

∗,
R1 − R4

2
,
R2 − R5

2
,
R3 − R6

2
,
R4 − R1

2
,
R5 − R2

2
,
R6 − R3

2

}

,

with the value Rasym
0 not of our concern.
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For convenience, we also refer to the triple {Aj + Aj+3}j=1,3,5 as the sym-
metric part and {Aj −Aj+3}j=1,3,5 the asymmetric part. Similarly with the Rj ’s.

Easily justified properties are

1. A = Asym +Aasym, R = Rsym +Rasym.

2. Asym is symmetric, i.e., Asym
j = Asym

j+3 , j = 1, 2, 3. Same with Rsym.

3. Aasym is asymmetric, i.e., Aasym
j = −Aasym

j+3 , j = 1, 2, 3. So is Rasym.

4. If {Aj}
6
1 is both symmetric and asymmetric, then {Aj}

6
0 ≡ 0. Therefore the

even-odd decomposition of {Aj}
6
0 is unique.

5. If {Rj}
6
1 is both symmetric and asymmetric, then {Rj}

6
1 ≡ 0 and R0 = 1.

The H7c scheme reduces to an H7 scheme.

We state the main result. All cases of interpolation conditions refer to Table
3.

(a) The symmetric part Asym is uniquely solvable by cases {x2, y2, xy} in terms
of only {D1, D2, d, ϕ}, as in Lemma 3 later.

(b) With Asym available, Rsym is uniquely solvable by using monomials {x4, y4, x3y}
or {x4, y4, xy3}. Different solution may be obtained accordingly, as to be ex-
plained in Lemma 6 (Eq.(22)) and Remark 2.

(c) It is necessary to assume R = Rsym(, Rasym = 0) for uniqueness of the
coupled {A′

js, R
′

js}, as will be detailed in Subsections 4.1 and 4.2, esp.,
Remark 1.

(d) Aasym(= 0) is uniquely determined, as will be shown in Lemma 2 for H7 and
in Lemma 5 for H7c, by using Rasym (zero or a nonzero constant).

We note the only source of non-uniqueness in the final solution, A(= Asym +
Aasym) and R(= Rsym +Rasym), is the Rasym term (if not null).

The half-turn symmetry (Eq.(7)) of the local geometry at a Hex FV readily
implies the following, for both H7 and H7c.

Lemma 1. Assuming (even) symmetry in both stencils (Eq. (10)), the interpolation
conditions are satisfied on all odd monomials. That is, for u(x, y) = xmyn,

6
∑

j=1

Ajx
m
j y

n
j = 0 =

6
∑

j=1

Rj(Lu)Pj
, if m+n is odd.
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3. ORDINARY SEVEN-POINT SCHEME

We discuss the H7 scheme first. The linear system of interpolation conditions
consisting of u ∈ {x2, y2, xy, x, y, x3, y3} reads





















x21 x23 x25 0 0 0
y21 y23 y25 0 0 0
x1y1 x3y3 x5y5 0 0 0
0 0 0 x1 x3 x5
0 0 0 y1 y3 y5
0 0 0 x31 x33 x35
0 0 0 y31 y33 y35





















·

















A1 +A4

A3 +A6

A5 +A2

A1 −A4

A3 −A6

A5 −A2

















=





















2D1

2D2

0
0
0
0
0





















.(11)

We rewrite this decoupled system as

[

Msym 0
0 Masym

]

·

[

Asym

Aasym

]

= (2D1, 2D2, 0, 0, 0, 0, 0)
T ,

with respectively the symmetric and asymmetric parts,

Msym · Asym ≡





x21 x23 x25
y21 y23 y25

2x1y1 2x3y3 2x5y5



 ·





A1 +A4

A3 +A6

A5 +A2



 =





2D1

2D2

0



 ,(12)

Masym · Aasym ≡









x1 x3 x5
y1 y3 y5
x31 x33 x35
y31 y33 y35









·





A1 −A4

A3 −A6

A5 −A2



 =









0
0
0
0









.(13)

Invertibility of the matrices Msym and Masym (implicitly defined above) will
be determined. Firstly, we apply one elementary column operation by adding the
first two columns to the third one of the matrix of the asymmetric part (Eq.(13)),
and deduce that

M3 · ∗ ≡









x1 x3 0
y1 y3 0
x31 x33 3x1x3x5
y31 y33 3y1y3y5









·





A1 −A4 − (A5 −A2)
A3 −A6 − (A5 −A2)

A5 −A2



 =









0
0
0
0









,(14)

by barycentric relations, Eqs.(25,28 and 29).

Lemma 2. The asymmetric part, Aasym in Eq. (13), has (unique) trivial solution,

Aasym = 0, that is, Aj = Aj+3, j = 1, 2, 3.

Proof. Just observe by geometric argument that

(i) (x1, y1) and (x3, y3) are not colinear, and
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(ii) at most one of {x1, x3, x5, y1, y3, y5} can be zero.

Therefore, the 4-by-3 matrix, M3, has (full) rank three. So is the matrix Masym.

Next, we use

(xj , yj) = d(cos ξj , sin ξj), j = 1, 2, ..., 6, ξj+3 = ξj + π, j = 1, 2, 3,

to recast Eq.(12) as

d2





cos2 ξ1 cos2 ξ3 cos2 ξ5
sin2 ξ1 sin2 ξ3 sin2 ξ5
sin 2ξ1 sin 2ξ3 sin 2ξ5



 ·





A1 +A4

A3 +A6

A5 +A2



 =





2D1

2D2

0



 ,

or equivalently, by elementary row operations,

d2M2A
sym ≡ d2





1 1 1
cos 2ξ1 cos 2ξ3 cos 2ξ5
sin 2ξ1 sin 2ξ3 sin 2ξ5









A1 + A4

A3 + A6

A5 + A2



 =





2D1 + 2D2

2D1 − 2D2

0



 .

Note the above-defined M2 has nonzero determinant,

det(M2) = sin(2ξ5 − 2ξ3)− sin(2ξ5 − 2ξ1) + sin(2ξ3 − 2ξ1) =
−3

√
3

2
,

by the relations ξ5 − ξ3 = ξ3 − ξ1 = 2π/3. It is easier now to work with cofactors
and obtain

(15) M−1

2 =
1

3





1 2 cos 2ξ1 2 sin 2ξ1
1 2 cos 2ξ3 2 sin 2ξ3
1 2 cos 2ξ5 2 sin 2ξ5



 =
1

3





1 −2 cos 2ϕ −2 sin 2ϕ
1 −2 cos(2ϕ− 2π

3
) −2 sin(2ϕ− 2π

3
)

1 −2 cos(2ϕ+ 2π

3
) −2 sin(2ϕ+ 2π

3
)



 .

Consequently, by the equivalence that

M2 =





1 1 0
1 −1 0
0 0 1



 ·Msym and M−1
sym =M−1

2 ·





1 1 0
1 −1 0
0 0 1



 ,

we obtain

M−1
sym =

2

3d2







1
2 + cos 2ξ1

1
2 − cos 2ξ1 sin 2ξ1

1
2 + cos 2ξ3

1
2 − cos 2ξ3 sin 2ξ3

1
2 + cos 2ξ5

1
2 − cos 2ξ5 sin 2ξ5







=
2

3d2







1
2 − cos 2ϕ 1

2 + cos 2ϕ − sin 2ϕ
1
2 − cos(2ϕ− 2π

3 ) 1
2 + cos(2ϕ− 2π

3 ) − sin(2ϕ− 2π
3 )

1
2 − cos(2ϕ+ 2π

3 ) 1
2 + cos(2ϕ+ 2π

3 ) − sin(2ϕ+ 2π
3 )






.

We state formally



Seven-point Discrete Anisotropic Laplacian 189

Lemma 3. The symmetric part Asym in Eq.(12) is uniquely solved in terms of
D1, D2, d and ϕ. Morever, A0 = −(D1 + D2)/(2h

2) independent of the phase
angle.

Proof. Inversion of Eq.(12) yields





A1 +A4

A3 +A6

A5 +A2



 =
2

3d2





D1 +D2 − 2(D1 −D2) cos 2ϕ
D1 +D2 − 2(D1 −D2) cos(2ϕ− 2π

3 )

D1 +D2 − 2(D1 −D2) cos(2ϕ+ 2π
3 )



 ,(16)

and, by the linear barycentric identity (Eq.(25)),

−A0 =

6
∑

j=1

Aj =
2(D1 +D2)

d2
=
D1 +D2

2h2
,(17)

as claimed.

We conclude on the H7 scheme.

Theorem 1. The ordinary hexagonal seven-point stencil is uniquely determined by
(seven out of) the eight interpolants, u ∈ {1, x, y, x2, y2, xy, x3 or y3}, using (LU
or) SVD method for all phase angles. The resulting stencil is symmetric and exact
on all odd polynomials (by Lemma 1).

Three typical examples of H7 schemes are given collectively in Section 4.5
with {Rj}

6
0 = {1, 0, 0, 0, 0, 0, 0} .

The functional approach, Eq.(5), indicates the now well-justified H7 scheme
is of (at least) second-order. A formal proof is given in Appendix B for Hex II FVs
with explicit leading error term.

4. COMPACT SEVEN-POINT SCHEME

For H7c, we note that

1. Cases 4,5,6 (u = x2, y2, xy) together yield the same linear system as with an
H7 scheme. Therefore Eq.(12) and Lemma 3 apply with H7c as well.

2. Should Rasym = 0 in an H7c scheme, cases {x, y, x3, y3} would yield the
same Eq.(13) and then Lemma 2 would apply. However, the R-stencil is not
necessarily symmetric as shown next.

4.1. Non-unique asymmetric part : R
asym

Lemma 4. Associated with the linear and cubic monomials {x, y, x3, y3, x2y, xy2},
the interpolation system
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















x1 x3 x5 0 0 0
y1 y3 y5 0 0 0
x31 x33 x35 −6D1x1 −6D1x3 −6D1x5
y31 y33 y35 −6D2y1 −6D2y3 −6D2y5
x21y1 x23y3 x25y5 −2D1y1 −2D1y3 −2D1y5
x1y

2
1 x3y

2
3 x5y

2
5 −2D2x1 −2D2x3 −2D2x5

































A1 −A4

A3 −A6

A5 −A2

R1 −R4

R3 −R6

R5 −R2

















=

















0
0
0
0
0
0

















(18)

has nonunique (nontrivial) solutions.

Proof. The elementary column-operation, adding the fourth and fifth columns
to the sixth one, leads to a homogeneous system, in which the sixth column are
identically zero by the linear barycentric identity. Hence the non-uniqueness of
solutions, which completes the proof.

We note the above similarity argument implies that (R1 + R3 + R5 − R2 −
R4 − R6) (= 3δR from Lemma 5 to come) is a free parameter.

Next we investigate further structures of the coupled solution

{

Aasym
1 , Aasym

3 , Aasym
5 , Rasym

1 , Rasym
3 , Rasym

5

}

.

4.2. Vanishing Aasym and constant Rasym

By the linear barycentric identity, the 2-by-3 subsystem consisting of the two
linear cases (u = x, y) in Eq.(18 or 13) is equivalent to the following 2-by-2 system

[

x1 x3
y1 y3

] [

A1 −A4 − (A5 −A2)
A3 −A6 − (A5 −A2)

]

=

[

0
0

]

,

which admits the unique trivial solution because the three points {P0, P1, P3} are
not colinear. Therefore, A1 −A4 = A5 − A2 = A3 −A6 = δA is a constant.

By this and the cubic barycentric identities in Lemma 8, the four cubic cases
in Eq.(18) simplify to









x1 x3
y1 y3
y1 y3
x1 x3









[

R1 −R4 − (R5 −R2)
R3 −R6 − (R5 −R2)

]

= δA









(x31 + x33 + x35)/(6D1)
(y31 + y33 + y35)/(6D2)

(x21y1 + x23y3 + x25y5)/(2D1)
(x1y

2
1 + x3y

2
3 + x5y

2
5)/(2D2)









(19)

=
3

4
δA









sin 3ϕ/(6D1)
cos 3ϕ/(6D2)

− cos 3ϕ/(2D1)
− sin 3ϕ/(2D2)









.

It must be true that δA = 0. Otherwise, the consistence in the first and the fourth
rows in the above 4-by-2 linear system requires sin 3ϕ = 0, while cos 3ϕ = 0 by the
second and third rows. Thus a contradiction. We conclude that Aasym = 0 and
Rasym is a constant.

We summarize on the asymmetric parts of H7c stencils.
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Lemma 5. To meet the linear and cubic interpolation conditions (Eq.(18)), it is
necessary and sufficient that

A1 −A4 = A5 −A2 = A3 −A6 = 0,(20)

R1 −R4 = R5 −R2 = R3 −R6 = δR, being a constant.(21)

Remark 1.

1. If δR = 0, the stencil {Rj}6j=1 satisfies the symmetry (Definition 1). Otherwise, it is
unique up to a multiple of period-three-rotation in the form {1, 0, 1, 0, 1, 0}. How-
ever, interpolation conditions on degree-five monomials are generally not satisfied
with such asymmetric Rj ’s. Although, it may have advantages in some applica-
tion(s) up to further research.

2. Even if we assume the symmetry (Rj = Rj+3) and then the total stencil solution
({Aj , Rj} = {Asym, Rsym}) is uniquely solvable, but depending on the choice of
interpolants, as will be detailed in Remark 2.

4.3. Absolutely unique Asym

Now Aasym = 0 and A = Asym are explicitly solved by Eqs.(16, 17). The
condition of stability that all off-center weights {Aj}

6
1 be positive is easily seen.

Corollary 1. The necessary and sufficient condition that Aj > 0, j = 1, 2, . . . , 6,
is

(D1 +D2)/2

D1 −D2

>max
(

cos(2ϕ), cos(2ϕ± 2π/3)
)

, if D1 > D2,

(D1 +D2)/2

D2 −D1

>max
(

cos(2(π/2− ϕ)), cos(2(π/2− ϕ)± 2π/3)
)

, if D2 > D1.

Also,

Corollary 2. The necessary and sufficient condition that Aj > 0, j = 1, 2, ..., 6 ,
independent of the phase angle (ϕ), is

1

3
<
D2

D1

< 3.

Proof. Besides the trivial case D1 = D2, we observe that

If D1 > D2, then
(D1 +D2)/2

D1 −D2

> 1 ⇐⇒
1

3
<
D2

D1

< 1.

If D2 > D1, then
(D1 +D2)/2

D2 −D1

> 1 ⇐⇒ 1 <
D2

D1

< 3.

This finishes the proof.
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4.4. Up-to-interpolants unique Rsym

The three cases, u ∈ {x4, y4, x3y} in Table 3, lead to (with D = D1)




12D1 0 0
0 12D2 0
0 0 3D



Msym





R1 +R4

R3 +R6

R5 +R2



(22)

= d4





cos4 ξ1 cos4 ξ3 cos4 ξ5
sin4 ξ1 sin4 ξ3 sin4 ξ5

cos3 ξ1 sin ξ1 cos3 ξ3 sin ξ3 cos3 ξ5 sin ξ5









A1 +A4

A3 +A6

A5 +A2



 .

The right-hand side above (with action on Asym) being straight, Rsym is thus
uniquely solvable.

The alternative approach, using {x4, y4, xy3} instead, leads to the same left-
hand side in Eq.(22) with D = D2 and consistent changes in the third matrix row
on the right.

We state formally.

Lemma 6. Depending on using either {x4, y4, x3y} or {x4, y4, xy3}, specific Rsym

is solved uniquely in terms of Asym.

Remark 2. Let R = Rsym from Eq.(22) and Rasym = 0 = δR in Eqs.(18 and 21). The
following statements are true.

1. The so-constructed H7c approximation is nearly fourth-order in the sense that it
is exact on monomials of degrees less than six and mismatches at most the two
(shifted) monomials, xy3 and x2y2.

2. Should we use the monomials {x4, y4, xy3} in solving for Rj ’s , different R
sym may

be obtained, mismatching x2y2 and (probably) x3y.

3. In case of Hex I (II) FVs, the stencils determined by using xy3 (x3y) catches x3y
(xy3) as well, and mismatches only the x2y2 term. Thus almost a fourth-order
method, and indeed a fourth-order one if D1 = D2.

4. However, the next choice (using x4, y4, x2y2) is not suggested, with the left-hand
side in Eq.(22) being a rank-deficient square system :




12D1 0 0
0 12D2 0
0 0 2









x2
1 x2

3 x2
5

y21 y23 y25
D1y

2
1 +D2x

2
1 D1y

2
3 +D2x

2
3 D1y

2
5 +D2x

2
5









R1 +R4

R3 +R6

R5 +R2



 .

4.5. Summary on H7c

Theorem 2. The hexagonal compact seven-point stencils {Aj}
6
0 and {Rj}

6
0 can be

determined by the normalization constraint (Eq.(6)) and the 13 interpolants,

u ∈ {1, x, y, x2, y2, xy, x3, y3, x2y, xy2, x4, y4, x3y}.

If the monomial x3y is replaced by xy3, different solution pairs of stencils are
obtained. In either case, the unique stencil {Aj} is always symmetric while {Rj}
assumed so. Consequently, the resulting H7c scheme is exact on all odd polynomials.
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To solve Eqs. (8) numerically at one strike, the symmetry (Rasym = 0)
may or may not need special arrangement, depending on how the SVD method is
implemented.

We note three special cases of Eqs.(16, 22).

Example 1. Hex I, phase angle ϕ = 0 ( ξ1 = π/2, ξ3 = 7π/6, ξ5 = 11π/6 ),

(A1, A3, A5) = (A4, A6, A2) =
1

3d2
(

3D2 −D1, 2D1, 2D1

)

, A0 =
−6(D1 +D2)

3d2
,

(R1, R3, R5) = (R4, R6, R2) =

(

3−D1/D2

48
,
1

24
,
1

24

)

, R0 =
17 +D1/D2

24
.

(23)

For stability, all off-center weights are nonnegative if D2/D1 ≥ 1/3.

Example 2. Hex II, phase angle ϕ = −π/6 ( ξ1 = π/3, ξ3 = π, ξ5 = 5π/3 ),

(A1, A3, A5) = (A4, A6, A2) =
1

3d2
(

2D2, 3D1 −D2, 2D2

)

, A0 =
−6(D1 +D2)

3d2
,

(R1, R3, R5) = (R4, R6, R2) =

(

1

24
,
3−D2/D1

48
,
1

24

)

, R0 =
17 +D2/D1

24
.

(24)

All off-center weights are nonnegative if D2/D1 ≤ 3.

Example 3. The standard (fourth-order) H7c scheme ([2]) can be re-discovered, with
D1 = D2 = 1 and for any phase angle ϕ , that

A =
1

6h2
(−6, 1, 1, 1, 1, 1, 1) and R =

1

24
(18, 1, 1, 1, 1, 1, 1).

In the current example, either x3y or xy3 can be used in a similar construction of Eq.(22),
and interpolation conditions (Eq.(8)) are satisfied for all polynomials of degrees less than
six (m+ n < 6).

Actually, the second example above can be obtained from the first one, as
follows.

Lemma 7 (Reflection Principle). The two configurations, Hex I and Hex II together
with the diagonal-form Laplacian, are convertible from each other by applying reflec-
tion with respect to the main diagonal in the xy-plane, and therefore interchanging
the two symbol lists (Eq. (3))
{

x, y,D1, D2, N,NW,SW,S, SE,NE
}

and
{

y, x,D2, D1, E, SE, SW,W,NW,NE
}

.

With a general phase angle, the reflection interchanges

{

(ϕ), {Pj}
6
1

}

and
{

(π/2− ϕ), {P6−j%6}
6
1

}

.

Here
{

P6−j%6

}6

1
refers to the outcome of the order-2 permutation

(

1 2 3 4 5 6
5 4 3 2 1 6

)

of

the indices.
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Proof. All correspondence in the geometry are based on the relation
(

sin
(

ψ +
jπ

3

)

, cos
(

ψ +
jπ

3

)

)

=

(

cos
(π

2
−

(

ψ +
jπ

3

))

, sin
(π

2
−

(

ψ +
jπ

3

))

)

=

(

cos
(π

2
− ψ +

(6− j)π

3

)

, sin
(π

2
− ψ +

(6− j)π

3

)

)

.

This ends the proof.

5. CELL-VERTEX HEXAGONAL FV METHOD FAILS

In a cell-vertex (other than cell-center) FV approach, we try to estabilish the
relation,

D1uxx +D2uyy ≈

6
∑

j=1

BjuVj
,

using the six vertices of the cell (FV),

Vj = P0 + r(cos θj , sin θj), θj = ϕ+
jπ

3
, j = 1, 2, ..., 6.

The first interpolant (u = 1,m = n = 0) requires

6
∑

j=1

Bj = 0.

All the previous discussions about an H7 scheme involving only {Aj}
6
1 are applicable

to {Bj}
6
1, with neighbor centers {Pj} replaced by local vertices {Vj}, that is, with

d replaced by r and ϕ by (ϕ− π/6). Then the relation,

6
∑

1

Bj =
2(D1 +D2)

r2
6= 0,

a mimic of Eq.(17), denies the cell-vertex ordinary hexagonal method as formulated.
A similar compact hexagonal scheme fails either.

6. CONCLUSIONS

Cell-centered hexagonal finite volume method were confirmed effective in
standard Poisson problems and also in time-dependent problems such as to ex-
hibit successfully linear and spiral waves ([2]). The basic scheme is extended here
to diagonal-form Laplacian and investigated by even-odd decompositions of the
stencils. Complete and explicit solutions are obtained for both ordinary and com-
pact hexagonal seven-point methods, with the latter being of almost fourth-order
on type I and II hexagons, mismatching only the monomial x2y2 among all mono-
mials of degrees at most five, and nearly fourth-order on hexagons in general phase,
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mismatching two degree-four monomials x2y2 and x3y (or xy3), as explained in Re-
mark 2. The discussion after Eq.(4) may lead to staggered grid approach to some
flow problems. The application to wide range of numerical wave propagation and
image science is potentially of much value. We think this applies in many open

field type applications in two-dimensional irregular domains.

Acknowledgments. The author is grateful to Tunghai university for continued
laboratory support for a long period of time.

Appendix A. SOME BARYCENTRIC RELATIONS

Let ϕ be the phase angle, d = 1 and P0 = (0, 0) in our setup, Eq.(2).

Lemma 8. With ψ(= ϕ+ π/6) a start angle, consider

(xj , yj) = (cos ξj , sin ξj), ξj = ψ +
jπ

3
, j = 1, 3, 5.

The following barycentric identities are valid.

x1 + x3 + x5 = y1 + y3 + y5 = 0,(25)

x21 + x23 + x25 = y21 + y23 + y25 =
3

2
,(26)

x41 + x43 + x45 = y41 + y43 + y45 =
9

8
,(27)

x31 + x33 + x35 = 3x1x3x5 =
−3

4
cos 3ψ =

3

4
sin 3ϕ,(28)

y31 + y33 + y35 = 3y1y3y5 =
3

4
sin 3ψ =

3

4
cos 3ϕ,(29)

x21y1 + x23y3 + x25y5 =
−3

4
sin 3ψ =

−3

4
cos 3ϕ,(30)

x1y
2
1 + x3y

2
3 + x5y

2
5 =

3

4
cos 3ψ =

−3

4
sin 3ϕ.(31)

Proof. The linear case follows by the geometric argument that

P1 + P3 + P5 = 3P0 = (0, 0),

while the two even degree cases can be derived in routine ways ([2]). As for the
four cubic cases, the first two are obtained by observing that

x31 + x33 − (x1 + x3)
3 = −3x1x3(x1 + x3) = 3x1x3x5,

y31 + y33 − (y1 + y3)
3 = −3y1y3(y1 + y3) = 3y1y3y5,

and using two general formulas

4 cosα cosβ cos γ =cos(α− β + γ) + cos(α+ β − γ) + cos(−α+ β + γ) + cos(α+ β + γ),

4 sinα sin β sin γ =sin(α− β + γ) + sin(α+ β − γ) + sin(−α+ β + γ)− sin(α+ β + γ).
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Finally, the last two cases can be proved by using

4 sinα cos β cos γ =sin(α− β + γ) + sin(α+ β − γ)− sin(−α+ β + γ) + sin(α+ β + γ),

4 sinα sin β cos γ =cos(α− β + γ)− cos(α+ β − γ) + cos(−α+ β + γ)− cos(α+ β + γ),

or alternatively, by observing

(x3
1 + x3

3 + x3
5) + (x1y

2
1 + x3y

2
3 + x5y

2
5) = x1(x

2
1 + y21) + x3(x

2
3 + y23) + x5(x

2
5 + y25) = 0,

(y31 + y33 + y35) + (y1x
2
1 + y3x

2
3 + y5x

2
5) = y1(x

2
1 + y21) + y3(x

2
3 + y23) + y5(x

2
5 + y25) = 0.

This ends the proof.

We note complex argument could be used to replace part of the argument
above. A reference to the four general trig-formulas involving product of three
factors is ([6]).

Remark 3.

1. By Lemma 7, reflection of the configuration wrt the main diagonal in the xy-plane
results in interchanging the two symbol lists,

{ x1, x3, x5, y1, y3, y5, (ψ) } and { y5, y3, y1, x5, x3, x1, (π/2− ψ) }.

Only half of the claimed identities need proofs, except for Eqs.(26,27).

2. All the barycentric identities remain valid if the indices {1, 3, 5} are replaced by
{2, 4, 6}. The latter corresponds to a configurarion with ϕ replaced by ϕ+ π

3
, while

still using j = 1, 3, 5.

Appendix B. H7 SCHEME WITH ERROR ESTIMATE : TYPE II

HEXAGONS

Assuming appropriate smoothness of the function u and using the coordinates
(Eq.(2)) and abbreviations (Eq.(3)) at a Hex II FV, truncated Taylor expansions
yield,

u
NE

+ u
SE

≈ 2u
P
+ 2

(

d

2
ux +

d2

2

(

1

4
uxx +

3

4
uyy

)

+
d3

6

(

1

8
uxxx +

9

8
uxyy

)

+
d4

24

(

1

16
uxxxx +

18

16
uxxyy +

9

16
uyyyy

)

)

,

u
NW

+ u
SW

≈ 2u
P
+ 2

(

−d
2
ux +

d2

2

(

1

4
uxx +

3

4
uyy)−

d3

6

(

1

8
uxxx +

9

8
uxyy)

+
d4

24

(

1

16
uxxxx +

18

16
uxxyy +

9

16
uyyyy

)

)

,

and

u
NE

+ u
NW

+ u
SE

+ u
SW

− 4u
P
= d2

(

1

2
uxx +

3

2
uyy

)

+

+d4
(

1

96
uxxxx +

18

96
uxxyy +

9

96
uyyyy

)

+O(d6).
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Also

u
E
+ u

W
− 2u

P
= d2uxx +

d4

12
uxxxx +O(d6).

A linear combination of the last two equations yields a second-order seven-
point scheme for the diagonal-form Laplacian with an error estimate,

2D2(uNE
+ u

NW
+ u

SE
+ u

SW
) + (3D1 −D2)(uE

+ u
W
)− (6D1 + 6D2)uP

3d2

=D1uxx +D2uyy +
d2

48

(

(4D1 −D2)uxxxx + 6D2uxxyy + 3D2uyyyy

)

+O(d4),

for type II hexagons.

We note by reflection (Lemma 7),

2D1(uNE
+ u

NW
+ u

SE
+ u

SW
) + (3D2 −D1)(uN

+ u
S
)− 6(D1 +D2)uP

3d2

= D1uxx +D2uyy +
d2

48

(

3D1uxxxx + 6D1uxxyy + (4D2 −D1)uyyyy

)

+O(d4).

for type I hexagons.
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