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ABSTRACT. This work is concerned with zeta functions of two-dimensional
shifts of finite type. A two-dimensional zeta function ¢°(s) which generalizes
the Artin-Mazur zeta function was given by Lind for Z2-action ¢. The n-th
order zeta function {p, of ¢ on Zpxoo, n > 1, is studied first. The trace opera-
tor T, which is the transition matrix for x-periodic patterns of period n with
height 2 is rotationally symmetric. The rotational symmetry of T, induces
the reduced trace operator 7, and ¢, = (det (I — s"7,,)) !, The zeta function
¢ = 10_0[ (det (I — s™7,,)) ! in the z-direction is now a reciprocal of an infinite
prodrtblcé of polynomials. The zeta function can be presented in the y-direction
and in the coordinates of any unimodular transformation in GL2(Z). There-
fore, there exists a family of zeta functions that are meromorphic extensions
of the same analytic function ¢%(s). The Taylor series at the origin for these
zeta functions are equal with integer coefficients, yielding a family of identities
which are of interest in number theory. The method applies to thermodynamic
zeta functions for the Ising model with finite range interactions.

1. INTRODUCTION

Various zeta functions have been investigated in the fields of number theory,
geometry, dynamical systems and statistical physics. This work studies the zeta
functions in a manner that follows the work of Artin and Mazur [1], Bowen and
Lanford [6], Ruelle [30] and Lind [21]. First, recall the zeta function that was
defined by Artin and Mazur.

Let ¢ : X — X be a homeomorphism of a compact space and T, (¢) denote the
number of fixed points of ¢™. The zeta function (4(s) for ¢ defined in [1] is

o0

(1.1) Cols) =exp | D

n=1

Lu(d)

n

Later, Bowen and Lanford [6] demonstrated that if ¢ is a shift of finite type,
then (4(s) is a rational function. In the simplest case, when a shift is generated by
a transition matrix A in Z, (1.1) is computed explicitly as
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(12) ats) = oo ( £ )

(1.3) = (det(I —sA))™ L,
and then

s) = — As)—x(V)
(1.4) Ca(s) A612_[(14)(1 As) :

where x(\) is a non-negative integer that is the algebraic multiplicity of eigenvalue
A and X(A) is the spectrum of A. {4(s) is a rational function which involves only
eigenvalues of A.

Lind [21] extended (1.1) to Z%-action as follows. For Z?-action, d > 1, let ¢ be
an action of Z% on X. Denote the set of finite-index subgroups of Z¢ by L£4. The
zeta function (y defined by Lind is

(1.5) Cols) = exp ( 3 FL[T(]“’”S[LQ ,

Lely

where [L] = index[Z?/L] and T'(¢) is the number of fixed points by ¢* for all
n € L. Lind [21] obtained some important results for (s, such as conjugacy invariant
and product formulae, and computed (, explicitly for some interesting examples.
Furthermore, he raised some problems, including the following two.

Problem 7.2. [21] For “finitely determined” Z®-actions ¢ such as shifts of finite
type, is there a reasonable finite description of (4(s)?

Problem 7.5. [21] Compute explicitly the thermodynamic zeta function for the
2-dimensional Ising model, where o is the Z? shift action on the space of configu-
rations.

The present authors previously studied pattern generation problems in Z¢, d > 2,
and developed several approaches such as the use of higher order transition matrices
and trace operators to compute spatial entropy [2, 3]. The work of Ruelle [30] and
Lind [21] indicated that our methods could also be adopted to study zeta functions.

In this investigation, Problems 7.2 and 7.5 are answered when ¢ is a shift of
finite type. The following paragraphs briefly introduce relevant results.

Let Zyxm be the m x m square lattice in Z? and S be the finite set of symbols
(alphabets or colors). SZmxm is the set of all local patterns (or configurations) on
Zonxm- A given subset B C SZmxm is called a basic set of admissible local patterns.
¥(B) is the set of all global patterns defined on Z? which can be generated by B.
For simplicity, this introduction presents only the results of Zsx2 with two symbols
S ={0,1}. Section 4 considers the general case.

As presented elsewhere [21], L2 can be parameterized in Hermite normal form
[24]:

Egz{[g Ii]ZQ: nZl,kElandOﬁlgn—l}.

l

Given a basic set B, denote by Pg ({ g k }) the set of all g ]i ]—periodic

and B-admissible patterns and I'g <[ 3 ]i }) is the number of Py ({ g ]i ])
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The zeta function, defined by (1.5), is denoted by

(1.6) (g = exp (iinzl ({ 0 ]i D s”k> :

n=1k=11=0

In [21], ¢§ is shown analytically in |s| < exp(—g(B)) where

(1.7) g(B) = hmsup

[L]—oo L] tog Ts(L)-

In this work, the sum of n and & in (1.6) is treated separately as an iterated sum.
Indeed, for any n > 1, define the n-th order zeta function (,(s) = (g.n(s) (in
a-direction) as

(18) <n<s>—exp( D e (] ,i]))

k=11=0
the zeta function ((s) = (g(s) is given by

(1.9) () = [ ¢n(s)

The first observation of (1.8) is that, forn > 1 and l > 1, any [ l ]-periodic

0 k

n 0
pattern is [ 0 nk ]-periodic7 where (n, 1) is the greatest common divisor (GCD)

)

of n.and [. Therefore, {g 2] -periodicity of patterns must be investigated in details.

The trace operators T,, = T, (B) that were introduced in [3] are useful in
0 ]i -periodic and the B-admissible pattern, where T,, = [tni ;] is
a 2" x 2™ matrix with ¢,,; ; € {0,1}. T, (B) represents the set of patterns that are
B-admissible and x-periodic of period n with height 2. The trace operator T,, can
be used to construct (doubly) periodic B-admissible patterns. Indeed, for k > 1
and 0 <[ <n-—1,

studying [ I

n l o k pl
(1.10) I'n ({ 0k ]) =tr(T, R,),
where R, is a 2™ x 2™ rotational matrix defined by

Rn;i72i71 =1 and Rn;2”*1+i,2i =1 forl S 7 S 2”71,
Ry ;=0 otherwise.

Denote by R Z R!; now based on (1.10), ¢,(s) becomes

(1.11) Cn(s) = exp ( Zktr (TFR,,)s" )

which is a generalization of (1.2).
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To elucidate the method used to study (1.11), T, is firstly assumed to be sym-
metric. Then T, can be expressed in Jordan canonical form as

(1.12) T, = UJU!

where the eigen-matrix U = (Uy,...,Un) is an N x N matrix which consists of
linearly independent (column) eigenvectors U;, 1 < j < N and N = 2". Jordan
matrix J = diag();) is a diagonal N x N matrix, which comprises eigenvalues A;,
1 <7< N. Now,

oo
%kz_:l %tr(TﬁRn)s”k

= Lur(U( i $JEs"MU'R,,)
k=1

N
(1.13) = % LRy o U;Ulog(1 - Ajs™) !
=1
can be proven, where o is a Hadamard product: if A = [a;;]mMxm and B =

[bi,j]MxM7 then Ao B = [ai_jbi_’j]MxM.

Evaluating the coefficients |R.,, o U;U}| of log(1 — A;s™)~! is important. Now,
the R,-symmetry of T, is crucial. Indeed, let U be an eigenvector of T, with
eigenvalue ), such that T,,U = \U; then R.LU is also eigenvector of T),:

(1.14) T,(R.U) = AR\ U

for all 0 <1 <n — 1. Notably, R]' = Isn, where Isn is the 2" x 2™ identity matrix.
U is called R,-symmetric, if RflU =U for all 0 <[ <n — 1. In this case,

1
(1.15) E|RnoUUt| =1
n—1
U is called anti-symmetric if Y. Rl U = 0. In this case,
1=0
1 t
(1.16) —|R, o UU*| = 0.
n

Additionally, for any given eigenvalue A, the associated eigenspace E can be proven
to be spanned by symmetric eigenvectors Uj, 1 < 5 < py, and anti-symmetric
eigenvectors U, 1 < j < gy B\ = {Uy,---,U,,, U], Uy, }» where py + g\ =
dim(E)) and py or g, can be zero.

Therefore, for each eigenvalue A of T,,,

1
(1.17) X =~ > Ry o U;U}| = pa
A=A

is the number of linearly independent symmetric eigenvectors of T,, with respect
to A, a non-negative integer. Moreover, py > 1 can be shown if X\ is the largest
eigenvalue. Hence, choosing eigen-matrix U in (1.12), which consists of symmetric
and anti-symmetric eigenvectors, yields
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(1.18) Gls)= [ (—asm)xW

)\EZ(Tn)
as a rational function, as in (1.4).
From the rotational matrix R,,, for 1 < i < 2", the equivalent class C,,(7) of
i is defined as C, (i) = {]‘ (Rﬁl)ij =1 for some 1 <[ < n} The index set Z,, of
n is defined by Z,, = {z’l <i<2" i< jforall je Cn(z)} and x,, is the cardinal
number of Z,,. Indeed, x,, is the number of necklaces that can be made from n beads
of two colors when the necklaces can be rotated but not turned over. Furthermore,

(1.19) Xn = %Z¢(d)2”/d,

d|n

where ¢(d) is the Euler totient function.
Then, the reduced trace operator 7, = [Ty,;] of Ty is & xn X Xn matrix that is
defined by

(120) Tn;i,j = Z tn;i,k

keChn(4)

foreachi,j € Z,,. A € 3(T,,) with x(A\) > 1 can be verified if and only if A € 3(7,).
Moreover, x(A) is the algebraic multiplicity of 7,, with eigenvalue A. Therefore,

(1.21) Gu(s) = (det (T = s™7)) ",

a similar formula as in (1.3). Hence, the zeta function ((s) is obtained as

(1.22) ¢(s) = [ (det (I = s"m)) 7",
n=1

which is an infinite product of rational functions. Equation (1.22) generalizes (1.3)
and is a solution to Lind’s Problem 7.2. Furthermore, according to (1.22), the
coefficients of Taylor series for ((s) at s = 0 are integers, as obtained by Lind [21].

As presented elsewhere [3], an another trace operator T, is B-admissible and
y-periodic of period n with width 2 along the x-axis. L5 can be parameterized as
another Hermite normal form,

52:{[1; S]Zz: nZl,kZlandOﬁlgn—l}.

I 2 } -periodic and B-admissible

2 ]) denote the numbers of Pg <[ K 2 ]) The n-th

Again, Pg ({ I; 2 }) represents the set of all { K
k
l l

patterns and I's ({

"~

order zeta function (,(s) is defined by

(1.23) Cn(s) = exp (%irféfﬁ ([ I; 2 ]) s"k> )

k=11=0
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and the zeta function (s) is defined by

(1.24) C(s) = JT ()

Similar results for Zn(s) and (| (s) can be obtained by using 7, instead of 7,.
Indeed,

(1.25) Gy = [ (1—asm T

)\EZ(’T‘n)

(1.26) = (det (I —s"7,))" ",

and

(1.27) H H (1 — As")~ XX

n=1 \ex(T,)

(1.28)

10_0[ det (I — s"7,)) "

Since ¢ and E are rearrangements of (3, the uniqueness of the analytic function
implies
(1.29) ¢(s) = ¢(s) = ¢ for |s| < exp(—g(B)).

The construction of the zeta functions ¢ and Z in rectangular coordinates can be
extended to an inclined coordinates system. Indeed, let the unimodular transfor-
mation v be an element of the unimodular group GL2(Z): v = ( Z Z ), a,b,c
and d are integers and ad — bc = 1. The lattice L., is defined by

_(n 1 2 ( na la+ke 9
(1.30) LV:<0 k)VZ _<nb lb+kd)Z'
The n-th order zeta function of (g(s) with respect to 7 is defined by

(1.31) CBiyin(3 _exp< inzlkps ([ l L) Sm) |

k=11=0
and the zeta function (z,, with respect to 7y is given by

(1.32) (B (3) HCB,'Y in

The n-th order rotational matrix R..,, trace operator T..,(5) and reduced trace
operator 7., can also be introduced and

Biyin(s) = H (1- )‘Sn)ﬂm"@)
(1.33) AEX(T;n(B))
= (det (I — SnTwn))_l )
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where the exponent x.,()) is the number of linearly independent R..,,-symmetric
eigenvectors and generalized eigenvectors of T..,(B) with respect to eigenvalue A
and the coordinates y. Therefore, the zeta function (g, is given by

oo

(1.34) (B (s) = [ (det(T = 5™7y0))

n=1

Since the iterated sum in (1.31) and (1.32) is a rearrangement of (3(s),

(1.35) (Biy(5) = C3(s)
for |s| < exp(—g(B)). The identity(1.35) yields a family of identities when (g, is

expressed as a Taylor series at the origin s = 0 (Theorem 6.4).
Equations (1.29) or (1.35) give some interesting results even in very simple cases.

1 0 0 O 1 0 0 1
For instance, let Hy = 8 (1) (1) 8 and Vy = 8 8 8 8 be the given
0 0 0 1 1 0 0 1

horizontal and vertical transition matrix, respectively; then Ty = V3 and ’i‘g = Ho,.
Furthermore, as in Example 6.12,

(1.36) C(s)= [ —2sm7,
n=1
(1.37) C(s)=J[a—sm,

Il
=

n

and x, = %22(”71) can be shown; for details, see Example 6.12.
=1

The thern;odynamic zeta function [30] with weight function 0 : X — (0, 00) was
defined by Lind [21] as

S[L)

(1.38) col)=exp | >0 >0 ] 0t o

LeLly \zefizy(a)keZd/L

For the Ising model, where « is a shift of finite type given by B and the weight
function @ is a potential with finite range, the previous arguments apply. Indeed,
the zeta function is

(1.39) Craings(s) = [ | 11 (1 — As™)™XW

n=1 X€X(T1sing;n(B))

(det (I - SnTIsing;n))_l )

I
2

(1.40)

Il
-

n
where x(A) is the number of linearly independent symmetric eigenvectors and gen-

eralized eigenvectors of Trging;n With eigenvalue A and Trging;n is the associated
reduced trace operator. (1.40) is a solution of Lind’s Problem 7.5.
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The methods also apply to higher dimensional shifts of finite type. The results
will appear elsewhere.

Some references that are related to our work are listed here. Zeta functions
and related topics [1, 6, 8, 10, 11, 14, 15, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33];
patterns generation problems and lattices dynamical systems [2, 3, 7, 13], and
phase-transition in statistical physics [4, 5, 16, 17, 18, 19, 20, 28] have all been
covered elsewhere.

The rest of this paper is organized as follows. Section 2 reviews the ordering
matrices of local patterns and trace operators T, for x-periodic patterns. The R,,-
symmetry of T,, is investigated. Then, (1.10) and (1.11) are derived. Section 3
proves the rationality of the n-th order of the zeta function (,, n > 1. Section 4
describes how to extend the techniques employed in previous sections to study the
problems raised by more symbols on larger lattices, which is also useful in the study
of zeta functions in inclined coordinates. Section 5 elucidates the zeta function
presented in inclined coordinates that is obtained by unimodular transformations.
Section 6 discusses the analyticity of zeta functions. The meromorphic extension of
zeta function is studied. All meromorphic extensions are equal on |s| < exp(—g(B)).
Section 7 investigates the zeta function of the solution set of equations on Z? with
numbers from a finite field. Section 8 studies the thermodynamic zeta function for
the Ising model with a finite range potential.

2. PERIODIC PATTERNS

This section first reviews the ordering matrices of local patterns and trace
operators [2, 3]. It then derives rotational matrices R,, and R,,, and studies their
properties. The R,-symmetry of the trace operator is also discussed. Finally, some

properties of periodic patterns in Z? are investigated. In particular, the [ g }—

n 0
periodic pattern is proven to be [ 0 nk }—periodic.
(n,0)

For clarity, two symbols on the 2 x 2 lattice Zsx 2 are initially examined. Section
4 addresses more general situations.

2.1. Ordering matrices and Trace operators. For given positive integers Ny
and Na, the rectangular lattice Zn, xn, is defined by

ZN1><N2 = {(nl,n2)|1 S ny S N1 and 1 S ) S NQ}

In particular, Zax2 = {(1,1),(2,1),(1,2),(2,2)}. Define the set of all global pat-
terns on Z? with two symbols {0,1} by

22 ={0,1}% = {U|U: 2> - {0,1}}.
Here, Z2 = {(n1,nz2)|n1,n2 € Z}, the set of all planar lattice points (vertices).

The set of all local patterns on Zn, xn, is defined by

SN xNo = {U|zx v, U € T3}

Now, for any given B C Y942, B is called a basic set of admissible local patterns.
In short, B is a basic set.
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An N; X Ny pattern U is called B-admissible if for any vertex (lattice point)
(n1,n2) with 0 <mn; < Ny —1 and 0 < ny < Ny — 1, there exists a 2 x 2 admissible

pattern (Bk, ky)1<ki,ko<2 € B such that

Un1+k17"2+k2 = /Bk1>k27

for 1 < ki, ks < 2. Denote by Xy, xn,(B) the set of all B-admissible patterns on
ZN,xN,- As presented elsewhere [2], the ordering matrices Xoya and Yaxo are
introduced to arrange systematically all local patterns in ¥axa.

Indeed, the horizontal ordering matrix Xoxo = [2p qlaxa is defined by

(2.1) ;I

=
o
=)

o
o
=)

o

o
=}

[ 1 [ [

=)

o

o
1=}
o

[ ]
1 U

o

I

o

=)

L]
o
[]

ol

1

*——o

1

0
1
1

0

It is clear that the local pattern y; ; in Yax o is the reflection % of z; ; in Xoxo, i.e,

N

—1.

. The reflection can be represented by [ 0

} in GLo(Z) with determinant
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B1,2 B2,2
In2(2.1) and (2.2%, the orders of the pattern B1,1I:I B2, Bi; € {0,1}, are given
4
by 1[1 3 and 1[1 2 respectively. More precisely, in (2.1), xp 4 is ordered by
p=2B11+pB12+1

and

q=2P21+ Ba22+1,
and in (2.2), y; ; is ordered by

1 =2B1,1+ P21 +1
and

j=2B12+ P22+ 1.

Xox2 and Yoo are clearly related as follows.
Y1 Y2 Y2,1 Y22

(2.3) Koo = Y13 Y4 Y23 Y24

Y31 Y32 Ya1 Y42
Y33 Y34 Ya,3 Ya,4

and
T1,1 Ti12 T21 T2.2

T1 T14 T2 €24
(2.4) Youo = 3 0, 3 T2,
3,1 T32 T4,1 T4,2

T33 T34 T43 T44

The set Caxo = [c;,;], which consists of all x-periodic patterns of period 2 with
height 2 can be constructed from Yoo as follows.

o o0 o o 1t o0 1 0 1t 1 1 A
[0 0 o o 1 0 {1 0 1 1 1 1

r——o—

o o O O o O o o0 O O o O

o O O o 1 o0 4 0 1 1 1 1
*——o—0
o 1 0

o 1+ o0 O 1t 0 o 1t o0 O 1 O

o O o o 1 o0 4 0 1 1 1 1
0

1 o 1t t o 1t 11+ o 1 1 o0 1

o O o0 o 1t o0 ¢+ O 1 41 1 1
———o—o0

t 1 11t 1+ 1t 1+ 1 1 1 1 1 -
€11 C12 €13 Ci4
C21 C22 C23 C24

€31 €32 €33 C34
Cq41 C42 C43 C44
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The patterns in Coxo are expressed as elements in Y349 and are understood to be
extendable periodically in the x-direction to all of Z,,x2. Notably,

c12=c13, C21=c31, Co2=cC33
(26) { 5 39 ) 519 5 399

€23 = €392, C24=C34, C42=0C43,

where ¢; ; = ¢y j» means that c; ;- is an x-translation by one step from ¢; ;. Later,
the translation invariance property (2.6) will be shown to imply Rs-symmetry of
the trace operator Ts.

g (2) -periodic patterns, which can be recorded
from Csyo or Yaoyo as an element in X33 as follows.

Finally, Pox2 denotes the set of [

0 0 0 o0 0 0 o0 0 0 o0 0 0

0 ) 0o 0 f 0o 1 0 1 1 1 1

0 0 0 0 0 (V) 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0] 0o 0 7 0 1 0] 1 1 1 1

P 0 1 0 0 1 0 0 1 0 0 1 0
(2.7) 2x2 = 10 1 4 0 1 1 0 1 1 0 1
0 ) 0o 0 ] 0o 1 0 1 1 1 1

1 0 1 1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0o 0 ] o 1 0] 1 1 f 1

1 1 1 1 1 1 1 1 1 1 1 1

Notably, the upper two rows from the top of each pattern in Poys is Cb, ,, where
Ci. ., is the transpose of Caxo;

o 0 0o o 0 0 o 0 0 o 0 0
o 0o o0 0 1 0 1 o0 1 1 1 1
0 1 0 0 1 0 o 1 0 o0 1 0
0o 0o 0 0 1 0 1 o0 1 1 1 1
1 0 1 1 0 1 1 0 1 1 1 1
0o 0o 0 0 1 0 1 o0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
o o 00 1 0 1t o 1 1 1 1 -
Therefore, Poyo can be regarded as a ”Hadamard type product e” of Cyxo with

Cl.,, given by the following construction.

(2.8) C§><2 =

(2.9) Pyxz = Caxa @ Chyo;
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the lower two rows of each pattern in Pyxo come from Csy2, and the upper two
rows come from C, ,; they are glued together by the middle row. Equation (2.9)
is the prototype for constructing doubly periodic patterns of Z2? from x-periodic
patterns. Later, this idea will be generalized to all doubly periodic patterns.

The y-ordering matrices of patterns in ¥, «x2, n > 2, can be ordered analogously
by

Bi2 B2,2 - - Pn2
(210) Yn><2 = [yn;i,j] = )
ﬁl,l 62,1 e ﬁ’n,l 2M % oM
where
i =Y(Br1B2,1 - Bna),
2.11 . e ’
(211) { J=vY(Br2P2,2 " Bn2)

and the n-th order counting function ¢ = 1, : {0, 1}2" — {j|]1 < j < 2"} is defined
by

(2.12) Y(B1Ba-Bn) =1+ Y ;20070
j=1
The recursive formulas for generating Y, xo from Yy, taken from another

investigation [2], is as follows.
Let

Yoxo1  Yaxape
2.13 Y, «2 = ’ ’ ,
( ) x2 |: Yn><2;3 Yn><2;4 :|

Y, %2 be a 27~1 % 27~1 matrix of patterns. Then,

T1,1Ynx21 T1,2Ynx22 221Ynx21  T22Ynx2;2
914 v | 21,3Ynx23 T1,4Yax24  T23Ynx23 Z24Ynx24
( . ) (n+1)x2 =

231Ynx21 T32Ynx2:2 Z41Ynx21  Ta2Ynx2;2
233Ynx2:3 T34Ynx24 Ta3Ynx23 TaaYnx24

is a 271 x 27+ matrix.
The entries in Y, 41)x2 are explained as follows; if

,BO,ZI:I /31,2
€T =
Pq Bo,1 Bi,1

and
B1,2 B2,2 -+ Bne2
Yn><2;q = )
B1,1 B2,1 - Bn,
then
Bo2 Bi2 - Bne2
(2.15) Tp,qYnx2q =
Bo,1 B1,1 - B,

such that the second column of z,, and the first column of Y, x2,, are mutually
overlapping.
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Hence, x-periodic patterns of period n with height 2 can be expressed in X, 1) x2,
and recorded as an element in C,,«2 by

B1,2 B2,2 -+ Bn2 B2

(2.16) Chxa =

5171 52,1 e Bn,l /8171 on w on
Now, given any basic set B, define the associated horizontal and vertical transi-

tion matrices Hy = Hy(B) = [ap 4] and Vo = Vo(B) = [z; ;] by

(2.17) &p,q—{ L li xp’qeg’
0 1 IP#I% )
and
(2.18) by =4 LA v €5
0 lf yi,j¢37
respectively.
a1,1 ai2 ai3 ai4 51,1 51,2 b2,1 b2,2
o a2,1 @G22 0423 24 _ 51,3 51,4 b2,3 b2,4
(2.19) H, = _
as,1 az2 G33 G34 b1 b3 bai bap
| @41 Qa2 Q43 Qg4 b33z bza baz baa |
and
bin bi2 big big ail Q12 G21 02,2
990 vV, — ba1 bao basg boa | | @13 a1a a3 asa
(2.20) 27| bgy b3o bss b -
3,1 3,2 3,3 3,4 as1 as2 a4,1 Q42
_b4,1 b4,2 b4,3 b4,4 as3 a34 Q43 Q4.4 |

The associated column matrices ﬁg of Hy and \72 of Vo are defined as

a1l G211 Q21 G232
~ a a a a
(2.21) H, — 3,1 Q41 Q32 Q42
a3 G233 Q14 Q24
| 43,3 Q43 QA34 Q44
and
bi,i b2 b2 bapg
92,99 v, — b1 ban b3a bao
( : ) 2 = b b b b ]
1,3 0233 014 024
| b33 baz bza baa
respectively.

The trace operators Ty = Ty(B) and T = T5(B) which were introduced in [3]
are defined as

(2.23) To=VioHy and To=Hso Vs,
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where o is the Hadamard product: if A = [a; ;]pxp and B = [B; j]pxp, then Ao B =
[ ; Bi.jlpxp- More precisely,

ai,1a1,1 12021 G2101,2 A22022
ay 3a ay 4a a2 3a az 4a
(2'24) T, = [ti,j]22xz2 _ 1,3a3,1 1,4041 2,303,2 2,404 2
a3101,3 a3,202,3 04,1014 042024
a3,303,3 A3,4044,3 (43034 (44044

and

biab1,1 biobai boibia bo2bao

~ -~ b1,3b3; 1 b1abgy ba3zbzo b abso

2.25 Ty = [T, = | 13%a1 D1ada1 028032 92,404,
(2.25) 2= ’]]22“2 b3.1b1,3 b32ba3 ba1bia ba2boa
b3.3b33 b3.4bs3z bazbza baabia

From (2.5), (2.20) and (2.24), clearly

(2.26)

b = 1 if ¢; is B-admissible,
Y1 0 if ¢  is not B-admissible,

where Ci,j € Coxa.

Therefore, T is the transition matrix of the B-admissible and x-periodic patterns
of period 2 with height 2. Similarly, T, is the transition matrix of B-admissible
and y-periodic patterns of period 2 with width 2.

The translation invariance property (2.6) of Cax2 implies the following symmetry
of Tg;

t1,2 =1t1,3, t21 =131, t22 =133,
2'27 ) El El El ) )
( ) { to3 =132, to4 =134, Ta2 =143

The symmetry of (2.6) or (2.27) can also be identified as the rotational symmetry
of a cylinder since elements in Cox2 can be regarded as cylindrical patterns.
The recursive formulas of Y, «x2 can also be applied to V,,. Indeed, if
Vil Ve
V., — n; n; ,
" |: Vn;3 Vn;4 :|2n><2n

where V,,.; is a 277! x 2771 matrix, then

a11Vo a12Vp2 a21Vipa a22Vie
a13Vn:3 a14Vaa a23Vps a24Viu

(2.28) Vo1 =
a31 Vo a32Vpo aa1Via aa2Vipe
a33Vns a34Vpua aa3Vis a44Vina
with
a; 1Vl @i 2V
(229) Vn+1;1‘ = ’ ’

@i 3Vns @iaVia |7

The n-th order trace operator T,, is defined as
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Epn2® [ a1 a1 } Epn2® [ air2 a2 ]

as,;1 44,1 az2 442

(230) T,=V,o ,

Fgns ® a3 a3 Fgns ® 14 24
a3,;3 4,3 aza Q4.4
where ® is the Kroncker (tensor) product and Ej is the j x j full matrix.
Now, T,, represents the transition matrix of B-admissible x-periodic patterns

of period n with height 2. Similarly, T, represents the transition matrix of B-
admissible y-periodic patterns of period n with width 2.

2.2. Rotational matrices. In this subsection, the rotational matrices R,, and the
invariance property of C,x2 under R, are investigated and the R,-symmetry of
T, is then proven.

The shift of any n-sequence 8 = (8182 Bn—18n), n > 2, B; € {0,1}, is defined
by

(2.31) o((B1B2 - Bn-1Bn)) = on((Bi1B2 - Bu-1Bn)) = (B2B3 - Buf1).
The subscript of o, is omitted for brevity. Notably, the shift (to the left) of any one-

dimensional periodic sequence (8182« - - 8,01 - - - ) of period n becomes (8283 - - - BnB182 - -+ ).

The 2" x 2" rotational matrix R,, = [Rpi ], Rn;i,j € {0,1}, is defined by

R, ; =1 if and only if

(2.32) i =Y(B1PB2--Pn) and j=(d(B1f2---Bn)) = V(B2B3 - Bnfr)-

From (2.32), for convenience, denote by

(2.33) j=o(i).

Clearly, R,, is a permutation matrix: each row and column of R, has one and
only one element with a value of 1. Indeed, R,, can be written explicitly as follows.

Lemma 2.1.
(2 34) Rn;i,Qifl =1 and Rn;27171+i72i =1 fO’I’ 1 S 7 S 271—1,
' Ry =0 otherwise,

or equivalently,

o) = on(i) = § 21 for 1<i<onl,
=W 26 —277Y) for 14+2nl<i<om

Furthermore, R = Ion and for any 1 < j <mn—1,
(2.36) (R)ioi iy = 1.
Proof. Clearly,

(2.35)

Y(Bifa---Bn) <271 i B =0,
and

(BB Bn) =1 +2771 if B =1.
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From (2.12),

ot ={ ey 52N

can be verified. Equations (2.34) and (2.35) follow.
Finally, (2.36) follows easily from (2.32) and (2.33). O

The equivalent class C), (%) of ¢ is defined by
Co(i)= {oi()0<j<n-—1}
(2.37)
= {]| (Rﬁl)i)j =1forsomel <1< n}

Clearly, either C), (i) = Cy,(j) or Cr(i) N Cyr(j) = 0. Let i be the smallest element
in its equivalent class, and the index set Z,, of n is defined by

I,= {il1<i<2™i<o09(i),1<g<n-—1}
(2.38)
= {iil<i<2mi<jforalljeC,(i)}.

Therefore, for each n > 1, {j|1 <j <2} = L% Cy (7). The cardinal number of 7,
1€Lly

is denoted by x». Notably, x, can be identified as the number of necklaces that
can be made from n beads of two colors, when the necklaces can be rotated but not
turned over [34]. x,, is expressed as

(2.39) Xn = %Zqﬁ(dﬂ"/d

d|n

where ¢(n) is the Euler totient function, which counts the numbers smaller or equal
to n and prime relative to n,

(2.40) d(n) = ng (1 - %) .

For n = 2,3 and 4, R,, and C,(7) are as follows.
Example 2.2. R,,, Z,, and Cy,(i) for n =2,3 and 4

1000
00 1 0
(1) R2_ 0 1 0 0 )
000 1
Co(1) = {1}, 11,
i) C2(2)=Ca(3)={2.3}, 2532,
N Cy(4) = {4, 4 4,

T, = {1,2,4}.
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(1.0 000 0 0 0]
001 00U0GO0O0
000 01U0O00
.. 100 000O0T1TO0
@ Bs=1 o 1 900000 0]
00010000
0000O0T1GO00
00000000 1|
C3(1) = {1}, 1—1,

C3(2) ={2,3,5}, 2—53—5—2,
and { C3(4) ={4,7,6}, 4—7—6—4,
C3(8) = {8}, 8 =38,

T3 ={1,2,4,8}
1—1,

2—-3—=-5—>9—>2
4—-7—13— 10— 4,
(iii) For R4, { 6 — 11 — 6,

8§ —=15— 14— 12 = 8,
16 — 16,

T, ={1,2,4,6,8,16}.

The following proposition shows the permutation character of R,,.

Proposition 2.3. Let M = [M; jlanxan be a matriz where M, ; denotes a number
or a pattern or a set of patterns. Then,

(2.41) (RnM)i)j = g(i)ﬁj and (MRn)i)j = Mi70—1(j).
Furthermore, for any 1 > 1,
(242) (RLM)LJ = Mal(i),j and (MR%)ZJ = Mi,o’*l(j)'

Proof. For any 1 <14, j < 2™ by (2.36),
(RnM)i,j = ERn;i,quﬁj
q

= Rn;i,a(i) Ma(i),j
= Mo 5-

Similarly,
(MRn)i,j = EMiqun;qyj
q

= Mio-1(j)ni0-1().5
- Mlﬁgfl(‘])
Applying (2.41) I times yields (2.42).
The proof is complete. (|

In the following, x-periodic patterns of period n with height k£ > 1 are studied.
More notation is required.

Definition 2.4.
(i) For anyn > 1, let (B1P2--- Bn)™ be a periodic sequence of period n, denoted by

B = (B Bn) o(B) = a((Bi1P2-+Bn)) = (B2fs - Bubr). For any fived n > 1
and any j > 1, denote by B; = (B1,jB2,5 - - Bn,j) a periodic sequence of period n.
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(ii) For fired n > 1 and any k > 1, denote by

(8182 Byl
= (B1,102,1 Bn1)C & (B12022 - Pn2)® P (Birbok - Bnk)™®

——o-—-90---0—9
Bk Bk ! 1B k! Bk
1 1 1 1

B1,2 |B2,2 Bn,2 81,2

B1,1 B2,1 Bn,1 B1,1

a x-periodic pattern of period n with height k.
(iii) A Hadamard type product e of patterns is defined as follows.

[3132] ® [3233] = [313233]
and
[BIBQ e Bk] = [3132] ® [3233] ¢ [kalﬁk]'
(iv) A 2™ x 2™ ordering matric Cpxk = [Cnxksi,j] of z-periodic patterns of period n
with height k > 2 is defined by

Crixhsig = {[3132 o Bk”w(ﬁl) =i and T/J(Bk) =j}
(v) Forn > 1 and k > 2, denote by D, i the ordering matriz of patterns, which
consists of a first row B, and the k-th row By, of Cpxi:

D gesij = {[Blﬁk]|[ﬁlﬁ2 o Bk] € Chxk, 1/1(31) =1 and 1/’(Bk) = j}-
Some remarks should be made.

Remark 2.5.

(1) For anyn > 1, the length of B in (i) and Bj in (i) depends on n. For simplicity,
these dependencies are omitted.

(2) The product e defined in (iii) applies only when the top row of the first pattern
is identical to the first row of the second pattern.

(3) In (), when k =2, (2.16) applies.

(4) Chxkyij is a set of patterns with the same first and k-th rows. D, i is ezactly
Crxz2, but, importantly, in Cpxk, all patterns in the entry Cpxy.i,; have the same
top and first rows, which can be used to construct y-periodic patterns with a shift
in the (k+1)-th row.

In the following lemma, R,, is used to shift the first row in D, ;.

Lemma 2.6. Let i = ¢(3,) and j = ¥ (B,). Then
@) (RD )y = BroBl,
(i) (Cnxk @ RanL,k)ivj =182 Bro(B1)]-

Proof. (i) follows easily from Proposition 2.3 and part (v) of Definition 2.4. From
parts (i) and (iii) of Definition 2.4, a product in (ii) is legitimate since the top row
of Cpx and the first row of R, Dy, ; are By, and (ii) follows from (i). O

Furthermore, the following result shows that the patterns in C,, xj ® Rlef% i are
the same as the patterns in diag(C,, x 5+1)Rjr ") where diag(M) is the diagonal part
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of M, such that diag(M) = I o M. They are important in constructing y-periodic
patterns.

Proposition 2.7. Foranyn >2,k>1and 0 <1 < n,
patterns in C,xi ® R%D;,k = patterns in diag(CnX(k_‘_l)RZ*l)
= {[By-- By BBy - By € Crxu}-
Proof. By (2.42), forany 0 <1 <n—1,1<i,j < 2"t
(CnX(kJrl)Rz_l)m‘ = {[Bl o 'Bkal_n(BkJrl)] : w(ﬁﬂ =14 and w(gk-i-l) =j}
Since ¥ (B, 1) = ¥(B,) = i implies B, = B,
(Coxprny By i = {[B1 -+ Bro " (B)] : (B,) = i}

However, for any 1 <1i,j < 2", part (ii) of Lemma 2.6 implies

(Crnxk 'Rl Dy, Rig = (8185 -- ﬂkU (B1)]-
Now, for any 0 <1 <n—1and 8= (B1---Bn),

o'(B) = ol—"@-

The proof is complete. O

The rotational symmetry of T, is determined by studying C,,x2 1_n more detail.
Given a basic admissible set B C Xax2, T}, is defined by (2.30). Let [3,85] € Cpnxa,
for 1 < j < n, denote

p; = 2851+ B2 + 1,
then the associated entry in T,, is

(2.43) Tn([ﬁlgﬂ) = Qp1,p2Qpy,ps " " Opy, p1-

[3185] is B-admissible if and only if a,, =1foralll < j<mn, wherep,11 = p1.

yPj+1

Theorem 2.8. For any n > 2, the trace operator Ty, = [ty jlonxon has the fol-
lowing Ry, -symmetry:

(244) tn;ol(i),ol(j) = tn;i,j
forall1<i,j<2" and0<1<n-—1.

Proof. Given [8,85] € Cpnx2, all [0'(B;)a'(Bs)], 0 <1 < n — 1, represent similar
x-periodic patterns. The entry of [¢!(B;)0!(B5)] in T, is

(245) Tﬂ([al (Bl)ol (32)]) = Ap 1 1pi2piyopiys " Apnpr Apipe " Apiprgq-

Comparing (2.43) with (2.45) clearly reveals that

(2.46) Tn([3132]) = Tn([Ul(BﬂUl(Bz)])

for all 0 < 1 < n — 1. Additionally, if T, = [t,.; ;] with i = ¢(8;) and j = 9(85),
then (2.46) implies

tn;UZ(i)ng(j) = tn;i,j for all 0 < l <n-— 1.
The proof is complete. O
Proposition 2.7 and Theorem 2.8 yield the following theorem.
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Theorem 2.9. Foranyn>2andk >2,0<[<n-1,

(2.47) ITE Y o RLTYE | = tr(TERET
and
(2.48) |T*1 o R, T | = tr(TER,,),
where
n—1
(2.49) R, =) R,
1=0
Proof. From Proposition 2.7, (2.43) and the properties of T,,, (2.47) follows. Equa-
tions (2.47) and (2.49) yield (2.48). The proof is complete. O

2.3. Periodic patterns. This subsection studies in detail (double) periodic pat-
terns in Z2. Indeed, consider a lattice L with Hermite normal form,

_|n 2
(2.50) L_[O k]z,
wheren>1,k>1and 0<I<n-—1.
A pattern U = («; ;)i jez is called L-periodic if every i,j € Z

(2.51) Qitnptlqj+kq = i
for all p,q € Z.

The periodicity of [ o

n 0
0k } and [ 0 K } are closely related as follows.

Proposition 2.10. Foranyn >2, k> 1and0 <1 <n-—1, [ o }-pem’odic pat-

0 k

n
terns are [ 0 ok }-pem’odic where (n,1) is the greatest common divisor (GCD)

()
of n and .

n .o . g . n l-m
Proof. By (2.51), the [ 0k ]—perlodm pattern is easily identified as [ 0 k-m ]—
periodic for all m € N.
By taking m = =, the result holds. O

(n,0)”

Given an admissible set B C Yo«2, defined on square lattice Zsx2, the periodic
patterns that are B-admissible must be verified on Zsoys.
Let Zox2((i,7)) be the square lattice with the left-bottom vertex (¢, j):

ZQX2((iaj>) = {(Za.])a (Z+ 17j)7 (Zv.] + 1)a (Z+ 1,j+ 1)}

Now, the admissibility is demonstrated to have to be verified on finite square
lattices.
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Proposition 2.11. An L-periodic pattern U is B-admissible if and only if

(2.52) B

Ul aian €
forany0<i<n—-1and0<j<k-1.
Proof. The proof follows easily from (2.51). The details are left to the reader. O

Suppose U = («,;)i,jez is an L-periodic pattern. For convenience, let

Biv1j+1 = Qi
for all 7,5 € Z.
According to proposition 2.11, the admissibility of U is determined by

and (B; j)1<i<n+1,1<j<k+1 with the periodic property (2.51). Therefore, the follow-
ing theorem can be obtained.

Theorem 2.12. Given a basic admissible set B C Yoyx2, an L-periodic pattern U
is B-admissible if and only if

(2.53) [B1Bs - - By] and [B,o" " (B,)] are B-admissible.
Theorems 2.7 and 2.12 yield the following main results.

Theorem 2.13. Forn >1,0<1<n—-1and k > 1, denote by I'g ([ g Ii })

the cardinal number of the set of { n

0 ]i -periodic and B-admissible patterns. For
n>20<Il<n—1andk>2,

(2.54) I's ([ g ]i D =tr (TERL) = |TE ' o RETITY|
and
n—1 I
(2.55) ZI‘B ({ g‘ k D =tr (TER,) = |TE ' o R, T}
=0

Forn>2and0<Il<n-1,

(2.56) I's ([ 6‘ i D = tr(T,R.) = |diag(T,) o R"~'T!|
and
n—1 I
(2.57) > rs ({ n . ]) = tr(T,Ry) = |diag(T,) o R, TL|.
=0

Furthermore, let

ai101,1 02,2022 1 0
2.58 T, = | @19 292, ARy = :
( ) ! [ (3,303,3 (4,404,4 } and { 0 1 ]
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then

(2.59) I's ({ (1) 2 D = tr(TY).

Proof. By Proposition 2.7, Theorem 2.12 and the construction of T,,, the results
(2.54) to (2.57) hold forn >2,0<1<n—1and k > 1.

For n = 1, define
0 0 1 1
J 1

(2.60) O o
NN

which is the collection of x-periodic patterns of period 1 with height 2. Then

B-admissible patterns of Cjx2 are represented by Ty as defined in (2.58).

Theorem 2.12 and the construction of Ty easily yields (2.59).
The proof is complete. O

The n-th order zeta function (,(s) can now be obtained as follows.
Theorem 2.14. Forn > 1,
(2.61) Cn(s) = exp liltr(TkR )shn

: " né—k e '

k=1

Proof. The results follow from Theorem 2.13.
The proof is complete. O

3. RATIONALITY OF (,

This section proves that (, is a rational function, as specified by (1.21). To
elucidate the method, the symmetric T, is considered initially. For any n > 1, let

(3.1) N =2".

Let A\; be an eigenvalue of T,:

(3.2) T, U; = \;Uj,
1<j<N. If T, is symmetric, then the Jordan form of T,, [12] is

(3.3) T, = UJU',
where
(3.4) Ul =U""

The eigen-matrix U in (3.3) is defined by

(3.5) U =[U,,Us,-- ,Un]nxN = [Uij|NxN,

where U; = (u1,j,u24, -+ ,un,;)" is the j-th (column) eigenvector, and
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(3.6) J =diag(M, A2, , AN).
Aj can be arranged such that Ay > |A2| > --- > |Ax|. Equation (3.4) implies

N N
(37) Zui7PUj7p = 51”' and Zuqﬁiuqyj = 5i,j-

p=1 q=1

Now, Theorem 3.1 will be proven.

Theorem 3.1. Assume T,, is symmetric; then

(3.8) %grg ([ g‘ ]i D = %tr (TER,) = Zn YO)AF,

where X(Ty,) is the spectrum of T,

(3.9) X = x(\)

and

X)) = 4R 0 U;UJ|

(3.10) ne1 2
=50 e (Zucﬂ(i)a) ,
€Ly, =0

where wy, ; s the cardinal number of Cy,(i). Moreover,

(3.11) Guls)= J[ (1—asm=™.

AEX(T,)
Proof. Clearly,
tr (TZR,,)

= tr (Udiag(\;)U'Ry,)

N N N n—1 .
= > Uij Y Up,j (Z Rn;p,i) Aj-
j=1 1 p=1 =1

i=

Foreach j, 1 <j < N,

3

A{\
L=

S

s

<. 3
ngll}

Sy

S

b
N———
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The following is easily verified;

n—1 2
Wn,i
22 oot = % (S -
=0

i€Ly

Then, (3.8)~(3.10) follow.
From [9],

— 1
(3.13) E EJksk" = diag (log(1 — A;s") 7).
k=1

Therefore, (3.11) holds.
The proof is complete. O

We now extend Theorem 3.1 to general T,,. In this case, the Jordan form for
T, is
(3.14) T, =UJU !,

where U is given as(3.5) and U;, 1 < j < N, is an eigenvector or generalized
eigenvector [9, 12]. Denote by

(3.15) U™ = [wi ] = Wi; Was - Wy
with W; = (w1, wie, - -+, w;n), the i-th row vector.
(316) J= diag(Jl,J2,~-~ ,JQ),

where J, is the Jordan block, 1 < ¢ < Q:

Ay 1.0 - 0 0
0 Ay 1 -~ 0 0
(317) To=| L :
0 0 0 A, 1
0 0 0 0 A L arr,
M, > 1.

As is well-known [9], for any Jordan block

A1 0 00
0 A1 00
(3.18) J= :
00 0 Al
00 0 0 A

MxM
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and
M1 M1,2 H1,3 - Hi,M
0 o2 p23 -+ oM
(3.19) log(I —tJ) = ,
0 0 - 0
where
(320) Wiitj—1 = U145 for 1 <j<M and 1<:< M+1 -7,
and
(3.21) pij =0 ifi>j.
In particular, 1 <i < M,
(3.22) Wi = log(l — At).
Therefore,
Z %Jksk"
k=1
= —log(I —s"J)
(3.23) = —diag (log(I — s"J1), - ,log(I — s"Jg))
= _[,Ui,j]NxNv
where
Hg1,1 Hgl2  Hg1,3 o0 Hgl,M,

0 pg22 fg23 0 Hg2,M,
(3.24) log(I —s"J,) = :

0 0 0 Mq;Mq,Mq

and

(3.25) Pgiii =log(1 —Ags™), 1 < g <Q.
Now, Theorem 3.1 is generalized for general T,,.

Theorem 3.2. Forn > 1, in (3.14) and (3.15) the generalized eigen-matriz is
denoted by

U=[Uig- Ui iUgtUgntys - 5Uo1 Ug g Nx N

and its inverse is denoted by

U™l =W sWians s Wans s Wangs s Woas s Womg Nx.
Then,
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Q
(3.26) Cnl(s) = H exp (= Xasi,jHgsij) -

where

Xg;i,j = %|Rn o Uy, 1Wq,f| .
3.27 onp n=
( ) = % > (Z Ug;ot(p), > <g:0wq;j,dl(p)) .

pEL,
In particular, if
(3.28) Wgi; =0 for all i # j,
then
Q —
Cnls) =TT —Ags™) X
(3.29) 9=1
= I -,
AEX(Tr)
where
| Mo
(3.30) Xq = EZ|R" ° Ug;iWesil
i=1
and
(3.31) = X
Ag=X

Proof. From (3.14) and (3.21),

Cn(s) = exp (ltr (Udiag(log(I — s™J1),- -+ ,log(I — s"JQ))U_an)) .
n
Now,

tr (Udiag(log(I — s"J1),- -+ ,log(I — s"Jg)) U 'R,,)

N
z_: Up,itbi,j Wj,r ( Z Rn 3T p)

1

1j

[
M=
™=

EMZ

K3

I
Mz

gﬁ Y = (ngllual(p),i) (ng, )uz,g

1 peZ,

1
Therefore, (3. 26) follows. Clearly, if (3.28) holds, then (3.29) holds.
The proof is complete.
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In the rest of the section, (3.28) is proven and x(A) is shown to be a nonnegative
integer. Therefore, ¢, is a rational function. Some of the symmetry properties of
the eigenvectors associated with the R,-symmetry of T,, are investigated first.

Lemma 3.3. Forn > 1, if
(3.32) T,U = \U,
then for any 0 <1 <n—1,

(3.33) T, (R\U) = ARLU.

Therefore, if U is an eigenvector, then RLU is also an eigenvector.
Furthermore, if

(3.34) (T, = NU=0
for some q > 2, then for any 0 <l <mn-—1,

(3.35) (T, — NYR.U) =0.

Therefore, if U is a generalized eigenvector, then RLU is also a generalized eigen-
vector.

Proof. Assume that (3.32) holds and U = (uy, ug,--- ,un)’. Then,

(3.36) RoU = (Ug(1), Us(2), "+ > Ug(n))"
According to (2.41), T}, = [tny,j]Nx N exhibits R,-symmetry

tnio(i),0(j) = tnii
for all 1 <4,j < N. Therefore, for any 1 <7 < N,

(Tn (RHU))i =

=

tnsi,jUo(j)

=1

I
M=z

2 tnio(i),0(j) o (5)
Jj=1
= )\ug(i) = /\(RnU)i.
Hence, R,U is an eigenvector of T,, with eigenvalue \. Similarly, Rl U is an
eigenvector for any 0 <! < n — 1. Equation (2.41) can also be applied easily to

verify (3.35) when (3.34) holds. Details are omitted.
The proof is complete. O

Based on Lemma 3.3, the equivalent class R(U) of eigenvector U is introduced
by R,.

Definition 3.4. For any N x 1 column vector U,
(3.37) R(U)={RLUI0<I<n—1}.

U is called (R,-) symmetric if R(U) = {U}, such meaning that u; = u,; for all
jeCy(i) or
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(3.38) RIU=U
n—1
for all 0 <1 < n—1. U is called (R,-) anti-symmetric if >, RLU = 0, such
=0
meaning
n—1
(3.39) > Usiisy =0
=0

forallieZ,.
For a symmetric eigenvector U, the following property is observed.

Lemma 3.5. Let U = (uy,uz, - ,un)t and W = (w1, wa, -+ ,wn),

(3.40) %|RnoUW|: > 1_ > > w;

n,s

i€ly, JEC, (3) JEC, (1)
Furthermore, if U is symmetric, then
1 N
(3.41) ~[Rn 0 UW| = WU = Zujwj.
j=1
In particular, if U] =1, then
1 t
(3.42) E|Rn oUU| = 1.

Proof. Clearly,

n—1
(3.43) Zual(i) = wn _ Z Uj,
1=0

™ ieC, (i)

and

n—1
(3.44) Zwalu):% > wj
1=0 n

" JECK(3)

Therefore, substituting (3.43) and (3.44) into (3.27) yields

TRo0W = [ w ) X w

icZ, ' \jeCn(i) FEC (1)

E Uj = Wn,iUs-

JECK ()

If U is symmetric, then
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Hence,

N

1

Ean oUW| = Z Z ww; | = Zujwj =WU.
€L, \jeCn(7) j=1

The proof is complete. O

The following non-singular matrix @, is very useful in finding symmetric and
anti-symmetric eigenvectors of T,,.

Lemma 3.6. Forn > 2, the n X n matriz

11 1 1 1 1 1
1 1 1 1 1 1
L =33 —w e e St S s
1 1 1 1 1
0 1 -3 w3 w2 Tn3 n2
(345)  Qn=
1 1
0 0 0 0 1 -
L0 0 0 0 0 1 -1 |

is non-singular and

(3.46)
ro_1 1 1 1 1 .
Vn Vn Vn Vn Vn
n—-1 _ 1 _ 1 1 1
n \/n(nfl) \/n(nfl) n(n—1) vn(n—1)
Q. = 0 n=2 I 1 — 1
Qn n—1 (n—1)(n—2) v (n—1)(n—2) V(n—1)(n—2)
1 1
i 0 0 0 7 ~ |

is orthogonal.

Proof. The non-singularity of @,, and orthogonality of Q,, can be verified directly;
the details are omitted. ]

In the following lemma, when @,, is used, R(U) can be replaced by symmetric
and anti-symmetric eigenvectors.

Lemma 3.7. Forn > 2, given eigenvector U, define
1 n—1

(3.47) U =—> RU
i

and, 2 < j <n,
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. n—1
— n—j+1_. o 1 &
3.48 Uj=|———=R"°U - RU.
(3.48) N R T A \/n—j+1\/n—j+2k§_1 "

If R(U) has rank k, for some k, 1 <k <n,
(i) then_{Uj}?zl also_has rank K; B
(ii) of U1 # 0, then Uy is symmetric, and for each j, 2 < j < n, Uj is anti-
symmetric.

Proof. Clearly,

(UlaUQa"' 7Un)t :Qn (UanUa 7R‘771U7 aRZ_lU)t'

Since Q,, is orthogonal, (i) holds.
Since R, (U1) = U1, U; is symmetric. For 2 < j <n and i€ Z,,

n—1 __ — n—1 . n—1 n—1
> U)oty = Z_ﬁi; > (RL2U)gi() — 71 > 2 (RﬁU)al(i)>
=0 =0 k=j—11=0

Y n—1 1 n—1 n—1

— n—j N — .

—\/ n—j+2 Z Ugl(3) n—j+1 Z Z Ugl(3)
=0 k=j—11=0

=0.

Therefore, Uj is anti-symmetric for any 2 < 7 < n.
The proof is complete. O

The main result can now be proven.

Theorem 3.8. Forn > 1,

(3.49) %tr (TER,) = > x(W)AF

and

(3.50) G(s) =[] (—=asm)x,

AEX(T,)
where x(\) is the number of linearly independent symmetric eigenvectors and gen-
eralized eigenvectors of Ty, with eigenvalue \.

Proof. The case of symmetric T,, is considered first. Let Ey) be the eigenspace
of T,, with eigenvalue A\. By Lemma 3.7, E) is spanned by linearly independent

symmetric unit eigenvectors U1, Us, -+ ,U p and anti-symmetric unit eigenvectors
Ui, U, -+, Uy, where p +p’ = dim(E)) and p or p’ may be zero.
Now,
N =1 SR TT+ SR, U0

=D,
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which is the number of linearly independent symmetric eigenvectors of T, with
eigenvalue A.

For general T,,, in Jordan canonical form (3.14) and (3.16), U can be decomposed
into

IJ:E’)\1 @ Ey, @-“@E)\Q.
Each E); is spanned by unit symmetric eigenvectors and generalized eigenvectors
Uj1,Uj2, -+ ,Ujp, and anti-symmetric eigenvectors and generalized eigenvectors
1 Ufay ,Uj{)p;_, and p; + pj = dim(E);).
The inverse matrix is

-1 _ |/ . AT . [ . / . T . TA . I . /
U = Wi s W Wi Wi sWaous i Wawes Woai i Wy,

Lemma 3.5 implies

1 —
E|Rn o] UJ,ZWJ/,k| = 5jj/51k
and

1
E|Rn o UJ/,ZWJI,,k| = 0.

Therefore,
X(Aj) =p;
= the number of linearly independent symmetric eigenvectors and
generalized eigenvectors of T,, with eigenvalue A;.

The result follows.
The proof is complete. O

To further study the eigenvalue A\ with symmetric eigenvectors and generalized
eigenvectors of T,,, the following reduced trace operator 7,, of T, is introduced.

Definition 3.9. Forn > 1,
T, = [tn;iﬁj]-
For each i,j € Z,,, define

(352) Tnyi,g = Z tn;i,k

keChn(4)

and denote the reduced trace operator of T, by

(3.53) Tn = [Tnsigl;
which is a xn X Xn matriz.

The following theorem indicates that 7,, is more effective in computing the eigen-
values with rotationally symmetric eigenvectors and generalized eigenvectors of T,,.
See also examples 7.2 and 7.3.
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Theorem 3.10. A € X(T,) with x(\) > 1 if and only if A € X(1,). Moreover,
x(A) is the algebraic multiplicity of T, with eigenvalue . Furthermore,

(3.54) %:l_iolrg <[g ’lfD = Y XA =r(h),

)\62(771)
and

ad tr(th) .
3.55 n(s) = ex nZgnh .
(3.55) Cn(s) p (}; p

Proof. Let A € X(T,) be an eigenvalue with rotationally symmetric eigenvector
U= (u1,ug, - ,ugn)t, where u; = u; for any i € Z,, and j € C,(i).

Define V = (u1,- -+ ,u;, - ,ugn)t for i € Z,,. Then, clearly, T,,U = AU implies
T,V = AV.

On the other hand, if 7,V = AV and V = (vy, -+ ,v5, -+ ,van)?, then V can be
extended to U, a 2™-vector, by u; = v; for i € Z,, and j € C,(¢). Then, T,U =
AU and U is rotationally symmetric. The arguments also hold for a generalized
eigenvector.

Finally, (3.54) follows from (2.55) and (3.49), and (3.55) follows from (1.8) and
(3.54).

The proof is complete. O

Remark 3.11. According to Theorem 3.10, the following is easily verified;

(3.56) Doax= > x(N)=xn

AEX(T,) AEX(Th)
Theorem 3.10 yields the following result.
Theorem 3.12. Forn > 1,

(3.57) Co(s) = (det (I — s™)) "
(3.58) = H (1— /\Sn)*Xn()\)7
AEX(Th)

where xn(A) is the algebraic multiplicity of A € X(,,) and

(3.59) ¢(s) = [ (et (I = s™7)) ™"
(3.60) = ﬁ [T @—asm>™.

n=1 \eX(r)

4. MORE SYMBOLS ON LARGER LATTICE

This section extends the results found in previous sections to any finite num-
ber of symbols p > 2 on any finite square lattice Z,,xm, m > 2. The results are
outlined here and the details are left to the reader. The proofs of the theorems are
sketched only or omitted for brevity.
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For fixed positive integers p > 2 and m > 2, the set of symbols is denoted by
S, =40,1,2,--- ,p— 1} and the basic square lattice is Zp, xm.
For any ni,ne > 1, local patterns on Z,, xn, are denoted by [Ba17a2]1:n1 Ling’
o900
:61,”2 :,82,712 : |,8n1,n2
I I

S

I ﬂnl 2

B1,1 ,32,1 Bry,1

where f4,,0, € Sp. Here, [Bay aslny:nf nymy means ny < aq <nfj and ng < ag < nj
. . Znqxn
Define the counting function on 8, "2 by

ni no
(4.1) ) ([ﬂalvO‘?]l:nl,l:ng) =1+ Z Z ﬂal,aqpnz(m—a1)+(n2—a2)'

(Jtl:l (JtQ:l

For any fixed n > 1, Yyum = [Unxmsi,j] denote the ordering matrix of local
patterns [Ba;.as)q. 1.mO0 Znxm

Pattern [8a;,as)1.,, 1., Can be rewritten as

[ﬁabo‘?]l:n,l:m = [ﬁo‘bo‘?]l:n,l:m—l b [Ba17a2]1:n,2:m’

and thus recorded as an element Yy, xm;i,; in Yy xm by

[ﬂal,@]l;n@;m = Ynxmii,j

n m-—=1
(43) i=v ([ﬁahaz]l;m:m_l) =1+ Z Z Bay .app™ ™ Dn—an)F(m—1-az)

0(1:1 Ot2:1
and

n  m-—1
(4.4) j=4 ([ﬂa17a2]1:n,2;m) 14 Y S BuappapmDma i 1—an),
a1:1 Ot2:1

Notably, Y

nxem 18 a p =1 s pr(m=1) matrix that has p™*™ non-trivial elements
only and leaves p?™(™~1) — p™m" empty sites when m > 3.
Yy y
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For any fixed n > m, such as in (2.16), the x-periodic patterns of period n with
height m can be recorded as Cpxm;i,; in Cpxm by

——¢---0-—-0—0o 009
:Bl,m :/BQ,m : :ﬁn,m :ﬂl,m :ﬁQ,m : :Bm—l,m

Cnxm;i,j = | l o | L
2,2 Bm—1,2
Bi1 P21 Bm—1,1

where ¢ and j are given as in (4.3) and (4.4), respectively.

Now, given a basic admissible set of patterns B C Sf mxm the associated vertical
transition matrix Vi xm = Vixm(B) = [Dnxmai,j] for n > m is defined by

(4.5) brxmsi,y = 1 if and only if Y xmiij = [Bar,azlim 1.m 19 B-admissible.

Similarly, for any n > m, the associated trace operator Ty xm = [tnxmsi ;] can be
defined by

(4.6) tuxmij = 1 if and only if Crxim.ij = [B1Bs B, is B-admissible.

n(m—1)

Notably, both Vi, xm and Ty, are p™m=—1xp
{0,1}. To verify (4.5),

matrices with entries in

(4.7) [/80411012]k;k+m71,1:m €B

for 1 <k <n—m+ 1, must be checked. Similarly, to verify (4.6), in addition to
(4.7), the following must be established;

(4.8) [Bas 2] € B,
where
aop=n—m+k+1,---,n1,--- k and ay=1,---,m

for1<k<m-—1.

Clearly, when B = SZme then both V™ -1 and T™ ! are full matrices, such
meaning that all of their entries are 1.

For 1 <n <m-—1, [%] =pand m = pn+¢q, 0 < g < n—1. Then,
Crxm = [Cnxmsij| also records all of the x-periodic patterns of period n with
height m by expressing Cy,xm.i,; s an (n +m — 1) x m pattern as follows:

L A e e e e R A e e
|ﬁlm /82771 | I,Bnml ,Blm IB2m | ﬂnm ﬁlm ﬁ?m : Iﬁq 1,m
¢—¢---4---+---+---¢—¢---+---+—¢—¢---+---+

FETET I%%:I ::1 T

Bia1 B2 Bn,1 Bi,1 B2 Bi1 B2 Ba—1,1
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where [Ba,,a2]1., 1., TePeats p times and ¢ and j are given as in (4.3) and (4.4) ,
respectively. 1

Hence, for 1 < n < m — 1, the associated trace operator T, xm = [tnxms,;] can
be defined similarly to (4.6).

Notably, for any k& > 1, (T%.,.)i; is the number of B-admissible patterns of the
form

(4.9) _ _ _ _ _ _
= [ByBmoale[By-Bylee [5k+1 T Bm-ﬁ-k—l]a
where
(4.10) i =9([B1 B
and
(4.11) G =0(Brs1 Bmar-1))-

Now, for any n > 1, the corresponding rotational matrix R, (,,,—1) which is a
zero-one p™(™m=1 x pn(m=1) matrix is defined by

Rnx(m—l);i,j =1if and only if

(4.12) j = ali),

where i is given by 1 < i < p™™~1 which is represented by (4.9) and 1 < (i) <
p" (=1 is represented by

(4.13) o(i) = ([0(B1)o(Bs) - 0(B-1)]) -
The explicit expression for R,y (m—1), like (2.35), can also be obtained and the

result is omitted here. When m = 3, see (7.27).
Furthermore, R,y (m—1) clearly sends patterns in Yyxm-1 into itself as follows.

 —o---0----06—90  —o---0----06—90
1B1m—1|B2,m—1, 1B2,m—11B3,m—1, Brm—1] B1,m—1
I I I I I
I I I I I
I I I

| 1
53’2

61,2

Bi1 B2 Bn-1,1 Bn,1 B2,1 Bsa Brna1 P11

As (2.37) and (2.38), the equivalent class Cy,x (m—1)(7) of i is defined by
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(4.14)

{J‘( nx (m— 1)) —1f0rsomel§l§n},

and the index set Z,, (;,—1) of n is defined by

Tnx(m-1 = {ill <i<prmDi<o9(i),1<g<n—1}
(4.15)
= {it<i<prm=Y i< jforall j € Cry(m—1)(i)}-

The cardinal number of 7,y (,,—1) is denoted by Xy x(m—1) and Xnx(m—1) is equal
to the number of necklaces that can be made from 2™~ ! colors, when the necklaces
can be rotated but not turned over [34]. Xpx(m—1) is expressed as

(4.16) Xnx(m—1) Z¢ ) (2m )"
d|n

where ¢(n) is the Euler totient function.
Like Proposition 2.3, R, x(m—1) has the following permutation properties.

Proposition 4.1. Let M = [M; ;] be a p""= Y x p™"=1) matriz, where M, ; is a
number or pattern or set of patterns. Then,

(417) (Rnx(m—l)M)i,j = Ma(i),j and (MRnX(m—l))i,j = M,L'ﬁa.—l(j).
Furthermore, for any 1 > 1,
(4.18) (Bl m-1yM)ij = Moi(iy; and (MR, 1))ij = M o-1(5).

The proof is similar to that of Proposition 2.3 and is omitted here.
Now, define

(4.19) R, x ZR (m-1)

A similar result to Theorem 2.13 can now be obtained for I'z ([ g Ilc }) .

Theorem 4.2. Forn>1,k>1and0<[<n-—1,

(4.20) s ({ 5 ,i D = tr (T Bl

and

(4.21) :LZ;FB ([ 0 ,i D (T Ronx(m-1)) -
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Proof. For k> m and [ =0, [ g 2 ]-periodic patterns have the form
(4.22) By BiBy Brnal-
Now, from (4.9)~(4.11), (Tflxm)ii have the form (4.22). Hence,

T's ([ g 2 D = tr (TE,,,) -

For1<i<n-1, [ g ]i }-periodic patterns has the form
(4.23) [Bl e 'Bkgnil(ﬁl)gnil(ﬁﬁ e 'Unil(ﬁm—l)]-
Proposition 4.1 implies that (TﬁmeLx(mq)), ~has the form (4.23). Therefore,

b q 0 ’lf ]) = tr (bRl 1) -

Equations (4.20) and (4.21) follow for k > m.

Now, (4.20) and (4.21) for 1 < k < m — 1 must be shown.

When k = 1, from (4.9)~(4.11) Ty,xm.i; has the form [3;3, - - - 3,,] which satis-
fies

(4'24) [Blﬁz o 'Bmfl] = [3233 o 'Bm]7

which implies

(4-25) Bl :ﬂz = :Bm'

Accordingly,
0
T's <[ g . D = tr (Tpxm) -

Proposition 4.1 can again be applied to verify

(| 5 1)) = (T )

forany 1 <l <n-1.
Forany 2 <k <m-—1, [}] =pandm =pk+¢,0<q¢<k-1. “)L IH

periodic patterns have the form

(4.26) By By By BBy Byl

p+1 times

Pattern (4.9) in (Tﬁxm)m implies

[5132 e 'Bmfl] = [Bk+1Bk+2 e 'Berkfl]a

i.e.
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(4.27) B; =Bjx
for any 1 < j < m — 1. The relation (4.27) implies that (4.9) has exactly the form

of (4.26). Hence, T'g ([ 3 2
establishes that (4.20) holds for any 2 < k <m — 1.

The proof is complete. O

= tr (T%,,,) holds. A similar argument also

As in (1.6), the n-th order zeta function is given by

(4.28) Ca(s) = exp (%ig%rg ([ g‘ li D Skn) .

k=11=0
From Theorem 4.2, the following theorem is obtained.

Theorem 4.3. For anyn > 1,

o0

(4.29) Cn(s) = exp <%Z%tr (TF R (m-1)) Snk> '

k=1

The proof that (,(s) is a rational function depends on the fact that Tp,x, is
also Ry (m—1)-symmetric.

Proposition 4.4. For anyn > 1,

(430) tnxm;o(i),a(j) = tnxmsi,j
for any 1 <i,j < p(m=1),
Then the reduced trace operator of T, «,, is defined as follows.

Definition 4.5. Forn > 1, the reduced trace operator Tpxm = [Tnxmsi,j] 0f Tnxm
05 4 Xnx(m—1) X Xnx(m—1) matriz defined by

(431) Tnxm;i,j = Z tnxm;i,k
kecnx (mfl)(j)

for each i,j € Ty 5 (m—1)-

The notion of symmetric and anti-symmetric eigenvectors of T, xm, as in Defi-
nition 3.4, must also be introduced.

Definition 4.6. Let U be an eigenvector of Tyxm. U is called symmetric if
(4.32) Rl myU=U

for all0 <1 <n-—1, and is called anti-symmetric if

n—1
(4.33) > Rl U =0.
=0

The equivalent class R(U) of U is defined by
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(4.34) R(U) = {R;X(m,l)U 0<i<n-— 1} .
Now, the main result can be obtained.
Theorem 4.7. For anyn > 1,
(4.35) Gls)= [ @=xsm)x™
)\EZ(Tnxm)

(4.36) = (det (I — 8™ Tnsem)) ",

where x(X\) is the number of linearly independent symmetric eigenvectors and gen-
eralized eigenvectors of Typxm with eigenvalue A.
The zeta function is

(4.37) C(s) = [ (det (I = s"7um)) ™"

Proof. Lemma 3.7: the symmetrization of eigenvectors also holds for the present
cases.
The arguments in Section 3 apply here and the results follow. ([

5. ZETA FUNCTIONS PRESENTED IN INCLINED COORDINATES

This section will present the zeta function with respect to the inclined coor-
dinates, as determined by applying unimodular transformations. Z2 is known to
be invariant with respect to unimodular transformation. Indeed, Lind [21] proved
that (3., = (g for any v € GLy(Z): the zeta function is independent of a choice of
basis for Z2. This section presents the constructions of the trace operator T.,,(B)
and the reduced trace operator 7.,(B), then determines (g;;, and (g;y. Finally,
(B;~ is obtained as

(5.1) CBiy () = H(det(] - SnT'v;n(B)»il-
n=1

As mentioned in (1.35), (g~ (s) = (3(s) in |s| < exp(—g(B)), for any v € GL2(Z),
which yields a family of identities when (., is expressed as Taylor series at the origin
s =0 (Theorem 6.4). Furthermore, for some B C Yoy, we may find a v € GL2(Z)
such that (p,, offers a better description of poles and natural boundary of Cg when
(g and ZB fail to do so, see Example 7.4.

For simplicity, only B C Yax2 with two symbols are considered. The general
cases can be treated analogously.

We begin with the study in the modular group SL2(Z). The results also hold
for any v € GL2(Z) with dety = —1.

Recall the modular group

SLQ(Z)_{“ 2“a,b,c,deZandad—bC_1}.
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v = [ CCL Z } € SLy(Z) is called a unimodular transformation. Then,

(5.2) 7* = {p(a,c) + q(b,d)|p.q € Z}

holds, here Z? is the set of lattice points (vertices).
Consider the set of all finite-index subgroups Lo of Z? by

a a ..
Lo = 12 22‘ aiiae — arza21 > 1,a; € 2,1 <i,j <25,
a1 a2

here 72 = {( Zl ) [ny,ma € Z}. An equivalent relation ~ exists in L5. Two
2

!/ /
sublattices L = | “1' M2 |72 qpq [/ = | Y11 912
a21  a22 Qg1 Qa2
L' determine the same sublattice of Z?: L' = L.
The following result states the existence of unique Hermite normal upper (or

lower) triangular forms within each equivalent class in Lo.

] 72 are equivalent if L and

Proposition 5.1. For each L = { @ a1z } 72 € Lo, there is a unique {
az1  G22
kr O

2
I :|Z € Lo, ni,ky > 1 and

0 <l <ny—1, such that they are equivalent, where

n 1 9
o L |ze

Lo, nk > 1 and 0 <1 < n-—1, and[

(5.3) nk =niki = anagg — a1z2az;.

The proof can be found elsewhere [24].
b
d

(1,0)y = (a,b) and (0,1)y = (c,d),

and the unit vectors are

(0),=(0) = (V) = (5)

¥
Notably, when v = (1) (1) ], standard rectangular coordinates are used and the

For a given v = [ Z } € SLy(Z), the lattice points in y-coordinates are

subscript v is omitted.
The parallelogram

with respect to « is defined by

(5.4) M&é)f(ﬁ)f(zz)

and
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Hence,

_|na la+kc
(5.6) My = [nb b+ kd] :
Let L, = M,Z?. Then,

is easily verified:

P n 2 | na la+kc |, o 9
”YL_[b dHo k]Z _{nb lb+kd]Z =MyZ" = Ly.

The Hermite normal form in Proposition 5.1 indicates the existence and unique-
ness of 0 <1; <n; —1,1 < k; for j = 1,2, such that

_|la ¢ n l | o | m L o | ke 0 |, 2
(58) L”_[b dHo k}Z _[ 0 kl]Z 1 m |2
with nlkl = TL2]€2 = nk.
Therefore, the n-th order zeta function of (3(s) with respect to v is defined by

oo n—1
(5.9) (Biyin(s) = exp (%ZZ%FB ([ g Ilc ] ) Snk>

k=11=0
and the zeta function (g., with respect to v is defined by

(5.10) (Bivy(s) = HCB;'y;n(S)-
n=1

Since (5.8) holds, the iterated sum in (5.9) and (5.10) is a rearrangement of
¢3(s). Therefore,

(5.11) (v (5) = CB(s)
for |s| < exp(—g(B)). See Proposition 6.2 (7) and another work [21].

The main purpose of this section is to establish results that are similar to The-
orems 3.8, 3.12 and 4.7:

(512) CB;'y;n(S) = H (1 — )\S")—Xw:n
AEX(TH;n)
(513) — (det (I _ SnT’y;n))_l 7

where T, ,, is the trace operator with respect to v and 7,,, is the associated re-
duced trace operator of T..,. The following introduces cylindrical matrix C, and
rotational symmetrical operator R, ,. Only the essential parts of the proofs of the
results are presented and the details are left to the reader.

In the following, a unimodular transformation +y is given and fixed. Let Z..,xm

be the n x m lattice with one side in the y; = < (1) > = < Z ) direction and the
v
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other side in the v = ( (1) ) = ( 2 ) direction. The total number of lattice
v

points on Z..nxm is n - m. The ordering matrix Y.nxm = [Yvyinxmsi,j] of local
patterns [/8’)1;041,042]1:77,,12771 is defined on Zy;nxm. On Zy2x2 and Z.y.nx2, Yy2x2 iS
arranged as in (2.2) and Y., x2 is defined recursively as in (2.13) and (2.14), except
that the horizontal is now in the ; direction and the vertical is in the 5 direction.
Y nxm = [Yyinxmii,j| is given in (4.2).

The v1-periodic patterns of period n with height m on Z.,(u11)xm can be
recorded as C.nxm;i,; in a cylindrical matrix C,.,xm. The indices 7, j are given
by (4.3) and (4.4) with p = 2.

To illustrate the cylindrical matrix C,.,xm, consider the following example:
given v = { (1) 1 ], C,.1x3 is defined by

1

AR
ggﬁ iﬁi g ¢
5 g fﬁ; 1@5
g
R

Fig 5.1.
The shift operator o., is defined to shift one step to the left in the ~y; direction.
Since the admissible local pattern B is given on square lattice Zay 2, the periodic
patterns in 7y-coordinates that are B-admissible must be verified on Zoys. Let
Zax2 ((i,7)) be the square lattice with the left-bottom vertex (i, j):

Now, the admissibility is demonstrated to have to be verified on finite square
lattices.

b

Proposition 5.2. Given v = [ CCL d

:|ESL2(Z) andn>1,k>1and 0 <1<

n—1. An [ g ]l€ ] -periodic pattern U is B-admissible if and only if
gl
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(5.14) Ul attem,) €B

forany0<&é<n—-1and0<n<k-1.

Proof. Clearly, (5.14) is a necessary condition. Now, only (5.14) must be shown to
be sufficient. Since ad — bc = 1, if (§,7), = (¢, ), then

(1+1,j) = (§+d,n—b)y,
(5.15) (1,7 +1) = (= c;n+a)y,
(i+1Lj+1)=(E+d-c,n+a—b),,
are easily verified.
Now, suppose that (5.14) holds; then, the periodicity and (5.15) imply that (5.14)
holds for all (&,7) € Z2.
The proof is complete. O

For a given basic set B C {0, 1}%2x2, the definition of trace operator T.nxm of B

on Z~nxm has to be justified, since B is given in a 2 X 2 square lattice in the ( 0

and < (1) ) directions and T, xm is defined in the ( Z > and < ¢

d > directions.

For any v = a b ] € SLy(Z), the height h(v) of v is

c d
(5.16) h=h(7) = lal + b,
and the width w(y) of 7 is

(5.17) w=w(y) =|c +d|

The following lemma determines that the first square lattice that occurs in a
parallelogram in the y-coordinates is proven first.

b
d
lattice that is determined by a parallelogram with vertices (0,0),, (w,0)5, (0,h),
and (w,h). The square lattice has either vertices (0,h)~ and (w,0), or vertices
(0,0)y and (w, ).

Lemma 5.3. For any v = € SLo(Z), there exists exactly one square

Proof. The proofs are divided into three cases.

(I) no zero in a, b, ¢ or d: eight subcases.

(IT) exactly one zero in a, b, ¢ and d: 16 subcases.
(ITI) exactly two zeros in a, b, ¢ and d: four subcases.

The proof is given for only a few cases. The proofs for the other cases are
analogous and so are omitted.

(D)) a,b,c,d > 0. Since ad —bc =1, 0< 2 < 2. Let (p,0), and (0,q), be the
two couple of vertices of the first square lattice along 1 and ~» directions. See Fig
5.2 (i). Then

pa—qc=1 and —pb+qd=1,
implying
p=c+d=w and ¢=a+b=h.



44 JUNG-CHAO BAN*, WEN-GUEI HU, SONG-SUN LIN**, AND YIN-HENG LIN

(I)(ii) @ > 0,b > 0,c < 0,d < 0. Then, ad — bc = 1 implies £ > ¢ > 0. See Fig
5.2 (ii). In this case,

pa+qc=—-1 and pb+qd=1.
Therefore,
p=—-c—d=|c|+|d=w and g=a+b=h.

The proof is complete.
‘ (pa,pb)
(gc, qd)

(pa, pb)

(gc, qd)
Fig 5.2 (i). Fig 5.2 (i).
0

The lemma shows that the existence of the parallelogram contains exactly n - k
square lattices, as follows.

Proposition 5.4. Given v = [ CCL Z

exactly n - k square lattices have pairs of vertices that lie on the parallelogram that
is determined by (0,0), (w+n—1,0),, (0,h+k—1)y and (w+n—1,h+k—1),.

€ SLy(Z), for anyn > 1 and k > 1,

For a given B, v € SLy(Z) and n > 1, the trace operator T, (B) acts exactly
on n square lattices which lie in the v;-direction.

Therefore, consider Z..,4w,n+1. From Proposition 5.4, n square lattices have
pairs of vertices on Z;n4w,n+1- The yi1-periodic patterns with period n and height
h + 1 are denoted by C..rtw,h+1-

The trace operator T.., = T.,(B) = [ty:n,;], associated with B (where B is
omitted for brevity later to prevent confusion), is defined by
(5.18)

tymsi,j = 1 if and only if the pattern in Cy;ptw,nt1;i,; is B-admissible.

As in another study [3], a recursive formula exists for T+, 41 in terms of Cy;p4w1,h41:4,5
B and ~.

A similar result as in Proposition 2.7 can be obtained; the detailed proof is
omitted.

Proposition 5.5. For v = { Z 2

number of B-admissible patterns of the form

m'y;lﬁ'yﬂ T B’y;thk}
= mv;l o 'Bv;h} ® [37;2 o 'Bv;hH} e [Bv;kﬂ o 'Bv;h-lrk} )

] € SLy(Z), n>1 and k > 1, (Tk )ij s the

yin
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where

(5.19) i=1 ([Bv;l o 'Bv;h])
and

(520) Jj=v (mw;k-‘rl o 'Bv;k-l-h]) ’

Now, for any n > 1, the associated rotational matrix R,,, which is a zero-one
270 5 27h matrix is defined by

(5.21) Rypni;=1 ifandonlyif j=o,(3),
where 1 <4 < 27" is given by (5.19) and 1 < o, (i) < 2" is defined by
(522) U’Y(i) = 1/} ([U’Y(B’y;l)o"}’ (37;2) T U’Y(B'y;h)}) .

The equivalent class C.;y (i), the index set Z,., and the cardinal number x.., of
Z,.n can be defined as similar to (4.14)~(4.16) and are omitted here.

Now, the following is the rotationality of R,.,, as Proposition 2.3. The proof is
similar to the proof of Proposition 2.3 and omitted here.

Proposition 5.6. Let M = [M; ;] be a 2" x 2"" matriz, where M, ; is a number
or pattern or set of patterns. Then,

(523) (R'y;nM)i,j = Maw(i),j and (MR'y;n)i,j = ML

oy ()
Furthermore, for any 1 > 1,

(5.24) (R, M); ; = and (MR, ; = M,

AON] o G

Also, T, is R,;,-symmetric such that the following result holds.

a b

Proposition 5.7. Given v = { ¢ d ] € SLy(Z) and B C Xaxa, for anyn > 1,

byinio (i),04 () = tyiniind
for any 1 <i,j < 2m",
Now, the reduced trace operator is defined as follows.

Definition 5.8. For n > 1, the reduced trace operator Ty., = [Tyinsi,;| of Ty is a
Xvyin X Xyin matric defined by

(5.25) Tyinsi,g = Z byinsisk
keCyin(4)

for each i,j € L.y.
The eigenvector U of T, is Ry;,-symmetric if
(5.26) RL,U=U forall0<l<n-—1,

and anti-symmetric if

n—1
(5.27) > RLU=0.
=0
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See also (3.38) and (3.39). Now, define

n—1
(5.28) Ryn=Y» R
=0

It is easy to verify that all results also hold for any v € GLy(Z) with dety = —1.
The main results as in Theorem 2.13 are then obtained.

Theorem 5.9. Given any B C Xaxo and v = [ CCL Z

n>1,k>1and0<I1<n-—1,

(5.29) I <[ . } ) = tr (T30 Ron)

and

} € GL2(Z). Then, for any

(5.30) SI‘B ({ 0 ]i L) =tr (T%,,Rom) -

=0

Moreover,

I =1 N
(5.31) CB,y.n(s) = exp <EZE”‘ (TFY;HRW”) § k) :

k=1

Finally, by the argument as in sections 3 and 4, the rationality of the n-th order
zeta function (g.,., is established, as in Theorems 3.8, 3.12 and 4.7.

a

Theorem 5.10. For any B C Yaoxs and v = [ .

Z } € GLy(Z),

(532) CB;’Y;’II(S) = H (1 _ )\Sﬂ)_Xw;7l(>\)
AEX(Ty;n (B))
(5.33) = (det (I — 8"7:0)) ",

where the exponent X~:n(A) is the number of linearly independent R..y,-symmetric
eigenvectors of T.,,(B) with respect to eigenvalue X. The zeta function of B with
respect to vy-coordinates is

(5.34) CBiy(5) = H (det (I — SnTw;n))_l ‘
n=1
An immediate consequence of (5.34) is the following result, see Proposition 6.2
and [21].

Theorem 5.11. For any B C Yaxs and v € GL2(Z), the Taylor series for (p,, at
s = 0 has integer coefficients.

Proof. Since 7., has integer entries for any n > 1. The result follows. O
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We now briefly investigate the zeta functions presented in the lower Hermite

normal form. For any v = [ZL Z] € GLy(Z) and n > 1, define

oo n—1
(5.35) EB;'ym(S) = exp (% Z Z %FB <[Il€ 2} ) s"k>

k=1 1=0
and
(5.36) Gon(5) = T Coren(s).
n=1
Denote by
(5.37) y= [(1) (1)] ;

the reflection % with respect to the diagonal axis y = x.

Then we have the following results.

Theorem 5.12. For any v € GLy(Z),

(538) ZBw;n = <B;”?'y;n
and

(5.39) By = By
In particular,

(5.40) (5 = (o

b

Proof. Forany n>1,k>1and 0<[<n-—1,and v = {Z d

} € GL3(Z), denote
by the lattices

=

(5.41)

k0 = =
_[l n}ZQandL.Y_MWZQ,

where the parallelogram ]\//T.Y is defined by

— k 0
2 -l
¥
Hence,
— 1\  (k\ _ (ka+lc
M, <o> = (z) = (kb+ld>
¥ ¥
and

— (0 0 nc
W (1), (), - ()
gl v
As in (5.7), it is easy to verify
(5.43) L,=~'L.
Now, we show that

(5.44) L=L-.
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Indeed, by (5.7),

[~ =3'L=AL = {0 1}

Similarly,
(5.45)

holds.
Therefore,

(5.46)

Hence, (5.46) implies

and

|
|

0 k}Zgz[o
n 1 n

|
v (o))

1 0

CB;n = CB;’V\;n

EB = (B7-

Furthermore, we show that

L, = Lz,.

Indeed, by (5.43), (5.45) and (5.7),

Similarly,
(5.47)

Ly=~'"L=~97L = (¥

(o))
ﬂﬁ_i

1AL

= ()" Ly = ('L = L3

Ly =Lz,

also holds. Therefore, (5.38) and (5.39) follow. The proof is complete.

d

Remark 5.13. From Theorem 5.12, for any B C ¥axo there is a family of zeta
functions {(py|y € GL2(Z)} = {ZBWW € GLQ(Z)}. In computation, it is much

easier to study (g and ZB‘, i.e., the rectangular zeta functions. However, for certain

B, some other v € GL2(Z) may give a better description, see Example 7.4.

Remark 5.14. For any B C Yax2 and v € GL2(Z), (g, in (5.34), which is an
infinite product of rational function, is a rearrangement of (% in (1.6), which is
a triple series. In deriving the rationality of (B.y;n, the basic formula used is the

power series

(5.48)

Z - = —log(1 — ).

k=1
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The other rearrangements of (g may not have the form as in (5.34). For example,
for any m > 1, denote by

(5.49) Fisom(s) = exp Z"f%r@([g ;])m

n|m =0

and
(5.50) fo(s) = T foim(s).

In general, fp.m(s) is not a rational function of the form as in (1.3). It is also not
clear how to identify the poles or natural boundary of fg(s) from (5.49) and (5.50),
see Section 6.

6. ANALYTICITY AND MEROMORPHIC EXTENSIONS OF ZETA FUNCTIONS

This section studies the analyticity and meromorphisms of zeta functions
obtained in the previous sections. Application to number theory is also considered.
For simplicity, only B C Yox2 with two symbols are considered. The general cases
can be treated analogously.

6.1. Analyticity of zeta functions. Recall the analyticity results of Lind [21].

Given an admissible set B C Yax2, the analytic region found by Lind is related to

quantity g(B), which specifies the growth rate of admissible periodic patterns.
Given an admissible set B C Yoy,

(6.1) 9(B) = limsupp;logTs(L)

[L]—0o0
: logI'p(L)
= lim sup ——
NI >n (L]
Remark 6.1. Since (L) < 217,
(6.2) g(B) <log2.

In particular,

(6.3) exp (—g(B)) =
Recall the results of Lind [21] that are related to analyticity of zeta functions.

Proposition 6.2. According to Lind, [21]
(i) The zeta function

(6.4) ¢&(s) = exp ( 3 FIFT(]L)S[L1>

LeLos

has radius of convergence exp(—g(B)) and is analytic in |s| < exp(—g(B)).
(ii) ¢g satisfies the product formula,

(6.5) ca(s) = [Ime(s),
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where the product is taken over all admissible periodic patterns o with respect to B,
and

(6.6) ma(s) = ZP(n)s”,
n=1

where P(n) is the partition function.
(iii) The Taylor series for (X(s) has integer coefficients: for |s| < exp(—g(B)),

(6.7) B(s) = Y an(B)s”
n=0

with

(6.8) an(B) € Z.

Remark 6.3. The L that appears in the sum of (6.4) is taken within each equivalent
class of Lo. In particular, if the upper (or lower) Hermite normal form is adopted,
then

o e (S8 ([0 1)) )

n=1k=11=0
or
co oo n—1 1 E 0
-0 _ nk
(6.10) g,y = €Xp <2;§EFB <{ I n ]7> s ) .

Equations (6.9) and (6.10) are triple sums and can be treated as a double series
inn and k after taking the summation in I.

0 k nb 1b+kd

ny I

0 kK

IfUisanL,y_{

no 1 } -periodic pattern, then U is a [ na la+ ke }—
.

periodic pattern. By the Hermite normal form theorem, U is { ]- periodic
la no

ny — 1. Therefore, Cz%;'y and Zz%;»y are rearrangements of Cg and Zg,, respectively.
Now, Propositions 6.2 and 5.1 imply

and [ ka 0O }_periodic with nik; = ngks = nk, 0< i <ny —1land 0 <[y <

Theorem 6.4. For any admissible set B C Yoxo and v € GLo(Z),
(6.11) Cg(s) = CB;'Y(S) = CBW(S)

for |s| < exp(—g(B)). Moreover, (5., and ZB;W have the same (integer) coefficients
in their Taylor series around s = 0: if

(6.12) (Biy = Zavm(B)s”
and -
(6.13) By = Y ayin(B)s™,
then -

(6.14) 50 (B) = Gy (B) = a, (B)
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for each v € GLy(Z) and n > 0.

Proof. Since
Z logI'p(L) s[L]
i, I
is absolutely convergent in |s| < exp(—g(B)), for each v € GL3(Z),
R G [n 1] nk
srrae(li i)

and

oo oo n—1 - .
Zg}:ﬁg(ﬁg )w
n=1k=11=0 - -

are absolutely convergent in |s| < exp(—g(B)). Hence (6.11) holds. (6.14) follows
from (6.11) and Proposition 6.2 (iii) or Theorem 5.11.
The proof is complete. O

To express the Taylor series of (5., and EB;W explicitly, consider the general
infinite product

oo Jn
(6.15) g(s):H H (1= Apjs™) " Xmd

where J, and x, ; are positive integers and A, ; € C.

Proposition 6.5. Given an infinite product (6.15), its Taylor series at s = 0 is
given by

(6.16) ((s) =D Pe(n)s™,
n=0

where

l
(6.17) P:(n) = > 1T em.ns

ni+2ns+---+Iln;=n m=1
mn; ENU{O}

and
(6.18) U=y HA‘K’“‘
Kn=t j=1

where
(6-19) Kn,j = (kn-,j;la T akn-,j;xn,j)a

Xn,j

(6.20) K il = ki,
=1
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kn j1 15 a non-negative integer, and

In
Kn = > |[Knjl
j=1

(6.21) T X
= > > Fn. it
j=1i=1
Proof. Tt is easy to verify that
Tn
[T (1= Apysm) 7%
j=1

Jn 00 A i Xn,j
n

1_.[ /\n,js

j=1 \k=0

5 (x jois)

p=0 \kn=p j=1

Therefore, (6.16)~(6.21) follow. The proof is complete. O
Remark 6.6. P:(n) is a general partition function where n is partitioned three

10 0 0
) . 0 0 0O )
times. Indeed, if Hy = 000 0| shown by Lind [21], J, = An; =

0 0 0O
Xn,j =1 and

()= -
= > P(n)s",
n=0

where P(n) is the typical partition function. In this case, P:(n) = P(n).

The rest of subsection discusses the meromorphicity of zeta function (s.,. We
need the following notations.

Definition 6.7.

(i) Given any B C Xax2 and v € GLo(Z). The meromorphic domain Mg, of
(B;vis defined by

(6.22) Mg,y = {s € C|(B;,(s) is meromorphic at s}.
(ii) The pole set Pp.y of (B, is defined by
(6.23)

Py ={s € C|l —Xs" =0, where A € X(T+;n(B)), Xy;n(A) > 1 and n > 1}
={s e C|l — As" =0, where A € X(78,y:n) and n > 1}.
(ili) B,y has a natural boundary OMpg., if every point in OMp,, is singular.
Remark 6.8.
(i) From (6.3) and Proposition 6.2 (i),

(6.24) Mp., 2 {s € C| |s| < exp(—g(B))} 2 {s el ls| < %} .
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(ii) (B.y has a natural boundary if
(6.25) 53;7 2 OMap.,.

In studying the infinite products (s, (s), the associated infinite series

(6.26) gBW(S)EZ Z AXyin(A) | 8"

AEZ(THin)

is useful. Denote by

3=

(6.27) AB. = limsup Z [A[X~:m (A)
" \NES(Tm)
Let
* — * -1
(6.28) St = (Ngn)

Therefore, {5, absolutely converges for [s| < S .
Furthermore, the reciprocal of (5.,

(629) ng = ﬁ H (1 _ )\S")meO\)

n=1 XeX(Tyn)

is absolutely convergent in |s| < S B~ The similar notations can also be introduced

to EB;% the details are omitted here.
Accordingly, zeta functions (g, have the following meromorphic property.

Theorem 6.9. Given an admissible set B C 3axa and v € GLy(Z). Then
zeta function (g, is meromorphic in |s| < S;%W and may have poles in Pp.y N

{s e C||s| < Sg.,}, i-e., {s € C||s| <Sh,} C Mpz,,.

Proof. For each s ¢ Pp; and |s| < Sj._, (B, is convergent and has an isolated pole
in Pp;y when |s| < S, and then is meromorphic in |s| < Sg._.
The proof is complete. (|

Theorem 6.10. Given admissible set B C Yaxa. For any v and ' in GLy(Z), the
zeta functions (p;y = (B in || < min(Sg..,, Sp.)-

Proof. Since (p., and (., are meromorphic functions and are equal to (3 on
|s| < exp(—g(B)), by uniqueness theorem of meromorphic functions [31], they are
equal on |s| < min(S;..,, S,/ )- O

Remark 6.11. Given B C Yoy2, can we find a v € GL2(Z) such that (g, is the
mazimum meromorphic extension of Cg, i.e, for any meromorphic extension (z of
(8, (B is a meromorphic extension of Cg. In particular, for any v € GLs(Z),
Mg,y € Mp.y ? Furthermore, is there v € GLo(Z) such that (g.n admits a natural
boundary? These two problems are closely related. The answers are not clear. See
examples studied in subsection 6.2 and section 7.



54 JUNG-CHAO BAN*, WEN-GUEI HU, SONG-SUN LIN**, AND YIN-HENG LIN

6.2. EXAMPLES. This subsection presents some examples to elucidate the meth-
ods described above.

Example 6.12. Consider

(6:30) s={ 10 L L

Clearly,
1 0 0 O 1 0 01
01 00 0 0 0O
(631) H2 = 00 1 0 and V2 = 00 0 0
0 0 1 10 01

0
. n 1 k0 .
First, I'p 0k and I'p I n are computed directly. Indeed, B-

admissible patterns have the same symbols in each row of the lattice, as presented
in Fig 6.1. Then,

(6.32) FB<[€‘ H>_2k forany 0<Il<n-—1
and
(6.33) I's ([ ]; 2 D =200 forany 1<1<n-—1,

where (n,[) is the greatest common divisor of n and I, are easily verified.

Fig 6.1 (a). Fig 6.1 (b).
Consequently, for any n > 1,

(6.34) =(1-2s""1

and the zeta function ((s) = ] (1 — 2s™)~! with S* = 1, which was obtained by

Lind in [21].
However, (6.33) implies
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Cu(s) = oxp ((%i%"*”) iO:T)
=1 k=1

(6.35) =(1-s")"%",
and the zeta function C H (1-s" , Where
n=1

n

1
(6.36) % n;

Now, it is easy to check that lim (Xn)% = 2. Therefore, S*=1asin (6.27) and

n—00
(6.28) for C(s).
Theorem 6.4 implies that the zeta function (g(s) of B given by (6.30) is

3

(6.37) a(s)=TTa —2sm H (1—s")"Xn

n=1

. 1
in |s] < 3.
The natural boundary of (6.37) is |s| = 1 and ¢ has poles

{27%62”j/":0§j <n-1,n> 1},

as described elsewhere [21].
However, (6.31) implies

T2 = V2 and TQ = H2.

Furthermore,
1 0 0 1
0 0 0 0
(6.38) T, =
0 0 0 0
1 0 0 onson
and
(6.39) T, = e,

where Ion is the 2™ x 2" identity matrix.

From (6.38), A\p1 = 2 and A, ; = 0, 2 < j < 2" Then, the R,-symmetry
eigenvector of A, 1 can be chosen as (1,0, --,0,1)". Therefore, x(\,,1) = 1. Hence,
(6.34) follows.

As for ’ff‘m Anj = 1for 1 < j < 2" Furthermore, for each ¢ € 7, define
eigenvector U; = (u; ;)" where u;; = 1if j € Cn(i) and u;; = 0 if j ¢ C,(4).
Clearly, U; is Rp-symmetric and x(A,,;) = 1. Therefore,

(6.40) Culs) = (1 —s")7xm,
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where ¥, is the cardinal number of Z,,. Now, (6.36) and (6.40) imply X,, = Xn, i.€.,

1
(6.41) Xn == 2000,
Moreover, (6.39) implies

Zn(s) = exp <%

= exp(itr(R,) Y % s )
k=1
= Str(Ry)(1—s")7h
Therefore, (6.40) implies
1
(6.42) —tr(Ry) = Xn-
n
Hence,
(6.43) tr(R,) =Y 200,
=1
The equality (6.14) of the Taylor series of [] (1 —2s")~! and [] (1 — s")X»
n=1 n=1
yield some identity for x,. Indeed, let
[Ta-smm=> a,s"
n=1 n=0
and -
H (1—2s") Zan
Now,
(6.44) an = ay, for any n > 0.

The expressions for @, and a,, are omitted here.
The following example can also be solved explicitly and is helpful in elucidating
the natural boundary and location of the poles of the zeta function.

Example 6.13. Consider

1 1 1 0
1 11 0
(6.45) H; = 1110
0 00O
Then,
1 1 11
1 010
(6.46) Vy = 110017 G® G,
1 0 00
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where

(6.47) G- [ - }

is the one-dimensional golden-mean matrix, which has eigenvalues

(6.48) g=15 and g=1508 - 4.
Now,

(6.49) H, =V, and V,=H,.
Then,

Ty=Vy0Hy =V =G®G
can be verified, and for any n > 2,

(6.50) T, =GeG® - ®GG ="® G,
n—1 times®
which is the n — 1 times Kronecker product of G.
The eigenvalues of T,, are given by

(651 = (I oo

where € = £162---¢, is an n-sequence with ¢; € {—1,1}. The corresponding
eigenvector of (6.51) is

__( ag” €29% [ Eng
o v e (B e (517,

Clearly, {Uz} are linearly independent.
The total number of € is 2" and the spectrum of T, is

(6.53) N(Tn) = {g" 7 -9’10 < j <mn},

which has n+1 members. In fact, € has

"1
(6.54) ZE (1—¢;)
=1

many g and n — j many g.
For , the counting function

n

(6.55) Z (1—ep)2" "

1
is defined when 1 <7 < 2™ and denoted by Un.i = Us.
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Define
0() = eqe3 -+ - €pen;
then,
(6.56) a(i) = ¥(0())

for any 1 < i < 2™, where (i) is defined in (2.35).
For any ¢ € Z,,,

n—1 n—1
ZUn,Ul(i) = ZRLUN.J 75 0.
=0 i=0

Then, Lemma 3.8 implies

X()‘n,i) =1
for i € Z,,. Therefore,

Xnj = x(g" )

(6.57) — ¥ 1.
i€Ly,
>\n,i:gn7j§j

Clearly, Xn,0 = Xn,» = 1. Furthermore for any 1 < j < n — 1, by Burnside’s
Lemma,

1 . . nd/(jn—j
(6.58) Yog = 3 GG =N,
|(G,n—3)
where ¢ is the Euler totient function (2.40). The detailed proof of (6.58) is omitted
for brevity. Therefore,

(6.59) Cols) = H (1 _ gnfjgjsn)*Xn,j
§=0
and .
(s) = [T ¢n(s)

(660) = H (1 _ g"sn)_l H (1 _ gn—jgjsn) —Xn,j ]
n=1 j=1
Since A,,1 = ¢g" is the maximum eigenvalue of T,

(6.61) lim A¥ | = g.

n—oo

From (6.58),
o 1
lim sup max (}g"‘ﬂgjx,w»’)" =2,

n—oo 0<j<n

which implies S* = 1 in (6.28) and S* < g~ .
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Now, consider T, and the associated zeta function ¢ (s).
Clearly,

T2:H2O%:H2.

To study higher-order ’i‘n, n > 3, the recursive formula of H,, must be obtained.
Let

(6.62) H, = [ Hn1 Hn ] :

Hn;S Hn;4

Now,

H 1= HnJrl;l Hn+1;2
41 =
" Hn+1;3 Hn+1;4

Hn;l Hn;2 Hn;l 0

o Hn;3 Hn;4 Hn;3 0

- Hn;l Hn;2 Hn;l 0

0 0 0 0
H,:1 O
H, Hps 0

(6.63) = H, | H,.

o o w10
0 0

If the zero rows and columns are deleted from H,,, then clearly the remaining
matrix is a r, x ry, full matrix F, , where r, is the sum of the entries of the first
row of H,,. The maximum eigenvalue p(H,,) equals r,.

Therefore, (6.63) implies

(664) Tn4+1 = Tn +rn-1,

where 7o = 3 and r3 = 5.
Furthermore, for n > 2,

3
|
[\v]
| —
— =
— =
—_
3
|
[\v]
| —
— =
o O

|
#[03) b 0]

The remaining matrix of T,, can be verified to be a full matrix E7, after the zero
rows and columns have been deleted, where Tn 1s the sum of entmes in the first row

(6.65) T, =

of Ty. Hence, the maximum eigenvalue /\ of Ty, equals 7, the other eigenvalues
are zeros.
Clearly, 7o = 3,
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DO OO OO oo
OO OO OO OO
OO OO OO oo
OO OO OO oo

OO O = O ==
OO O = O ==
O OO~ O ==
OO O = O ==

and 73 = 4. Since
H,; 0
Hn+1;2 - |: Hn?;l O :| ’

)

n—1
the first row of Hy 1.0 ® [ i 8 } can be verified to be the same as the first row

in H,,_>. Hence,

(6.66) Potl = T + T
Combining (6.64) with (6.66) and

(6.67) Ant1 = An + An

with

(6.68) X2 =3and \3 =4

yields

(6.69) Co(s) = (1= Xps™)~t

and

(6.70) C(s) =@ —Xusmt
n=1

Now, Xn and ¢" must be compared. Let

9" = ang+ bn

with ag = B2 = 1. Then, ay11 = ay + B and By11 = Qp, OF Q41 = @y + Q1
with a3 = 2. That

~

An = Op +2ﬂn

can be verified and

N _on+l _ (\/5 - 1)an+1 + 2577« N )
(6.71) At 9= ((\/5— Da, +2ﬁn—1> O = 67)-

Equation (6.71) implies
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~

1 ~— Ll
(6.72) A2t < gt <N

Equation (6.72) implies that the meromorphic extension ¢ of ¢ satisfies S* = g~

~
and has poles on {)\2”2" emiin L () < 1<2n—1,n> 1} with the natural boundary
ls| =g~ "

7. EQUATIONS ON Z?2 WITH NUMBERS IN A FINITE FIELD

This section briefly discusses the equations on Z? with numbers in a finite
field, see [15, 21, 33]. The problems can be studied by applying the methods that
were developed in the previous sections. Consider first the following example.

Example 7.1. Let F; = {0, 1} be the field with two elements and

(71) X = {{E S FQZZ P X5+ Xyl + T4l + Tig1, 541 = 0 for all 1,] € Z} .

Then, X is a compact group with coordinate-wise operations, and it is invariant
under the natural Z2-shift action o.
The equation

(7.2) Tij + Tiv1j + Tije1 + Tiv141 =0

is now interpreted as a pattern generation problem on Zsyo. The solutions of (7.2)
are clearly given by

G 5 N 5 N S A S S S Y S
which consists of all even patterns of Zoys.

B is the basic set of admissible local patterns determined by (7.2). The set of all
global patterns X(B) generated by B is exactly X:

(7.4) 2(B) = X.

Hence, the zeta function (g(s) of B can be derived as in (3.50).

1
0| [L
o= 1% 5
00 1

That Hy = V, = ﬁz = \~72 can be easily checked; then T,, = ’fn for all n > 1.
Forn>1,

H, = Ho(B) =

= O O
== O
== O

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
_[271 = and J2n =

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

on xon e 2n N
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Then, T,, = Isn + Jon for all n > 1. Moreover, o(T,,) = {2,0} for n > 1, and the
algebraic multiplicities of A = 2 and A = 0 of T,, are both equal to 2"~ 1.
For n > 1, consider the 2" x 2™ matrix

100 0 0 0 0 1
01000 -~ 0 1 0

00 1 0 0 1 0 0

11000 11 0 0 0
U"_[Ul"”’UQ”]_E 000 1 -1 0 0 0
00 1 0 0 -1 0 0

01000 -~ 0 -1 0

1.0 0 0 0 0 0 -1 |

Then, T,, is expressed in Jordan canonical form as T,, = U,J, Uy, where
Jn;i,i =2 forl1<i< 271—17
Jni; =0 otherwise.

From (3.10),
2n71
Xn(2) =3 2[Ry o U;US]

j=1
= %|Rn O (IQTL + JQTL)|

= Ltr(Rn) + o= |Rp 0 Jon|.
Since 5-tr(R,) = % by (6.42) and 5-|R,, o Jon| > 0,

(7.5) nh_)ngoxn@)ﬁ =2.
In fact,
p(2d)2/?
. n(2) =) —Fi,
(7.6) xn(2) %} o

where ¢(n) is the Euler totient function.
Then,

(7.7) = U @

Equation (7.6) implies that S* = 1 and (g is analytic in |s| < . However, it
is not clear whether there is a v € GLQ( ) such that (g, has poles in |s| > 1 and
has the natural boundary. Further investigation must be performed later.

Lind [21] considered the following example.
Example 7.2. Consider F; = {0,1} and

(78) X= {JJ S FQZZ X5t X1, + T = 0 for all ¢,j € Z} .
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In this case, X is also a compact group with coordinate-wise operations, and it

is invariant under the natural Z2-shift action o.
The equation

(7.9) Tij+ Tit1,j +Tij+1 =0

can be interpreted as a pattern generation problem on L-shape lattices: I—., as in
Lin and Yang [?]. Indeed, the solutions of (7.9) are given by

(7.10) sw-{ L. . . 1.}

which consists of all even patterns on L-shape lattices.
B(L) can be extended to Zax2 as

(7.11)
8 8 S A A 0 A A A
That
(7.12) Y(B) =X
can be easily verified.
Therefore,
1100
0 0 11
(7.13) H=Ho(B)= |, ;1 {|=Ve
11 00
and
1010
= 0 1 01 >
(7.14) Ho=| 0 1 o 1 |=V2
1010

According to (2.58),

le{i 8] and  (i(s) = .

For Ty = V3 0 Ha, (7.13) and (7.14) imply

(7.15) T, =

_ o O
o O OO
o O OO

—= = O

0

The eigenvalue A of Ty with its x2(A) is found and the reduced trace operator 7o,
introduced in (3.52), is applied as follows.
Let V = (v1,v2,v3,v4)" be an eigenvector of Ty with eigenvalue A. Then,
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v = /\1)1
Vg = )\’1)2
(7.16) s = Avs
v = )\’U4.

If V is a rotationally symmetric eigenvector as in Example 2.2 (i), then vy = vs.
The equivalent classes are Ca(1) = {1}, C2(2) = {2,3} and C2(4) = {4}.

Let Cy(j), j = 1,2,4, be vertices; write v; = Av; as Ca(i) — C2(j), which
describes an edge from Cs (i) to Ca(j). Then (7.16) can be plotted as in Fig 7.1. 7
is the reduced trace operator of Ts.

w

Cy(1)

and Ty =

—_ O =
o oo
o = o

Co(d)  « Cu(2)
Fig 7.1.

Figure 7.1 includes only one cycle C3(1) — C2(1) with period 1. Then, A =1 is an
eigenvalue with x2(1) = 1. Hence,

1
Gl =15

For n = 3, the equivalent classes C3(1) = {1}, C3(2) = {2,3,5}, C5(4) = {4,7,6}

and C3(8) = {8} are vertices. T3 generates the graph in Fig 7.2 and the reduced
trace operator 73.

W

Cs(1)
Cs(2) 1 0 00
./ and T3 = 0010
C5(8) *“10 010
C3(4) 100 0
Fig 7.2.

Figure 7.2 includes two cycles with period 1. Therefore,

1
Ca(s) = 11— 32

For n =4, T4 generates the graph in Fig 7.3 and the reduced trace operator 74.
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Ca(1)

— 10000 0
Ca(16) C4(2) 001000
i 000100

n “=10000 01

) cw EEEEE

04(6) —
Fig 7.3.

Figure 7.3 includes only one cycle with period 1. Hence,

G = =

g
For n = 5, T5 generates the graph in Fig 7.4 and the reduced trace operator 7.

C5(32) —»  C5(1) (1.0 0 0 0 0 0 0]
001 00O0TO0O0

C5(16) Cs(2) 0001000 0
I land 00 00O0O0OT1D0
BZ1000 1000 0

05(12) 05(4) 00000010
% 001 00O0UO0O

1 000000 O |

Cs5(8) —  C5(6) )
Fig 7.4.

Figure 7.4 only includes one cycle with period 1 and one cycle with period 3.
Therefore,

1 1
I 6l = TS - )i = 2~ (=)~ s5)’

where p3 = e 3, (p5 = 1).

In general, for any n > 1, induction can be used to show that each row of T,
has exactly a single 1 and each column has either two 1s or all Os.

Therefore, the eigenvalue A of T, is |A] = 1 or A = 0. By a similar argument as
for n = 2 to 5, for the eigenvalue A with a rotationally symmetric eigenvector, T,
generates the graph with equivalent classes C, (i) as vertices and has m(n) disjoint
cycles; each cycle has period p, > 1, 1 < k < m(n). In computing, it is more
efficient to compute A € 3(7,,) with algebraic multiplicity x(\).

The following can be demonstrated
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(118) Gals) = ) W
T TR T | S

27

where p,, 1 = ePrk.
Hence,

co  m(n)

(7.19) ¢s)=11 II Hﬁ

n=1 k=1

For n =1 to 20, the numbers and periods of cycles are listed in Table 7.1.

n 1 5 6 7 8 9 10
p 1 1 1 1 113 112 17 1 17 1136
q 1 1 2 1 111 2|1 311 1 214 1114
n 11 12 13 14 15 16

p 1131 11214 1163 112714 11315 1

q 113 21115 115 41120 4 14|72 1

n 17 18 19 20

p 115 15 112|7] 14 11511 1 6] 12

q 113|256 2114|259 1] 27 111]4]272

p : the period of cycle.
g = q(p) : the number of cycles with period p.
Table 7.1.

From Table 7.1, {,, can be written for 1 < n < 20. For example,

1
(1 — s13) (1 — 819)°

Gs =

and
1
(1—s14) (1 — 528)" (1 — $98) (1 — 5196)%0

Up to n = 20, the Taylor expansion of (7.19) at s = 0, which recovers Lind’s
result [21] (p.438), is

(7.20)  (p(s) =1+ s+ 252 + 453 + 65 + 95° + 1655 + 2457 + 3558 + 545°

Cla =

+785'0 + 1105 + 16252 + 2265 + 317s™ + 4465 + 6125'°
+8345'7 + 11465'® + 15435 + 2071520 + - - - .

Further investigation is needed to understand 7,, and p,, ; for large n. The results
will appear elsewhere.

Lind [21] showed that the zeta function ¢° defined by (7.9) is analytic in |s| < 1.
By (7.19), all poles of ¢ appear on |s| = 1. Therefore, ¢ is analytic in |s| < 1 with
natural boundary |s| = 1.
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In the following example, the harmonic patterns on square-cross lattice L: { ,
which were studied by Ledrappier [15], are investigated.

Example 7.3. Let F; = {0,1} and

(721) X= {x IS F222 PX = Xi—1,j + Tij—1 + Tig1,j + Tij41 forall i,y € Z} .

Clearly, (7.21) can be written as

(722) {I S FQZ2 LTy + Ti—1,5 + Tij—1 + Tit1,5 =+ Tij4+1 = 0 for all Z,j S Z} .

Then, X is also a compact group with coordinate-wise operations, and it is invariant
under the natural Z2-shift action o.
The equation

(7.23) Tij+ Tio1j + Tij-1 + Tiv1,j + Tij41 =0

can be interpreted as a pattern generation problem on a square-cross lattice. Indeed,
the basic set of (7.23) on L is

(7.24) B(L) = € Fy a0+ 21,0+ To,-1+ 10+ 201 =0

Tr_1,0 |T0,0 T1,0
xo,—1

which consists of all even patterns on a square-cross lattice.
B(L) can be extended to Zsx3 as

T _1,1|70,1 | T1.1

Z
(7.25) B={ %tooteo € E2 " 100+ 210+ 20,1+ 210+ 201 =0

r_1,-1%0,—1T1,—-1
Then, that
(7.26) (B) =X

can be easily verified.
Now, by (4.6), the associated trace operator T, x3(B) can be constructed for
n > 1. Furthermore, the rotational matrix R, x2 is defined by (4.12) with

1+4(i—1) for 1 < i< 22n=2,
L) 24422 for 22n=2 4 1 < j < 2201,
(727) Un(l) - 3 + 4(Z _ 22n—1 _ 1) fOI’ 22n—1 + 1 S ‘ S 3. 2211—27

444(i—3-227"2-1) for3-22""2 41 <i<2?,

The number x, x2 of the equivalent classes of R, x2 can be shown to be the number
of n-bead necklaces with four colors. The formulae for y,,x2, n > 1, is given by

(7.28) Xnx2 = %Z¢(d)4"/d.
d|n
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See [34].

As in Example 7.2, the reduced trace operator 7,,x3 of T, x3 is more convenient
for computing the n-th order zeta function (,. The definition and results of the
reduced trace operator for more symbols on larger lattices are similar to Definition
3.9 and Theorem 3.12.

For n = 1, Tx3 generates the of graph of equivalent classes in Fig 7.5 and the
reduced trace operator T1x3.

W

Cix2(1)

Cix2(4) Cix2(2)  and 713 = Tixs =

N 7

Cix2(3)
Fig 7.5.

SO O
o OO
— O O O
o o= O

The graph in Fig 7.5 has one cycle of period 1 and one cycle of period 3. Hence,

1
al) =T 5=
For n = 2, Ty«3 generates the of graph of equivalent classes in Fig 7.6 and the
reduced trace operator Tox3.

O -

100 00O0O0O0O0O

C1x2(1) 00 01 0 0 0 o000

SRR
N VAN

R e | R R R RS

C1x2(6) 000O0O0O0OTUO0OT1o0

VRN 0000100000

C1x2(16) —> Cix2(11) 00000 T100UO0O0

Fig 7.6. |00 000O0O0T100

The graph in Fig 7.6 has one cycle of period 1 and three cycles of period 3. Hence,

1
@) = Tma =P

For n = 3, the reduced trace operator 753 is a 24 x 24 matrix and can be used
to indicate that the graph of equivalent classes generated by Tsxs has two cycles
of period 1, two cycles of period 2, two cycles of period 3 and two cycles of period
6. Hence,

Gs) :
s) = .
3 (1= 3)2(1 — s5)2(1 — §9)2(1 — s18)2
From (7.22), if @; j_1 and x; ; are given for some j € Z and for all i € Z, x; j41
is determined for all 7 € Z. Therefore, the trace operator T, «3 is a permutation
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matrix. Furthermore, the reduced trace operator 7,,x3 of T;, «3 is also a permutation
matrix. Hence, |A\| =1 for all A € X(7,,x3).

By the same argument as in Example 7.2, let the graph generated by T, «3 have
m(n) disjoint cycles, each of period p, x > 1, for 1 < k < m(n). Then, the n-th
order zeta function can be represented as

m(n)
(7.29) ) =] 1—5%
k=1
Hence,
o m(n)
(7.30) C(s) = }i[l k]:[l T

Table 7.2 presents the numbers and periods of cycles of T,,x3. For brevity, only
n =1 to 10 are listed.

T
[
w
[
w
[
[\
w
D
—
w
D
[
w
ot
—
ot

q | 2(6|6|8|10[48 | 1]1]260 | 1|7]|88]|640

q 212(2]2]260]| 390|260 | 390

n 10
p 112 31]5]| 6 10 | 15| 30
q 712412119120 | 648 | 27 | 3240

p : the period of cycle.
g = q(p) : the number of cycles with period p.
Table 7.2.

Up to n = 16, the Taylor expansion of (7.30) at s = 0 is
(7.31)  (g(s) =1+ s+ 252+ 553+ Ts* + 17s% + 3255 + 4657 + 845° + 140s°

+2295'0+ 3845 + 61552+ 93850 +14835'1 4 23535' + 356350+ - - .
The analyticity and the natural boundary of the zeta function in (7.30) need
further investigation. The results will appear elsewhere.

In the following example, we study the equation on the diagonal lattice LL: /" and
show that the rectangular zeta function ¢ = ( fails to describe poles and natural

boundary of ¢° but ¢, works well with v = [ (1) 1 } :
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Example 7.4. Let F; = {0,1} and
(7.32) X={oe R 12+ w0 =0 foralli,j € Z}.

It is clear that the solutions of x; ; + x;41,j41 = 0 mod 2 are given by
(7.33)

OI:ID 1I:ID OI:ID ‘I:ID OI:I‘ ‘I:I‘ OI:I1 ‘I:I‘
0 0y 0 0y 0 1, 0 1 1 0y 1 0y 1 1y 1 1

Now,
1010
1010
(7.34) H, =V, = 01 0 1
01 01
and
110 0
~ = 00 1 1
(7.35) H, =V, = 110 0
00 1 1
It is easy to verify
=S I SV
(7.36) T, =T; = {O 1 } =R
and
1 0 00
A 100 10|
(7.37) Ty, =Ty = 010 0|7 Rs.
0 0 01

Furthermore, for n > 3, we show that
(7.38) T, =T, =R..
Indeed, by the recursive formula of V,,, it can be verified that V,;; = 1 if and

only if

=25 — j < g <on—l
(7.39) {z 25— 1 and 2j for 1 <j <27

i=2(i—27"1) " 1and 2(i — 2" 1) for 2"l 41<j<2m
Therefore, by applying (2.30), T, = [tn. ;] with ¢, ; = 1 if and only if

i=2j—1 for 1 <j<2n 1,
(7.40) { i=20i-2"") for2ie1<j<on
Hence,
(7.41) T, = Ry,
Therefore,
1
(7.42) n(8) = T
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where x,, is the cardinal number of Z,, and

= 1
7.43 = | | _ )
( ) C(S) L (1 _ Sn)X"

1
As in Example 6.12, lim x5 = 2 and then S* = %
n—oo
On the other hand, consider

(744) B/ — oﬂo wﬂo oﬂw |¢w

Then,
(7.45) % (B') = X(B).

In particular,

(7.46) FB/<{:; i]7> = ok

Therefore, as in Example 6.12,
1
Gin =T g

We can also use the construction of T, in Section 5 to study (y;,. Indeed, by
Figure 5.1, it is easy to see that

1100
0 0 1 1
(7.47) Ty = 110 0
0 0 11
Therefore,
(7.48) p—
' W12

Furthermore, for any n > 2, after deleting the zero columns and rows of T-.,,, T,
is reduced to T+;;. Therefore,

1
7.49 = .
( ) C’Yv 1 —2sn
Hence,
(7.50) ¢ = ﬁ !
' T2

¢y has natural boundary with |s| =1 and has poles

{2_%62”ij/":0§j§n—1,n2 1}.
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Motivated by examples 7.1~7.4, given a finite field F' and a set of finite lattice
points I C Z?2, consider the equation

Z Ti,5 = 0 in F.
(7.51) (e

Then, denote the solution set of (7.51) on Z? by

(7.52) X(L)={aeFP 3 zippg =0, (k1) € 72
(i,7)€L
Denoted by
(7.53) BlL)y=qz:L—F: Y z;=0,
(i,5)€L

B(L) C F" is the set of admissible local patterns.

Let Zy,xm be the smallest rectangular lattice that contains L. Let B be the set
of all admissible patterns on Z,,x, that can be generated from B(L). Then, the
following can be easily verified;

(7.54) X(L) = 2(B).

The results presented in previous sections apply to X(B) and then to X(IL). The
above method can also be applied to any finite set of equations defined on L. with
numbers in F, since the solution set B(L) C F“ and can be extended to a unique
admissible set B C FZmxm

8. SQUARE LATTICE ISING MODEL WITH FINITE RANGE INTERACTION

This section extends the results presented in previous sections to the thermo-
dynamic zeta function for a square lattice Ising model with finite range interaction,
see Ruelle [30] and Lind [21]. For simplicity, the square lattice Ising model with
nearest neighbor interaction is considered.

The square lattice Ising model with external field #H, the coupling constant 7
in the horizontal direction, and the coupling constant 7’ in the vertical direction
is now considered. Each site (4,j) of the square lattice Z* has a spin u;; with
two possible values, +1 or —1. First, assume that the state space is {+1, —1}22.
Given a state U = {u;}ijez In {—l—l,—l}z27 denoted by U,,xn = U’me =
{uijto<i<m—10<j<n—1-

Define the Hamiltonian (energy) E(Upxn) for Upxn by

!
(8.1) EUmxn) =-T E Ui jUiv1,; — J E g jui i1 — H E Ui j
0<i<m—2 0<i<m—1 0<i<m—1
0<j<n—1 0<j<n—2 0<j<n-1

Therefore, the partition function Z,, ., is defined by
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(8.2)
Zmxn = E exp | K E Ui juiy1,; + L E Ui jUij+1 +h E Uig|
Uane{_i_l)_l}men 0<i<m—2 0<i<m—1 0<i<m—1
0<j<n—1 0<j<n—2 0<j<n—1

where K = J/kpT,L = J'/kpT, h = H/kpT, kp is Boltzmann’s constant and T'
is the temperature.
n 1

0k ] 72 € L5, the partition

To the thermodynamic zeta function, given L = [

function for the [ 8 ]i ]-periodic states is defined by

(8.3)
n 1
2 =2([5 i)
= > exp |[K > wijuipiy+L 30 wijuigaa+h 3w,
vefizy ({+1,-1)2) 0<i<n—1 0<i<n—1 0<i<n—1
0<j<k—1 0<j<h—1 0<j<h—1

where Uy, ; =up;, 0 < j<k—1and u; = 0, 0 <t <n—1.
Then, the thermodynamic zeta function for the square lattice Ising model with
nearest neighbor interaction can be defined by

§[L)
CO(S) = C?sing(s) = exp ( Z ZLW)

LeLo>

(8.4) = exp <gg§%z ([ g li D s”k> .

To simplify the notation, the subscript Ising is omitted in this section whenever
such omission will not cause confusion.

As (1.8) and (1.9), for any n > 1, define the n-th order thermodynamic zeta
function (rsing:n(s) as

(85) @w:QMW@zmﬁﬁiigzqgijyﬁy

k=11=0

the thermodynamic zeta function (rsing(s) is given by

(8.6) C(3) = Craing(s) = [ [ Guls).

Since the discussion of (,(s) is similar to that in sections 2 and 3, only the parts
of the arguments that differ are emphasized. The results are outlined here and the
details are left to the reader.
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According to the spin u, ; € {+1, -1} for ¢, j € Z,replacing all the symbols 70"
in (2.1) and (2.2) with the symbol ”—1" yields the ordering matrices Xrsing;2x2
and Yrsing2x2 as follows.

-1 -1 -1 1 -1 -1 -1 1
711 -1 -1 -1 -1 -1 1 -1 1
1 1 -1 1 101 -1 1
(8.7) —1I -1 -1 -1 -1 -1 1 -1 1
XIsing;2><2 =
711 -1 -1 -1 1 -1 -1 -1 1
1 1 -1 1 -1 1 11 1
1 1 -1 1 101 11 1
1I 1 -1 1 -1 1 101 1
and
1 1 -1 (I T 1
— o ] o o e o
1 1 1 1 1 1 1 1
[
T 11 11 1 -1 1
1 1 1 1 1 1 1 1
o o
1 1
1 1 1 1 1 1 1 1
(8.8)
YIsz'ng;2><2 =
1 1 1 1 1 1 1 1
1 -1
1 1 1 1 1 1 1 1
19—9-1 -10—9 1 1e6—=o-1 10—e01
1 1
1 1 1 1 1 1 1 1

The ordering matrix Xrgingnx2, Y Ising:nx2 and the cylindrical ordering matrix
Crsinginx2 can be obtained in the same way. The recursive formulae for generating
YIsing;nxQ form Y]S»L'ng;Qx2 are as in (214)

Given L € Lo, (8.3) yields
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(89) ZL = Z H exp [ui,j (KuiJrl,j + Lui7j+1 + h)] .
U€ fiwp ({+1,-1}%7) 0Zisn—1
0<j<k—1

Based on (8.7), (8.8) and (8.9), the associated horizontal transition matrix

Hising2 = [ar jlaxa and the vertical transition matrix Viging.o = [bri jlaxa are
defined as
(8.10)
K+L-h e—K-L-h _K-L-h e—K+L-h
- B e—K+L—h  K-L-h e—K-L-h _K+L-h B
Ising;2 — cK+L+h e~K-L+h K-L+h e~ K+L+h —[al;z‘,j]4x4v
e—K+L+h K-L+h e—K-L+h  K+L+h
and
¢K+L-h —K-L-h _-K+L-h _K-L-h
B ¢K-L-h —K+L-h ,—K-L-h _K+L-h B
(8'11) YIsing;2— eK+L+th —K-L+h ,-K+L+h _K-L+h —[bl;i,j]4x4=
¢K-L+h —K+L+h —K-L+h _K+L+h

respectively. Similar to (2.21) and (2.22), the associated column matrices ﬁ[sing;Q
of Hrging:2 and Viging:2 of Viging2 are defined as

ara,1 Gr21 Gra2  ar22
~ ar. ar. ar. ar.

(8.12) Hisings = ;3,1 Gr41 Qr32 0ar42

ar1,3 Gr23 Gr14 Qar24

ar33 0143 G134 Q44

and

bl;l,l b1;2,1 bI;l,Q bI;2,2
(8.13) Vlsing‘Q _ | brza bran brsz brag

’ bris br2s bria broa
brss bras brsa braa

Therefore, the trace operators Trging2 and Trsing;2 are defined as

(814) TIsing;Q = VIsing;Q o HIsing;Q and Tlsing;Q = HIsing;Q o VIsing;Q-

The recursive formulas for T4 g.n, and T Ising:n are similar to (2.30). Construct-
ing Trsing;2 and the rotational matrix R, yield a similar result to that of Theorem

izt ([ 2 1)

Theorem 8.1. Givenn >2,0<[<n-—-1,k>1,

(8.15) z q 0 ]i ]) = tr (Thingim RL) -
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Furthermore, let

T _ ar1,10r;1,1 ar;2,2071;2.2
Ising;l —
a1;3,301;3,3 aI;4,401;4.4

then
2(| g p|)=trims k>1
0 k —t’]"( Ising;l) fOT = 1.

From Theorem 8.1, the n-th order thermodynamic zeta function (rsing;n can now
be obtained as follows.

Theorem 8.2. For anyn > 1,

(816) Clsing;n = exXp <%Zt7‘ (Tl;sing;nR") Snk) :
k=1

The R,-symmetric property of Trsing:n is essential to the rationality of n-th
order thermodynamic zeta function (rsing;n-

Proposition 8.3. For anyn > 1,

(817) TIsing;n;a'l(i),crl(j) = Tlsing;n;i,j
forall1<i,j<2" and0<1<n-—1.

Similarly, the associated reduced trace operator Tising:n can be defined as in
(3.52). Finally, by the arguments presented in section 3, the rationality of the n-th
order thermodynamic zeta function (rspg;n is established as follows.

Theorem 8.4. Forn > 1,

(818) Clsing;n(s) = H (1 - /\Sn)*X(A)

)\GE(TIsing;n)

(819) = (det (I - SnTIsing;n))_l )

where x(\) is the number of linear independent symmetric eigenvectors and gener-
alized eigenvectors of Trsing:n with eigenvalue A. Furthermore,

(820) C]smg(s) = H (det (I - SnT]Singm))_l .
n=1

The state space {+1, —1}Z2 is extended to the shift of finite type given by B C
{+1, _1}Zz><2'

Given B C {+1,—1}%2x2 and L = [

n 1

0k } 72 € L, the partition function for

B with { ol }—periodic patterns is defined as

0 k
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(8.21)
aw (5 1]

= > exp |K Y wijuivi;+L 0 Y wijuigri+h Y wil,
Uefizr (S(B)) 0<i<n—1 0<i<n—1 0<i<n-—1
0<j<k—1 0<j<k-1 0<j<k—1

where Uy, ; =up;, 0 < j <k—1and u; = 0, 0 <t <n—1.
Hence, the thermodynamic zeta function is defined by

s[L
Clszng ;B = exp Z ZL

LeLo>

n=1k=11=0

(8.22) = exp <§:§:nzl ({ 6‘ ]i D s"k> .

Similar to (8.5) and (8.6), for any n > 1, the n-th order thermodynamic zeta
function (rsing:B;n(s) is defined as

(8.23) Crsing:in (8) = eXp( inzjl “ ({ 0 ’i D Snk)

kllO

and the thermodynamic zeta function (rsing;s(s) is given by

(824) Clsing;B(S) = HCIsing;B;n(S)
n=1

Equations (2.17), (2.18), (8.10) and (8.11) are combined to define the associated
horizontal transition matrix and vertical transition matrix as follows.

(825) Hlsing;2(B) = HIsing;Q o HZ(B)
and
(826) VIsi'n,g;Q (B) = Vlsing;2 © V2 (B)

Therefore, the trace operator Tgsing:n(B) and the associated reduced trace op-
erator Trsing:n (B) can be defined for all n > 1 as above. Since all arguments for
(Ising;B;n are similar to those above; the final result is as follows.

Theorem 8.5. Forn > 1,

(8.27) Clsing;B;n(S) = H (1-— /\Sn)*X(A)

)\EE(TIsing;n (B))

(8.28) = [det (I — 8" T7ingin (B))] ",
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where x(\) is the number of linear independent symmetric eigenvectors and gener-
alized eigenvectors of Treingn(B) with eigenvalue X. Moreover,

o0
-1

(8:29) Crsing:s(s) = [ [ [det (I — 8" Trgingen (B))] " -

n=1
Remark 8.6. The results in this section hold for any model with finite range in-
teraction.
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