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Abstract. We construct natural virtual fundamental classes for nested Hilbert
schemes on a nonsingular projective surface S. This allows us to define new in-
variants of S that recover some of the known important cases such as Poincaré
invariants of Dürr-Kabanov-Okonek and the stable pair invariants of Kool-
Thomas. In the case of the nested Hilbert scheme of points, we can express
these invariants in terms of integrals over the products of Hilbert scheme of
points on S, and relate them to the vertex operator formulas found by Carlsson-
Okounkov. The virtual fundamental classes of the nested Hilbert schemes play
a crucial role in the Donaldson-Thomas theory of local-surface-threefolds that
we study in [GSY17b].
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1. Introduction

Hilbert scheme of points on a nonsingular surface S have been vastly studied.
They are nonsingular varieties with rich geometric structures some of which have
applications in physics (see [N99] for a survey). We are mainly interested in the
enumerative geometry of Hilbert schemes of points [G90, L99, CO12, GS16]. This
has applications in curve counting problems on S [LT14]. The first two authors of
this paper have studied the relation of some of these enumerative problems to the
Donaldson-Thomas theory of 2-dimensional sheaves in threefolds and to S-duality
conjectures [GS13]. In contrast, Hilbert scheme of curves on S can be badly
behaved and singular. They were studied in details by Dürr-Kabanov-Okonek
[DKO07] in the context of Poincaré invariants (algebraic Seiberg-Witten invari-
ants). More recently, the stable pair invariants of surfaces have been employed in
the context of curve counting problems [PT10, MPT10, KT14, KST11]. We define
new invariants for the nested Hilbert scheme of curves and points on S. Our main
application of these invariants is in the study of Donaldson-Thomas theory of local
surfaces, that is carried out in [GSY17b].

1.1. Nested Hilbert schemes on surfaces. Suppose that n := n1, n2, . . . , nr is
a sequence of r ≥ 1 nonnegative integers, and β := β1, . . . , βr−1 is a sequence of
classes in H2(S,Z) such that βi ≥ 0. We denote the corresponding nested Hilbert

scheme by S
[n]
β . A closed point of S

[n]
β corresponds to

(Z1, Z2, . . . , Zr), (C1, . . . , Cr−1)

where Zi ⊂ S is a 0-dimensional subscheme of length ni, and Ci ⊂ S is a divisor
with [Ci] = βi, and Zi+1 is a subscheme of Zi ∪ Ci for any i < r, or equivalently

(1) IZi(−Ci) ⊂ IZi+1
.

To be able to define invariants for the nested Hilbert schemes (see Definitions

2.12, 2.13), we construct a virtual fundamental class [S
[n]
β ]vir and then we integrate

against it. More precisely, we construct a natural perfect obstruction theory over

S
[n]
β . This is done by studying the deformation/obstruction theory of the maps of

coherent sheaves given by the natural inclusions (1) following Illusie. As we will
see, this in particular provides a uniform way of studying all known obstruction
theories of the Hilbert schemes of points and curves, as well as the stable pair
moduli spaces on S. The first main result of the paper is (Propositions 2.4, 2.7
and Corollary 2.8):

Theorem 1. Let S be a nonsingular projective surface over C and ωS be its canon-

ical bundle.The nested Hilbert scheme S
[n]
β with r ≥ 2 carries a natural virtual

fundamental class

[S
[n]
β ]vir ∈ Ad(S[n]

β ), d = n1 + nr +
1

2

r−1∑
i=1

βi · (βi − c1(ωS)).
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1.2. Special cases. In the simplest special case, i.e. when r = 1, we have S
[n]
β =

S[n1] is the Hilbert scheme of n1 points on S which is nonsingular of dimension
2n1, and hence it has a well-defined fundamental class [S[n1]] ∈ A2n1(S

[n1]). For

r > 1 and βi = 0, S[n] := S
[n]
(0,...,0) is the nested Hilbert scheme of points on S

parameterizing flags of 0-dimensional subschemes Zr ⊂ · · · ⊂ Z2 ⊂ Z1 ⊂ S. S[n]

is in general singular of actual dimension 2n1.

We are specifically interested in the case r = 2 in this paper: S
[n]
β = S

[n1,n2]
β for

some β ∈ H2(S,Z). Interestingly, the invariants of nested Hilbert schemes recover
the Poincaré and the stable pair invariants of S that were previously studied in
the context of algebraic Seiberg-Witten invariants and curve counting problems.
The following theorem is proven in Section 3.

Theorem 2. The virtual fundamental class of Theorem 1 recovers the following
known cases:

1. If β = 0 and n1 = n2 = n then S
[n,n]
β=0

∼= S[n] and [S
[n,n]
β=0 ]vir = [S[n]] is the

fundamental class of the Hilbert scheme of n points.

2. If β = 0 and n2 = 0, then S
[n,0]
β=0
∼= S[n] and

[S
[n,0]
β=0 ]vir = (−1)n[S[n]] ∩ cn(ω

[n]
S ),

where ω
[n]
S is the rank n tautological vector bundle over S[n] associated to the

canonical bundle ωS of S.1

3. If β = 0 and n = n2 = n1 − 1, then it is known that S
[n+1,n]
β=0

∼= P(I [n]) is

nonsingular, where I [n] is the universal ideal sheaf over S × S[n] [L99, Section
1.2]. Then,

[S
[n+1,n]
β=0 ]vir = −[S

[n+1,n]
β=0 ] ∩ c1(OP(1)� ωS).

4. If n1 = n2 = 0 and β 6= 0, then S
[0,0]
β is the Hilbert scheme of divisors in class

β, and [S
[0,0]
β ]vir coincides with virtual cycle used to define Poincaré invariants

in [DKO07].

5. If n1 = 0 and β 6= 0, then S
[0,n2]
β is the relative Hilbert scheme of points on the

universal divisor over S
[0,0]
β , which as shown in [PT10], is a moduli space of sta-

ble pairs and [S
[0,n2]
β ]vir is the same as the virtual fundamental class constructed

in [KT14] in the context of stable pair theory. If pg(S) = 0 this class was used
in [KT14] to define stable pair invariants.

In certain cases, we construct a reduced virtual fundamental class for S
[n1,n2]
β by

reducing the perfect obstruction theory leading to Theorem 1 (Propositions 2.9,
2.11):

1We where notified about this identity by Richard Thomas.
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Theorem 3. Let S be a nonsingular projective surface with pg(S) > 0, and the
class β be such that the natural map

H1(TS)
∗∪β−−→ H2(OS) is surjective,

then, [S
[n1,n2]
β ]vir = 0. In this case the nested Hilbert scheme S

[n1,n2]
β carries a

reduced virtual fundamental class

[S
[n1,n2]
β ]vir

red ∈ Ad(S
[n1,n2]
β ), d = n1 + n2 +

1

2
β · (β −KS) + pg.

The reduced virtual fundamental classes [S
[0,0]
β ]vir

red and [S
[0,n2]
β ]vir

red match with the
reduced virtual cycles constructed in [DKO07, KT14] in cases 3 and 4 of Theorem

2. [S
[0,n2]
β ]vir

red was used in [KT14] to define the stable pair invariants of S in this
case.

1.3. Nested Hilbert scheme of points. We study the nested Hilbert schemes
of points

S[n1≥n2] := S
[n1,n2]
β=0

in much more details. Let ι : S[n1≥n2] ↪→ S[n1]×S[n2] be the natural inclusion. If S
is toric with the torus T and the fixed set ST, in Section 4.1 we provide a purely
combinatorial formula for computing [S[n1≥n2]]vir by torus localization along the
lines of [MNOP06]:

Theorem 4. For a toric nonsingular surface S the T-fixed set of S[n1,n2] is isolated
and given by tuple of nested partitions of n2, n1:{

(µ2,P ⊆ µ1,P )P | P ∈ ST, µi,P ` ni
}
.

Moreover, the T-character of the virtual tangent bundle T of S[n1≥n2] at the fixed
point Q = (µ2,P ⊆ µ1,P )P is given by

trT vir
Q

(t1, t2) =
∑
P∈ST

VP ,

where t1, t2 are the torus characters and VP is a Laurent polynomial in t1, t2 that
is completely determined by the partitions µ2,P and µ1,P and is given by the right
hand side of formula (25).

When S is toric, by torus localization, we can express [S[n1≥n2]]vir in terms of
the fundamental class of the product of Hilbert schemes S[n1] × S[n2] (Proposition
4.5):

Theorem 5. If S is a nonsingular projective toric surface, then,

ι∗[S
[n1≥n2]]vir = [S[n1] × S[n2]] ∩ cn1+n2(E

n1,n2),

where En1,n2 is the first relative extension sheaf of the universal ideal sheaves I [n1]

and I [n2] (Definition 4.3).
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Theorem 5 holds in particular for S = P2, P1 × P1, which are the generators of
the cobordism ring of nonsingular projective surfaces. We use a refinement of this
fact together with a degeneration formula developed for [S[n1≥n2]]vir (Proposition
5.1) to prove (Corollary 5.9, Remark 5.10, Proposition 5.11):

Theorem 6. If S is a nonsingular projective surface, M is a line bundle on S, and
αn1,n2

M is a cohomology class in Hn1+n2(S[n1] × S[n2]) with the following properties
2:

• αn1,n2

M is universally defined for any pair (S,M) and any n1, n2,
• For any n1 ≥ n2, the restriction ι∗αn1,n2

M is well-behaved under good degen-
erations of S,

then ∫
[S[n1≥n2]]vir

ι∗αn1,n2

M =

∫
S[n1]×S[n2]

αn1,n2

M ∪ cn1+n2(E
n1,n2),

and En1,n2 is the alternating sum (in the K-group) of all the relative extension
sheaves of the universal ideal sheaves I [n1] and I [n2] (Definition 4.3).

The operators ∫
S[n1]×S[n2]

− ∪ cn1+n2(E
n1,n2

M )

were studied by Carlsson-Okounkov in [CO12]. Here M ∈ Pic(S), and En1,n2

M is
the alternating sum of all the relative extension sheaves of I [n1] and I [n2] � M
(Definition 4.3). They were able to express these operators in terms of explicit
vertex operators. As an application of Theorem 6 and a result of [CO12], we prove
the following explicit formula (Proposition 6.2):

Theorem 7. Let S be a nonsingular projective surface, ωS be its canonical bundle,
and KS = c1(ωS). Then,∑

n1≥n2≥0

(−1)n1+n2

∫
[S[n1≥n2]]vir

ι∗c(En1,n2

M )qn1
1 qn2

2 =

∏
n>0

(
1− qn−1

2 qn1
)〈KS ,KS−M〉 (1− qn1 qn2 )〈KS−M,M〉−e(S) ,

where 〈−,−〉 is the Poincaré paring on S.

1.4. DT theory of local surfaces. In this section we give an overview of the
results of [GSY17b], which is a motivation behind this paper and at the same time
an important application of it. Let (S, h) be a nonsingular simply connected pro-
jective surface with h = c1(OS(1)). Let ωS be the canonical bundle of S with the

2See Remark 5.10 for more precise statements of these properties.
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projection map q to S, and X be the total space of ωS
3. X is a noncompact Calabi-

Yau threefold and we define the DT invariants of X by using C∗-localization, where
C∗-acts on X by scaling the fibers of ωS. More precisely, let

v = (r, γ,m) ∈ ⊕2
i=0H

2i(S,Q)

be a Chern character vector with r ≥ 1, and MωS
h (v) be the moduli space of

compactly supported 2-dimensional stable sheaves E on X such that ch(q∗ E) = v.
Here stability is defined by means of the slope of q∗ E with respect to the polariza-
tion h. We always assume semistability implies stability and provideMωS

h (v) with
a perfect obstruction theory by reducing the natural perfect obstruction theory
given by [T98]. The fixed locus MωS

h (v)C
∗

of the moduli space is compact and
the reduced obstruction theory gives a virtual fundamental class over it, that we
denote by [MωS

h (v)C
∗
]vir
red. We define two types of DT invariants:

DTωS
h (v;α) =

∫
[MωS

h (v)C∗ ]virred

α

Norvir
∈ Q[s, s−1], α ∈ H∗C∗(M

ωS
h (v)C

∗
,Q)s

DTωS
h (v) = χvir(MωS

h (v)C
∗
) ∈ Z,

where Norvir is the virtual normal bundle of MωS
h (v)C

∗ ⊂ MωS
h (v), χvir(−) is the

virtual Euler characteristic [FG10], and s is the equivariant parameter.
If α = 1 then it can be shown that

DTωS
h (v; 1) = s−pg VWh(v),

where VWh(−) is the Vafa-Witten invariant defined by Tanaka and Thomas [TT]
and is expected to have modular properties based on S-duality conjecture [VW94].

The C∗-fixed locusMωS
h (v)C

∗
consists of sheaves supported on S (the zero section

of ωS) and its thickenings. We writeMωS
h (v)C

∗
as a disjoint union of several types

of components, where each type is indexed by a partition of r. Out of these
component types, there are two types that are in particular important for us. One
of them (we call it type I) is identified with Mh(v), the moduli space of rank r
torsion free stable sheaves on S. The other type (we call it type II) can be identified

with the nested Hilbert scheme S
[n]
β for a suitable choice of n,β depending on v.

The reason that types I and II are more interesting for us is the following result
proven in [GSY17b]:

Theorem ([GSY17b]). The restriction of [MωS
h (v)C

∗
]vir
red to the type I component

Mh(v) is identified with [Mh(v)]vir
0 induced by the natural trace free perfect obstruc-

tion theory over Mh(v). The restriction of [MωS
h (v)C

∗
]vir
red to a type II component

S
[n]
β is identified with [S

[n]
β ]vir.

3In [GSY17b], we consider a more general case in which X is the total space of an arbitrary
line bundle L with H0(L ⊗ ω−1S ) 6= 0.
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When r = 2, then types I and II are the only component types of MωS
h (v)C

∗
.

This leads us to the following result:

Theorem ([GSY17b]). Suppose that v = (2, γ,m). Then,

DTωS
h (v;α) = DTωS

h (v;α)I +
∑

n1,n2,β

DTωS
h (v;α)

II,S
[n1,n2]
β

,

DTωS
h (v) = χvir(Mh(v)) +

∑
n1,n2,β

χvir(S
[n1,n2]
β ]),

where the sum is over all n1, n2, β (depending on v) for which S
[n1,n2]
β is a type II

component ofMωS
h (v)C

∗
, and the indices I and II indicate the contributions of type

I and II components to the invariant DTωS
h (v;α).

The stability of sheaves imposes a strong condition on n1, n2, β appearing in
the summation in the theorem above. For example, if S is a generic complete

intersection in a projective space, then for any n1, n2, β for which S
[n1,n2]
β is a type

II component of MωS
h (v)C

∗
, the condition in Theorem 3 (leading to the vanishing

[S
[n1,n2]
β ]vir = 0) is not satisfied.

The invariants χvir(S
[n1,n2]
β ]) and DTωS

h (v;α)
II,S

[n1,n2]
β

(for a suitable choice of class

α e.g. α = 1) appearing in the theorem above are special types of the invariants

NS(n1, n2, β;−)

that we have defined in this paper by integrating against [S
[n1,n2]
β ]vir (Definition

2.12). One advantage of this viewpoint is that it enables us to apply some of
the techniques that we developed in this paper (such as Theorems 4, 5, 6, 7) to
evaluate these invariants in certain cases.

Mochizuki in [M02] expresses certain integrals against the virtual cycle ofMh(v)
in terms of Seiberg-Witten invariants and integrals A(γ1, γ2, v;−) over the product
of Hilbert scheme of points on S. Using this result we are able to prove the
following:

Theorem ([GSY17b]). Suppose that pg(S) > 0, and v = (2, γ,m) is such that
γ · h > 2KS · h and χ(v) :=

∫
S
v · tdS ≥ 1. Then,

DTωS
h (v; 1) =−

∑
γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P1) +
∑

n1,n2,β

NS(n1, n2, β;P1).

DTωS
h (v) =−

∑
γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P2) +
∑

n1,n2,β

NS(n1, n2, β;P2).

Here SW(−) is the Seiberg-Witten invariant of S, Pi and Pi are certain universally
defined (independent of S) explicit integrands, and the second sum in the formulas
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is over all n1, n2, β (depending on v) for which S
[n1,n2]
β is a type II component of

MωS
h (v)C

∗
.

If S is a K3 surface or S is isomorphic to one of the five types of generic
complete intersections

(5) ⊂ P3, (3, 3) ⊂ P4, (4, 2) ⊂ P4, (3, 2, 2) ⊂ P5, (2, 2, 2, 2) ⊂ P6,

the DT invariants DTωS
h (v; 1) and DTωS

h (v) can be completely expressed as the sum
of integrals over the product of the Hilbert schemes of points on S.
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2. Nested Hilbert schemes

Let S be a nonsingular projective surface over C. We denote the canonical line
bundle on S by ωS and KS := c1(ωS). For any nonnegative integer m and effective

curve class β ∈ H2(S,Z), we denote by S
[m]
β the Hilbert scheme of 1-dimensional

subschemes Z ⊂ S such that

[Z] = β, c2(IZ) = m.

If β = 0 we drop it from the notation and denote by S[m] the Hilbert scheme of m
points on S. Similarly, in the case m = 0 but β 6= 0 we drop m from the notation
and use Sβ to denote the Hilbert scheme of curves in class β. There are natural
morphisms

div : S
[m]
β → Sβ, det : S

[m]
β → Pic(S), pts : S

[m]
β → S[m],

where div sends a 1-dimensional subscheme Z ⊂ S to its underlying divisor on
S, det(Z) := O(div(Z)), and pts(Z) is the 0-dimensional subscheme of S defined
by the ideal IZ(div(Z)) (see [KM77]). From this description it is easy to see that

S
[m]
β
∼= S[m] × Sβ.

Notation. We will denote the universal ideal sheaves of S
[m]
β , S[m], and Sβ re-

spectively by I [m]
−β , I [m], and I−β, and the corresponding universal subschemes re-

spectively by Z [m]
β , Z [m], and Zβ. We will use the same symbol for the pull backs

of I [m] and I−β = O(−Zβ) via id× pts and id× div to S × S
[m]
β . We will also
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write I [m]
β for I [m]⊗O(Zβ). Using the universal property of the Hilbert scheme, it

can be seen that I [m]
−β
∼= I [m] ⊗O(−Zβ), and hence it is consistent with the chosen

notation. Let π : S × S[m]
β → S

[m]
β be the projection, we denote the derived functor

Rπ∗RHom by RHomπ and its i-th cohomology sheaf by Extiπ.

It is well known that S[m] is a nonsingular variety of dimension 2m. The tangent
bundle of S[m] is identified with

(2) TS[m]
∼= Homπ

(
I [m],OZ [m]

) ∼= RHomπ

(
I [m], I [m]

)
0

[1] ∼= Ext1π
(
I [m], I [m]

)
0
,

where the index 0 indicates the the trace-free part.
The main object of study in this paper is the following

Definition 2.1. Suppose that n := n1, n2, . . . , nr is a sequence of r ≥ 1 nonnega-
tive integers, and β := β1, . . . , βr−1 is a sequence of classes in H2(S,Z) ∩H1,1(S)
such that βi ≥ 0. The nested Hilbert scheme is the closed subscheme

(3) ι : S
[n]
β ↪→ S

[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr]

naturally defined by the r-tuples (Z ′1, . . . , Z
′
r) of subschemes of S such that pts(Z ′i) ⊂

Z ′i−1 is a subscheme for any 1 < i ≤ r. We drop β or n from the notation respec-
tively when βi = 0 for any i or ni = 0, βj 6= 0 for any i, j.

Equivalently, S
[n]
β is given by the tuples of subschemes

(Z1, . . . , Zr) ∈ S[n1] × · · · × S[nr], (C1, . . . , Cr−1) ∈ Sβ1 × · · · × Sβr−1

together with the nonzero maps φi : IZi → IZi+1
(Ci) for any 1 ≤ i < r. Note that

each φi is necessarily injective.

Remark 2.2. Note that S[n] is the nested Hilbert scheme of 0-dimensional sub-
schemes

Z1 ⊃ Z2 ⊃ · · · ⊃ Zr

of S. S[n] is a projective scheme but it is singular in general [C98]. It is proven
in [C98] that S[n] with nr < · · · < n2 < n1 is nonsingular only if r = 2 and
n1 − n2 = 1.
The Hilbert scheme of curves in class β, Sβ, is also known to be singular unless
H i≥1(L) = 0 for any effective line bundle with c1(L) = β. This two special cases

show that the general nested Hilbert scheme S
[n]
β is expected to be highly singular.

By the construction of nested Hilbert schemes, the maps φi above are induced
from the universal maps

Φi : I [ni] → I [ni+1]
βi

1 ≤ i < r

defined over S × S[n]
β .
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Notation. Let pri be the closed immersion (3) followed by the projection to the

i-th factor, and let π : S × S[n]
β → S

[n]
β be the projection. Then we have the fibered

square

(4) S × S[n]
β
� � ι′ //

π
��

S × S[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr]

π′��

S
[n]
β
� � ι

// S
[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr]

where π′ is projection and ι′ = id×ι.

Convention. Throughout the paper we slightly abuse the notation and use the
same symbol for the universal objects (which are flat) on Hilbert schemes or line
bundles on S and their pullbacks to the products of the Hilbert schemes via pro-
jections and other natural morphisms defined above, possibly followed by the re-
striction to the nested Hilbert schemes embedded in the product. This convention
makes the notation much simpler. For example, in the definition of Φi above, I [ni]

is pulled back from S × S[ni] via the composition of

id× pts : S × S[ni]
βi
→ S × S[ni], id× pri : S × S[n]

β → S × S[ni]
βi
.

Remark 2.3. As before we denote

RHomπ(−,−) := Rπ∗RHom(−,−), RHomπ′(−,−) := Rπ′∗RHom(−,−).

By the flatness of the universal families and the flatness of π′ in diagram (4) we
have4

RHomπ(I [ni], I [ni]) ∼= Lι∗RHomπ′(I [ni], I [ni]),

RHomπ(I [ni], I [ni+1]
βi

) ∼= Lι∗RHomπ′(I [ni], I [ni+1]
βi

),

where we use the convention above to write I [ni] for Lι′∗I [ni] = ι′∗I [ni] and I [ni+1]
βi

for Lι′∗I [ni+1]
βi

= ι′∗I [ni+1]
βi

.

Applying the functors RHomπ

(
−, I [ni+1]

βi

)
and RHomπ

(
I [ni],−

)
to the univer-

sal map Φi, we get the following morphisms of the derived category

RHomπ

(
I [ni+1], I [ni+1]

) Ξi−→ RHomπ

(
I [ni], I [ni+1]

βi

)
,

RHomπ

(
I [ni], I [ni]

) Ξ′i−→ RHomπ

(
I [ni], I [ni+1]

βi

)
.

By Remark 2.2 the projective scheme S
[n]
β is highly singular in general. The fol-

lowing proposition that implies Theorem 1 is proven in Section 2.3:

4See Lemma 18.3 in http://stacks.math.columbia.edu/download/perfect.pdf.
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Proposition 2.4. S
[n]
β is equipped with the perfect absolute obstruction theory F •

with the derived dual

F •∨ ∼= Cone

([
r⊕
i=1

RHomπ

(
I [ni], I [ni]

)]
0

[(Ξ′i,Ξi)]i−−−−−→
r−1⊕
i=1

RHomπ

(
I [ni], I [ni+1]

βi

))
,

where [−]0 means the trace-free part.

2.1. 2-step nested Hilbert schemes. In this section we study S
[n1,n2]
β := S

[n]
β in

the case r = 2. Recall from Definition 2.1 that for a pair of nonnegative integers
n1, n2 and an effective curve class β ∈ H2(S,Z), we defined the projective scheme

S
[n1,n2]
β =

{
(Z1, C, Z2, φ) | Zi ∈ S[ni], C ∈ Sβ, 0 6= φ : IZ1 → IZ2(C)

}
⊂ S

[n1]
β ×S

[n2].

There are universal objects defined over S × S[n1,n2]
β as before:

Φ : I [n1] → I [n2]
β .

Let π be the projection S ×S[n1,n2]
β → S

[n1,n2]
β . π is a smooth morphism of relative

dimension 2 and hence by Grothendieck-Verdier duality π!(−) := π∗(−)⊗ ωπ[2] is
a right adjoint of Rπ∗. This fact will be exploited soon.

Applying the functors RHomπ

(
−, I [n2]

β

)
and RHomπ

(
I [n1],−

)
to the universal

map Φ, we get the following morphisms of the derived category

RHomπ

(
I [n2], I [n2]

) Ξ−→ RHomπ

(
I [n1], I [n2]

β

)
(5)

RHomπ

(
I [n2], I [n2]

) Ξ′−→ RHomπ

(
I [n1], I [n2]

)
.

Let T be any scheme over the C-scheme U , and let

T
a
��

� � // T

a��

U

be a square zero extension over U with the ideal J . As J2 = 0, J can be considered
as an OT -module. Suppose we have the Cartesian diagram

(6) T

a

��

g
// S

[n1,n2]
β

p:=pts ◦pr1
��

U // S[n1].

The bottom row of the (6) corresponds to the U -point Z1,U of S[n1], and the top
row corresponds to the T -point

(7) (Z1,T , CT , Z2,T , φT )
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of S
[n1,n2]
β in which Z1,T = (id, a)−1(Z1,U). Let πT be the projections from S×T →

T . By [Ill, Prop. IV.3.2.12] and [JS12, Thm 12.8], there exists an element

ob := ob(φT , J) ∈ Ext2
S×T

(
coker(φT ), π∗TJ ⊗ IZ2,T

(CT )
)
,

whose vanishing is necessary and sufficient to extend the T -point (7) to a T -point

(Z1,T , CT , Z2,T , φT )

of S
[n1,n2]
β such that Z1,T = (id, a)−1(Z1,U). In fact by [Ill, Prop. IV.3.2.12], ob

is the obstruction for deforming the morphism φT while the deformation IZ1,T
of

IZ1,T
is given. Suppose that φT : IZ1,T

→ F is such a deformation, where F is

a flat family of rank 1 torsion free sheaves with F|S×T = IZ2,T
(CT ). Then by

[K90, Lemma 6.13] the double dual F∗∗ is a line bundle. Now φ∗∗
T

: OS×T → F∗∗
is fiberwise injective, and hence by [HL10, Lemma 2.1.4], coker(φ∗∗

T
) is also flat

over T . Thus, there exists a T -flat subscheme CT ⊂ S × T that restricts to CT
and F∗∗ ∼= O(CT ). We conclude that F ∼= IZ2,T

(CT ) for some T -flat subscheme

Z2,T ⊂ S × T restricting to Z2,T .
If ob = 0 then [Ill, Prop. IV.3.2.12] again, the set of isomorphism classes of

deformations forms a torsor under

Ext1
S×T

(
coker(φT ), π∗TJ ⊗ IZ2,T

(CT )
)
.

Furthermore, by [JS12, Thm 12.9]), the element ob is the cup product of the
Atiyah class

(8) At(φT ) ∈ Ext1
S×T

(
coker(φT ), π∗TL•a ⊗ IZ2,T

(CT )
)
,

that only depends on the data (CT , Z2,T , φT )5, and the pullback of

(9) e(T ) ∈ Ext1
T (L•a, J)

associated to the square zero extension T ↪→ T , twisted by IZ2,T
(CT ).

5The only slight change in the proof of [JS12, Thm 12.9], is that in the diagram (12.17) of
[ibid], the first vertical arrow must be replaced with

AtOS×T /OS×U (φT ) : coker(φT )→ k1
(
L•,gr(OS×T⊕IZ1,T

)/OS×U
⊗ (OS×T ⊕ IZ2,T

(CT ))
)

[1].

By flatness of IZ1,U
over OU , we see that OS×U ⊕ IZ1,U

is flat over OU and hence

(OS×U ⊕ IZ1,U
)

L
⊗OS×U OS×T ∼= (OS×U ⊕ IZ1,U

)⊗OS×U OS×T ∼= OS×T ⊕ IZ1,T
,

so we can write (see [Ill, II.2.2])

L•,gr(OS×T⊕IZ1,T
)/OS×U

∼=
(
L•OS×T /OS×U

⊗ (OS×T ⊕ IZ1,T
)
)
⊕
(
L•,gr(OS×U⊕IZ1,U

)/OS×U
⊗ (OS×T ⊕ IZ1,T

)
)
,

and hence as in the proof of [JS12, Thm 12.9], composing AtOS×T /OS×U (φT ) with the projection

L•,gr(OS×T⊕IZ1,T
)/OS×U

→ L•OS×T /OS×U
∼= π∗TL•a,

we arrive at the definition of At(φT ) in (8).
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Notation. For any line bundle L on S we define LD := L−1 ⊗ ωS. Similarly, for
any class β ∈ H2(S,Z) we define βD := KS − β.

Proposition 2.5. The complex

F •rel := Cone(Ξ)∨ ∼= RHomπ

(
coker(Φ), I [n2]

β

)∨
[−1]

defines a relative perfect obstruction theory for the morphism p : S
[n1,n2]
β → S[n1].

In other words, F •rel is perfect with amplitude [−1, 0], and there exists a morphism
of the derived category α : F •rel → L•p, such that h0(α) and h−1(α) are respectively
isomorphism and epimorphism. The rank of F •rel is equal to

Rank [F •rel] = n2 − n1 −
β · βD

2
.

Proof. Step 1: (perfectness) We show that the complex F •∨rel is perfect with am-
plitude [0, 1]. By the base change and the same argument as in the proof of
[HT10, Lemma 4.2], it suffices to show that hi(Lt∗F •∨rel ) = 0 for i 6= 0, 1, where

t : P ↪→ S
[n1,n2]
β is the inclusion of an arbitrary closed point P = (Z1, C, Z2, φ) ∈

S
[n1,n2]
β . Note that by the definition of the universal families, Lt∗I [n1] = IZ1 and

Lt∗I [n2]
β = IZ2(C). Therefore, by the definition of F •∨rel we get the exact sequence

· · · → ExtiS(IZ1 , IZ2(C))→ hi(Lt∗F •∨rel )→ Exti+1
S (IZ2 , IZ2)→ . . . .

All the ExtiS for i 6= 0, 1, 2 vanish, so we deduce easily that hi(Lt∗F •∨rel ) = 0 for
i 6= −1, 0, 1, 2. From the sequence above we see that

h−1(Lt∗F •∨rel ) = ker
(

HomS(IZ2 , IZ2)→ HomS(IZ1 , IZ2(C))
)
.

But by definition this morphism is induced by applying HomS(−, IZ2(C)) to the
map φ : IZ1 → IZ2(C). Since coker(φ) is at most 1-dimensional we deduce that

HomS(IZ2 , IZ2)→ HomS(IZ1 , IZ2(C))

is injective, and hence h−1(Lt∗F •∨rel ) = 0.
To prove h2(Lt∗F •∨rel ) = 0, we show that the map

Ext2
S(IZ2 , IZ2)→ Ext2

S(IZ1 , IZ2(C))

in the exact sequence above is surjective, or equivalently by Serre duality, the dual
map

HomS(IZ2 , IZ1 ⊗ ωS(−C))→ HomS(IZ2 , IZ2 ⊗ ωS)

is injective. But this follows after applying the left exact functor HomS(IZ2 ,−) to
the injection IZ1 ⊗ ωS(−C) → IZ2 ⊗ ωS that is induced by tensoring the map φ
above by ωS(−C).

Step 2: (map to the cotangent complex) We construct a morphism of derived

category α : F •rel → L•p. Consider the Atiyah class (8) in the case T = S
[n1,n2]
β and

U = S[n1]. It defines an element in
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Ext1

S×S[n]
β

(
coker(Φ), π∗L•p ⊗ I

[n2]
β

)
∼=

Ext1

S×S[n]
β

(
RHom

(
I [n2]
β , coker(Φ)

)
, π∗L•p

)
∼= (by the definition of π!)

Ext1

S×S[n]
β

(
RHom

(
I [n2]
β , coker(Φ)⊗ ωπ[2]

)
, π!L•p

)
∼= (by Grothendieck-Verdier duality)

Ext1

S
[n]
β

(
RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[2]

)
,L•p
)
∼=

Hom
S
[n]
β

(
RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
,L•p
)
.

So under the identification above, the Atiyah class defines a morphism of the
derived category

α : RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
→ L•p.

But by Grothendieck-Verdier duality again,

RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
∼= RHomπ

(
coker(Φ), I [n2]

β

)∨
[−1] ∼= F •rel,

and hence we are done.
Step 3: (obstruction theory) We show h0(α) and h−1(α) are respectively iso-

morphism and epimorphism. Suppose we are in the situation of the diagram (6).
Define

f := (id, g) : S × T → S × S[n1,n2]
β .

Composing e(T ) (given in (9)) and the natural morphism of cotangent complexes
Lg∗L•p → L•a gives the element $(g) ∈ Ext1

T (Lg∗L•p, J) whose image under α is
denoted by

α∗$(g) ∈ Ext1
T (Lg∗F •rel, J) .

For i = 0, 1, we will use the following identifications:

ExtiT (Lg∗F •rel, J) ∼= ExtiT

(
Lg∗RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
, J
)

∼= Exti
S
[n]
β

(
RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
,Rg∗J

)
∼= Exti

S×S[n]
β

(
RHom

(
I [n2]
β , coker(Φ)⊗ ωπ[1]

)
, π!Rg∗J

)
∼= Exti+1

S×S[n]
β

(
RHom

(
I [n2]
β , coker(Φ)

)
, π∗Rg∗J

)
.

Here we have used the fact that Lg∗ a Rg∗ i.e. Lg∗ is the left adjoint of Rg∗, and
Grothendieck-Verdier duality. Now using Rf∗π

∗
T = π∗Rg∗ in the last Ext above,

we get
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Exti+1

S×S[n]
β

(
RHom

(
I [n2]
β , coker(Φ)

)
,Rf∗π

∗
TJ
)
∼= (by Lf ∗ a Rf∗)

Exti+1
S×T

(
Lf ∗RHom

(
I [n2]
β , coker(Φ)

)
, π∗TJ

)
∼=

Exti+1
S×T

(
RHom

(
Lf ∗I [n2]

β ,Lf ∗ coker(Φ)
)
, π∗TJ

)
∼=

Exti+1
S×T

(
Lf ∗ coker(Φ), π∗TJ ⊗ Lf ∗I [n2]

β

)
∼= (by flatness of coker(Φ) and I [n2]

β )

Exti+1
S×T

(
coker(φT ), π∗TJ ⊗ IZ2,T

(CT )
)
.

Similar to the Step 2 it can be seen that the composition

Lg∗F •rel

g∗α−−→ Lg∗L•p → L•a
has a lift to the Atiyah class At(φT ) over S × T (see (8)). Therefore, ob(φT , J),
which is the cup product of At(φT ) and the pullback of e(T ) twisted by IZ2,T

(CT ),
is isomorphic to the element α∗$(g) via the identifications above for i = 1. Now
the claim follows from the identifications above for i = 0, and [BF97, Theorem
4.5].

Step 4: (rank of F •rel) The claim about the rank follows from

Rank [F •rel] = Rank [Cone(Ξ)]

= Rank
[
RHomπ

(
I [n1], I [n2]

β

)]
− Rank

[
RHomπ

(
I [n2], I [n2]

)]
= χ(IZ1 , IZ2(C))− χ(IZ2 , IZ2)

= −n1 − n2 + χ(OS(C)) + 2n2 − χ(OS)

= n2 − n1 − β ·KC/2 + β2/2,

where (Z1, C, Z2, φ) is a closed point of S
[n1,n2]
β .

�

Remark 2.6. From the proof above, the reader can see that the relative obstruction
theory F •rel is obtained by from the deformation/obstruction theory of the universal

map Φ : I [n1] → I [n2]
β while the data I [n1] is kept fixed.

Proposition 2.7. S
[n1,n2]
β is equipped with the perfect absolute obstruction theory

F • obtained from the perfect relative obstruction theory of Proposition 2.5. Its dual
is given by

F •∨ ∼= Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ

(
I [n2], I [n2]

) ]
0

[(Ξ′,Ξ)]−−−−→ RHomπ

(
I [n1], I [n2]

β

))
,

where [−]0 means the trace-free part.
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Proof. Since S[n1] is nonsingular, by the standard techniques (see [MPT10, page
954])

(10) F • := Cone
(
F •rel

θ−→ p∗ΩS[n1] [1]
)

[−1]

gives a perfect absolute obstruction theory over S
[n1,n2]
β , where θ is the composition

of α : F •rel → L•p and the Kodaira-Spencer map c : L•p → p∗ΩS[n1] [1]. We claim
that θ is given by

F •rel
∼=RHomπ

(
I [n2]
β , coker(Φ)⊗ ωπ

)
[1]→ RHomπ

(
I [n1], coker(Φ)⊗ ωπ

)
[1]

→ RHomπ

(
I [n1], I [n1] ⊗ ωπ

)
0

[2] ∼= p∗ΩS[n1] [1],

where the first and second maps are respectively induced by Φ : I [n1] → I [n2]
β and

the natural map c′ : coker(Φ) → I [n1][1]. To see the claim consider the natural
commutative diagram of graded algebras in each vertex of which the first summand
has degree 0 and the second summand (if any) has degree 1:

OS×S[n1]
// O

S×S[n1,n2]
β

⊕ I [n1] // O
S×S[n1,n2]

β

⊕ I [n2]
β

OS //

OO

OS×S[n1]
//

OO

OS×S[n1] ⊕ I [n1],

OO

The compatibility of the exact triangles of transitivity for each each row in the
diagram (see Step 2 in the proof of Lemma 2.15 for more details of a similar
argument) implies the commutative diagram

coker(Φ)

c′

��

At(Φ)
// L•p ⊗ I

[n2]
β [1]

c⊗id
��

I [n1][1]
(id⊗Φ)◦At(I[n1])

// p∗ΩS[n1] ⊗ I
[n2]
β [2]

where At(I [n1]) : I [n1] → π∗ΩS[n1]⊗I [n1] is the Atiyah class. The claim now follows
from this and the construction of the map α using the Atiyah class At(Φ) in Step
2 of proof of Proposition 2.5. For simplicity define

A• := RHomπ

(
I [n1], I [n1]

)
, B• := RHomπ

(
I [n2], I [n2]

)
, C• := RHomπ

(
I [n1], I [n2]

β

)
,

and denote by E• the right hand side of the expression in the proposition. By
Proposition 2.5, F •∨rel = Cone (B• → C•), so by (2) and the claim above, (10) can
be rewritten as

F •∨ = Cone
(
A•0

θ∨−→ Cone (B• → C•)
)
.
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Consider the commutative diagram

B• // A• ⊕B• // A•

Rπ∗OS×S[n1,n2]
β

id

OO

Rπ∗OS×S[n1,n2]
β

.

id

OO

in which the top row is the natural exact triangle. Taking the cone of the diagram
one gets the exact triangle

B• → [A• ⊕B•]0 → A•0

that fits into the following commutative diagram in which all the rows and columns
are exact triangles:

B• // [A• ⊕B•]0
[(Ξ′,Ξ)]
��

// A•0
θ∨��

B•
Ξ
// C•

��

// Cone (B• → C•)

��

E• // F •∨.

In fact the columns and the top and middle rows are exact triangles with commu-
tative top squares, and the bottom row is induced from the rest of the diagram by
taking the cone. Therefore, the bottom row must also be an exact triangle which
means that E• ∼= F •∨ as desired. �

This finishes the proof of Proposition 2.4 in the case r = 2. Propositions 2.5
and 2.7 imply

Corollary 2.8. The perfect obstruction theory F •∨ defines a virtual fundamental

class over S
[n1,n2]
β denoted by

[S
[n1,n2]
β ]vir ∈ Ad(S[n1,n2]

β ), d = n1 + n2 −
β · βD

2
.

�

2.2. Reduced obstruction theory and proof of Theorem 3. In this section
we assume that for any effective line bundle L on S with c1(L) = β, we have

(11) |LD| = ∅ or equivalently H2(L) = 0.

Recall from Proposition 2.5 that the derived dual of

F •∨rel = Cone

(
RHomπ

(
I [n2]
β , I [n2]

β

)
→ RHomπ

(
I [n1], I [n2]

β

))
defines a relative perfect obstruction theory over S

[n1,n2]
β . By definition, we get a

natural map

µ : F •∨rel → RHomπ

(
I [n2]
β , I [n2]

β

)
[1],
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that induces

h1(µ) : h1(F •∨rel ) ∼= Ext2π
(
I [n2]
β /I [n1], I [n2]

β

)
→

Ext2π
(
I [n2]
β , I [n2]

β

)
∼= R2π∗OS×S[n1,n2]

β

∼= Opg
S
[n1,n2]
β

.

We claim that h1(µ) is surjective. To see this, by the base change, it suffices to

prove that h1(µ) is fiberwise surjective. Let t : P ↪→ S
[n1,n2]
β be the inclusion of an

arbitrary closed point P = (Z1, C, Z2, φ) ∈ S[n1,n2]
β . Then, by the base change we

have the natural exact sequence6

· · · → h1(Lt∗F •∨rel )
h1(µ)P−−−−→ Ext2

S(IZ2(C), IZ2(C))
u−→ Ext2

S(IZ1 , IZ2(C))→ 0.

The surjectivity of the map u was established in Step 1 of the proof of Proposition
2.5. We have

Ext2
S(IZ2(C), IZ2(C)) ∼= Ext2

S(IZ2 , IZ2)
∼= H2(OS),

Ext2
S(IZ1 , IZ2(C))∗ ∼= HomS(IZ2 , IZ1(C

D)) ⊆ HomS(IZ2 ,OS(CD)) ∼= H0(OS(CD)).

By assumption (11), H0(OS(CD)) = 0, and hence h1(µ)P is surjective and the
claim follows. We now have the diagram

Ext1
S(IZ1 , IZ1)0

h1(θ∨)P
// Ext2

S(IZ2(C)/IZ1 , IZ2(C)) //

h1(µ)P
��

h1(Lt∗F •∨) // 0

Ext2
S(IZ2(C), IZ2(C))

where the first row is exact by the proof Proposition 2.7. But since

h1(µ)P ◦ h1(θ∨)P = 0,

the surjection h1(µ)P factors through h1(Lt∗F •∨). Therefore, by the base change
again there exists a surjection h1(F •∨)→ Opg

S
[n1,n2]
β

. We have proven

Proposition 2.9. If the condition (11) is satisfied and pg(S) > 0, then,

[S
[n1,n2]
β ]vir = 0.

Proof. Under the assumptions of the proposition, by the discussion above, the
obstruction theory F • carries a trivial factor, and hence the associated virtual
cycle vanishes by [KL13, Theorem 1.1]. �

Definition 2.10. The map h1(µ) induces the morphism of the derived category

F •∨ → h1(F •∨)[−1]→ h1(F •∨rel )[−1]
h1(µ)−−−→ Opg

S
[n]
β

[−1].

Dualizing gives a map Opg
S
[n]
β

[1]→ F •. Define F •red to be its cone.

6Note that Ext3S(coker(φ), IZ2(C)) = Ext3S(IZ2(C), IZ2(C)) = 0.
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We show that under a slightly stronger condition than (11), F •red gives a perfect

obstruction theory over S
[n1,n2]
β . This condition is7

(12) H1(TS)
∗∪β−−→ H2(OS) is surjective.

To show F •red is a perfect obstruction theory, we use the beautiful idea of [KT14].
We sketch their method here and make some necessary changes; the reader can find
the missing details in [KT14]. S is embedded as the central fiber of an algebraic
twistor family S → B, where B is a first order Artinian neighborhood of the origin
in a certain pg-dimensional family of the first order deformations of S. Let

V ⊂ H1(TS)

be a subspace over which ∗ ∪ β in (12) restricts to an isomorphism. Then, B
is constructed so that TB is naturally identified with V . By the construction of
[KT14], S is transversal to the Noether-Lefschetz locus of the (1, 1)-class β, and
as a result, β does not deform outside of the central fiber of the family. Using this
fact, as in [KT14, Proposition 2.3], one can show that

(13) S
[n1,n2]
β

∼= (S/B)
[n1,n2]
β ,

where the right hand side is the relative nested Hilbert scheme of the family S → B.
We use the same symbols

Φ : I [n1] → I [n2]
β

as before to denote the universal objects over S ×B (S/B)
[n1,n2]
β , and we let π be

the projection to the second factor of S ×B (S/B)
[n1,n2]
β . The arguments of Section

2.1 can be adapted with no changes to prove that

Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ

(
I [n2], I [n2]

)]
0
→ RHomπ

(
I [n1], I [n2]

β

))
is the dual of a perfect B-relative obstruction theory over (S/B)

[n1,n2]
β , denoted by

G•rel. By construction,

G• := Cone (G•rel → ΩB[1]) [−1]

is an absolute perfect obstruction theory over (S/B)
[n1,n2]
β (see [KT14]). By the

definitions of F • and G•rel, and the isomorphism (13), we see that F • ∼= G•rel. Now
we claim that the composition

G• → G•rel
∼= F • → F •red

is an isomorphism. By the definitions of G•rel and F •red, to prove the claim, it suffices
to show that

(14) Opg
S
[n]
β

→ F •[−1] ∼= G•rel[−1]→ ΩB

7This is the condition (3) in [KT14], and (11) is the condition (2) in [ibid].
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is an isomorphism. By the Nakayama lemma we may check this at a closed point

P = (Z1, C, Z2, φ) ∈ S[n1,n2]
β . After dualizing and using the identifications above

the derived pull back of (14) to P becomes 8

TB = V ⊂ H1(TS)
At(φ)−−−→Ext1(coker(φ), IZ2(C))

h1(µ)P−−−−→Ext2(IZ2(C), IZ2(C))
tr−→ H2(OS).

By the naturality of the Atiyah classes,

h1(µ)P ◦ At(φ) = At(IZ2(C)).

But by [BFl03, Prop 4.2],

tr ◦At(IZ2(C)) = − ∗ ∪β,
which by condition (12) is an isomorphism when restricted to V ⊂ H1(TS), and
hence the claim is proven. We have shown

Proposition 2.11. If the condition (12) is satisfied, then, F •red is a perfect ob-

struction theory on S
[n]
β , and hence defines a reduced virtual fundamental class

[S
[n1,n2]
β ]vir

red ∈ Ad′(S
[n1,n2]
β ), d′ = n1 + n2 −

β · βD

2
+ pg(S).

�

Definition 2.12. Let M ∈ Pic(S). Define the following elements in K(S
[n1,n2]
β )

of ranks (from left to right) n1 + n2 and −β · βD/2 + β · c1(M), respectively:

Kn1,n2

β;M := [Rπ∗M(Zβ)]−
[
RHomπ(I [n1], I [n2]

β ⊗M)
]
, Gβ;M :=

[
Rπ∗M(Zβ)|Zβ

]
.

If β = 0 we will instead use the notation K
[n1≥n2]
M := Kn1,n2

0;M (see Definition 5.3).
We also define the rank 2ni twisted tangent bundles

TM
S[ni]

:= [Rπ∗M ]−
[
RHomπ(I [ni], I [ni] ⊗M)

]
=
[
Ext1π

(
I [ni], I [ni] ⊗M

)
0

]
.

Note that if M = OS then TM
S[ni]

= [TS[ni] ].
Let P := P(M,β, n1, n2) be a polynomial in the Chern classes of Kn1,n2

β;M , Gβ;M ,
TS[n1], and TS[n2], then, we can define the invariant

NS(n1, n2, β;P) :=

∫
[S

[n1,n2]
β ]vir

P .

8Here one needs to use a similar argument as in the proof of Proposition 2.7 or the proof
of [MPT10, Proposition 13] to deduce that the composition of G•rel → L•

(S/B)
[n1,n2]

β /B
and the

Kodaira-Spencer map L•
(S/B)

[n1,n2]

β /B
→ ΩB [1] for (S/B)

[n1,n2]
β coincides with the cup product

of the Atiyah class and the Kodaira-Spencer class for S.
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If the condition (12) is satisfied, we can define the reduced invariants

Nred
S (n1, n2, β;P) :=

∫
[S

[n1,n2]
β ]virred

P .

Definition 2.13 (Generalized Poincaré Invariants). Let u := c1(O(Zβ)). Define

PS(n1, n2, β;M) := det∗

((
π∗[S

[n1,n2]
β ]vir ∩ cn1+n2

(
Kn1,n2

β;M

))
∩
∑
i≥0

ui

)
∈ H∗(Pic(S)).

Remark 2.14. The invariants Nred
S (0, n2, β;P) recover some of the stable pair

invariants of [KT14] (see Section 3). In [GSY17b], we express the localized DT in-
variants of S in terms of the invariants NS(n1, n2, β;P). The invariants PS(0, 0, β;M)
are the Poincaré invariants of [DKO07] (see Section 3). As in [ibid], it is inter-
esting to study the properties of these invariants PS(n1, n2, β;M) such as wall-
crossing, blow-up formula etc. This will be pursued in a future work.

2.3. Proof of Theorem 1 (Proposition 2.4). In Section 2.1 we proved Propo-
sition 2.4 in the case r = 2. We now use induction on r to prove the theorem in
general. For the simplicity of the notation, we show in detail how the result of
Section 2.1 can be used to prove Proposition 2.4 in the case r = 3. Other induction
steps are completely similar and omitted.

Suppose that n := n1, n2, n3 is a sequence of nonnegative integers, and β :=
β1, β2 is a sequence of effective curve classes in H2(S,Z). Define n′ := n1, n2. Our
goal is to prove the expression in Proposition 2.4 for r = 3 is a perfect obstruction
theory.

Consider the chain of natural forgetful morphisms and the associated exact
triangle of cotangent complexes

(15) S
[n]
β

f2−→ S
[n′]
β1

f1−→ S[n1], L•f2 [−1]
j2−→ Lf ∗2 (L•f1)

j1−→ L•f
j3−→ L•f2

where f := f1 ◦ f2 = pts ◦ pr1, using the notation at the beginning of Section 2.
Proposition 2.5, provides the relative perfect obstruction theory for the mor-

phism f1, that we denote by

(16) F •f1
α1−→ L•f1 .

Lemma 2.15. There exists a relative perfect obstruction theory F •f2
α2−→ L•f2, where

(17) F •f2 = RHomπ

(
I [n3]
β2

, coker(Φ2)⊗ ωS
)

[1]

Proof. The proof is along the line of the proof of Proposition 2.5 (see Step 2 of that
proof for the corresponding expression in RHS of (17)). This time the obstruction
theory is obtained by the deformation/obstruction theory theory of the universal

map Φ2 : I [n2] → I [n3]
β2

while the data (I [n1], I [n2],Zβ1 ,Φ1) is kept fixed (see Remark
2.6). �
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Lemma 2.16. The obstruction theories F •f1 and F •f2 fit into the following commu-
tative diagram:

(18) F •f2 [−1]

α2[−1]

��

r
// Lf ∗2 (F •f1)

f∗2 (α1)

��

L•f2 [−1]
j2
// Lf ∗2 (L•f1).

Proof. Step 1: (Define the map r) All the maps in diagram (18) except r are
already defined above (see (15), (16), and Lemma 2.15). By the universal proper-
ties of the Hilbert schemes and using our convention in suppressing the pullback
symbols from the universal ideal sheave, we can write

(19) Lf ∗2 (F •f1) = RHomπ

(
I [n2]
β1

, coker(Φ1)⊗ ωS[1]
)

Twisting by O(Zβ1), we get Φ2(Zβ1) : I [n2]
β1
→ I [n3]

β2
(Zβ1), and hence (17) can be

written as

(20) F •f2 = RHomπ

(
I [n3]
β2

(Zβ1), coker(Φ2(Zβ1))⊗ ωS[1]
)
.

The chain of maps I [n1] Φ1−→ I [n2]
β1

Φ2(Zβ1 )
−−−−→ I [n3]

β2
(Zβ1) induces the natural exact

triangle

(21) coker(Φ2(Zβ1) ◦ Φ1)
i3−→ coker(Φ2(Zβ1))

i2[1]−−→ coker(Φ1)[1].

The maps i2[1] and Φ2(Zβ1) induce

F •f2 [−1] = RHomπ

(
I [n3]
β2

(Zβ1), coker(Φ2(Zβ1))⊗ ωS
)
→

RHomπ

(
I [n2]
β1

, coker(Φ2(Zβ1))⊗ ωS
)
→

RHomπ

(
I [n2]
β1

, coker(Φ1)⊗ ωS[1]
)

= Lf ∗2 (F •f1).(22)

The map r in diagram (18) is then defined by composition of two maps in (22).
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Step 2: (Commutativity of diagram (18)) We start with the following diagram
in which the columns are the exact triangles (21) and (15):

(23) coker(Φ1)[1]
(id⊗Φ2(Zβ1 ))◦At(Φ1)[1]

// π∗Lf ∗2
(
L•f1
)

[1]⊗ I [n3]
β2

(Zβ1)[1]

coker(Φ2(Zβ1))
At(Φ2(Zβ1 ))

//

i2[1]

OO

π∗L•f2 ⊗ I
[n3]
β2

(Zβ1)[1]

(π∗j2[1]⊗id)[1]

OO

coker(Φ2(Zβ1) ◦ Φ1)
At(Φ2(Zβ1 )◦Φ1)

//

i3

OO

π∗L•f ⊗ I
[n3]
β2

(Zβ1)[1]

(π∗j3⊗id)[1]

OO

coker(Φ1)

i1

OO

(id⊗Φ2(Zβ1 ))◦At(Φ1)
// π∗Lf ∗2

(
L•f1
)
⊗ I [n3]

β2
(Zβ1)[1]

(π∗j1⊗id)[1]

OO

We prove diagram (23) is commutative. For this, consider the following natural
commutative diagrams of sheaf of graded algebras:

OS×S[n1]
// O

S×S[n]
β
⊕ I [n1] // O

S×S[n]
β
⊕ I [n3]

β2
(Zβ1)

OS×S[n1]
// O

S×S[n′]
β1

⊕ I [n1] //

OO

O
S×S[n′]

β1

⊕ I [n2]
β1

,

OO

and

O
S×S[n′]

β1

// O
S×S[n]

β
⊕ I [n2]

β1
// O

S×S[n]
β
⊕ I [n3]

β2
(Zβ1)

OS×S[n1]
//

OO

O
S×S[n]

β
⊕ I [n1] //

OO

O
S×S[n]

β
⊕ I [n3]

β2
(Zβ1),

where at each vertex of the diagram, the first summand is in degree zero, and the
second summand (if any) is in degree 1. Associated to each row of two diagrams
above is the exact triangle of transitivity of the relative graded cotangent complexes
(see [Ill, IV.2.3]). The vertical maps in the two diagrams above, induce the natural
maps between the corresponding cotangent complexes in the exact triangles of
transitivity, in such a way that all the resulting squares are commutative. After
applying k1(−), which takes the degree 1 graded piece of a graded object, to the
resulting diagrams, we get the commutativity of the following two squares:
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coker(Φ2(Zβ1) ◦ Φ1) //

(
π∗L•f ⊗ I

[n3]
β2

(Zβ1)[1]
)
⊕ I [n2]

β1
[1]

coker(Φ1)

i1

OO

//

(
π∗Lf ∗2

(
L•f1
)
⊗ I [n3]

β2
(Zβ1)[1]

)
⊕ I [n1][1],

(π∗j1⊗id⊕Φ1)[1]

OO

and

coker(Φ2(Zβ1)) //

(
π∗L•f2 ⊗ I

[n3]
β2

(Zβ1)[1]
)
⊕ I [n3]

β2
(Zβ1)[1]

coker(Φ2(Zβ1) ◦ Φ1) //

i3

OO

(
π∗L•f ⊗ I

[n3]
β2

(Zβ1)[1]
)
⊕ I [n2]

β1
[1].

(π∗j3⊗id⊕Φ2(Zβ1 ))[1]

OO

Here in both squares, the horizontal arrows are parts of the triangles of transitivity
(after taking the degree 1 graded pieces)9. Now projecting to the first factors in the
second columns of the last two diagrams, and using the definition of At(−) given
in Section 2.1, we obtain the commutativity of the bottom and middle squares
of diagram (23). Since in diagram (23) both columns are exact triangles, the
commutativity of the top square follows, and hence we have proven that the whole
diagram (23) commutes.

Recall from Step 2 in the proof of Proposition 2.5, that the maps αi : F •fi → L•fi
are naturally induced from the Atiyah classes At(Φ1) and At(Φ2(Zβ1)). Therefore,
by the definition of the map r in Step 1 of the proof, the commutativity of diagram
(18) is equivalent to the commutativity of the top square in diagram (23) proven
above, and hence the proof of lemma is complete.

�

The dashed arrow in the diagram below is now induced by the commutativity of
diagram (18) and the property of exact triangles, and it makes the whole diagram
of exact triangles commutative:

9Here we have used the base change property for the cotangent complexes, as already employed
in the footnote of Section 2.1 (see [Ill, II.2.2]), as well as the following isomorphisms

k0
(
L•,gr(B0⊕B1)/(A0⊕A1)

)
∼= L•B0/A0

, k1
(
L•,gr(A0⊕C1)/(A0⊕A1)

)
∼= coker(s),

where A0⊕A1 → B0⊕B1 and A0⊕A1
id⊕s−−−→ A0⊕C1 are the homomorphism of graded C-algebras

(summands with index i are in degree i), and furthermore s is injective. These identities follow
from [Ill, IV (2.2.4), (2.2.5), (3.2.10)].
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F •f2 [−1]

α2[−1]

��

r
// Lf ∗2 (F •f1)

f∗2 (α1)

��

// Cone(r) =: F •f

α3

��

L•f2 [−1]
j2
// Lf ∗2 (L•f1)

j1
// L•f ,

where the bottom row is the exact triangle (15). By (19), (20), (21) it is easy to
see that

(24) F •f = RHomπ

(
I [n3]
β2

(Zβ1), coker(Φ2(Zβ2) ◦ Φ1)⊗ ωS[1]
)
.

Proposition 2.17. α3 : F •f → L•f is a relative perfect obstruction theory.

Proof. By the exact same argument as in Step 1 of the proof of Proposition 2.5,
we can see that F •f is perfect with amplitude contained in [−1, 0].

By the commutativity of diagram (23) and the naturality of our construction,
we can see that α3 is induced by the Atiyah class At(Φ2(Zβ1) ◦ Φ1) following the
identifications in Step 2 of the proof of Proposition 2.5. Therefore, repeating the
arguments in Step 3 of the proof of Proposition 2.5, we can see that α3 is an
obstruction theory. �

Proof of Proposition 2.4 (for r = 3). First note that by construction, for i = 1, 2,

F •∨fi = Cone
(
RHomπ

(
I [ni+1], I [ni+1]

) Ξi−→ RHomπ

(
I [ni], I [ni+1]

βi

))
.

Thus, by a similar argument as in the proof of Proposition 2.7 we can see that

F •∨f = Cone

(
RHomπ

(
I [n2], I [n2]

)
⊕RHomπ

(
I [n3], I [n3]

)
(

Ξ1 Ξ2

Ξ′2 0

)
−−−−−−−−→ RHomπ

(
I [n1], I [n2]

β1

)
⊕RHomπ

(
I [n2], I [n3]

β2

))
.

As in the proof of Proposition 2.7, the fact that S[n1] is nonsingular can be used
to show that

F • := Cone
(
F •f → f ∗ΩS[n1] [1]

)
[−1]

is an absolute perfect obstruction theory for S
[n]
β , and then (using the expression

above for F •∨f ) to prove that

F •∨f = Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ

(
I [n2], I [n2]

)
⊕RHomπ

(
I [n3], I [n3]

) ]
0

→ RHomπ

(
I [n1], I [n2]

β1

)
⊕RHomπ

(
I [n2], I [n3]

β2

))
.

�
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3. Special cases and proof of Theorem 2

In this section we show that the perfect obstruction theory F • that we con-
structed in Proposition 2.7 specializes to several interesting and important cases
such as the ones arising from the algebraic Seiberg-Witten theory and the stable
pair theory of surfaces:

(1) (Nested Hilbert scheme of points) If β = 0, the nested Hilbert scheme of

points S[n1≥n2] := S
[n1,n2]
β=0 carries a virtual fundamental class

[S[n1≥n2]]vir ∈ An1+n2(S
[n1≥n2]).

Note that by [C98], S[n1≥n2] is nonsingular only in the following two cases:
• n1 = n2. In this case S[n1≥n2] ∼= S[n1], and [S[n1]]vir = [S[n1]]. This is because

by Proposition 2.5, F •rel
∼= 0, and so by Proposition 2.7, F • ∼= ΩS[n1] .

• n1 = n2 + 1. In this case, since S[n2+1,n2] is nonsingular, h1(F •∨) ∼= h1(F •∨rel ) ∼=
Ext2π

(
I [n2]/I [n2+1], I [n2]

)
. Then, we can write

[S[n2+1,n2]]vir = [S[n2+1,n2]] ∩ c1

(
Ext2π

(
I [n2]/I [n2+1], I [n2]

))
,

where we have used [BF97, Proposition 5.6] to write [S[n1≥n2]]vir as the fundamental
class capped with the Euler class of the obstruction bundle. Note that h1(F •∨)
is a line bundle by the base change, because for any closed point (IZ1 ⊆ IZ2) ∈
S[n2+1,n2], we know IZ2/IZ1

∼= Op for some p ∈ S, and by Serre duality

Ext2
S(IZ2/IZ1 , IZ2) = HomS(IZ2 , IZ2/IZ1 ⊗ ωX)∗ = HomS(IZ2 ,Op)∗ ∼= C.

In fact, using the isomorphism S[n2+1,n2] ∼= P(I [n2]), where P(I [n2])
(ρ1,ρ2)−−−−→ S×S[n2]

is the projectivization of the universal ideal sheaf (see [L99, Section 1.2]), we can
identify this line bundle with (OP(1)�ωS)∗. To see this note that by [L04, Equation
(25)] we have I [n2]/I [n2+1] ∼= OP(1)|Y where Y is the pullback of the diagonal
under the morphism (ρ1, id) : P(I [n2])× S → S × S. Using this isomorphism and
Grothendieck-Verdier duality we can write the obstruction bundle as

Ext2π
(
I [n2]/I [n2+1], I [n2]

) ∼= Homπ

(
I [n2],OP(1)|Y � ωS

)∗
∼= π∗

(
Hom

(
I [n2],OY

)
�OP(1)� ωS

)∗
.

Since Hom
(
I [n2],OY

) ∼= OY the claim follows by the projection formula.
• (General case) In Proposition 4.5, in case S is a toric surface, e.g. S = P2 or

P1×P1, we will express [S[n1≥n2]]vir as the top Chern class of a rank n1 +n2 vector
bundle over S[n1] × S[n2]. In Section 5, we study this case in further details, and
relate some specific integrals against [S[n1≥n2]]vir to integrations over S[n1]×S[n2]. In
Section 6, we related some of these integrals to Carlsson-Okounkov vertex operators
[CO12].

(2) If n2 = 0 and β = 0, then we get a perfect obstruction theory over the non-
singular Hilbert scheme of points S[n1] that is arising from the natural obstruction
theory of the Hilbert scheme. In fact in this case
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F •∨ ∼= Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ (O,O)

]
0
→ RHomπ

(
I [n1],O

))
∼= Cone

(
RHomπ

(
I [n1], I [n1]

)
→ RHomπ

(
I [n1],O

))
∼= RHomπ

(
I [n1],OZ [n1]

)
.

Note that

TS[n1] = h0(F •∨) ∼= Homπ

(
I [n1],OZ [n1]

)
, h1(F •∨) ∼= Ext1π

(
I [n1],OZ [n1]

)
.

Since S[n1] is nonsingular of dimension 2n1, we see that the obstruction sheaf
h1(F •∨) is a vector bundle of rank n1, and hence by [BF97, Proposition 5.6]

[S[n1]]vir = [S[n1]] ∩ cn1

(
Ext1π

(
I [n1],OZ1

))
.

We were notified by Richard Thomas that the obstruction bundle Ext1π
(
I [n1],OZ1

)
can be identified with the dual of the tautological bundle ω

[n]
S := π∗

(
ωS|OZ1

)
. This

can be seen by applying Hom (OZ1 ,−) to the short exact sequence

0→ I [n1] ⊗ ωS → ωS → ωS|OZ1 → 0

over S × S[n1] to get the isomorphism

ωS|OZ1
∼= Hom

(
OZ1 , ωS|OZ1

) ∼= Ext1 (OZ1 , I [n1] ⊗ ωS
)
.

Now pushing forward, we prove the claim

ω
[n]
S
∼= π∗Ext1

(
OZ1 , I [n1] ⊗ ωS

) ∼= Ext1π (OZ1 , I [n1] ⊗ ωS
) ∼= Ext1π (I [n1],OZ1

)∗
,

where the second isomorphism is because of local to global spectral sequence (as Z1

is fiberwise 0-dimensional) and the third one is by Grothendieck-Verdier duality.
This fact is used in [TT] in some explicit calculation of the Vafa-Witten invariants.

(3) If n1 = n2 = 0, and β 6= 0, the perfect obstruction theory F •∨ on Sβ = S
[0,0]
β

specializes to

F •∨ ∼= Cone

(
[RHomπ (O,O)⊕RHomπ (O,O)]0 → RHomπ (O,O(Zβ))

)
∼= Rπ∗OZβ(Zβ).

studied by Dürr-Kabanov-Okonek [DKO07] in the course of algebraic Seiberg-
Witten invariants (Poincaré invariants). Moreover, one can see by inspection that
under condition (12), F •red coincides with the reduced perfect obstruction theory
on Sβ constructed in [DKO07].

(4) If n2 = 0, n1 6= 0 and β 6= 0, then F •∨ gives a perfect obstruction theory

over S
[n1]
β = S

[n1,0]
β generalizing items (2) and (3) above. In this case F •∨ is given
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by

F •∨ ∼= Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ (O,O)

]
0
→ RHomπ

(
I [n1],O(Zβ)

))
∼= RHomπ

(
I [n1],OZ [n1]

β

(Zβ)
)
.

(5) If n1 = 0, n2 6= 0 and β 6= 0, then by [PT10, Prop B.8],

S
[0,n2]
β = Hilbn2(Zβ/Sβ) ∼= Pn2−β·(β+KS)/2(S, β),

where Hilbn2(Zβ/Sβ) is the relative Hilbert scheme of points on the universal curve
Zβ, and P−(S,−) is the moduli space of stable pairs on S. Let OS×P → F be the
universal stable pair over S × Pn2−β·(β+KS)/2(S, β), and let I• be the associated
complex. In this case F •∨ is given by

F •∨ ∼= Cone

([
RHomπ (O,O)⊕RHomπ

(
I [n2], I [n2]

)]
0
→ RHomπ

(
O, I [n2]

β

))
∼= Cone

(
RHomπ

(
I [n2], I [n2]

)
→ RHomπ

(
O(−Zβ), I [n2]

))
∼= RHomπ

(
IZ [n2]⊂Zβ , I

[n2]
)

[1] ∼= RHomπ (I•,F) .

Here by IZ [n2]⊂Zβ we mean the push-forward of the ideal sheaf of Z [n2] as a sub-

scheme of Zβ ⊂ S × S
[0,n2]
β . The last isomorphism above follows from (91) in

[KT14]. We have shown that in this case F •∨ coincides with the perfect obstruc-
tion theory of the stable pair moduli space Pn2−β·(β+KS)/2(S, β) studied in [KT14].
Moreover, one can see by inspection that under condition (12), F •red coincides
with the reduced perfect obstruction theory on Pn2−β·(β+KS)/2(S, β) constructed in
[KT14].

Remark 3.1. In all the items (2)-(5) the moduli space can be realized as the zero
locus of a section of a vector bundle over a smooth ambient space, and the perfect
obstruction theory F •∨ in all these cases coincides with the natural obstruction
theory associated to the section of the vector bundle. The authors do not know if

this is the case for S
[n1,n2]
β in general or even for S[n1≥n2] in item (1) (see Remark

4.6).

4. Nested Hilbert scheme of points

We will discuss a few tools for evaluating the virtual fundamental class [S[n1≥n2]]vir

constructed in Corollary 2.8. We first develop a localization formula (25) in the
case that S is toric along the lines of [MNOP06]. When S is toric we express
ι∗[S

[n1≥n2]]vir as the top Chern class of a vector bundle over the product of Hilbert
schemes S[n1]×S[n2] (see Proposition 4.5 and also Remark 4.6). We have not been
able to prove such a formula for general projective surfaces. Instead, we prove
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a weaker statement for general projective surfaces in which the integral of cer-
tain cohomology classes against [S[n1≥n2]]vir is expressed in terms of integrals over
S[n1] × S[n2]. This is done in Section 5 using degeneration and the double point
relations (see Corollary 5.9, Remark 5.10, Proposition 5.11). Such integrals arise
in all the applications that we have in mind, particularly, they are related to the lo-
calized DT invariants of S discussed in [GSY17b]. Finally, in Section 6 we express
some of these integrals against [S[n1≥n2]]vir in terms of Carlsson-Okounkov’s ver-
tex operators and as a result obtain explicit product formulas for their generating
series.

Recall that

S[n1≥n2] =
{

(Z1, Z2, φ) | Zi ∈ S[ni], Z1 ⊇ Z2

}
⊂ S[n1] × S[n2].

For simplicity in this section, we denote by Ii the ideal sheaf IZi of Zi. Hence for any
closed point (Z1, Z2) ∈ S[n1≥n2] we have I1 ⊆ I2. Sometimes, we denote the closed
point above by the pair (I1, I2), or by I1 ⊆ I2, when we want to emphasize the
inclusion of subschemes. As before, we have the universal objects over S×S[n1≥n2]:

0 6= Φ : I [n1] → I [n2].

A direct corollary of Proposition 2.8 is the following:

Corollary 4.1. For any nonsingular surface S there exists a perfect obstruction
theory F • of rank n1 + n2, whose derived dual is given by

F •∨ ∼= Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ

(
I [n2], I [n2]

) ]
0
→ RHomπ

(
I [n1], I [n2]

))
.

�
We will use the following lemma in Section 4.1:

Lemma 4.2. 1. If (I1 ⊆ I2) ∈ S[n1,n2] is a closed point, then

HomS(I1, I2) = HomS(I1, I1) = HomS(I2, I2) = H0(OS) ∼= C.
2. If (I1, I2) ∈ S[n1] × S[n2] \ S[n1,n2] is a closed point then HomS(I1, I2) = 0.
3. If pg(S) = 0 and if (I1, I2) ∈ S[n1]×S[n2] is a closed point then Ext2

S(Ii, Ij) = 0.

Proof. Applying the functor Hom(I1,−) to the short exact sequence 0 → I2 →
OS → OZ2 → 0, we get the exact sequence

0→ Hom(I1, I2) ⊆ Hom(I1,OS) ∼= H0(OS) = C u−→ Hom(I1,OZ2),

where u composes any map I1 → OS with the natural map OS → OZ2 . In part
1 the inclusion I1 ⊆ I2 gives a nonzero element of Hom(I1, I2) and hence the
claim follows. In part 2, u(I1 ⊂ OS) 6= 0 because I1 6⊂ I2, and so the claim is
proven. For part 3, applying the functor Hom(Ij,−) to the short exact sequence
0→ Ii ⊗ ωS → ωS → OZi → 0, we get

Hom(Ij, Ii ⊗ ωS) ⊆ HomS(Ij, ωS) = H0(ωS) = 0,

and so the claim follows by Serre duality. �



NESTED HILBERT SCHEMES ON SURFACES 30

As it will become clear shortly, the following K-group element plays an impor-
tant role in the rest of the paper:

Definition 4.3. For any line bundles M on S, let En1,n2

M ∈ K(S[n1]× S[n2]) be the
element of rank n1 + n2 defined by

En1,n2

M := [Rπ′∗p
′∗M ]−

[
RHomπ′(I [n1], I [n2] ⊗ p′∗M)

]
,

where p′ and π′ are respectively the projections from S × S[n1] × S[n2] to the first
and the product of last two factors (see diagram (4)). Let i be the inclusion of the
closed point (I1, I2) ∈ S[n1] × S[n2], then, we define

En1,n2

M |(I1,I2) := [Li∗Rπ′∗p
′∗M ]−

[
Li∗RHomπ′(I [n1], I [n2] ⊗ p′∗M)

]
∈ K(Spec(C)).

If M = O, we sometimes drop it from the notation. We also define the following
generating series

Zprod(S,M) :=
∑

n1≥n2≥0

qn1
1 qn2

2

∫
S[n1]×S[n2]

c(En1,n2) ∪ c(En1,n2

M ).

4.1. Toric surfaces. Let (C2)[n1≥n2] be the nested Hilbert scheme of points on
C2 = Spec(R), where R = C[x1, x2]. The 2-dimensional torus T acts on C2. We
denote by t1, t2 the torus characters, so that the tangent space at 0 ∈ C2 has the
representation Ct−1

1 ⊕ Ct−1
2 . The T-fixed set

(C2)[n1≥n2],T ⊂ (C2)[n1],T × (C2)[n2],T

is isolated, and is given by the inclusion of the monomial ideals I1 ⊆ I2 or equiva-
lently the corresponding nested Young diagrams µ2 ⊆ µ1. By Proposition 2.7 and
Lemma 4.4, the virtual tangent space at the T-fixed point I1 ⊆ I2 is given by10

T vir
I1⊆I2 = −χ(I1, I1)− χ(I2, I2) + χ(I1, I2) + χ(R,R),

where χ(−,−) =
∑2

i=0(−1)i ExtiR(−,−). By the exact method as in [MNOP06,

Section 4.6] using Čech complexes and Taylor resolutions, the T-representation of
T vir
I1⊆I2 can be explicitly written down as a Laurent polynomial in t1 and t2. We skip

the details of calculation here. For a T-fixed 0-dimensional subscheme Z ⊂ C2,
corresponding to the Young diagram µ, we denote by Z the T-character of Z which
is given by the polynomial

Z =
∑

(k1,k2)∈µ

tk11 t
k2
2 .

Also, we define Z := Z(t−1
1 , t−2

2 ). Then, we have

(25) trT vir
I1⊆I2

= Z1 +
Z2

t1t2
+
(
Z1 · Z2 − Z1 · Z1 − Z2 · Z2

) (1− t1)(1− t2)

t1t2
.

10This is obtained by taking the derived restriction of the complex F • to the point I1 ⊆ I2,
and then taking the K-group class of the resulting complex. Also note that by slightly modifying
the proof of part 1 of Lemma 4.2, Hom(I1, I1) = Hom(I1, I2) = Hom(I2, I2) = R.
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Now if S is a toric surface, then the set of T-fixed points of S[n1≥n2] ⊂ S[n1]×S[n2]

is again isolated (Lemma 4.4), and the T-character of the virtual tangent space
at any fixed point is obtained by summing over the expression (25) for all the
T-invariant open subsets of S. This finishes the proof of Theorem 4.

Lemma 4.4. Suppose that S is a nonsingular projective toric surface, and Z2 ⊆ Z1

is a T-fixed point of S[n1≥n2], then Ext2
S(I1, I1) = Ext2

S(I2, I2) = Ext2
S(I1, I2) = 0,

the T-representations

Ext1
S(I1, I1), Ext1

S(I2, I2), Ext1
S(I1, I2)

contain no trivial sub-representations.

Proof. The vanishings in the lemma follow from the fact that pg(S) = 0 and part
3 of Lemma 4.2. For any fixed point α ∈ S, let Uα ∼= C2 be the T-invariant open
neighborhood of α, and let Ii,α = Ii|α, and Oi,α = OZi |α. By [ES87, Lemma 3.2],
HomUα(Ii,α, Ii,α) contains no trivial subrepresentations. Therefore,

Ext1
S(Ii, Ii) ∼= HomS(Ii,OZi) =

⊕
α

HomUα(Ii,α,Oi,α)

contains no trivial representations either.
Next, applying HomS(I1,−) to the natural short exact sequence 0 → I2 →
OS → OZ2 → 0, we obtain the exact sequence

(26) HomS(I1,OZ2)→ Ext1
S(I1, I2)→ Ext1

S(I1,OS).

To finish the proof it suffices to show that the 1st and the 3rd terms in (26) contain
no trivial representations. The claim for the 1st term in (26) follows from the
natural inclusion HomS(I1,OZ2) ⊂ HomS(I2,OZ2) and the first part of the proof.
The claim for the 3rd term in (26) also follows because, applying HomS(−,OS) to
the natural short exact sequence 0→ I1 → OS → OZ1 → 0, and using equivariant
Serre duality, we get

Ext1
S(I1,OS) ∼= Ext2

S(OZ1 ,OS) ∼= H0(OZ1 ⊗ ωS)∗.

But since Z1 is zero dimensional and T-fixed

H0(OZ1 ⊗ ωS) =
⊕
α

H0(Uα,OZ1 ⊗ ωS).

For each α, let µ1,α be the Young diagram corresponding to Z1|Uα , and suppose
that as T-representation TαS ∼= Ct−1

1 ⊕Ct−1
2 for some T-characters t1 and t2, then,

the fiber of ωS at α has the T-character t1t2, and therefore,

H0(Uα,OZ1 ⊗ ωS) = t1t2
∑

(k1,k2)∈µ1,α

tk11 t
k2
2

has no trivial representations. �
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4.2. Proof of Theorem 5. Suppose that S is a toric surface, and (I1, I2) ∈
S[n1] × S[n2] is a closed point. By Lemma 4.4

(27) Ext2
S(Ii, Ij) = 0.

Therefore by the base change, the sheaves

Ext1π(I [n1], I [n1]), Ext1π(I [n2], I [n2]), Ext1π(I [n1], I [n2])

are vector bundles over S[n1≥n2] of ranks 2n1, 2n2, n1 + n2, respectively. Moreover,
the perfect obstruction theory of Proposition 2.7, simplifies to the 2-term complex

(28) F •∨ =
{
Ext1π(I [n1], I [n1])⊕ Ext1π(I [n2], I [n2])→ Ext1π(I [n1], I [n2])

}
.

Recall that the rank of F •∨ is equal to n1 + n2, and recall the K-group elements
En1,n2 and En1,n2|(I1,I2) of ranks n1 + n2 from Definition 4.3. We have

(29) En1,n2|(I1,I2) =

{
Ext1

S(I1, I2) (I1, I2) ∈ S[n1≥n2],

H0(OS)⊕ Ext1
S(I1, I2) (I1, I2) 6∈ S[n1≥n2].

This is true because of the base change, the vanishing (27), the vanishingH1(OS) =
H2(OS) = 0, and that by Lemma 4.2,

HomS(I1, I2) =

{
H0(OS) I1 ⊆ I2,

0 I1 6⊆ I2.

Note that this is consistent with the fact that the dimension of Ext1(I1, I2) jumps
by 1 on S[n1,n2] ⊂ S[n1] × S[n2], and that the dimension of En1,n2|(I1,I2) is constant

over S[n1] × S[n2].
Now we are ready to express the main result of this section relating the push

forward of [S[n1≥n2]]vir to the products of the fundamental classes of Hilbert scheme
of points. The following proposition proves Theorem 5.

Proposition 4.5. Suppose that S is a nonsingular projective toric surface, then,

ι∗[S
[n1≥n2]]vir = cn1+n2(E

n1,n2) ∩ [S[n1] × S[n2]],

where ι is the natural inclusion S[n1≥n2] ↪→ S[n1] × S[n2].

Proof. Let i and j be inclusion of the fixed point set in S[n1≥n2] and S[n1] × S[n2],
respectively. By (28) and Lemma 4.4, the virtual localization formula (see [GP99])
gives

[S[n1≥n2]]vir =
∑

(I1⊆I2)∈S[n1≥n2],T

i∗[(I1 ⊆ I2)]

e(T vir
I1⊆I2)

=
∑

(I1⊆I2)∈S[n1≥n2],T

e(Ext1
S(I1, I2))

e(Ext1
S(I1, I1))e(Ext1

S(I2, I2))
i∗[(I1 ⊆ I2)],
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where the sum is over the isolated T-fixed points, and e(−) indicates the equivari-
ant Euler class. By Lemma 4.4, the coefficient of i∗[(I1 ⊆ I2)] in the last sum is
the product of the pure nontrivial torus weights. On the other hand, by Lemma
4.4 and the Atiyah-Bott localization formula

cn1+n2(E
n1,n2) ∩ [S[n1] × S[n2]] =

∑
(I1,I2)∈S[n1],T×S[n2],T

e(En1,n2|(I1,I2))

e(T(I1,I2)(S[n1] × S[n2]))
j∗[(I1, I2)]

=
∑

(I1,I2)∈S[n1],T×S[n2],T

e(En1,n2|(I1,I2))

e(Ext1
S(I1, I1))e(Ext1

S(I2, I2))
j∗[(I1, I2)]

=
∑

I1⊆I2∈S[n1≥n2],T

e(Ext1
S(I1, I2))

e(Ext1
S(I1, I1))e(Ext1

S(I2, I2))
ι∗ ◦ i∗[I1 ⊆ I2],

where the last equality is because of (29), and the fact that since H0(OS) ∼= C is
the trivial T-representation, we have e(H0(OS)) = 0. The proposition is proven
by comparing the outcomes of both localization formulas above. �

Remark 4.6. Let S = P2 or P1 × P1, and let ` be either a line on S = P2 or a
(1, 1)-type curve on S = P1 × P1. Since

Hom(I1, I2(−`)) ∼= Ext2(I1, I2(−`)) = 0

by Serre duality and the stability of the ideal sheaves, by the base change

V := Ext1π′(I [n1], I [n2](−`))
is a vector bundle (independent of the choice of `) of rank n1 + n2 on S[n1]×S[n2].
Define U` ⊂ S[n1] × S[n2] to be the open locus of (Z1, Z2) ∈ S[n1] × S[n2] where
` ∩ (Z1 ∪ Z2) = ∅. Over U`, we have the natural exact sequence

0→ Homπ′(I [n1], I [n2])→ Homπ′(I [n1], I [n2]|U`×`)
s`−→ V

→ Ext1π′(I [n1], I [n2])→ Ext1π′(I [n1], I [n2]|U`×`)→ 0.

Note thatHomπ′(I [n1], I [n2]) = 0 because of the vanishing of the fibers Hom(I1, I2) =
0 over the open dense locus (I1, I2) ∈ U` \ S[n1≥n2] (Lemma 4.2). Also by the def-
inition of U`, we have I [n1]|U`×` = I [n2]|U`×` = OU`×`, and since O` has no higher
cohomologies, we see that

Homπ′(I [n1], I [n2]|U`×`) ∼= OU` , Ext1π′(I [n1], I [n2]|U`×`) = 0.

Thus, the exact sequence above simplifies to

0→ OU`
s`−→ V |U` → Ext1π′(I [n1], I [n2])|U` → 0.

Since Rank(Ext1π′(I [n1], I [n2])) jumps by one over S[n1≥n2] ∩ U` the short exact se-
quence above suggests that

Zero(s`) = S[n1≥n2] ∩ U`, Ext1π′(I [n1], I [n2])|S[n1≥n2]∩U` = V |S[n1≥n2]∩U` .
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If we could show that the sections s` glue to a global section of V , we would obtain
a geometric proof of Proposition 4.5 when S = P2 or P1 × P1. Motivated by this
observation, in a future work, the first two authors together with Richard Thomas
will give a geometric proof of Proposition 4.5 when S is a surface with pg(S) = 0
(not necessarily toric), using the degeneracy loci and Portous’ formula.

5. Relative nested Hilbert schemes and double point relation

The goal of this section is to prove Theorem 6. We first develop a degeneration
formula for the virtual cycle of the nested Hilbert scheme of points and then we
will use double point relation of Lee-Levine-Pandharipande to prove the theorem.

5.1. Relative nested Hilbert schemes. Let (S,D) be a pair of nonsingular pro-
jective surface and a nonsingular effective divisor. Li and Wu [LW15] introduced
the notion of a stable relative ideal sheaf. I ∈ S[n] is said to be relative to D if the
natural map

(30) I ⊗OD → OS ⊗OD

is injective (see also [MNOPII]). Relativity is an open condition in S[n]. Li and
Wu constructed a relative Hilbert scheme, denoted by (S/D)[n], by considering
the equivalence classes of the stable relative ideal sheaves on the k-step semistable
models S[k] for 0 ≤ k ≤ n. LetD0, . . . , Dk−1 be the singular locus of S[k] andDk ⊂
S[k] be the proper transform of D. S[k] consists of k + 1 irreducible components
∆0, . . . ,∆k with ∆0 = S and Di = ∆i ∩ ∆i+1 for i = 0, . . . , k − 1. A relative
ideal sheaf I on S[k] satisfies (30) for D = D0, . . . , Dk. Two relative ideal sheaves
I and I ′ on S[k] are equivalent if the quotients OS[k]/I and OS[k]/I

′ differ by an
automorphism of S[k] covering the identity on ∆0 = S. The stability of a relative
ideal sheaf means that it has finitely many auto-equivalences as described above.
(S/D)[n] is a smooth proper Deligne-Mumford stack of dimension 2n.

Since by the relativity condition for any relative ideal sheaf I, I|Dj ∼= ODj , the
generalization of Li-Wu Hilbert schemes to the set up of the nested Hilbert schemes
is straightforward. In other words, we can construct a proper Deligne-Mumford
stack (S/D)[n1≥n2] as the moduli space of relative ideal sheaves I1 and I2 with I1

stable and I1 ⊆ I2
11.

Notation. Following [LW15], let A� be the stack of expanded degenerations for
the pair (S,D), and let S → A� be the universal family of surfaces over it. Let

(S/D)[n1≥n2] → A� be the natural morphism; it factors through the substack A
[n]
� ⊂

A� corresponding to n. We use the same notation as in the absolute case to denote

11Note that if Zi ⊂ S[k] is the 0-dimension subscheme corresponding to Ii, then the number
of the auto-equivalences of Z2 ⊆ Z1 ⊂ S[k] is less than or equal to that of Z1 ⊂ S[k], which is
finite by the stability of I1.
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the inclusion of the universal objects over S ×
A
[n]
�

(S/D)[n]:

0 6= Φ : I [n1] → I [n2].

Let π be the projection to the second factor of S ×
A
[n]
�

(S/D)[n], and p be the

projection to its first factor followed by the natural map S → S.

By the method of [MPT10, Section 3.9] and [LW15], one can see, after modifying
our argument for the usual nested Hilbert schemes (Proposition 2.7), that the
following defines a perfect obstruction theory F•rel over (S/D)[n1≥n2] relative to

A
[n]
� :

F•∨rel := Cone

([
RHomπ

(
I [n1], I [n1]

)
⊕RHomπ

(
I [n2], I [n2]

)]
0

(31)

→ RHomπ

(
I [n1], I [n2]

))
,

where [−]0 means the trace-free part. We denote the corresponding virtual funda-
mental class by

[(S/D)[n1≥n2]]vir ∈ An1+n2((S/D)[n1≥n2]).

Let S  S0 := S1 ∪D S2 be a good degeneration of the surface S along D over
a pointed curve (C, 0), and let

(32) S→ C→ C

be the universal family of surfaces over the stack of expanded degenerations C
(see [L01, L02, LW15]). Following the construction of Li and Wu [LW15], one can
construct the nested Hilbert scheme of points, denoted by S[n1≥n2] on the fibers
of S. The Hilbert scheme S[n1≥n2] is a proper Deligne-Mumford stack over C and
its structure morphism factors through the substack C[n] ⊂ C corresponding to n.
A non-special fiber of S[n1≥n2] is isomorphic to S[n1≥n2], whereas the special fiber

of S[n1≥n2], denoted by S
[n1≥n2]
0 , can be written as the (non-disjoint) union

(33) S
[n1≥n2]
0 =

⋃
n = n′ + n′′

(S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ],

where n′ = (n′1, n
′
2) and n′′ = (n′′1, n

′′
2) with n′1 ≥ n′2 and n′′1 ≥ n′′2. Each component

S
[n]
0,n′,n′′ := (S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ]

is the pull-back of a divisor C
[n]
n′,n′′ ⊂ C[n]. Let L

[n]
n′,n′′ be the corresponding line

bundle. We then have ⊗
n=n′+n′′

L
[n]
n′,n′′

∼= L0

where L0 is the line bundle associated to the pull back of the divisor {0} ⊂ C.
We denote the universal objects over S×C[n] S[n1≥n2] by

0 6= Φ : I[n1] → I[n2].
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The restriction of Φ to the component S ×C[n]

(
(S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ]

)
is

identified with the pair of universal maps

(I [n′1] ↪→ I [n′2], I [n′′1 ] ↪→ I [n′′2 ]).

We denote by π the projection to the second factor of S ×C[n] S[n1≥n2], and by
p the projection to its first factor followed by the natural morphism to the total
space of the good degeneration of S over C. Again by the method of Section 2.1
and [MPT10, LW15], one can construct the following perfect obstruction theory
F•rel over S[n1≥n2] relative to C[n]:

F•∨rel =

Cone

([
RHomπ

(
I[n1], I[n1]

)
⊕RHomπ

(
I[n2], I[n2]

)]
0
→ RHomπ

(
I[n1], I[n2]

))
.

Let F• be the corresponding absolute perfect obstruction theory (see [MPT10]).

The restriction of F•rel to S
[n]
0 and its components S

[n]
0,n′,n′′ induces perfect obstruc-

tion theories denoted by F•0 and F•0,n′,n′′ , respectively. As in [MPT10], they satisfy
the following compatibilities:

(34) F•|
S
[n]
0
→ F•0 → L∨0 [1], F•|

S
[n]

0,n′,n′′
→ F•0,n′,n′′ → L

[n]∨
n′,n′′ [1],

where each sequence is an exact triangle.
A decomposition S0[k1, k2] := S1[k1]∪D S2[k2] yields the natural exact sequence

0→ OS0[k1,k2] → OS1[k1] ⊕OS2[k2] → OD → 0.

Suppose that I1 ⊆ I2 is a nested pairs of relative ideal sheaves on S0[k1, k2], and
let I ′i := Ii|S1[k1] and I ′′i := Ii|S2[k2]. Using this and the relativity condition of ideal
sheaves, one can conclude

Cone

(
[R Hom (I1, I1)⊕R Hom (I2, I2)]0 → R Hom (I1, I2)

)
∼=

Cone

(
[R Hom (I ′1, I

′
1)⊕R Hom (I ′2, I

′
2)]0 → R Hom (I ′1, I

′
2)

)⊕
Cone

(
[R Hom (I ′′1 , I

′′
1 )⊕R Hom (I ′′2 , I

′′
2 )]0 → R Hom (I ′′1 , I

′′
2 )

)
.

One of the upshots is that following the construction of [MPT10, LW15], we
are led by the identity above to the following degeneration formula for the virtual
integration over S[n1≥n2] ([MPT10, Thm. 16], [LW15, Prop. 6.5, Thm. 6.6]).
This is done by using the compatibilities (34) and relating the relative prefect
obstruction theory F•rel to the absolute perfect obstruction theories F • (given in
Proposition 2.7) and F•rel (given by (31)):
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Proposition 5.1. Let α be a cohomology class in the total space of S[n1≥n2], then,∫
[S[n1≥n2]]vir

α =
∑

n=n′+n′′

(∫
[(S1/D)[n

′
1≥n
′
2]]vir

α

)
·
(∫

[(S2/D)[n
′
1≥n
′
2]]vir

α

)
.

�

Remark 5.2. In Proposition 5.1, if n = n1 = n2 then S[n1≥n2] ∼= S[n] constructed
by [LW15], and by the same argument as in proof of Theorem 2 part 1, one can
recover the usual degeneration formula for the Hilbert schemes of points used in
[T12, LT14, GS16]:

(35)

∫
S[n]

α =
∑

n=n′+n′′

(∫
(S1/D)[n

′]
α

)
·
(∫

[(S2/D)[n
′′]
α

)
.

5.2. Double point relation and proof of Theorem 6. Let (S,D) be a pair
of nonsingular projective surface and a nonsingular effective divisor as in Section
5.1, and let M be line bundle on S. Also, recall the definitions of

π : S ×
A
[n]
�

(S/D)[n] → (S/D)[n], p : S ×
A
[n]
�

(S/D)[n] → S.

Let D ⊂ S be the proper transform of D ⊂ S via p. Note that we use π and p for
the similar natural morphisms from S×C[n] S[n1≥n2] as well.

Definition 5.3. Define the following element in K((S/D)[n1≥n2]) of rank n1 +n2:

K
[n1≥n2]
M := [Rπ∗p

∗M ]−
[
RHomπ(I [n1], I [n2] ⊗ p∗M)

]
.

Define the following generating series:

Znest(S/D,M) :=
∑

n1≥n2≥0

qn1
1 qn2

2

∫
[(S/D)[n1≥n2]]vir

c(K
[n1≥n2]
M ).

If D = 0 we drop it from the notation.

Lemma 5.4. Given a good degeneration S  S0 := S1∪DS2, and the degeneration
of line bundles

Pic(S) 3M  Mi ∈ Pic(Si) i = 1, 2,

we get the degeneration of the class c(K
[n1≥n2]
M ) whose restriction to the component

(S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ]

of the central fiber of S[n1≥n2] is c(K
[n′1≥n′2]
M1

)� c(K
[n′′1≥n′′2 ]
M2

).

Proof. Let M be the line bundle over the total space of the good degeneration of
S that gives the degeneration of M as in the lemma. The derived pullbacks of



NESTED HILBERT SCHEMES ON SURFACES 38

the perfect complexes RHomπ(I[n1], I[n2]⊗ p∗M) and Rπ∗p
∗M to the component

(S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ] fits in the exact triangles

RHomπ(I[n1], I[n2] ⊗ p∗M)

→ RHomπ(I [n′1], I [n′2] ⊗ p∗M1)⊕RHomπ(I [n′′1 ], I [n′′2 ] ⊗ p∗M2)

→ RHomπ(OD,OD ⊗ p∗M |D) ∼= Rπ∗p
∗M |D,

and Rπ∗p
∗M → ⊕2

i=1Rπ∗p
∗Mi → Rπ∗p

∗M |D. Now taking the difference of the
K-group classes from the exact triangles above, and applying the total Chern

class, we conclude that c(K
[n1≥n2]
M ) degenerates to a class whose restriction to the

component (S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ] is c(K
[n′1≥n′2]
M1

� K
[n′′1≥n′′2 ]
M2

).
�

A direct corollary of Proposition 5.1 and Lemma 5.4 is

Proposition 5.5. Given a good degeneration S  S0 := S1∪D S2, and the degen-
eration of line bundles

Pic(S) 3M  Mi ∈ Pic(Si) i = 1, 2,

we have

(36) Znest(S,M) = Znest(S1/D,M1) · Znest(S2/D,M2).

�
In the situation of Proposition 5.5, Let P be either of the projective bundles

P(OD + NS1/D) ∼= P(OD + NS2/D), and let MP be the pullback of M |D to P.
Applying Proposition 5.5 to the degeneration to the normal cone of D ⊂ Si gives

(37) Znest(Si,Mi) = Znest(Si/D,Mi) · Znest(P/D,MP).

Similarly, the degeneration to the normal cone of D ⊂ P gives

(38) Znest(P,MP) = Znest(P/D,MP) · Znest(P/D,MP).

Let M2,1(C)+ be the group completion of the set of isomorphism classes of the
pairs (S,M), where S is a smooth projective surface over C and M is a line bundle
on S (see [LP12, Definition 3] ).

Corollary 5.6. Znest(−,−) satisfies the relation12

(39) Znest(S,M) · Znest(S1,M1)−1 · Znest(S2,M2)−1 · Znest(P,MP) = 1

and hence it respects the double point relations in M2,1(C)+. In other words,
Znest(−,−) descends to a homomorphism

Znest(−,−) : ω2,1(C)⊗Z Q→ Q[[q1, q2]]∗,

where ω2,1(C) is the double point cobordism theory for line bundles on surfaces
obtained by taking the quotient of M2,1(C)+ by all the double point relations.

12This relation is the analog of the relation (0.10) in [LP09].
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Proof. Relation (39) follows immediately from relations (36)-(38). �

It is known that ω2,1(C) is generated by the following classes (see [T12, LP12])

(40) [P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)].

Let B1, B2, B3, B4 be Znest(S,M) where (S,M) is one of the pairs above respec-
tively from left to right. Define

A1 := B−1
1 B2B

3/2
3 B

−3/2
4 , A2 := B

1/2
3 B

−1/2
4 , A3 := B

−1/3
1 B

−1/4
3 , A4 := B

−2/3
1 B

3/4
3 .

Proposition 5.7. Let S be a nonsingular projective surface and M be a line bundle
on S. Let A1, A2, A3, A4 ∈ Q[[q1, q2]]∗ be defined as above (independent of S) then

Znest(S,M) = AM
2

1 AM ·KS2 A
K2
S

3 A
c2(S)
4 .

Proof. By Remark 2.3 and [CO12, Eq. (5)],

c(En1,n2

M )|S[n1≥n2] = c(K
[n1≥n2]
M ), ci(E

n1,n2

M ) = 0 for i > n1 + n2,

and so by Proposition 4.5, we have Znest(S,M) = Zprod(S,M) if (S,M) is one of
the generators (40). For a general (S,M) as in the proposition we can express
the class [S,M ] ∈ ω2,1(C) as a linear combination of the generators (40), with
coefficients are as in the proof of [T12, Proposition 4.1]. The result then follows
by applying the homomorphism Znest(−,−) of Corollary 5.6 and then rearranging
the factors as in the proof of [T12, Proposition 4.1]. �

Corollary 5.8. Let S be a nonsingular projective surface and M be a line bundle
on S. Then the invariant ∫

[S[n1≥n2]]

c(K
[n1≥n2]
M )

can be written as a degree n1 + n2 universal polynomial in M2,M ·KS, K
2
S, c2(S).

Proof. The integral in the proposition is the coefficient of qn1
1 qn2

2 in Znest(S,M).
The result follows after expanding the right hand side of the formula in Proposition
5.7 and extracting the coefficient of qn1

1 qn2
2 . �

Corollary 5.9. For any nonsingular projective surface S, and M ∈ Pic(S)∫
[S[n1≥n2]]vir

c(K
[n1≥n2]
M ) =

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ c(En1,n2

M ).

Proof. By Corollary 5.9 we know that the LHS of the corollary is a universal
polynomial P1 in M2,M ·KS, K

2
S, c2(S). On the other hand, using Grothendieck-

Riemann-Roch formula and the induction scheme of Ellingsrud, Göttsche, and
Lehn (see [EGL99, Sections 3, 4] and [CO12, Section 3]), we can express the RHS
of the corollary in terms of a universal polynomial P2 in M2,M · KS, K

2
S, c2(S).

But since the equality in the corollary holds for any (S,M) in which S is toric, we
conclude that P1 = P2, and the result follows.

�
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Remark 5.10. Suppose that α
[n1≥n2]
M is a cohomology class in H∗(S[n1≥n2]) that can

be defined universally for any pair of (S,M) as above and any n1 ≥ n2, and which
is well behaved under good degenerations i.e. the restriction of the degeneration

of α
[n1≥n2]
M to the component (S1/D)[n′1≥n′2] × (S2/D)[n′′1≥n′′2 ] of the central fiber of

S[n1≥n2] is α
[n′1≥n′2]
M1

� α
[n′′1≥n′′2 ]
M2

for any good degenerations

S  S0 := S1 ∪D S2, Pic(S) 3M  Mi ∈ Pic(Si) i = 1, 2.

Lemma 5.4 shows that c(K
[n1≥n2]
M ) is an example of such a class α

[n1≥n2]
M . Then,

all the above arguments can be applied more generally to α
[n1≥n2]
M to conclude as in

Corollary 5.8, ∫
[S[n1≥n2]]vir

α
[n1≥n2]
M

is a universal polynomial in M2,M ·KS, K
2
S, c2(S). Now suppose that αn1,n2

M is a
cohomology class in H∗(S[n1] × S[n2]) that can be defined universally for any pair
of (S,M) and any n1, n2 with the property that if n1 ≥ n2 then

αn1,n2

M |S[n1≥n2] = α
[n1≥n2]
M .

For example, αn1,n2

M = c(En1,n2

M ) has this property with respect to α
[n1≥n2]
M = c(K

[n1≥n2]
M ).

Then, all the argument leading to Corollary 5.9 can be repeated with no changes

with the classes α
[n1≥n2]
M and αn1,n2

M to conclude∫
[S[n1≥n2]]vir

α
[n1≥n2]
M =

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ αn1,n2

M .

We can extend Corollary 5.9 to the following more general statement:

Proposition 5.11. Let M1, . . . ,Ms and N1, . . . , Nt be some line bundles on the
nonsingular projective surface S. Then,

∫
[S[n1≥n2]]vir

c(K
[n1≥n2]
M1

) ∪ · · · ∪ c(K[n1≥n2]
Ms

)

c(K
[n1≥n2]
N1

) ∪ · · · ∪ c(K[n1≥n2]
Nt

)
=∫

S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪

c(En1,n2

M1
) ∪ · · · ∪ c(En1,n2

Ms
)

c(En1,n2

N1
) ∪ · · · ∪ c(En1,n2

Nt
)

Proof. This follows by noting that the integrands in both sides satisfy the require-
ments of Remark 5.10. �

5.A. Appendix: Another proof of Corollary 5.9. In this appendix we only
sketch another proof of Corollary 5.9 that uses the degeneration of the products
of the Hilbert schemes (which could be interesting on its own) instead of the
induction scheme of [EGL99]. Consider the product of Li-Wu Hilbert scheme
of points S[n1] ×C S[n2] → C[n1] ×C C[n2] → C. As before, a non-special fiber of



NESTED HILBERT SCHEMES ON SURFACES 41

S[n1]×CS[n2] is isomorphic to S[n1]×S[n2], whereas the special fiber can be written
as

(41)
⋃

n1 = n′1 + n′′1
n2 = n′2 + n′′2

(
(S1/D)[n′1] × (S2/D)[n′′1 ]

)
×
(

(S1/D)[n′2] × (S2/D)[n′′2 ]
)
.

Each component is the pull-back of a divisor with the associated line bundle

L
[n1]

n′1,n
′′
1
� L

[n2]

n′2,n
′′
2

such that ⊗
n1 = n′1 + n′′1
n2 = n′2 + n′′2

L
[n1]

n′1,n
′′
1
� L

[n2]

n′2,n
′′
2

∼= L0.

By the same discussions in Section 5.1 and using (35), it is straightforward to
prove a degeneration formula for the product of the Hilbert scheme of points:

Proposition 5.12. Let γ be a cohomology class in the total space of S[n1]×CS[n2],
then,∫

S[n1]×S[n2]

γ =
∑

n1 = n′1 + n′′1
n2 = n′2 + n′′2

(∫
[(S1/D)[n

′
1]×(S1/D)[n

′
2]
γ

)
·
(∫

[(S2/D)[n
′′
1 ]×(S2/D)[n

′′
2 ]
γ

)
.

�
We also need to give a relative version of Definition 4.3, but this is not straight-

forward as the underlaying surfaces for the relative ideal sheaves I1 ∈ (S/D)[n1]

and I2 ∈ (S/D)[n2] could be different semistable models of S. We proceed to de-
fine an auxiliary common underlying surface for I1 and I2 in a systematic way as
follows. Let H[n1,n2] be the moduli stack of pairs of relative ideal sheaves (I1, I2)
on S[k] of co-lengths (n1, n2) such that if ki ≤ k is the largest integer with Ii
stable over S[ki], then, Ii|∆k′

= O∆k′
for k ≥ k′ > ki, and moreover, at least one

of k1 or k2 is equal to k. The pairs (I1, I2) and (I ′1, I
′
2) on S[k] are equivalent if

σ∗iOS[k]/I
′
i
∼= OS[k]/Ii for i = 1, 2, where σi is an automorphism of S[k] induced

by the canonical C∗k-action covering identity on ∆0 = S. Let (I [n1], I [n2]) be the
universal ideal sheaves over S ×A� H

[n1,n2].
There is a natural morphism H[n1,n2] → A� as before, and there is a forgetful

morphism

f : H[n1,n2] → (S/D)[n1] × (S/D)[n2]

that sends the pair (I1, I2) on S[k] to (I1|S[k1], I2|S[k2]), where kis are determined
as in the last paragraph. The morphism f and the natural projections define the
morphisms

π′ : S ×A� H
[n1,n2] → (S/D)[n1] × (S/D)[n2], p′ : S ×A� H

[n1,n2] → S.
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Definition 5.13. Let (S,M) be a pair of a nonsingular surface and a line bundle
and D ⊂ S a nonsingular divisor as before. Define

En1,n2

M := [Rπ′∗p
′∗M ]−

[
RHomπ′(I [n1], I [n2] ⊗ p′∗M)

]
∈ K((S/D)[n1] × (S/D)[n2]).

If M = OS we drop it from the notation. Define the following generating series

Zprod(S/D,M) :=
∑

n1≥n2≥0

qn1
1 qn2

2

∫
(S/D)[n1]×(S/D)[n2]

c(En1,n2) ∪ c(En1,n2

M ),

If D = 0 we drop it from the notation, and recover the generating series in Defi-
nition 4.3.

We can prove an exact analog of Lemma 5.4 by replacing c(K
[n1≥n2]
M ) with

c(En1,n2)∪ c(En1,n2

M ). This means that if we have a good degeneration as in Lemma
5.4, then we get a degeneration of the class c(En1,n2) ∪ c(En1,n2

M ) whose restriction
to the component(

(S1/D)[n′1] × (S1/D)[n′2]
)
×
(

(S2/D)[n′′1 ] × (S2/D)[n′′2 ]
)

of (41) is given by

c(En
′
1,n
′
2) ∪ c(En

′
1,n
′
2

M1
)� c(En

′′
1 ,n
′′
2 ) ∪ c(En

′′
1 ,n
′′
2

M2
).

Proposition 5.12 then implies

Zprod(S,M) = Zprod(S1/D,M1) · Zprod(S1/D,M1).

By the same argument as Corollary 5.6, we can finally prove Zprod(−,−) descends
to a homomorphism

Zprod(−,−) : ω2,1(C)⊗Z Q→ Q[[q1, q2]]∗.

The following proposition gives another proof of Corollary 5.9:

Proposition 5.14. For any nonsingular projective surface S, and a line bundle
M , we have

Znest(S,M) = Zprod(S,M).

Proof. By Proposition 4.5, we have the equality in the proposition when (S,M) is
one of the pairs in (40), by noting that by Remark 2.3 and [CO12, Eq. (5)],

c(En1,n2

M )|S[n1≥n2] = c(K
[n1≥n2]
M ), ci(E

n1,n2

M ) = 0 for i > n1 + n2.

For a general pair (S,M) as in the proposition there exists a positive integer r
such that we can express the class r[S,M ] ∈ ω2,1(C) as a linear combination of
the generators (40) with integer coefficients, and then apply the homomorphisms
Znest(−,−) and Zprod(−,−) to the both sides of the resulting relation. By what
we just said we can see that Znest(S,M)r = Zprod(S,M)r. Finally, since

Znest(S,M)|q1=q2=0 = Zprod(S,M)|q1=q2=0 = 1,

the proposition follows.
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�

6. Vertex operator formulas and proof of Theorem 7

Let (S,M) be a pair of a projective nonsingular surface S and a line bundles
M on S. Let F = ⊕nH∗(S[n],Q). Carlsson and Okounkov defined the operator
W (M1) in End(F)[[z1, z

−1
1 ]] by

〈W (M1)η1, η2〉 := zn2−n1
1

∫
S[n1]×S[n2]

p∗1η1 ∪ p∗2η2 ∪ cn1+n2(E
n1,n2

M1
),

where 〈−,−〉 is the Poincaré pairing, ηi ∈ H∗(S[ni],Q), pi is the projection to the
i-th factor of S[n1] × S[n2], and En1,n2

M1
∈ K(S[n1] × S[n2]) is as in Definition 4.3. In

other words, using [F13, Definition 16.1.2], W (M1) is the operator associated to
the family of correspondences

cn1+n2(E
n1,n2

M1
) : S[n1] ` S[n2] n1, n2 ≥ 0.

If M2 is another line bundle on S, we define

W (M1,M2)(z1, z2) := W (M2)(z2) ◦W (M1)(z1).

By [F13, Proposition 16.1.2],

〈W (M1,M2)η1, η3〉 =∑
n2

zn2−n1
1 zn3−n2

2

∫
S[n1]×S[n2]×S[n3]

p∗1η1 ∪ p∗3η3 ∪ cn1+n2(E
n1,n2

M1
) ∪ cn2+n3(E

n2,n3

M2
),

where ηi ∈ H∗(S[ni],Q), and pi is the projection to the i-th factor of S[n1]×S[n2]×
S[n3].

Carlsson and Okounkov found an explicit formula for W (−) in terms of vertex
operators. Let α±(−) denote Nakajima’s annihilation/creation operators.

Theorem 6.1. (Carlsson-Okounkov [CO12])

W (M1) = Γ−(−M1,−z1) ◦ Γ+(−MD
1 , z1),

where

Γ±(M1, z1) := exp

(∑
n>0

z∓n1

n
α±n(M1)

)
.

�
Note that the operators Γ± satisfy the commutation relations [Γ±,Γ±] = 0, and

moreover,

Γ+(M2, z2) ◦ Γ−(M1, z1) = (1 +
z1

z2

)〈M1,M2〉Γ−(M1, z1) ◦ Γ+(M2, z2).

Let c := (1− z1
z2

)〈M1,MD
2 〉. Using these properties, we can write
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W (M1,M2) = Γ−(−M2,−z2) ◦ Γ+(−MD
2 , z2) ◦ Γ−(−M1,−z1) ◦ Γ+(−MD

1 , z1)

= c Γ−(−M2,−z2) ◦ Γ−(−M1,−z1) ◦ Γ+(−MD
2 , z2) ◦ Γ+(−MD

1 , z1).

Let N be the number-of-points operator: N|Fn = n id. It satisfies

qN ◦ Γ−(Mi, zi) = Γ−(Mi, qzi) ◦ qN.

Starting with str
(
qN ◦W (M1,M2)

)
and using the commutation relation of the

super-trace str(A ◦B) = str(B ◦ A), we obtain

c str
(
qN ◦ Γ−(−M2,−z2) ◦ Γ−(−M1,−z1) ◦ Γ+(−MD

2 , z2) ◦ Γ+(−MD
1 , z1)

)
=

c str
(
Γ−(−M2,−z2q) ◦ Γ−(−M1,−z1q) ◦ qN ◦ Γ+(−MD

2 , z2) ◦ Γ+(−MD
1 , z1)

)
=

c str
(
qN ◦ Γ+(−MD

2 , z2) ◦ Γ+(−MD
1 , z1) ◦ Γ−(−M2,−z2q) ◦ Γ−(−M1,−z1q)

)
=

(1− z1q

z2

)〈M1,MD
2 〉(1− z2q

z1

)〈M
D
1 ,M2〉(1− q)〈MD

1 ,M1〉+〈MD
2 ,M2〉

c str
(
qN ◦ Γ−(−M2,−z2q) ◦ Γ−(−M1,−z1q) ◦ Γ+(−MD

2 , z2) ◦ Γ+(−MD
1 , z1)

)
.

Iterating this process, we get

str
(
qN ◦W (M1,M2)

)
=∏

n>0

(1− z1q
n

z2

)〈M1,MD
2 〉(1− z2q

n

z1

)〈M
D
1 ,M2〉(1− qn)〈M

D
1 ,M1〉+〈MD

2 ,M2〉

c str
(
qN ◦ Γ+(−MD

2 , z2) ◦ Γ+(−MD
1 , z1)

)
=∏

n≥0

(1− z1q
n

z2

)〈M1,MD
2 〉(1− qn)〈M

D
1 ,M1〉+〈MD

2 ,M2〉−e(S)
∏
n>0

(1− z2q
n

z1

)〈M
D
1 ,M2〉,

where for the last equality, we have used the fact that Γ+ is a lower triangular
operator, and Göttsche’s formula∑

n≥0

e(S[n])qn =
∏
n≥0

(1− qn)−e(S).

Define

q1 := qz−2
1 , q2 := z2

1 ,

then we have shown

str
(
qN ◦W (M1,M2)(z1, 1/z1)

)
=

(42)

∏
n≥0

(1− qn+1
2 qn1 )〈M1,MD

2 〉(1− (q1q2)n)〈M
D
1 ,M1〉+〈MD

2 ,M2〉−e(S)
∏
n>0

(1− qn−1
2 qn1 )〈M

D
1 ,M2〉.
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On the other hand, by [F13, Example 16.1.3],

str
(
qN ◦W (M1,M2)(z1, 1/z1)

)
= qn1z

2(n2−n1)
1

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2

M1
)cn1+n2(E

n2,n1

M2
)

(43)

= (−1)n1+n2qn1
1 qn2

2

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2

M1
)cn1+n2(E

n1,n2

MD
2

),

where the last equality is because of Grothendieck-Verdier duality.

Notation. If Z =
∑

r1,r2≥0 ar1,r2q
r1
1 q

r2
2 is a formal series, we define

Z [qn1
1 qn2

2 ] := an1,n2 .

The main result of this section is

Proposition 6.2. Let (S,M) be a pair of a projective nonsingular surface S and
a line bundles M on S, then,∫

[S[n1≥n2]]vir
cn1+n2(K

[n1≥n2]
M ) =

(−1)n1+n2

∏
n>0

(1− qn−1
2 qn1 )〈KS ,M

D〉(1− (q1q2)n)〈M
D,M〉−e(S) [qn1

1 qn2
2 ] .

Proof. By (43),∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ cn1+n2(E

n1,n2

M ) =

(−1)n1+n2 str
(
qN ◦W (OS,MD)(z1, 1/z1)

)
[qn1

1 qn2
2 ] .

The result now follows immediately from (42) and Corollary 5.9. �
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