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Abstract. Let S be a projective simply connected complex surface and L be
a line bundle on S. We study the moduli space of stable compactly supported
2-dimensional sheaves on the total spaces of L. The moduli space admits a C∗-
action induced by scaling the fibers of L. We identify certain components of the
fixed locus of the moduli space with the moduli space of torsion free sheaves and
the nested Hilbert schemes on S. We define the localized Donaldson-Thomas
invariants of L by virtual localization in the case that L twisted by the anti-
canonical bundle of S admits a nonzero global section. When pg(S) > 0, in
combination with Mochizuki’s formulas, we are able to express the localized DT
invariants in terms of the invariants of the nested Hilbert schemes defined by the
authors in [GSY17a], the Seiberg-Witten invariants of S, and the integrals over
the products of Hilbert schemes of points on S. When L is the canonical bundle
of S, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be
extracted from these localized DT invariants. VW invariants are expected to
have modular properties as predicted by S-duality.
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1. Introduction

1.1. Overview. The Donaldson-Thomas invariants of 2-dimensional sheaves in
projective nonsingular (Calabi-Yau) threefolds are expected to have modular prop-
erties through S-duality considerations ([DM11, VW94, GS13, GST14]). These
invariants are very difficult to compute in general due to lack of control over the
singularity of surfaces supporting these sheaves. To make the situation more man-
ageable, we consider the total space of a line bundle L over a fixed nonsingular
projective surface S. We then study the moduli space of h-stable 2-dimensional
compactly supported sheaves E such that c1(E) = r[S], where [S] is the class of
the 0-section and h = c1(OS(1)).

To define DT invariants of L we have to overcome two main obstacles:

1. Construct a perfect obstruction theory over the moduli space, which contains
no trivial factor in its obstruction1,

2. If H0(L) 6= 0 then the moduli space is not compact and hence one cannot expect
to get a well-defined virtual fundamental class from 1.

For 1, we do not allow strictly semistable sheaves in the moduli space, and we
assume that the line bundle L⊗ ω−1

S admits a nonzero global section, where ωS is
the canonical bundle of S. The latter condition guarantees that higher obstruction
spaces of stable sheaves under consideration either vanish (if L 6= ωC) or can be
ignored (if L = ωC), and in any case [T98, HT10] provide the moduli space with
a natural perfect obstruction theory. We assume that S is simply connected and
then construct a reduced perfect obstruction theory out of the natural one by
removing a trivial factor of rank pg(S).

For 2, we consider the C∗-action on the moduli space induced by scaling the fibers
of L. The fixed set of the moduli space is compact and the fixed part of the reduced
perfect obstruction theory above leads to a reduced virtual fundamental class over
this fixed set [GP99]. We define two types of Donaldson-Thomas invariants by
integrating against this class. The study of these invariants completely boils down
to understanding the fixed set of the moduli space and also the fixed and moving
parts of the reduced perfect obstruction theory. By restricting to the fixed set of
the moduli space, we have much more control over the possible singularities of the
supporting surfaces: the only singularities that can occur are the thickenings of
the zero section along the fibers of L.

1.2. Main results. We fix some symbols and notation before expressing the re-
sults. Let S be a nonsingular projective simply connected surface with h =
c1(OS(1)). Let q : L → S be a line bundle on S so that H0(L ⊗ ω−1

S ) 6= 0.
Let

v = (r, γ,m) ∈ ⊕2
i=0H

2i(S,Q)

1Otherwise, the DT invariants would vanish.
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be a Chern character vector with r ≥ 1, and ML
h (v) be the moduli space of

compactly supported 2-dimensional stable sheaves E on L such that ch(q∗ E) =
v. Here stability is defined by means of the slope of q∗ E with respect to the
polarization h.

The C∗-fixed locusML
h (v)C

∗
consists of sheaves supported on S (the zero section

of L) and its thickenings. As discussed above, we show that ML
h (v)C

∗
carries a

reduced virtual fundamental class denoted by [ML
h (v)C

∗
]vir
red (Proposition 2.4). In

this paper we study two types of DT invariants

DTLh (v;α) =

∫
[MLh (v)C∗ ]virred

α

Norvir
∈ Q[s, s−1] α ∈ H∗C∗(ML

h (v)C
∗
,Q)s,

DTLh (v) = χvir(ML
h (v)C

∗
) ∈ Z,

where Norvir is the virtual normal bundle of ML
h (v)C

∗ ⊂ ML
h (v), χvir(−) is the

virtual Euler characteristic [FG10], and s is the equivariant parameter.
If L = ωC and α = 1 then

DTωS
h (v; 1) = s−pg VWh(v),

where VWh(−) is the Vafa-Witten invariant defined by Tanaka and Thomas [TT]
and are expected to have modular properties (see Remark 2.10).

We write ML
h (v)C

∗
as a disjoint union of several types of components, where

each type is indexed by a partition of r. Out of these component types, there
are two types that are in particular important for us. One of them (we call it
type I) is identified with Mh(v), the moduli space of rank r torsion free stable
sheaves on S. The other type (we call it type II) can be identified with the nested

Hilbert scheme S
[n]
β for a suitable choice of nonnegative integers n := n1, . . . , nr

and effective curve classes β := β1, . . . , βr−1 in S. Here S
[n]
β is the nested Hilbert

scheme on S parameterizing tuples

(Z1, Z2, . . . , Zr), (C1, . . . , Cr−1)

where Zi ⊂ S is a 0-dimensional subscheme of length ni, and Ci ⊂ S is a curve
with [Ci] = βi, and Zi+1 is a subscheme of Zi ∪Ci for any i < r, or equivalently in
terms of ideal sheaves

(1) IZi(−Ci) ⊂ IZi+1
.

If β1 = · · · = βr−1 = 0, then S[n] := S
[n]
β=0 is the Hilbert scheme of points on S.

The authors have constructed a perfect obstruction theory over S
[n]
β in [GSY17a]

by studying the deformation/obstruction of the natural inclusions (1). As a result

S
[n]
β is equipped with a virtual fundamental class denoted by [S

[n]
β ]vir. This allows

us to define new invariants for S recovering in particular Poincaré invariants of
[DKO07], and (after reduction) stable pair invariants of [KT14].

The following Theorems are proven in Propositions 3.2, 3.8 and 3.11:



LOCALIZED DT THEORY 4

Theorem 1. The restriction of [ML
h (v)C

∗
]vir
red to the type I component Mh(v) is

identified with [Mh(v)]vir
0 induced by the natural trace free perfect obstruction theory

over Mh(v).

Theorem 2. The restriction of [ML
h (v)C

∗
]vir
red to a type II component S

[n]
β is iden-

tified with [S
[n]
β ]vir constructed in [GSY17a].

When r = 2 then types I and II components are the only possibilities. This
leads us to the following result (Propositions 3.1, 3.2, 3.11):

Theorem 3. Suppose that v = (2, γ,m). Then,

DTLh (v;α) = DTLh (v;α)I +
∑

n1,n2,β

DTLh (v;α)
II,S

[n1,n2]
β

,

DTLh (v) = χvir(Mh(v)) +
∑

n1,n2,β

χvir(S
[n1,n2]
β ]),

where the sum is over all n1, n2, β (depending on v as in Definition 3.7) for which

S
[n1,n2]
β is a type II component of ML

h (v)C
∗
, and the indices I and II indicate the

contributions of type I and II components to the invariant DTLh (v;α).

The invariants χvir(S
[n1,n2]
β ]) and DTLh (v;α)

II,S
[n1,n2]
β

(for a suitable choice of class

α e.g. α = 1) appearing in Theorem 3 are special types of the invariants

NS(n1, n2, β;−)

that we have defined in [GSY17a] by integrating against [S
[n1,n2]
β ]vir (Definition 3.5

and Corollary 3.13). One advantage of this viewpoint is that it enables us to apply
some of the techniques that we developed in [ibid] to evaluate these invariants in
certain cases.

Mochizuki in [M02] expresses certain integrals against the virtual cycle ofMh(v)
in terms of Seiberg-Witten invariants and integrals A(γ1, γ2, v;−) over the product
of Hilbert scheme of points on S (see Section 4). Using this result we are able
to find the following expression for our DT invariants (Corollaries 3.13, 3.15, 3.16
and Proposition 4.4):

Theorem 4. Suppose that pg(S) > 0, and v = (2, γ,m) is such that γ ·h > 2KS ·h
and χ(v) :=

∫
S
v · tdS ≥ 1. Then,

DTLh (v; 1) =−
∑

γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P1) +
∑

n1,n2,β

NS(n1, n2, β;P1).

DTLh (v) =−
∑

γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P2) +
∑

n1,n2,β

NS(n1, n2, β;P2).
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Here SW(−) is the Seiberg-Witten invariant of S, Pi and Pi are certain universally
defined (independent of S) explicit integrands (see Proposition 4.4), and the second
sums in the formulas are over all n1, n2, β (depending on v as in Definition 3.7)

for which S
[n1,n2]
β is a type II component of ML

h (v)C
∗
.

Moreover, if L = ωS and S is isomorphic to a K3 surface or one of the five
types of generic complete intersections

(5) ⊂ P3, (3, 3) ⊂ P4, (4, 2) ⊂ P4, (3, 2, 2) ⊂ P5, (2, 2, 2, 2) ⊂ P6,

the DT invariants DTωS
h (v; 1) and DTωS

h (v) can be completely expressed as the sum
of integrals over the product of the Hilbert schemes of points on S.

In Theorem 4, we can always replace a given vector v by another vector (without
changing the DT invariants in the right hand side of formulas), for which the
condition in theorem is satisfied (see Remark 4.3).
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2. Local reduced Donaldson-Thomas Invariants

Let (S, h) be a pair of a nonsingular projective surface S with H1(OS) = 0, and
h := c1(OS(1)), and let

v := (r, γ,m) ∈ Hev(S,Q) = H0(S)⊕H2(S)⊕H4(S),

with r ≥ 1. We denote by Mh(v) the moduli space of h-semistable sheaves on S
with Chern character v. Mh(v) is a projective scheme. We always assume v is
such that slope semistability implies slope stability with respect h for any sheaf
on S with Chern character v. We also assume Mh(v) admits a universal family2,
denoted by E. For example, if gcd(r, γ ·h) = 1, these requirements are the case (see
[HL10, Corollary 4.6.7]). If p is the projection to the second factor of S ×Mh(v),
by [T98, HT10]

RHomp(E,E)0[1]

2The existence of the universal family is not essential in this paper, but we assume it for
simplicity.
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is the dual of a perfect trace-free obstruction theory onMh(v), and hence gives a
virtual fundamental class, denoted by [Mh(v)]vir

0 .
Let L be a line bundle on S such that

(2) H0(L ⊗ ω−1
S ) 6= 0,

and let

X := L q−→ S

be the total space of the canonical line bundle on S. Note that X is non-compact
with canonical bundle ωX ∼= q∗(L−1 ⊗ ωS). In particular X is a Calabi-Yau 3-fold
if L = ωS. Let z : S → X be the zero section inclusion.

Notation. For simplicity, we use the symbols z and q to indicate respectively the
inclusion z × id : S ×B → X ×B and the projection q× id : X ×B → S ×B for
any scheme B.

The one dimensional complex torus C∗ acts on X by the multiplication on the
fibers of q, so that

(3) q∗OX =
∞⊕
i=0

L−i ⊗ t−i,

where t denotes the trivial line bundle on S with the C∗-action of weight 1 on the
fibers. Let

Cohc(X) ⊂ Coh(X)

be the abelian category of coherent sheaves on X whose supports are compact.
The slope function µh on Cohc(X) \ {0}

µh(E) =
c1(q∗ E) · h
Rank(q∗ E)

∈ Q ∪ {∞}

determines a slope stability condition on Cohc(X)3. Let ML
h (v) be the moduli

space of µh-stable sheaves E ∈ Cohc(X) with ch(q∗ E) = v. For simplicity, we also
assume ML

h (v) admits a universal family, denoted by E. This is again the case if
for example gcd(r, γ · h) = 1 (see [HL10, Corollary 4.6.7]).

We denote by p the projection from X ×ML
h (v) to ML

h (v). By the condition
(2) and [T98, HT10], one obtains a natural perfect obstruction theory on ML

h (v)
given by the complex4

E• :=
(
τ [1,2]RHomp(E,E)[1]

)∨
.

3If Rank(q∗ E) = 0, then µh(E) =∞.
4E• is symmetric [B09] if L = ωS .
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Note that Serre duality and Hirzerbruch-Riemann-Roch hold for the compactly
supported coherent sheaves, even though X is not compact. Using the latter we
can calculate the rank of E•:

(4) Rank(E•) =

{
0 L = ωS,

r2c1(L) · (c1(L)− ωS)/2 + 1 L 6= ωS.

By [GP99], we obtain the C∗-fixed perfect obstruction theory

E•,fix =
(
τ [1,2]

(
RHomp(E,E)[1]

)∨)C∗
(5)

over the fixed locusML
h (v)C

∗
. Since the C∗-fixed set of X (i.e. S) is projective, we

conclude thatML
h (v)C

∗
is projective, therefore E•,fix gives the virtual fundamental

class [ML
h (v)C

∗
]vir. Define

(6) D̂TLh (v;α) =

∫
[MLh (v)C∗ ]vir

α

e((E•,mov)∨)
α ∈ H∗C∗(ML

h (v),Q)s,

where E•,mov is the C∗-moving part of E•, and e(−) indicates the equivariant Euler
class.

Remark 2.1. Note that (E•,mov)∨ is the virtual normal bundle of ML
h (v)C

∗
. If

ML
h (v) is compact then D̂TLh (v;α) will be equal to

∫
[MLh (v)]vir

α via the virtual lo-

calization formula [GP99]. This is the case when c1(L) · h < 0, as then one can
see that all the stable sheaves must be supported (even scheme theoretically!) on
the zero section of q : X → S. Note that if c1(L) · h ≥ 0, then

∫
[MLh (v)]vir

α is not

defined in general.

Remark 2.2. If L = ωS (i.e. X is Calabi-Yau), one can also define the invariants
by taking weighted Euler characteristics of the moduli spaces

∫
MωS

h (v)
νMωS dχ,

where νMωS is Behrend’s constructible function [B09] on MωS
h (v). By localization

this coincides with the integration of νMωS over the C∗-fixed locusMωS
h (v)C

∗
. These

invariants were computed by [TT] and were shown to have modular properties in
some interesting examples. IfMωS

h (v) is compact e.g. when KS ·h < 0 (see Remark

2.1) then these invariants coincide with the invariants D̂TωS
h (v; 1) [B09].

In the case that pg(S) > 0 the fixed part of the obstruction theory E• con-

tains a trivial factor which causes the invariants D̂TLh (v) to vanish; we reduce the
obstruction theory E• as follows. Define

RHomp(E,E)0

to be the cone of the composition

q∗RHomX×MLh (v)(E,E)
q∗−→ RHomS×MLh (v)(q∗ E, q∗ E)

tr−→ OS×MLh (v),
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followed by the derived push forward via the projection S ×ML
h (v) → ML

h (v).
Note that q is an affine morphism and hence Ri q∗ = 0 for i > 0. Then, define

(7) E•red :=
(
τ≤2RHomp(E,E)0[1]

)∨
, Rank(E•red) = Rank(E•) + pg(S).

Remark 2.3. Note that by construction this reduction only affects the fixed part
of the obstruction theory i.e. E•,mov = E•,mov

red . Since H1(OS) = 0 by assumption,
we see that in case pG(S) = 0, we have E• = E•red.

Proposition 2.4. E•red gives a perfect obstruction theory over ML
h (v).

Proof. We closely follow the construction of the perfect obstruction theory in [T98].
Let B0 ⊂ B ⊂ B1 be closed immersions of B0-schemes over C. We denote the
ideals of B0 ⊂ B, B0 ⊂ B1, B ⊂ B1 by n, m and J, respectively, and suppose that
m · J = 0. Let G0 be a sheaf on B0 ×X flat over B0, and G be a sheaf on B ×X
flat over B extending G0. Note that q is an affine morphism and hence Ri q∗ = 0
for i > 0, so by flat base change q∗ G0 and q∗ G remain flat and q∗ G|B0×S = q∗ G0

(as before, we simply use the symbol q to denote the morphism id× q). By [T98,
Proposition 3.13], the obstruction for extending G (respectively q∗ G) to a sheaf on
B1 ×X (respectively B1 × S) flat over B1 lies in

ob(G0) ∈ Ext2
X×B0

(G0,G0⊗J), (respectively ob(q∗ G0) ∈ Ext2
S×B0

(q∗ G0, q∗ G0⊗J)).

We will prove the following lemma after finishing the proof of the proposition:

Lemma 2.5. Under the natural map

Ext2
X×B0

(G0,G0 ⊗ J)
q∗−→ Ext2

S×B0
(q∗ G0, q∗ G0 ⊗ J),

we have q∗ ob(G0) = ob(q∗ G0).

Next, by [T98, Theorem 3.23], the obstruction for deforming det(q∗G0) is given
by tr(ob(q∗ G0)) which is equal to tr(q∗ ob(G0)), by Lemma 2.5. However, there is
no obstruction for deforming line bundles, and therefore tr(q∗ ob(G0)) = 0 or

q∗ ob(G0) ∈ Ext2
S×B0

(q∗ G0, q∗ G0 ⊗ J)0,

This means that ob(G0) ∈ ker(tr ◦ q∗). The rest of the proof is similar to proving
E• is perfect obstruction theory as given in [T98, Theorems 3.28, 3.30]5. �

Proof of Lemma 2.5. Suppose that G1 is a B1-flat lift of G. By the proof of [T98,
Proposition 3.13] we have short exact sequences 0→ J→ m→ n→ 0, and

(8) 0→ G ⊗ n→ G → G0 → 0, 0→ G ⊗m→ G1 → G0 → 0.

Since Ri q∗ = 0 for i > 0, we get the corresponding short exact sequences

(9) 0→ q∗ G ⊗ n→ q∗ G → q∗ G0 → 0, 0→ q∗ G ⊗m→ q∗ G1 → q∗ G0 → 0,

0→ G0 ⊗ J→ G ⊗m→ G ⊗ n→ 0, 0→ q∗ G0 ⊗ J→ q∗ G ⊗m→ q∗ G ⊗ n→ 0.

5See also [TT, Proposition 3.5] for an alternative less elementary argument.
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Applying Hom(G0,−) and Hom(q∗ G0,−) to the last two sequences above and using
the functoriality of q∗ we get the following commutative diagram with exact rows:

Ext1(G0,G ⊗m)

q∗
��

// Ext1(G0,G ⊗ n)

q∗
��

∂
// Ext2(G0,G0 ⊗ J)

q∗
��

Ext1(q∗ G0, q∗ G ⊗m) // Ext1(q∗ G0, q∗ G ⊗ n)
∂
// Ext2(q∗ G0, q∗ G0 ⊗ J).

In particular we get ∂ ◦q∗ = q∗ ◦∂. Let e ∈ Ext1(G0,G ⊗n) be the class of the first
extension in (8), and e′ ∈ Ext1(q∗ G0, q∗ G⊗n) be the class of the first extension in
(9). By the naturality of q∗ we have e′ = q∗(e). By the proof of [T98, Proposition
3.13] ob(G0) = ∂(e) and

ob(q∗ G0) = ∂(e′) = ∂(q∗(e)) = q∗(∂(e)) = q∗(ob(G0)).

�

In particular, by [GP99], we get

Corollary 2.6. E•,fix
red gives a perfect obstruction theory over ML

h (v)C
∗
, and hence

a virtual fundamental class

[ML
h (v)C

∗
]vir
red ∈ A∗(ML

h (v)C
∗
).

�
In the rest of the paper, we will study the invariants defined below:

Definition 2.7. We can define two types of DT invariants

DTLh (v;α) :=

∫
[MLh (v)C∗ ]virred

α

e((E•,mov)∨)
∈ Q[s, s−1] α ∈ H∗C∗(ML

h (v),Q)s,

DTLh (v) :=

∫
[MLh (v)C∗ ]virred

c((E•,fix
red )∨) ∈ Z.

Here e(−) denotes the equivariant Euler class, s is the equivariant parameter, and
c(−) denotes the total Chern class. Note that E•,mov = E•,mov

red by Remark 2.3.

Remark 2.8. The invariant DTLh (v;α) is the reduced version of the invariant

D̂TLh (v;α) given in (6). If α = 1 then it can be seen easily that

DTLh (v; 1) · sRank(E•red) ∈ Q,
where Rank(E•red) is given by (4) and (7). In particular, if L = ωS then Rank(E•red) =
pg(S).

Remark 2.9. The definition of the invariant DTLh (v) is motivated by Fantechi-
Göttsche’s virtual Euler characteristic [FG10]. DTLh (v) is the virtual Euler number
of ML

h (v)C
∗
:

DTLh (v) = χvir(ML
h (v)C

∗
).
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If ML
h (v)C

∗
is nonsingular with expected dimension, then DTLh (v) coincides with

the topological Euler characteristic of ML
h (v)C

∗
.

Remark 2.10. Motivated by Vafa-Witten equation and S-duality conjecture [VW94],
Tanaka and Thomas [TT] define Vafa-Witten invariants by constructing a delicate
symmetric perfect obstruction theory over the moduli space of Higgs pairs (G, φ) on
S with fixed determinant det(G) and such that tr(φ) = 0. When pg = 0 (note that
in this paper H1(OS) = 0), their moduli space and its perfect obstruction theory
are the same as MωS

h (v) and E•red, respectively.
The moduli space of Higgs pairs is equipped with a C∗-action obtained by scaling

φ. The corresponding C∗-fixed locus of the moduli space of Higgs pairs and the
fixed part of Tanaka-Thomas’ obstruction theory always coincides with MωS

h (v)C
∗

and E•,fix
red , respectively (even though the moduli spaces and the moving parts of

obstruction theories could be different in general). The moduli space of Higgs pairs
is not compact. Tanaka and Thomas define Vafa-Witten invariants VWh(v) ∈ Q
by taking the C∗-equivariant residue of the class of 1. Tanaka and Thomas have
computed the invariants VWh(v) in some interesting examples and express the
generating functions of the invariants of certain components of the C∗-fixed lo-
cus in terms of algebraic functions. They were also able to match the invariants
VWh(v) (after adding the contributions of all C∗-fixed loci) with the few first terms
of the modular forms of [VW94] through heavy calculations. Their calculation pro-
vides compelling evidence that the invariants VWh(v) have modular properties that
match with S-duality predictions. By analyzing the moving part of the obstruction
theory of Tanaka-Thomas, and E•,mov

red one can show that if we choose α = 1 in
Definition 2.7 (see Remark 2.8):

DTωS
h (v; 1) = s−pg VWh(v).

3. Description of the fixed locus of moduli space

We continue this section by giving a precise description of the components of
ML

h (v)C
∗
. Suppose that E is a closed point of ML

h (v)C
∗
. Because E is a pure

C∗-equivariant sheaf, up to tensoring with a power of t, we can assume that, for
some partition λ ` r, with λ = (λ1 ≤ · · · ≤ λ`(λ)), we have

q∗ E =

`(λ)−1⊕
i=0

E−i ⊗ t−i,

where E−i is a rank λi+1 torsion free sheaf on S, and the OX-module structure on
E is given by a collection of injective maps of OS-modules (using (3)):

ψi : E−i → E−i−1 ⊗ L, i = 0, . . . , `(λ)− 1.

Let Ei := z∗E−i, for any i and let E ′0 := E . Define E ′i for i > 0 inductively by

(10) 0→ E ′i+1 ⊗ t−1 → E ′i → Ei → 0.
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Therefore, we get a filtration (forgetting the equivariant structures)

E ′`(λ)−1 ⊂ · · · ⊂ E ′1 ⊂ E ′0 = E ,

and the stability of E imposes the following conditions:

(11) µh(E ′i) < µh(E) i = 1, . . . , `(λ).

Note that for all j we have

q∗ E ′j ⊗ t−j =

`(λ)−1⊕
i=j

E−i ⊗ t−i,

and hence (11) imposes some restrictions on the ranks and degrees of E−i’s.
This construction also works well for the B-points of the moduli spaceML

h (v)C
∗

for any C-schemes B. As a result, one gets a decomposition of the C∗-fixed locus
ML

h (v)C
∗

into connected components

ML
h (v)C

∗
=
∐
λ`r

ML
h (v)C

∗

λ ,

where in the level of the universal families

q∗

(
E|X×MLh (v)C

∗
λ

)
=

`(λ)−1⊕
i=0

E−i ⊗ t−i,(12)

Ψi : E−i → E−i−1 ⊗ L, i = 0, . . . , `(λ)− 1,

E′`(λ)−1 ⊂ · · · ⊂ E′1 ⊂ E′0 := E,

in which E−i is a flat family6 of rank λi torsion free sheaves on S ×ML
h (v)C

∗

λ , Ψi

is a family of fiberwise injective maps overML
h (v)C

∗

λ , Ei := z∗E−i, and E′i for i > 0
are inductively defined by

(13) 0→ E′i+1 ⊗ t−1 → E′i → Ei → 0.

In the rest of the paper, we only study the two extreme cases λ = (r) and
λ = (1r). By the construction, it is clear that the former case coincides set
theoretically with the moduli space Mh(v); as we will see in the next section the
latter case is related to the nested Hilbert schemes on S. Note that when r = 2,
these cases are the only possibilities, and hence

Proposition 3.1. Suppose that r = 2, then

[ML
h (v)C

∗
]vir
red = [ML

h (v)C
∗

(2)]
vir
red + [ML

h (v)C
∗

(12)]
vir
red

�

6Since q is an affine morphism, q∗ E is flat over MLh (v)C
∗

λ , and hence each weight space E−i
is flat over MLh (v)C

∗

λ .
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3.1. Moduli space of stable torsion free sheaves as fixed locus.

Notation. We sometimes use −·ta instead of −⊗ta to make the formulas shorter.
We also let s = c1(t).

Proposition 3.2. We have the isomorphism of schemes ML
h (v)C

∗

(r)
∼= Mh(v).

Moreover, under this identification, we have the following isomorphisms

E•,fix
red |MLh (v)C

∗
(r)

∼=
(
RHomp(E,E)0[1]

)∨
,

E•,mov|MLh (v)C
∗

(r)

∼=
(
τ≤1RHomp(E,E⊗ L · t)

)∨
.

In particular, E•,fix
red |MLh (v)C

∗
(r)

is identified with the natural perfect trace-free obstruc-

tion theory over Mh(v), and hence [ML
h (v)C

∗

(r)]
vir
red = [Mh(v)]vir

0 .

Proof. The first claim follows by the description above and noting that in this case
(12) and (13) give

E|X×MLh (v)C
∗

(r)

∼= z∗(E�N ), q∗

(
E|X×MLh (v)C

∗
(r)

)
= E�N ,

for a line bundle N on Mh(v), by the universal properties of the moduli spaces.
For the second part, by [H06, Corollary 11.4], we have the following natural exact
triangle

E�N ⊗L−1 ⊗ t−1[1]→ Lz∗E→ E�N ,

which implies, by adjunction, the exact triangle

z∗RHom(E,E)→ RHom(E,E)→ z∗RHom(E,E⊗ L · t)[−1].

Taking the trace free part, shifting by 1, pushing forward, dualizing, and taking the
C∗-fixed part of this exact triangle, we get the first isomorphism; pushing forward,
applying the truncation τ≤ 1, and taking the C∗-moving part of this exact triangle,
we get the second isomorphism. �

Corollary 3.3.

DTLh (v;α)(r) =

∫
[Mh(v)]vir0

sκ · α
e (RHomp(E,E⊗ L · t))

,

DTLh (v)(r) = χvir(Mh(v)) =

∫
[Mh(v)]vir0

cd (RHomp(E,E)0[1])

=

∫
[Mh(v)]vir0

cd
(
Ext1p(E,E)− Ext2p(E,E)0

)
,

where d is the virtual dimension of Mh(v), and κ = 1 if L = ωS, otherwise κ = 0.
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Proof. To see the first formula, by Proposition 3.2 we can write

DTLh (v;α)(r) =

∫
[MLh (v)C

∗
(r)

]virred

α

e((E•,mov)∨)

=

∫
[Mh(v)]vir0

α

e (τ≤1RHomp(E,E⊗ L · t))

=

∫
[Mh(v)]vir0

sκ · α
e (RHomp(E,E⊗ L · t))

.

For the last equality, note that the trace map and Grothendieck-Verdier duality
induces

Ext2p(E,E⊗ L · t) ∼= R2p∗(L · t) ∼=
(
p∗(L−1 ⊗ ωS · t−1)

)∗
,

and by (2), p∗(L−1 ⊗ ωS · t−1) = 0 unless L = ωS in which case it is OM ⊗ t−1.
The second formula in corollary follows directly from Proposition 3.2, by not-

ing that Ext1p(−,−)0 = Ext1p(−,−) by the assumption H1(OS) = 0, and that
Homp(E,E)0 = 0 by the simplicity of the fibers of E. �

Corollary 3.4. If L = ωS and α = 1 then DTωS
h (v; 1)(r) = (−1)ds−pg DTωS

h (v)(r).

Proof. By Corollary 3.3,

DTωS
h (v; 1)(r) =

∫
[Mh(v)]vir0

s

e (RHomp(E,E⊗ ωS · t))

=

∫
[Mh(v)]vir0

(−1)−1+d−pgs

e (RHomp(E,E · t−1))

=

∫
[Mh(v)]vir0

(−1)ds−pgcd
(
Ext1p(E,E)− Ext2p(E,E)0

)
,

and then use Corollary 3.3 again. Here we used Grothendieck-Verdier duality in
the second equality and the identities

e
(
Homp(E,E · t−1)

)
= e(OM · t−1) = −s,

e
(
Ext2p(E,E · t−1)

)
= e

(
R2p∗O · t−1

)
· e
(
Ext2p(E,E · t−1)0

)
= (−s)pge

(
Ext2p(E,E · t−1)0

)
,

Rank
[
RHomp

(
E,E · t−1

)]
= 1− d+ pg,

in the third equality.
�

3.2. Nested Hilbert schemes on S.

3.2.1. Review of the results of [GSY17a]. Let S
[n]
β be the nested Hilbert scheme as

in Section 1.2. When r = 2, and so n = n1, n2, β = β1, we have the following
well-known special cases:

1. n2 = 0, β1 = 0. The Hilbert scheme of n1 points on S, denoted by S[n1]. It is
nonsingular of dimension 2n1.
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2. n1 = n2 = 0, β1 6= 0. The Hilbert scheme of divisors in class β1, denoted by
Sβ1 . It is nonsingular if H i≥1(L) = 0 for any line bundle L with c1(L) = β1.

3. n2 = 0. Then S
[n1]
β1

= S[n1] × Sβ1 . This is the Hilbert scheme of 1-dimensional
subschemes Z ⊂ S such that [Z] = β1, c2(IZ) = n1.

Notation. We will denote the universal ideal sheaves of S
[m]
β , S[m], and Sβ re-

spectively by I [m]
−β , I [m], and I−β, and the corresponding universal subschemes re-

spectively by Z [m]
β , Z [m], and Zβ. We will use the same symbol for the pull backs

of I [m] and I−β = O(−Zβ) via id× pts and id× div to S × S
[m]
β . We will also

write I [m]
β for I [m]⊗O(Zβ). Using the universal property of the Hilbert scheme, it

can be seen that I [m]
−β
∼= I [m] ⊗O(−Zβ), and hence it is consistent with the chosen

notation. Let π : S × S[m]
β → S

[m]
β be the projection, we denote the derived functor

Rπ∗RHom by RHomπ and its i-th cohomology sheaf by Extiπ.

The tangent bundle of S[m] is identified with

TS[m]
∼= Homπ

(
I [m],OZ [m]

) ∼= RHomπ

(
I [m], I [m]

)
0

[1] ∼= Ext1π
(
I [m], I [m]

)
.

The nested Hilbert scheme is realized as the closed subscheme

(14) ι : S
[n]
β ↪→ S

[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr].

The inclusions in (1) in the level of universal ideal sheaves give the universal
inclusions

Φi : I [ni] → I [ni+1]
βi

1 ≤ i < r

defined over S × S[n]
β .

Notation. Let pri be the closed immersion (14) followed by the projection to the

i-th factor, and let π : S × S[n]
β → S

[n]
β be the projection. Then we have the fibered

square

(15) S × S[n]
β
� � ι′ //

π
��

S × S[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr]

π′��

S
[n]
β
� � ι

// S
[n1]
β1
× · · · × S[nr−1]

βr−1
× S[nr]

where π′ is the projection and ι′ = id×ι.

Convention. We slightly abuse the notation and use the same symbol for the
universal objects (which are flat) on Hilbert schemes or line bundles on S and
their pullbacks to the products of the Hilbert schemes via projections and other
natural morphisms defined above, possibly followed by the restriction to the nested
Hilbert schemes embedded in the product. This convention makes the notation
much simpler.



LOCALIZED DT THEORY 15

Applying the functors RHomπ

(
−, I [ni+1]

βi

)
and RHomπ

(
I [ni],−

)
to the univer-

sal map Φi, we get the following morphisms of the derived category

RHomπ

(
I [ni+1], I [ni+1]

) Ξi−→ RHomπ

(
I [ni], I [ni+1]

βi

)
,

RHomπ

(
I [ni], I [ni]

) Ξ′i−→ RHomπ

(
I [ni], I [ni+1]

βi

)
.

The following theorem is one of the main results of [GSY17a]:

Theorem 5 ([GSY17a, Theorem 1 and Proposition 2.5]). S
[n]
β is equipped with the

perfect absolute obstruction theory F • with the derived dual

F •∨ = Cone

([
r⊕
i=1

RHomπ

(
I [ni], I [ni]

)]
0

→
r−1⊕
i=1

RHomπ

(
I [ni], I [ni+1]

βi

))
,

where the map above is naturally induced from all the maps Ξi and Ξ′i, and [−]0
means the trace-free part. As a result, S

[n]
β carries a natural virtual fundamental

class

[S
[n]
β ]vir ∈ Ad(S[n]

β ), d = n1 + nr +
1

2

r−1∑
i=1

βi · (βi −KS),

where KS is the canonical divisor of S.

�
The following definition is taken from [GSY17a]:

Definition 3.5. Suppose that r = 2 and M ∈ Pic(S). Define the following ele-

ments in K(S
[n1,n2]
β ):

Kn1,n2

β;M := [Rπ∗M(Zβ)]−
[
RHomπ(I [n1], I [n2]

β ⊗M)
]
, Gβ;M :=

[
Rπ∗M(Zβ)|Zβ

]
.

We also define the twisted tangent bundles in K(S[ni]) (and will use the same
symbols for their pullbacks to S[n1,n2]):

TM
S[ni]

:= [Rπ∗M ]−
[
RHomπ(I [ni], I [ni] ⊗M)

]
.

Note TOS
S[ni]

= [TS[ni] ].

Let P := P(M,β, n1, n2) be a polynomial in the Chern classes of Kn1,n2

β;M , Gβ;M ,

and TM
S[ni]

, then, we can define the invariant

NS(n1, n2, β;P) :=

∫
[S

[n1,n2]
β ]vir

P .

Definition 3.6. Let M ∈ Pic(S). Define the class in K(S[n1] × S[n2]):

En1,n2

M := [Rπ′∗M ]−
[
RHomπ′(I [n1], I [n2] ⊗M)

]
.

If M = OS then we will drop it from the notation.
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The following results are proven in [GSY17a]:

Theorem 6 ([GSY17a, Theorem 6]). Suppose the class P ∈ H∗(S[n1,n2]) in Defi-
nition 3.5 is well-behaved under good degenerations of S (in the sense of [GSY17a,
Remark 5.10, Proposition 5.11]), and is the pullback of a class P ′ from H∗(S[n1]×
S

[n2]
β ) via ι∗. Then

N(n1, n2, 0;P) =

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ P ′.

�

Theorem 7 ([GSY17a, Proposition 2.9]). Suppose that pg(S) > 0 and

|L| 6= ∅ & |ωS ⊗ L−1| = ∅

for any line bundle L with c1(L) = β. Then [S
[n1,n2]
β ]vir = 0. In particular, in this

case NS(n1, n2, β;P) = 0 for any choice of the class P.

�

3.2.2. Nested Hilbert schemes as fixed locus. Suppose that E is a closed point of
ML

h (v)C
∗

(1r). By what we said above, E determines the rank 1 torsion free sheaves
E0, . . . , E−r+1 on S together with the OS-module injections ψ1, . . . , ψr−1. Since S
is nonsingular, there exist line bundles L1, . . . , Lr and the ideal sheaves I1, . . . , Ir
of zero dimensional subschemes Z1, . . . , Zr such that E−i+1

∼= Ii ⊗ Li. We can
rewrite the maps ψi as

φi : Ii → Ii+1 ⊗Mi,

where Mi := L−1
i ⊗ Li+1 ⊗ L. The double dual φ∗∗i : OS → Mi defines a nonzero

section of Mi and hence either Mi
∼= OS or |Mi| 6= ∅.

Let

ni := c2(Ii), βi := c1(L) + c1(Li+1)− c1(Li),

and let d(G) := c1(G) · h for any torsion free sheaf G on S. By construction we
have the following two conditions:

• By the injectivity of φi, βi is an effective curve class, in particular,

d(Mi) > 0 or d(Mi) = 0 & ni+1 ≤ ni.

• By the stability of E , using (11),

i
r∑

j=i+1

d(Lj) < (r − i)
i∑

j=1

d(Lj) i = 1, . . . , r − 1.

Definition 3.7. We say

n := n1, n2, . . . , nr, β := β1, . . . , βr−1,
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are compatible with the vector v = (r, γ,m), if the above two conditions are
satisfied, and moreover,

γ =
r∑
i=1

c1(Li), m =
r∑
i=1

c1(Li)
2/2− ni.

Conversely, given Li and Ii as above with the numerical invariants n and β com-
patible with the vector v, and the injective maps φi, one can recover a unique
closed point of ML

h (v)C
∗

(1r). In fact, since q is an affine morphism, the collection of
E−i+1 = Li ⊗ Ii and the maps φi determine a pure C∗-equivariant coherent sheaf
E on X with ch(q∗ E) = v (see [H77, Ex. II.5.17]). It remains to show that E is
µh-stable. By [K11, Proposition 3.19], it suffices to show that µh(F) < µh(E) for
any pure C∗-equivariant subsheaf 0 6= F ( E . Suppose Rank(q∗F) = s, so this
means that F ⊆ E ′r−s, and hence

µh(F) ≤ µh(E ′r−s) < µh(E),

where the first inequality is because Rank(q∗F) = Rank(q∗ E ′r−s) = s and the
second inequality is because of (11).

Proposition 3.8. For any connected component T ⊂ ML
h (v)C

∗

(1r), there exist n

and β compatible with the vector v, such that T ∼= S
[n]
β as schemes.

Proof. In this case, (12) gives

q∗

(
E|X×MLh (v)C

∗
(1r)

)
=

r⊕
i=1

E−i ⊗ t−i, Ψi : E−i → E−i−1 ⊗ L, i = 1, . . . , r − 1.

where E−i is a flat family of rank 1 torsion free sheaves on S ×ML
h (v)C

∗

(1r). By

[K90, Lemma 6.14] the double duals E∗∗−i are locally free, and hence for each i
we get a morphism from ML

h (v)C
∗

(1r) to Pic(S). But H1(OS) = 0 so Pic(S) is a
union of discrete reduced points and hence this morphism is constant on connected
components of ML

h (v)C
∗

(1r). Pulling back a Poincaré line bundle shows that E∗∗−i
restricted to a connected component T ⊂ ML

h (v)C
∗

(1r) is isomorphic to Li �Ni for
some line bundle Li on S and Ni on T . Therefore, the restriction of E−i ⊂ E∗∗−i to
T is of the form

(16) (IZi ⊗ Li) �Ni
for some subscheme Zi ⊂ S×T , which must be flat over T by the flatness of E−i.
Let ni be the fiberwise length of the subscheme Zi over T , which is well-defined
by the flatness of Zi. Let βi := c1(L) + c1(Li+1)− c1(Li). Define

n := n1, n2, . . . , nr, β := β1, . . . , βr−1.

Then, n,β are clearly compatible with the vector v. Let Mi := L−1
i ⊗ Li+1 ⊗ L.

Since the maps
Ψi :

(
IZi ⊗M−1

i

)
�
(
Ni ⊗N−1

i+1

)
→ IZi+1
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are fiberwise injective over T , there exist subschemes Z ′i flat over T such that

IZ′i =
(
IZi ⊗M−1

i

)
�
(
Ni ⊗N−1

i+1

)
,

and the maps Ψi induce the injective maps

IZ′i → IZi+1
.

Thus, we obtain a classifying morphism f : T → S
[n]
β .

Conversely, starting with S
[n]
β , where n,β are as in the previous paragraph, we

have the universal objects

Φi : I [ni] → I [ni+1]
βi

1 ≤ i < r

over S × S[n]
β . Taking double dual we get the sections

Φ∗∗i : O
S×S[n]

β
→ O

S×S[n]
β

(Zβi).

By the same argument as in the previous paragraph, using H1(OS) = 0, we can
find the line bundlesM1, . . . ,Mr−1 on S andN ′1, . . . ,N ′r−1 on T such thatO(Zβi) ∼=
Mi �N ′i , where as before Mi and N ′i can be written as

Mi = L−1
i ⊗ Li+1 ⊗ L, N ′i = N−1

i ⊗Ni+1,

and hence Φi is equivalent to

(17) Φi :
(
I [ni] ⊗ Li

)
�Ni →

(
I [ni+1] ⊗ Li+1 ⊗ L

)
�Ni+1, 1 ≤ i < r.

By the discussion before the proposition, and the compatibility of n,β with v,
the maps (17) determine a flat family E of stable C∗-equivariant sheaves on X ×
S

[n]
β , and hence an S

[n]
β -valued point of ML

h (v)C
∗

(1r). Thus, we obtain a classifying

morphism g : S
[n]
β → ML

h (v)C
∗

(1r) with the image into the component T (by the

choice of Li). One can see by inspection that f and g are inverse of each other. �

Remark 3.9. Given n,β compatible with the vector v there could be several com-

ponents of T ⊂ ML
h (v)C

∗

(1r) which are isomorphic to S
[n]
β . However, if Pic(S) ∼= Z,

then, given such n,β, then S
[n]
β is isomorphic to a unique component ofML

h (v)C
∗

(1r).

The following definition is motivated by the proof of Proposition 3.8.

Definition 3.10. Suppose that S
[n]
β is a component T of ML

h (v)C
∗

as in Propo-
sition 3.8. If O(Zβi) ∼= Mi � Ni for i = 1, . . . , r − 1, where Mi ∈ Pic(S) and

Ni ∈ Pic(S
[n]
β ), then there are line bundles Li ∈ Pic(S) (determined by T ) such

that Mi = L−1
i ⊗ Li+1 ⊗ L. Let N0 = O

S
[n]
β

and define

(18) Ji :=
(
I [ni] ⊗ Li

)
�Ni−1 1 ≤ i ≤ r.

By the proof of Proposition 3.8, the maps Ji → Ji+1 ⊗ L induced by the universal

maps Φi over S
[n]
β give rise to a universal family of stable C∗-equivariant sheaves

over X × T .
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Notation. For any coherent sheaves F , G on S ×B flat over a scheme B, and a
nonzero integer a, we define

〈F ,G · ta〉 := e
(
RHomπ(F ,G · ta)

)
,

where π is the projection to the second factor of S × B, and e(−) denotes the
equivariant Euler class.

In the following proposition we compare the restriction of the C∗-fixed complex

E•,fix
red in (7) to the component T ∼= S

[n]
β with the obstruction theory of F • of

Theorem 5. We also find an explicit expression for the moving part of E•,fix
red

restricted to T in terms of the universal object over S
[n]
β .

Proposition 3.11. Using the isomorphism in Proposition 3.8, we have E•,fix
red |T ∼=

F • (of Theorem 5). As a result,

[ML
h (v)(1r)]

vir
red =

∑
T ∼= S

[n]
β

is a conn. comp. of

MLh (v)C
∗

(1r)

[S
[n]
β ]vir.

Moreover,

e
(
(E•,mov)∨|T

)
=

∏
1 ≤ i, j ≤ r
i 6= j − 1

〈Ji · t−i, Jj ⊗ L · t−j+1〉

sκ
∏

1 ≤ i, j ≤ r
i 6= j

〈Ji · t−i, Jj · t−j〉
,

where Ji are given in (18), and κ = 1 if L = ωS, otherwise κ = 0.

Proof. Step 1: (r = 2, fixed part of the obstruction theory) We first prove the case
r = 2. By the proof of Proposition 3.8, the short exact sequence (13) gives

(19) 0→ z∗J2 ⊗ t−1 → E|T ×X → z∗J1 → 0,

in which Ji (defined in (18)) carries no C∗-weights. Applying

RHom(E,−), RHom(−, z∗ J1), RHom(−, z∗ J2 · t−1)

to (19), we get the exact triangles in Db(X × T ) filling respectively the middle
row, and the third and the first columns of the following diagram:

(20) RHom(z∗ J1, z∗ J2 · t−1)

��

RHom(z∗ J1, z∗ J1)

��

RHom(E, z∗ J2 · t−1) //

��

RHom(E,E) // RHom(E, z∗ J1)

��

RHom(z∗ J2 · t−1, z∗ J2 · t−1) RHom(z∗ J2 · t−1, z∗ J1)
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For any coherent sheaf F on S, by [H06, Corollary 11.4], we have the following
natural exact triangle

F ⊗ L−1 · t−1[1]→ Lz∗z∗F → F ,
which for any other sheaf G on S, by adjunction, implies the exact triangle

z∗RHomS(F ,G)→ RHomX(z∗F , z∗ G)→ z∗RHomS(F ,G ⊗ L · t)[−1].

Using this and taking the C∗-fixed part of the diagram (20), we get the diagram

z∗RHom(J1, J2 ⊗ L)[−1]

��

z∗RHom(J1, J1)

��

RHom(E, z∗ J2 · t−1)fix //

��

RHom(E,E)fix // RHom(E, z∗ J1)fix

��

z∗RHom(J2, J2) 0

in which the middle row and the 1st and 2nd columns are exact triangles. We
conclude that

RHom(E, z∗ J1)fix ∼= z∗RHom(J1, J1)

RHom(E, z∗ J2 · t−1)fix ∼= Cone (z∗RHom(J2, J2)→ z∗RHom(J1, J2 ⊗ L)) [−1].

From this, and noting that the induced map z∗RHom(J1, J1)[−1]→ z∗RHom(J2, J2)
in the diagram is zero, we see that

RHom(E,E)fix ∼= Cone
(
z∗RHom(J1, J1)[−1]→ RHom(E, z∗ J2 · t−1)fix

) ∼=
Cone

(
z∗RHom(J1, J1)⊕ z∗RHom(J2, J2)→ z∗RHom(J1, J2 ⊗ L)

)
[−1].

Taking trace free part as in (7), applying Rp∗, and shifting by 1, we get

(E•,fix)∨|T ∼=

Cone
(

[RHomp(J1, J1)⊕RHomp(J2, J2)]0 → RHomp(J1, J2 ⊗ L)
)
∼=

Cone
( [

RHomπ(I [n1], I [n1])⊕RHomπ(I [n2], I [n2])
]

0
→ RHomπ(I [n1], I [n2]

β )
)
∼= F •∨.

This proves the claim about the fixed part of the obstruction theory when r = 2.
Step 2: (r = 2, moving part of the obstruction theory) We use diagram (20) in

Step 1 again, but this time we take the moving parts:

z∗RHom(J1, J2 · t−1)

��

z∗RHom(J1, J1 ⊗ L · t)[−1]

��

RHom(E, z∗ J2 · t−1)mov //

��

RHom(E,E)mov // RHom(E, z∗ J1)mov

��

z∗RHom(J2, J2 ⊗ L · t)[−1] A•
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in which

A• := Cone
(
z∗RHom(J2, J1 ⊗ L · t2)[−2]→ z∗RHom(J2, J1 · t)

)
,

and the middle row and the 1st and 2nd columns are exact triangles. We conclude
that

RHom(E, z∗ J1)mov ∼= Cone
(
A• → z∗RHom(J1, J1 ⊗ L · t)

)
[−1]

RHom(E, z∗ J2 · t−1)mov ∼= Cone
(
z∗RHom(J2, J2 ⊗ L · t)[−2]→ z∗RHom(J1, J2 · t−1)

)
.

Pushing forward, shifting by 1, and taking the equivariant Euler class, we get

e(RHomp(E,E)mov[1]|T ) =
〈J1, J1 ⊗ L · t〉 · 〈J2, J2 ⊗ L · t〉 · 〈J2, J1 ⊗ L · t2〉

〈J1, J2 · t−1〉 · 〈J2, J1 · t〉
.

Also note that

e(Ext3p(E,E)) =

{
1 L 6= ωS
e(OMωS · t) = s L = ωS.

This proves the claim about the moving part of the obstruction theory when r = 2.
Step 3: (r > 2) Again by the proof of Proposition 3.8, the short exact sequence

(13) gives

0→ E′1|T ×X ⊗ t−1 → E|T ×X → z∗ J1 → 0,

One can then repeat the argument of Step 1 and Step 2, by replacing z∗ J2 with

E′|T ×X , and use the induction on r to complete the proof of the proposition.
�

Corollary 3.12. Suppose that r = 2, D = c1(L) then

e
(
(E•,mov)∨|T

)
=
〈I [n1], I [n1](D) · t〉 · 〈I [n2], I [n2](D) · t〉 · 〈I [n2]

β , I [n1](2D) · t2〉
sκ · 〈I [n1], I [n2]

β (−D) · t−1〉 · 〈I [n2]
β , I [n1](D) · t〉

.

Proof. By Definition 3.10, I [n2]
β = I [n2] ⊗ L ⊗ L2 ⊗ L−1

1 ⊗ p∗N1. The result then
follows from the formula in Proposition 3.11 when r = 2.

�

Corollary 3.13. Suppose that r = 2. Using the notation of Propositions 3.8 and
3.11, Corollary 3.12 and Definition 3.5, we have

DTLh (v;α)(12) =
∑

T ∼=S[n1,n2]
β

(−1)−D·β−KS ·D/2+3D2/2−κ

2χ(L2)(−s)χ(L2)+χ(L)−χ(L−1)−κ

∫
[S

[n1,n2]
β ]vir

α ∪QT .

DTLh (v)(12) =
∑

T ∼=S[n1,n2]
β

χvir(S
[n1,n2]
β ) =

∑
T ∼=S[n1,n2]

β

NS(n1, n2, β;PT ),
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where all sums are over the connected components T ∼= S
[n1,n2]
β of ML

h (v)C
∗

(12), and

for any such n1, n2 and β,

QT := e(TL·t
S[n1]

) · e(TL·t
S[n2]

) ·
e(Gβ;ωS⊗L−1 · t−1) · e(Gβ;L−1 · t−1) · e(Kn1,n2

β;ωS⊗L−2 · t−2)

e(Kn1,n2

β;ωS⊗L−1 · t−1) · e(Kn1,n2

β;L−1 · t−1) · e(Gβ;ωS⊗L−2 · t−2)
,

PT := c (TS[n1]) ∪ c (TS[n2]) ∪
c (Gβ;OS)

c
(
Kn1,n2

β;OS

) .
Proof. The formulas are the direct corollary of Propositions 3.8 and 3.11 and Corol-
lary 3.12. The first formula follows from the following identities:

1. By Grothendieck-Verdier duality, for any coherent sheaves F , G on S × S[n1,n2]
β

flat over S
[n1,n2]
β we have

〈F ,G · ta〉 = (−1)v〈G,F ⊗ ωS · t−a〉,
where v is the rank of the complex RHomπ(F ,G) and 0 6= a ∈ Z.

2. For any 0 6= a ∈ Z and and M ∈ Pic(S),

e(Kn1,n2

β;M ⊗ ta)

e(Gβ;M ⊗ ta)
=

(a s)χ(M)

〈I [n1], I [n2]
β ⊗M · ta〉

,
e(TM ·t

S[ni]
)

sχ(M)
=

1

〈I [ni], I [ni] ⊗M · t〉
.

For the second formula note that by definition

DTLh (v)(12) =
∑

T ∼=S[n1,n2]
β

∫
[S

[n1,n2]
β ]vir

c
(
RHomπ

(
I [n1], I [n2]

β

))
c (RHomπ (I [n1], I [n1])) · c (RHomπ (I [n2], I [n2]))

.

Then we use

TS[ni]
∼= Ext1π

(
I [ni], I [ni]

)
, c

(
Extj 6=1

π

(
I [ni], I [ni]

))
= c

(
Extj 6=1

π

(
I [ni], I [ni]

)
0

)
= 1.

�

3.3. Generic Complete Intersections. Suppose that S ⊂ Pk+2 with k ≥ 1 is a
generic complete intersection of type (d1, . . . , dk) 6= (2), (3), (2, 2) and di > 1. Let
r = 2, h = OS(1), and n = n1, n2 and β be compatible with the vector v as defined
in Definition 3.7. Then, ωS = OS(−k − 3 + d1 + · · · + dk) and by the genericity
PicS = Z (see [L21]). If L = O(`) and Li = O(li) for i = 1, 2 we must have (by
the conditions before Definition 3.7 and (2))

` ≥ −k − 3 + d1 + · · ·+ dk, l1 > l2, `+ l2 ≥ l1.

Therefore, we get

(21) 0 < l1 − l2 ≤ `.

Note that in this case β = c1(OS(`+ l2− l1)), and that βD := KS−β is effective
if

(22) −k − 3 + d1 + · · ·+ dk − `+ l1 − l2 ≥ 0.
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These observations lead to the following proposition:

Proposition 3.14. Suppose that v = (r = 2, γ = c1(O(2g + 1)),m).

1. If ` ≤ 0 then ML
h (v)C

∗

(12) = ∅.
2. If ` = 1 then l1 = g + 1, l2 = g and

ML
h (v)C

∗

(12) =
∐

n1 + n2 = −m+ b

n1 ≥ n2

S[n1≥n2],

where b = d1 · · · dk (g2 + g + 1/2).
3. Suppose that d1 + · · ·+ dk ≥ k + 3, ` > 0 and l1, l2 are so that 2g + 1 = l1 + l2,

condition (21) is satisfied, but condition (22) is not satisfied. If S
[n1,n2]
β is a

nonempty component of ML
h (v)C

∗

(12) with β = c1(OS(`+ l2 − l1)) and n1 + n2 =

(l21/2 + l22/2)d1 · · · dk −m, then [S
[n1,n2]
β ]vir = 0.

Proof. Part 1 follows immediately from (21). Part 2 follows from (21) and Defini-
tion 3.7. Part 3 follows from Theorem 7.

�

Corollary 3.15. In the notation of Proposition 3.14 if L = ωS then

1. If S is a Fano complete intersection or a K3 surface i.e. when d1 + · · ·+ dk ≤
k + 3 then MωS

h (v)C
∗

(12) = ∅.
2. If S is isomorphic to one of the following five complete intersection types

(5), (3, 3), (4, 2), (3, 2, 2), (2, 2, 2, 2)

then MωS
h (v)C

∗

(12) is a disjoint union of the nested Hilbert schemes of points as

in Proposition 3.14 item (2).

3. If d1 + · · ·+ dk ≥ k + 4 and if S
[n1,n2]
β is a nonempty component of MωS

h (v)C
∗

(12),

then condition (22) is always satisfied.

�

Corollary 3.16. If S is isomorphic to one of the five types of generic complete
intersections in part (2) of Proposition 3.14, then,

1. Suppose that the conditions of Remark [GSY17a, Remark 5.10] hold for the class
α (e.g. α = 1), then,

DTωS
h (v;α)(12) =

∑
n1 + n2 = −m+ b

n2 ≤ n1

(−1)d1···dk−1

2χ(OS(2))(−s)χ(OS(1))−1

∫
S[n1]×S[n2]

α ∪ cn1+n2(E
n1,n2) ∪ e(TOS(1)·t

S[n1]
) · e(TOS(1)·t

S[n2]
) · e(En1,n2

OS(−1) · t−2)

e(En1,n2 · t−1) · e(En1,n2

OS(−1) · t−1)
,
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2.

DTωS
h (v)(12) =∑

n1 + n2 = −m+ b

n2 ≤ n1

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ c(TS[n1]) ∪ c(TS[n2])

c(En1,n2)
,

where b = d1 · · · dk (g2 + g + 1/2).

Proof. This follows from Theorem 6 by noting that all the (equivariant) classes in
the integrands satisfy conditions of [GSY17a, Remark 5.10]. Also note that for
any M ∈ Pic(S), G0;M = 0 and ι∗En1,n2

M = Kn1,n2

0;M .
�

4. Mochizuki’s result and proof of Theorem 4

In this section, we assume that pg(S) > 0, for instance, any generic hyperplane
section of a quintic 3-fold satisfies this assumption. The perfect obstruction theory
(see Corollary 3.3)

(RHomp(E,E)0[1])∨

gives the virtual cycle [Mh(v)]vir whose virtual dimension d is

d = γ2 − 4m− 3χ(OS).

Let P(E) be a polynomial in the slant products chi(E)/b for elements b ∈ H∗(S)
and i ∈ Z≥0. By the wall-crossing argument using the master space, Mochizuki
describes the invariant ∫

[Mh(v)]vir
P(E)

in terms of Seiberg-Witten invariants and certain integration over the Hilbert
schemes of points on S. The SW invariants are defined as follows: for a curve
class c ∈ H2(S,Z), let L be the line bundle on S with c1(L) = c, which is uniquely
determined by the assumption H1(OS) = 0. Let Sc be the Hilbert scheme of
curves in class c or equivalently the moduli space of non-zero morphisms OS → L,
that is isomorphic to P(H0(L)). By the discussion in item (3) of [GSY17a, Section
3], (Rπ∗OZc(Zc))∨ gives a perfect obstruction theory Sc

∼= P(H0(L)). Under this
identification, it is easy to see that the tangent and the obstruction bundles T(c)
and ob(c) naturally sit in the exact sequences on P(H0(L)):

0→ H0(OS)⊗O → H0(L)⊗O(1)→ T(c)→ 0,

0→ H1(L)⊗O(1)→ ob(c)→ H2(OS)⊗O → H2(L)⊗O(1)→ 0.

By [BF97, Proposition 5.6], the [Sc]
vir = e(ob(c)) ∩ [Sc]. Since by our assump-

tion pg > 0 a simple argument (cf. [M02, Proposition 6.3.1]) shows that the only
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way that e(ob(c)) 6= 0 is that h1(L) − h2(L) < 0 in which case, Rank(ob(c)) =
Rank(T (c)), i.e. the virtual dimension of Sc is 0. Then, by a simple calculation

SW(c) :=

∫
[Sc]vir

1 = (−1)h
0(L)−1

(
pg − 1

h0(L)− 1

)
.

Consider the decomposition

γ1 + γ2 = γ, γi ∈ H2(S,Z) are effective curve classes,

and let Lγi be the line bundle on S with c1(Lγi) = γi, and define I [ni]
Lγi

:= I [ni]⊗Lγi .
Recall that we use the symbol π′ to denote all the projections

S × S[ni] → S[ni], S × S[n1] × S[n2] → S[n1] × S[n2].

Notation. Let t′ is the trivial line bundle on S with the C∗-action of weight 1 on
the fibers7, and let s′ := c1(t′). We also consider the rank n tautological vector
bundle on S[ni], given by

V
[ni]
Lγi

:= π′∗ (OZ [ni] ⊗ Lγi) .

Following Mochizuki, we define

A(γ1, γ2, v;P) :=

∑
n1+n2=

γ2/2−m−γ1·γ2

∫
S[n1]×S[n2]

Ress′=0

e
(
V

[n1]
Lγ1

)
· P
(
I [n1]
Lγ1
· t′−1 ⊕ I [n2]

Lγ2
· t′
)
· e
(
V

[n2]
Lγ2
· t′2
)

(2s′)n1+n2−pg · Q
(
I [n1]
Lγ1
· t′−1, I [n2]

Lγ2
· t′
)

 .

where

Q
(
I [n1]
Lγ1
· t′−1, I [n2]

Lγ2
· t′
)

=

e
(
−RHomπ′

(
I [n1]
Lγ1
· t′−1, I [n2]

Lγ2
· t′
)
−RHomπ′

(
I [n2]
Lγ2
· t′, I [n1]

Lγ1
· t′−1

))
.

The following result was obtained by Mochizuki:

Proposition 4.1. (Mochizuki [M02, Theorem 1.4.6]) Assume that γ · h > 2KS · h
and χ(v) :=

∫
S
v · tdS ≥ 1. Then we have the following formula:

1

2

∫
Mh(v)

P(E) = −
∑

γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 21−χ(v) · A(γ1, γ2, v;P).

�

7Here we use the symbol t′ to distinguish this line bundle from the equivariant trivial line
bundle t defined before with respect to a different C∗-action.
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Remark 4.2. The factor 1/2 in the left hand side of the formula above comes
from the difference between Mochizuki’s convention and ours. Mochizuki used the
moduli stack of oriented stable sheaves, which is a µ2-gerb over our moduli space
Mh(v).

Remark 4.3. The assumptions γ · h > 2KS · h and χ(v) ≥ 1 are satisfied if
we replace v by v · Lkh for k � 0. Note that tensoring with a bundle does not
affect the isomorphism class of ML

h (v), and hence in particular the DT invariants
DTLh (v;α),DTLh (v) remain unchanged.

Recall that the C∗-fixed locus Mh(v)C
∗

decomposes into components

ML
h (v)C

∗
=ML

h (v)C
∗

(2)

∐
ML

h (v)C
∗

(12),

and by Proposition 3.1,

DTh(v;α) = DTh(v;α)(2) + DTh(v;α)(12), DTh(v) = DTh(v)(2) + DTh(v)(12).

Recall form Corollary 3.3

DTLh (v;α)(2) =

∫
[Mh(v)]vir

sκ · e (−RHomp(E,E⊗ L · t)) ∪ α,

DTLh (v)(2) =

∫
[Mh(v)]vir

cd (−RHomp(E,E)0) ,

Suppose that the class α can be written as a polynomial in chi(E)/b for b ∈
H∗(S). Since both e (−RHomp(E,E⊗ L · t)) and cd (−RHomp(E,E)0) can be
written as polynomials P1 and P2 of chi(E)/b for b ∈ H∗(S), by the Grothendieck-
Riemann-Roch theorem, we can apply Proposition 4.1 to write DTh(v)(2) in terms
of SW invariants and the integration over the Hilbert schemes of points. Therefore,
by Corollaries 3.13 and 3.16 we have

Proposition 4.4. Under the assumption of Proposition 4.1, we have the identity

DTLh (v;α) = −
∑

γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P1 ∪ α)

+
∑

T ∼=S[n1,n2]
β

is a conn. comp. of

MLh (v)C
∗

(12)

(−1)−D·β−KS ·D/2+3D2/2−κ

2χ(L2)(−s)χ(L2)+χ(L)−χ(L−1)−κ

∫
[S

[n1,n2]
β ]vir

α ∪QT .

DTLh (v) = −
∑

γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P2) +
∑

T ∼=S[n1,n2]
β

is a conn. comp. of

MLh (v)C
∗

(12)

NS(n1, n2, β;PT ).
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In particular, when L = ωS and S is isomorphic to one of five types generic com-
plete intersections (5) ⊂ P3, (3, 3) ⊂ P4, (4, 2) ⊂ P4, (3, 2, 2) ⊂ P5, (2, 2, 2, 2) ⊂
P6, and the class α additionally satisfies the requirements of [GSY17a, Remark
5.10] (e.g. α = 1) then,

DTωS
h (v;α) = −

∑
γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P1 ∪ α) +
(−1)d1···dk−1

2χ(OS(2))(−s)χ(OS(1))−1

∑
n1 + n2 = −m+ b

n2 ≤ n1

∫
S[n1]×S[n2]

α ∪ cn1+n2(E
n1,n2) ∪ e(TOS(1)

S[n1]
· t−1) · e(TOS(1)

S[n2]
· t−1) · e(En1,n2

OS(−1) · t−2)

e(En1,n2 · t−1) · e(En1,n2

OS(−1) · t−1)
,

DTωS
h (v) =−

∑
γ1+γ2=γ
γ1·h<γ2·h

SW(γ1) · 22−χ(v) · A(γ1, γ2, v;P2)

+
∑

n1+n2=−m+b
n2≤n1

∫
S[n1]×S[n2]

cn1+n2(E
n1,n2) ∪ c(TS[n1]) ∪ c(TS[n2])

c(En1,n2)
,

where γ = c1(OS(2g + 1)) and b = d1 · · · dk (g2 + g + 1/2).

�

References

[B09] Behrend, Kai. “Donaldson-Thomas type invariants via microlocal geometry.” Annals of
Mathematics (2009): 1307–1338.

[BF97] Behrend, Kai, and Barbara Fantechi. “The intrinsic normal cone.” Inventiones Mathe-
maticae 128 (1997): 45–88.

[DM11] Denef, Frederik and Moore Gregory W. “Split states, entropy enigmas, holes and halos.”
Journal of High Energy Physics 11 (2011): 1–153.
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