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Abstract
Let � and w be locally finite positive Borel measures on R which do not share a
common point mass. Assume that the pair of weights satisfy a Poisson A2 condition,
and satisfy the testing conditions below, for the Hilbert transform H ,Z

I

H.�1I /2 dw � �.I /;

Z
I

H.w1I /2 d� �w.I /;

with constants independent of the choice of interval I . Then H.� �/ maps L2.�/ to
L2.w/, verifying a conjecture of Nazarov, Treil, and Volberg. The proof has two com-
ponents, a global-to-local reduction, carried out in this article, and an analysis of the
local problem, to be elaborated in a future Part II version of this article.

1. Introduction
Define a truncated Hilbert transform of a locally bounded signed measure � by

H�;ı�.x/ WD

Z
�<jy�xj<ı

d�.y/

y � x
; 0 < � < ı:

Given weights (i.e., locally bounded positive Borel measures) � andw on the real line
R, we consider the following two-weight norm inequality for the Hilbert transform,

sup
0<�<ı

Z
R

ˇ̌
H�;ı.f �/

ˇ̌2
dw �N 2

Z
R
jf j2 d�; f 2L2.�/; (1.1)
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where N is the best constant in the inequality, uniform over all truncations of the
Hilbert transform kernel. Below, will write the inequality above as kH.f�/kL2.w/ �
N kf kL2.w/, that is, the uniformity over the truncation parameters is suppressed.

The primary question is to find a real variable characterization of this inequality,
and the theorem below is an answer to the beautiful conjecture of Nazarov, Treil, and
Volberg (see [29, p. 127]). Set

P.�; I / WD

Z
R

jI j

jI j2C dist.x; I /2
�.dx/;

which is approximately the Poisson extension of � to the upper half-plane, evaluated
at .xI ; jI j/, where xI is the center of I .

THEOREM 1.2
Let � and w be locally finite positive Borel measures on the real line R with no
common point masses. Then, the two-weight inequality (1.1) holds if and only if these
three conditions hold uniformly over all intervals I :

P.�; I /P.w; I / �A2; (1.3)Z
I

ˇ̌
H.1I�/

ˇ̌2
dw � T 2�.I /;

Z
I

ˇ̌
H.1Iw/

ˇ̌2
d� � T 2w.I /: (1.4)

We have

N �A
1=2
2 C T DWH ; (1.5)

where A2 and T are the best constants in the inequalities above.

It is well known (see [29]) that theA2 condition is necessary for the norm inequal-
ity, and the inequalities (1.4) are obviously necessary, thus the content of the theorem
is the sufficiency of the A2 and testing inequalities. In the present article we will carry
out a global-to-local reduction in the proof of sufficiency, while the analysis of the
local problem will be made in a future article (Part II of this series; see [5]).

The Nazarov–Treil–Volberg conjecture has only been verified before under addi-
tional hypotheses on the pair of weights, hypotheses which are not necessary for the
two-weight inequality. The so-called pivotal condition of [29] is not necessary, as
was proved in [9]. The pivotal condition is still an interesting condition: It is all that
is needed to characterize the boundedness of the Hilbert transform, together with the
maximal function in both directions. But, the boundedness of this triple of operators
is decoupled in the two-weight setting (see [24]).
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Our argument has these attributes. Certain degeneracies of the pair of weights
must be addressed, such as the contribution made by Nazarov, Treil, and Volberg in
their innovative 2004 paper [18] (see also [29]), which was further sharpened with the
property of energy in [9], a crucial property of the Hilbert transform. This theme is fur-
ther developed in the following pages, with the notion of functional energy explained
in Section 5.

The proof should proceed through the analysis of the bilinear form hH.�f /;gwi,
as one expects certain paraproducts to appear. Still, the paraproducts have no canoni-
cal form, suggesting that the proof is highly nonlinear in f and g. The nonlinear point
of view was initiated in [7] and is central to our work here. A particular feature of our
arguments is a repeated appeal to certain quasiorthogonality arguments, providing
(many) simplifications over prior arguments. For instance, we never find ourselves
constructing auxiliary measures, and verifying that they are Carleson, a frequent step
in many related arguments.

One can phrase a two-weight inequality question for any operator T , a ques-
tion that became apparent with the foundational paper of Muckenhoupt [12] on Ap
weights for the maximal function. Indeed, the case of Hardy’s inequality was quickly
resolved by Muckenhoupt [11]. The maximal function was resolved by the second
author in [26], as well as the fractional integrals, and, essential for this paper, Poisson
integrals (see [27]). The latter paper established a result which closely paralleled the
contemporaneous T1 theorem of David and Journé [1]. This connection, fundamental
in nature, was not fully appreciated until the innovative work of Nazarov, Treil, and
Volberg [14]–[16] in developing a nonhomogeneous theory of singular integrals. The
two-weight problem for dyadic singular integrals was only resolved recently in [17].
Partial information about the two-weight problem for singular integrals in [21] was
basic to the resolution of the A2 conjecture in [3], and several related results (see [4],
[6], [21], [22]). Our result is the first real variable characterization of a two-weight
inequality for a continuous singular integral.

Interest in the two-weight problem for the Hilbert transform arises from its natu-
ral occurrence in questions related to operator theory (see [20], [25]), spectral theory
(see [20]), model spaces (see [23]), and analytic function spaces (see [10]). In the
context of operator theory, Sarason posed the conjecture (see [2]) that the Hilbert
transform would be bounded if the pair of weights satisfied the (full) Poisson A2 con-
dition. This was disproved by Nazarov [13]. Advances on these questions have been
linked to a finer understanding of the two-weight question (see, e.g., [19], [20]) built
upon Nazarov’s counterexample.
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2. Dyadic grids and Haar functions

2.1. Choice of truncation
We have stated the main theorem with hard cutoffs in the truncation of the Hilbert
transform. There are many possible variants in the choice of truncation; moreover,
the proof of sufficiency requires a different choice of truncation.

Consider a truncation given by

QH˛;ˇ .�f /.x/ WD

Z
f .y/K˛;ˇ .y � x/�.dy/;

where K˛;ˇ .y/ is chosen to minimize the technicalities associated with off-diagonal
considerations. Specifically, set K˛;ˇ .0/D 0, and otherwise K˛;ˇ .y/ is odd and for
y > 0,

K˛;ˇ .y/ WD

8̂̂̂̂
<̂
ˆ̂̂:
� y

˛2
C 2

˛
0 < y < ˛;

1
y

˛ � y � ˇ;

� y

ˇ2
C 2

ˇ
ˇ < y < 2ˇ;

0 2ˇ � y:

This is a C 1 function on .0; 2ˇ/, and is Lipschitz, convex, and monotone on .0;1/.
We now argue that we can use these truncations in the proof of the sufficiency

bound of our main theorem.

PROPOSITION 2.1
If the pair of weights �;w satisfy the A2 bound (1.3), then one has the uniform norm
estimate with the hard truncations (1.1) if and only if one has uniform norm estimate
for the smooth truncations,

sup
0<˛<ˇ

�� QH˛;ˇ .�f /��w �N kf k� :

Indeed, jH˛;ˇ .�f /� QH˛;ˇ .�f /j�A˛.� jf j/CAˇ .� jf j/, where these last two
operators are single-scale averages, namely,

A˛.��/.x/D ˛
�1

Z
.x�3˛;xC3˛/

�.y/�.dy/:

But, the (simple) A2 bound is all that is needed to provide a uniform bound on the
operators A˛.��/. So the proposition follows.

Henceforth we use the truncations QH˛;ˇ , and we suppress the tilde in the notation.
The particular choice of truncation is motivated by this off-diagonal estimate on the
kernels.
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PROPOSITION 2.2
Suppose that 2jx � x0j< jx � yj; then

K˛;ˇ .y � x
0/�K˛;ˇ .y � x/D Cx;x0;y

x0 � x

.y � x/.y � x0/
;

where Cx;x0;y D 1; 2˛ < jx � yj<
1

2
ˇ; (2.3)

and is otherwise positive and never more than 4.

Proof
The assumptions imply that y � x0 and y � x have the same sign. Assume without
loss of generality that 0 < y � x0 < y � x. If 2˛ < jx � yj < ˇ=2, it follows that
˛ < jx0 � yj< ˇ, and so by the definition,

K˛;ˇ .y � x
0/�K˛;ˇ .y � x/D

1

y � x0
�

1

y � x
D

x0 � x

.y � x/.y � x0/
:

And, in the general case, we have j d
dt
K˛;ˇ .t/j � 4t

�2, so that

0�K˛;ˇ .y � x
0/�K˛;ˇ .y � x/�

Z y�x

y�x0

4

t2
dt D 4

x0 � x

.y � x/.y � x0/
:

2.2. Dyadic grids
A collection of intervals G is a grid if for all G;G0 2 G , we have G\G0 2 ¹;;G;G0º.
By a dyadic grid we mean a grid D of intervals of R such that for each interval
I 2D , the subcollection ¹I 0 2D W jI 0j D jI jº partitions R, aside from endpoints of
the intervals. In addition, the left and right halves of I , denoted by I˙, are also in D .

For I 2D , the left and right halves I˙ are referred to as the children of I . We
denote by �DI the unique interval in D having I as a child, and we refer to �DI as
the D-parent of I .

We will work with subsets F �D . We say that I has F -parent �F I D F if
F 2 F is the minimal element of F that contains I .

2.3. Haar functions
Let � be a weight on R, one that does not assign positive mass to any endpoint of a
dyadic grid D . If I 2D is such that � assigns nonzero weight to both children of I ,
the associated Haar function is

h�I WD

s
�.I�/�.IC/

�.I /

�
�

I�

�.I�/
C

IC

�.IC/

�
:
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In this definition, we are identifying an interval with its indicator function, and we will
do so throughout the remainder of the paper. This is an L2.�/-normalized function,
and has � -integral zero. For any dyadic interval I0, we have that ¹�.I0/�1=2I0º [
¹h�I W I 2D ; I � I0º is an orthogonal basis for L2.I0; �/.

We will use the notation Of .I /D hf;h�I i� , as well as

��I f D hf;h
�
I i�h

�
I D ICE

�
IC
f C I�E

�
I�
f � IE�I f:

The second equality is the familiar martingale difference equality, and so we will
refer to ��I f as a martingale difference. It implies the familiar telescoping identity
E�Jf D

P
I WI�J E

�
J�

�
I f .

For any function the Haar support of f is the collection ¹I 2D W Of .I /¤ 0º.

2.4. Good-bad decomposition
With a choice of dyadic grid D understood, we say that J 2D is .�; r/-good if and
only if for all intervals I 2D with jI j � 2r�1jJ j, the distance from J to the boundary
of either child of I is at least jJ j�jI j1�� .

For f 2 L2.�/, we set P �goodf D
P

I2D
I is .�; r/-good

��I f . The projection Pwgoodg

is defined similarly. To make the two reductions below, one must make a random
selection of grids, as is detailed in [9] and [29]. The use of random dyadic grids has
been a basic tool since the foundational work of [14]–[16]. Important elements of the
suppressed construction of random grids are the following.
(1) It suffices to consider a single dyadic grid D .
(2) For any fixed 0 < � < 1=2, we can choose an integer r sufficiently large so

that it suffices to consider f such that f D P �goodf , and likewise for g 2
L2.w/. Namely, it suffices to estimate the constant below, for an arbitrary
dyadic grid D , ˇ̌

hH�f;giw
ˇ̌
�Ngoodkf k�kgkw ;

where it is required that f D P �good 2L
2.�/ and gD Pwgood 2L

2.w/.
That the functions are good is, at some moments, an essential property. We sup-

press it in notation, however, taking care to emphasize in the text those places in which
we appeal to the property of being good.

A reduction, using randomized dyadic grids, allows one the extraordinarily useful
reduction in the next lemma. This is a well-known reduction, due to Nazarov, Treil,
and Volberg, explained in full detail in the current setting in [18, Section 4]. Below,
H is as in (1.5), the normalized sum of the A2 and testing constants.

LEMMA 2.4
For all sufficiently small �, and sufficiently large r , this holds. Suppose that for any
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dyadic grid D , such that no endpoint of an interval I 2D is a point mass for � or
w,� we have ˇ̌

hH�P
�
goodf;P

w
goodgiw

ˇ̌
� Hkf k�kgkw : (2.5)

Then, the same inequality holds without the projections P �good, and Pwgood.

Inequality (2.5) should be understood as an inequality, uniform over the class of
smooth truncations of the Hilbert transform. But, we can suppress this in the notation
without causing confusion. The bilinear form only needs to be controlled for .�; r/-
good functions f and g, goodness being defined with respect to a fixed dyadic grid.
Suppressing the notation, we write good for .�; r/-good, and it is always assumed that
the dyadic grid D is fixed, and only good intervals are in the Haar support of f and
g, though is also suppressed in the notation.

3. The global-to-local reduction
The goal of this section is to reduce the analysis of the bilinear form in (2.5) to the
local estimate, (3.4). It is sufficient to assume that f and g are supported on an interval
I 0; by trivial use of the interval testing condition, we can further assume that f and g
are of integral zero in their respective spaces. Thus, f is in the linear span of (good)
Haar functions h�I for I � I 0, and similarly for g, and

hH�f;giw D
X

I;J WI;J�I0

hH��
�
I f;�

w
J giw :

The argument is independent of the choice of truncation that implicitly appears in the
inner product above.

The double sum is broken into different summands. Many of the resulting cases
are elementary, and we summarize these estimates as follows. Define the bilinear
form

Babove.f;g/ WD
X

I WI�I0

X
J WJ�IJ

E�IJ�
�
I f � hH�IJ ;�

w
J giw ;

where here and throughout, J � I means J � I and 2r jJ j � jI j. In addition, the
argument of the Hilbert transform, IJ , is the child of I that contains J , so that ��I f
is constant on IJ . Define Bbelow.f;g/ in the dual fashion.

�This set of dyadic grids that fail this condition have probability zero in standard constructions of the random
dyadic grids.
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LEMMA 3.1
We have, with the notation of (1.5),ˇ̌

hH�f;giw �B
above.f;g/�Bbelow.f;g/

ˇ̌
� Hkf k�kgkw :

This is a common reduction in a proof of a T1 theorem, and in the current context,
it only requires goodness of intervals and the A2 condition. For a proof, one can
consult [29] and [18]. The lemma is specifically phrased and proved in this way in [7,
Section 8].

These definitions are needed to phrase the global-to-local reduction. The follow-
ing definition depends upon the essential energy inequality (4.7) in Section 4.

Definition 3.2
Given any interval F0, define Fenergy.F0/ to be the maximal subintervals F � F0 such
that

P.�F0;F /
2E.w;F /2w.F / > 10C0H

2�.F /;

where E.w;F / is defined in (4.6) and where C0 is the constant in Proposition 4.8.
We have �.

S
¹F W F 2 F .F0/º/� .�=10/.F0/.

Definition 3.3
Let I0 be an interval, and let S be a collection of disjoint intervals contained in I0.
A function f 2 L20.I0; �/ is said to be uniform (with respect to S ) if the following
conditions are met.
(1) Each energy stopping interval F 2 Fenergy.I0/ is contained in some S 2 S .
(2) The function f is constant on each interval S 2 S .
(3) For any interval I � I0 which is not contained in any S 2 S , E�I jf j � 1.
We will say that g is weakly adapted to a function f uniform with respect to S if
J � S for some interval S 2 S implies that hg;hwJ iw D 0. We will also say that g is
weakly adapted to S .

The constant L is defined as the best constant in the local estimateˇ̌
Babove.f;g/

ˇ̌
�L

®
�.I0/

1=2Ckf k�
¯
kgkw ; (3.4)

where f;g are of mean zero on their respective spaces, supported on an interval I0.
Moreover, f is uniform and g is weakly adapted to f . The inequality above is homo-
geneous in g, but not f , since the term �.I0/

1=2 is motivated by the bounded averages
property of f .
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THEOREM 3.5 (Global-to-local reduction)
We have ˇ̌

Babove.f;g/
ˇ̌
� ¹H CLºkf k�kgkw :

The same inequality holds for the dual form Bbelow.f;g/.

A reduction of this type is a familiar aspect of many proofs of a T1 theorem,
proved by exploiting standard off-diagonal estimates for Calderón–Zygmund ker-
nels, but in the current setting, it is a much deeper fact, a consequence of the func-
tional energy inequality of Section 5. We make the following construction for an
f 2 L2.I 0; �/, of � -integral zero. Add I 0 to F , and set ˛f .I 0/ WD E�

I0
jf j. In the

inductive stage, if F 2 F is minimal, add to F those maximal descendants F 0 of F
such that F 0 2 Fenergy.F / or E�F 0 jf j � 10˛f .F /. Then define

˛f .F
0/ WD

´
˛f .F / E�F 0 jf j< 2˛f .F /;

E�F 0 jf j otherwise:

If there are no such intervals F 0, the construction stops. We refer to F and ˛f .�/ as
Calderón–Zygmund stopping data for f , following the terminology of [7, Definition
3.5]. Their key properties are collected here.

LEMMA 3.6
For F and ˛f .�/ as defined above, the following hold.
(1) The dyadic interval I0 is the maximal element of F .
(2) For all I 2D , I � I 0, we have E�I jf j � 10˛f .�F I /.
(3) The datum ˛f is monotonic: IfF;F 0 2 F andF � F 0, then ˛f .F /� ˛f .F 0/.
(4) The collection F is � -Carleson in thatX

F 2F WF�S

�.F /� 2�.S/; S 2D : (3.7)

(5) We have the inequality ���X
F 2F

˛f .F / �F
���
�

� kf k� : (3.8)

Proof
The first three properties are immediate from the construction. The fourth, the
� -Carleson property is seen this way. It suffices to check the property for S 2 F .
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Now, the F -children can be in Fenergy.S/, which satisfyX
F 02Fenergy.S/

�.F 0/�
1

10
�.S/:

Otherwise, note that by choice of ˛f .�/, we have E�S jf j � 2˛f .S/. These intervals
F 0 satisfy E�F 0 jf j � 10˛f .S/ � 5E

�
S jf j. These intervals satisfy the display above

with 1=10 replaced by 1=5. Hence, (3.7) holds.
For the final property, let G � F be the subset at which the stopping values

change. If F 2 F � G , and G is the G -parent of F , then ˛f .F /D ˛f .G/. Set

ˆG WD
X

F 2F W�GFDG

F:

Define Gk WD ¹ˆG � 2kº, for k D 0; 1; : : : . The � -Carleson property implies integra-
bility of all orders in � -measure of ˆG . Using the third moment, we have �.Gk/ �
2�3k�.G/. Then, estimate���X

F 2F

˛f .F / �F
���2
�
D
���X
G2G

˛f .G/ˆG

���2
�

�
��� 1X
kD0

.kC 1/C1�1
X
G2G

˛f .G/2
k1Gk

���2
�

�

�
1X
kD0

.kC 1/2
���X
G2G

˛f .G/2
k1Gk .x/

���2
�

��

�
1X
kD0

.kC 1/2
X
G2G

˛f .G/
222k�.Gk/

�
X
G2G

˛f .G/
2�.G/� kMf k2� � kf k2� :

Note that we have used Cauchy–Schwarz in k at the step marked by an �. In the
step marked with ��, for each point x, the nonzero summands are a (super)geometric
sequence of scalars, so the square can be moved inside the sum. Finally, we use the
estimate on the � -measure of Gk , and compare to the maximal function Mf to com-
plete the estimate.

We will use the notation

P �F f WD
X

I2DW�F IDF

��I f; F 2 F ;
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and similarly forQw
F , but rather than use �F J in the definition, we use P�F J , defined

to be the minimal F 2 F with J � F . Without this alternate definition, some delicate
case analysis would be forced upon us. The inequality (3.8) allows us to estimateX

F 2F

®
˛f .F /�.F /

1=2CkP �F f k�
¯
kQw

F gkw

�
hX
F 2F

®
˛f .F /

2�.F /CkP �F f k
2
�

¯
	
X
F 2F

kQw
F gk

2
w

i1=2
� kf k�kgkw : (3.9)

We will refer to this as the quasiorthogonality argument, and we remark that it only
requires orthogonality of the projections Qw

F g. It is very useful.

LEMMA 3.10
We have ˇ̌

Babove.f;g/�Babove
F .f;g/

ˇ̌
� Hkf k�kgkw ;

where Babove
F .f;g/ WD

X
F 2F

Babove.P �F f;Q
w
F g/:

Proof
We apply the functional energy inequality of Section 5. Observe thatf D

P
F 2F P

�
F f

and that X
J WJ�I0

�wJ gD
X
F 2F

Qw
F g:

From the definition of Babove.f;g/, we can assume that g equals the sum above.
Therefore,

Babove.f;g/D
X
F 02F

X
F 2F

Babove.P �F 0f;Q
w
F g/:

In the sum above, we can also add the restriction that F 0 \ F ¤ ;, for otherwise
Babove.P �F 0f;Q

w
F g/ D 0. For a pair of intervals J � IJ , note that this implies that

J � �F I ; that is, P�F J � �F I . Therefore, we can add the restriction F � F 0. The
case of F 0 D F is the definition of Babove

F
.f;g/, so that it suffices to estimateX

F;F 02F
F 0�F

Babove.P �F 0f;Q
w
F g/: (3.11)
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Observe that the functions gF WD Qw
F g are F -adapted in the sense of Defini-

tion 5.1, and by construction F satisfies the Carleson measure condition (3.7). We
take these steps to apply the functional energy inequality. The argument of the Hilbert
transform is IF , the child of I that contains F . Write IF D F C .IF � F /, and
use linearity of H� . Note that by the standard martingale difference identity and the
construction of stopping data,ˇ̌̌ X

I WI�F

E�IF�
�
I f
ˇ̌̌
� ˛f .F /; F 2 F :

Hence, invoking interval testing,ˇ̌̌X
F 2F

X
I WI�F

E�IF�
�
I f � hH�F;gF iw

ˇ̌̌
�
X
F 2F

˛f .F /
ˇ̌
hH�F;gF iw

ˇ̌
� H

X
F 2F

˛f .F /�.F /
1=2kgF kw :

Quasiorthogonality bounds this last expression.
For the second expression, when the argument of the Hilbert transform is IF �F ,

first note thatˇ̌̌ X
I WI�F

E�IF�
�
I f � .IF �F /

ˇ̌̌
�ˆ WD

X
F 02F

˛f .F
0/ �F 0; F 2 F :

Therefore, by the definition of F -adapted, the monotonicity property (4.3) applies,
and yieldsˇ̌̌ X
I WI�F

E�IF�
�
I f �

˝
H� .IF �F /;gF

˛
w

ˇ̌̌
�

X
J2J�.F /

P.ˆ�;J /
D x
jJ j
; J gF

E
w
; F 2 F :

Here, J�.F / are the maximal good intervalsJ � F , and gF WD
P
J2J.F /WJ�F jbg.J /j �

hwJ , so that every term has a positive inner product with x. The sum over F 2 F

of this last expression is controlled by functional energy, and by the property that
kˆk� � kf k� . This completes the bound for (3.11).

Proof of Theorem 3.5
By Lemma 3.10, it remains to control Babove

F
.f;g/. Keeping the quasiorthogonality

argument in mind, we see that appropriate control on the individual summands is
enough to control it. For each F 2 F , let SF be the F -children of F . Observe that
the function �

C˛f .F /
��1

P �F f (3.12)
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is uniform on F with respect to SF , for an appropriate absolute constantC . Moreover,
the functionQw

F g does not have any interval J in its Haar support strongly contained
in an interval S 2 SF . That is, it is weakly adapted to the function in (3.12). Therefore,
by assumption,ˇ̌

Babove.P �F f;Q
w
F g/

ˇ̌
�L

®
˛F .F /�.F /

1=2CkP �F f k�
¯
kQw

F gkw :

The sum over F 2 F of the right-hand side is bounded by the quasiorthogonality
argument of (3.9).

4. Energy, monotonicity, and Poisson
Our theorem (Theorem 1.2) is particular to the Hilbert transform, and so depends
upon special properties of it. They largely extend from the fact that the derivative
of �1=y is positive. The following monotonicity property for the Hilbert transform
was observed in [7, Lemma 5.8], and is basic to the analysis of the functional energy
inequality.

LEMMA 4.1 (Monotonicity property)
Let K � I be two intervals, and assume that � does not have point masses at the end
point of I . Then, for any function g 2L2.I;w/, with w-integral zero, and ˇ > 2jKj,

P
�
� � .K � I /; I

�D x
jI j
; g
E
w

� lim inf
˛#0

˝
H˛;ˇ

�
�.K � I /

�
; g
˛
w
: (4.2)

Here, g D
P
J 0 jbg.J 0/jhwJ 0 is a Haar multiplier applied to g. If J is a good interval,

J � I , then, for function g 2L2.J;w/, with w-integral zero, and signed measures �
and � supported on K � I , with j�j ��, we have

sup
0<˛<ˇ

ˇ̌
hH˛;ˇ�;giw

ˇ̌
� P.�;J /

D x
jJ j
; g
E
w
: (4.3)

The truncations enter into the formulation of the lemma, since they play a notable
role here. We need this preparation.

LEMMA 4.4
Let I and J be two intervals which share an endpoint a, at which neither � nor w
have a point mass. Then,

sup
0<˛<ˇ

ˇ̌
hH˛;ˇ�I;J iw

ˇ̌
� A

1=2
2

p
�.I /w.J /: (4.5)

Proof
If jI j ' jJ j, this inequality is the weak boundedness principle of [9, Section 2.2]. So,
let us assume that 10jI j< jJ j. Then, it remains to bound
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ˇ̌˝
H˛;ˇ�I; .J n 10I /

˛
w

ˇ̌
�

1X
nD11

�.I /w.J \ ..nC 1/I n nI //

njI j

�
�.I /

jI j1=2
P.w; I /1=2w.J /1=2 � A

1=2
2

p
�.I /w.J /:

This depends upon obvious kernel bounds, and an application of Cauchy–Schwarz to
derive the Poisson term above.

Proof of Lemma 4.1
By linearity, it suffices to prove (4.2) in the case of gD hwI . The point is to separate the
supports of the functions involved. Since I does not have a point mass at the end point
of I , we have �.	I n I / # 0 as 	 # 1. It follows that we can fix a 	 > 1 sufficiently
small so that P.�.K � I /; I /' P.�.K � 	I /; I /, and one more condition that we
will come back to. Then, for 0 < ˛ < .1=2/.	� 1/jI j, we estimate as below, where
xI is the center of I ,˝

H˛;ˇ
�
�.K � 	I /

�
; hwI

˛
w

D

Z
K��I

Z
I

®
K˛;ˇ .y � x/�K˛;ˇ .y � xI /

¯
hwI .x/w.dx/�.dy/

D

Z
K��I

Z
I

x � xI

.y � x/.y � xJ /
hwI .x/w.dx/�.dy/

� P
�
�.K � I /; I

�Dx � xI
jI j

; hwI

E
w
:

We have subtracted the term, since hwI has integral zero, then we applied (2.3) with
Cx;xJ ;y D 1, as follows from our choices of ˛ and ˇ. Then, note that .x�xJ /hwI � 0,
so that we can pull out the Poisson term. The last line follows by our selection of 	
sufficiently close to 1. Then, the last condition needed is to select 	 sufficiently close
to 1 that, in view of (4.5),

sup
˛;ˇ

ˇ̌˝
H˛;ˇ .	I n I /; h

w
I

˛
w

ˇ̌
� A

1=2
2

p
�.	I n I / < cP

�
�.K � I /; I

�Dx � xI
jI j

; hwI

E
w
:

In the last line, c > 0 is an absolute constant. This completes the proof of (4.2).
Turn to (4.3). The estimate (2.3) applies:ˇ̌
hH˛;ˇ�;giw

ˇ̌
D
ˇ̌̌Z
K�I

Z
J

®
K˛;ˇ .y � x/�K˛;ˇ .y � xJ /

¯
hwJ .x/w.dx/�.dy/

ˇ̌̌
D
ˇ̌̌Z
K�I

Z
J

Cx;xJ ;y
.x � xJ /

.y � x/.y � xJ /
hwJ .x/w.dx/�.dy/

ˇ̌̌
:
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But recall that 0� Cx;xJ ;y � 4 and that it equals 1 for ˛ sufficiently small. Moreover,
y � x and y � xJ have the same sign, and .x � xJ /hwJ .x/� 0. So an upper bound is
obtained by passing from � to �:ˇ̌

hH˛;ˇ�;giw
ˇ̌
�

Z
K�I

Z
J

.x � xJ /

.y � x/.y � xJ /
hwJ .x/w.dx/�.dy/

' P.�;J /
D x
jJ j
; hwJ

E
w
:

The concept of energy is fundamental to the subject. For interval I , define

E.w;I /2 WD E
w.dx/
I E

w.dx0/
I

.x � x0/2

jI j2

D
2

w.I /

X
J�I

D x
jI j
; hwJ

E2
w
: (4.6)

Now, consider the energy constant, the smallest constant E such that this condition
holds, as presented or in its dual formulation. For all dyadic intervals I0, all partitions
P of I0 into dyadic intervals, we haveX

I2P

P.�I0; I /
2E.w;I /2w.I /� E2�.I0/: (4.7)

This was shown in [9, Proposition 2.11].

PROPOSITION 4.8
For a finite constant C0,

E2 � C0¹A
1=2
2 C T º2 D C0H

2:

We will always estimate E by H . The proof is recalled here.

Proof
It suffices to consider the case of finite partitions P of I . We first prove a version of
the energy inequality with holes in the argument of the Poisson. It follows from (4.2)
that we can fix 0 < ˛ < ˇ such that

P
�
�.I0 � I /; I

�2
E.w;I /2w.I /�

��H˛;ˇ ��.I0 � I /���2L2.I;�/; I 2P :

Then, using linearity and interval testing, we haveX
I2P

��H˛;ˇ .� � I0/��2L2.I;�/ � ��H˛;ˇ .� � I0/��2L2.I;�/ � H2�.I0/
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and X
I2P

��H˛;ˇ .� � I /��2L2.I;�/ � H2
X
I2P

�.I /� H2�.I0/:

Then, by the A2 bound, we have P.� � I; I /2E.w;I /2w.I / � �.I /, which we can
sum over the partition. This completes the proof.

One should keep in mind that the concept of energy is related to the tails of the
Hilbert transform. The energy inequality, and its multiscale extension to the functional
energy inequality, show that the control of the tails is very subtle in this problem.

We also need the following elementary Poisson estimate from [29]; used occa-
sionally in this argument, it is crucial to the proof of Lemma 3.1.

LEMMA 4.9
Suppose that J � I � I0, and that J is good. Then

jJ j2��1P
�
�.I0 � I /; J

�
� jI j2��1P

�
�.I0 � I /; I

�
: (4.10)

Proof
We have dist.J; I0 � I /� jJ j�jI j1�� , so that for any x 2 I0 � I , we have

jJ j2�

.jJ j C dist.x; J //2
� jI j2�

.jI j C dist.x; I //2
:

Integrating this last expression, it follows that

jJ j2��1P
�
� � .I0 � I /; J

�
D jJ j2��1

Z
I0�I

jJ j

.jJ j C dist.x; J //2
d�

� jI j2�
Z
I0�I

1

.jJ j C dist.x; J //2
d�:

And this proves the inequality.

5. The functional energy inequality
We state an important multiscale extension of the energy inequality (4.7).

Definition 5.1
Let F be a collection of dyadic intervals. A collection of (good) functions ¹gF ºF 2F
in L2.w/ is said to be F -adapted if, for all F 2 F , the Haar support of the function
gF is contained in ¹J W P�F J D F º.



TWO-WEIGHT HILBERT TRANSFORM, I 2811

Definition 5.2
Let F be the smallest constant in the inequality below, or its dual form. The inequality
holds for all nonnegative h 2L2.�/, all � -Carleson collections F , and all F -adapted
collections ¹gF ºF 2F :X

F 2F

X
J�2J�.F /

P.h�;J �/
ˇ̌̌D x

jJ �j
; gF J

�
E
w

ˇ̌̌
� F khk�

hX
F 2F

kgF k
2
w

i1=2
:

Here J�.F / consists of the maximal good intervals J � F . Note that the estimate is
universal in h and F , separately.

This constant was identified in [7], and is herein shown to be necessary from the
A2 and interval testing inequalities. Recall the definition of H in (1.5).

THEOREM 5.3
Assume that F satisfies (3.7); then, F � H .

The first step in the proof is the domination of the constant F by the best con-
stant in a certain two-weight inequality for the Poisson operator, with the weights
being determined by w and � in a particular way. This is the decisive step, since there
is a two-weight inequality for the Poisson operator proved by one of us in [27, Theo-
rem 2]. It reduces the full norm inequality to simpler testing conditions, which are in
turn controlled by the A2 and Hilbert transform testing conditions.

5.1. The two-weight Poisson inequality
Consider the weight

�

X
F 2F

X
J2J�.F /

���PwF;J x

jJ j

���2
w
� ı.xJ ;jJ j/:

Here, PwF;J WD
P
J 0WJ 0�J; P�F JDF

�wJ 0 . We can replace x by x � c for any choice of c
we wish; the projection is unchanged. And ıq denotes a Dirac unit mass at a point q in
the upper half-plane R2C. We prove the two-weight inequality for the Poisson integral��P.h�/��

L2.R2
C
;�/

� Hkhk� ;

for all nonnegative h. Above, P.�/ denotes the Poisson extension operator to the upper
half-plane, so that in particular��P.h�/��2

L2.R2
C
;�/
D
X
F 2F

X
J2J�.F /

P.h�/
�
xJ ; jJ j

�2���PwF;J x

jJ j

���2
w
;

where xJ is the center of the interval J . The proof of Theorem 5.3 follows by duality.
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Phrasing things in this way brings a significant advantage. The characterization
of the two-weight inequality for the Poisson operator (see [27]) reduces the full norm
inequality above to these testing inequalities. For any dyadic interval I 2D we haveZ

R2
C

P.� � I /2 d�.x; t/� H2�.I /; (5.4)

Z
R
P�.tbI�/2�.dx/� A2

Z
bI t
2 d�.x; t/; (5.5)

where bI D I 	 Œ0; jI j
 is the box over I in the upper half-plane and where P� is the
dual Poisson operator

P�.tbI�/D ZbI t2

t2C jx � yj2
�.dy;dt/:

One should keep in mind that the intervals I are restricted to be in our fixed dyadic
grid, a reduction allowed as the integrations on the left-hand side in (5.4) and (5.5)
are done over the entire space, either R2C or R. (Goodness of the intervals I above is
not needed.) This reduction is critical to the analysis below.

Remark 5.6
A gap in the proof of the Poisson inequality in [27, p. 542] can be fixed as in [28]
or [8].

5.2. The Poisson testing inequality: The core
This section is concerned with a part of inequality (5.4). Restrict the integral on the
left-hand side to the set bI �R2C:Z

bI P.� � I /
2 d�.x; t/� H2�.I /:

Since .xJ ; jJ j/ 2 bI if and only if J � I , we haveZ
bI P.� � I /.x; t/

2 d�.x; t/D
X
F 2F

X
J2J�.F /WJ�I

P.� � I /
�
xJ ; jJ j

�2���PwF;J x

jJ j

���2
w
:

For each J ,���PwF;J x

jJ j

���2
w
�

Z
J

ˇ̌̌x �EwJ x

jJ j

ˇ̌̌2
dw.x/D 2E.w;J /2w.J /� 2w.J /: (5.7)

Let F0 be the maximal F 2 F which are strictly contained in I , and let J] be
those dyadic J such that .xJ ; jJ j/ is in the support of �, but has no parent in F0.
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These intervals are necessarily disjoint. Observe that by (5.7) and the energy inequal-
ity, X

J2J]

P.�F /
�
xJ ; jJ j

�2
�
�
xJ ; jJ j

�
�
X
J2J]

P.� �F;J /2E.w;J /2w.J /

� H2�.F /: (5.8)

We claim that X
F 2F0

Z
OF

P
�
�.I nF /

�
.x; t/2 d�.x; t/� H�.I /: (5.9)

This is sufficient, sinceZ
bI P.� � I /.x; t/

2 d�.x; t/

� LHS(5.8) C LHS(5.9) C
X
F 2F0

Z
OF

P.� �F /.x; t/2 d�.x; t/

� H2�.I /C
X
F 2F0

Z
OF

P.� �F /.x; t/2 d�.x; t/:

The individual terms in the last sum are set up for a recursive application of this
inequality. Due to the Carleson condition (3.7), this recursion will finish the proof.

It remains to prove (5.9), which is another instance of the energy inequality. For
an interval F0 2 F0, and F 2 F strictly contained in F0, each interval J 2 J�.F / is
contained in some J0 2 J�.F0/. Then, the intervals F 2 F are not good, but J and
J0 are good, hence

P
�
�.I nF0/

��
xJ ; jJ j

�2
�
�
xJ ; jJ j

�
D
hZ
InF0

jJ j

jJ j2C jx � xJ j2

i2���PwF;J x

jJ j

���2
w

D
hZ
InF0

1

jJ j2C jx � xJ j2

i2
kPwF;Jxk

2
w

�
hZ
InF0

jJ0j

jJ0j2C jx � xJ0 j
2

i2���PwF;J x

jJ0j

���2
w
:

This follows from goodness. For x 2 I nF0,

jJ j2C jx � xJ j
2 � jx � xJ j

2 � jx � xJ0 j
2 � jJ0j

�jF0j
1��:

But then, we can add the projections PwF;J , due to orthogonality, and use (5.7) again
to see that
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F 2F
F�F0

X
J2J�.F /
J�J0

P
�
�.I nF0/

��
xJ ; jJ j

�2
�
�
xJ ; jJ j

�

� P.� � I /
�
xJ0 ; jJ0j

�2 X
F 2F
F�F0

X
J2J�.F /
J�J0

���PwF;J x

jJ0j

���2
w

� P.� � I /
�
xJ0 ; jJ0j

�2
E.w;J0/

2w.J0/:

The sum over F0 2 F0, and J0 2 J�.F0/ is controlled by the energy inequality. This
completes the proof of (5.9).

5.3. The Poisson testing inequality: The remainder
Now we turn to proving the following estimate for the global part of the first testing
condition (5.4): Z

R2
C
�bI P.� � I /

2 d�� A2�.I /:

Decompose the integral on the left-hand side into four terms. With FJ the unique
F 2 F with J 2 J�.F /, and using (5.7),Z

R2
C
�bI P.� � I /

2 d�

D
X

J W.xJ ;jJ j/2R2C�bI
P.� � I /

�
xJ ; jJ j

�2���PwFJ ;J x

jJ j

���2
w

�
° X
J WJ\3ID;
jJ j�jI j

C
X

J WJ�3I�I

C
X

J WJ\ID;
jJ j>jI j

C
X
J WJ�I

±
P.� � I /

�
xJ ; jJ j

�2
w.J /

DACB CC CD:

Decompose term A according to the length of J and its distance from I , to obtain

A�
1X
nD0

1X
kD1

X
J WJ�3kC1I�3kI
jJ jD2�njI j

� 2�njI j

dist.J; I /2
�.I /

�2
w.J /

�
1X
nD0

2�2n
1X
kD1

jI j2�.I /w.3kC1I � 3kI /

j3kI j4
�.I /

�
1X
nD0

2�2n
1X
kD1

3�2k
°�.3kC1I /w.3kC1I /

j3kI j2

±
�.I /� A2�.I /:
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Decompose termB according to the length of J and then use the Poisson inequal-
ity (4.10), available to use because of goodness of intervals J . We then obtain

B �
1X
nD0

X
J WJ�3I�I
jJ jD2�n

2�n.2�4�/
�.I /2

jI j2
w.J /

�
1X
nD0

2�n.2�4�/
�.3I /w.3I /

j3I j2
�.I /� A2�.I /:

For term C , for n D 1; 2; : : : , set Jn to be those good dyadic intervals J with
jJ j> jI j, J \ I D; and

.n� 1/jJ j � dist.I; J / < njJ j:

These intervals have bounded overlaps. Indeed, suppose that J1 � � � � � Jr are all
members for J1. Then, by goodness,

dist.J1; I /� dist.Jr ; I /� .n� 1/2
r jJ1j C dist.J1; @Jr/

�
®
.n� 1/2r C 2r.1��/

¯
jJ1j;

which is a contradiction to membership in Jn. Restricting the sum to intervals in Jn,
we have X

J2Jn

P.� � I /
�
xJ ; jJ j

�2
w.J /� �.I /2

X
J2Jn

w.J /

n4jJ j2

� �.I /2

jI j

X
J2Jn

w.J / � jI j

n4jJ j2

� �.I /

n2
�
�.I /

jI j
P.w; I /� A2

�.I /

n2
:

And this is summable in n 2N.
In the last term D, all the intervals J contain I . Note thatX

J WJ�I

P.� � I /
�
xJ ; jJ j

�2
w.J /� �.I /2

X
J WJ�I

w.J /

jJ j2

� �.I / �
�.I /

jI j

X
J WJ�I

w.J / � jI j

jJ j2

� �.I / �
�.I /

jI j
P.w; I /� A2�.I /:
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5.4. The dual Poisson testing inequality
We are considering (5.5). Note that there is a power of t on both sides and that the
expressions on the two sides of this inequality areZ

bI t
2�.dx;dt/D

X
F 2F

X
J2J�.F /
J�I

kPwF;Jxk
2
w ;

P�.tbI�/.x/D X
F 2F

X
J2J�.F /
J�I

kPwF;Jxk
2
w

jJ j2C jx � xJ j2
:

We are to dominate kP�.tbI�/k2� by the first expression above. The squared norm will
be the sum over integers s of Ts below, in which the relative lengths of J and J 0 are
fixed by s. Suppressing the requirement that J;J 0 � I ,

Ts WD
X
F 2F

X
J2J�.F /

X
F 02F

X
J 02J�.F /
jJ 0jD2�s jJ j

Z
kPwF;Jxk

2
w

jJ j2C jx � xJ j2
�
kPwF 0;J 0xk

2
w

jJ 0j2C jx � xJ 0 j2
d�

�Ms

X
F 2F

X
J2J�.F /

kPwF;Jxk
2
w ;

where

Ms 
 sup
F 2F

sup
J2J�.F /

X
F 02F

X
J 02J�.F /
jJ 0jD2�s jJ j

Z
1

jJ j2C jx � xJ j2
�

w.J 0/ � jJ 0j2

jJ 0j2C jx � xJ 0 j2
d�:

The estimate (5.7) has been used in the definition of Ms . We claim the term Ms is at
most a constant times A22

�s , and it is here that the full Poisson A2 condition is used.
Fix J , and let n 2N be the integer chosen so that .n�1/jJ j � dist.J;J 0/� njJ j.

Estimate the integral in the definition of Ms by

w.J 0/

jJ 0j

Z
jJ 0j2

jJ j2C jx � xJ j2
�

jJ 0j

jJ 0j2C jx � xJ 0 j2
d� � A22

�2s:

This estimate is adequate for nD 0; 1; 2. Then estimate the sum over J 0 asX
F 02F

X
J 02J�.F 0/WjJ 0jD2�s jJ j
.n�1/jJ j�dist.J;J 0/�njJ j

2�2s � 2�s;

because the relative lengths of J and J 0 are fixed, and each J 0 is in at most one
J�.F /.
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For the case of n� 3, restrict J 0 to be to the right of J , and let tn D xJ C xJ 0=2,
so that jxJ � tnj; jxJ 0 � tnj ' njJ j. First, estimate the integral in the definition of Ms

on the interval Œtn;1/:

w.J 0/

jJ 0j

Z 1
tn

jJ 0j2

jJ j2C jx � xJ j2
�

jJ 0j

jJ 0j2C jx � xJ 0 j2
d� � A2

2�2s

n2
:

Then estimate the sum over J 0 as follows:X
F 02F

X
J 02J�.F 0/WjJ 0jD2�s jJ j
.n�1/jJ j�dist.J;J 0/�njJ j

2�2s

n2
� 2�s

n2
:

This is clearly summable in n� 4.
Now, estimate on the integral on the interval .�1; tn/:

w.J 0/

jJ 0j

Z tn

�1

jJ 0j2

jJ j2C jx � xJ j2
�

jJ 0j

jJ 0j2C jx � xJ 0 j2
d�

D 2�2s
w.J 0/

jJ j

Z tn

�1

jJ j

jJ j2C jx � xJ j2
�

jJ j2

jJ 0j2C jx � xJ 0 j2
d�

� 2�2s
w.J 0/

n2jJ j
P.�;J /:

Drop the term with the geometric decay in s, and sum over n and J 0 to see that

1X
nD4

X
F 02F

X
J 02J�.F 0/WjJ 0jD2�s jJ j
.n�1/jJ j�dist.J;J 0/�njJ j

w.J 0/

n2jJ j
P.�; I /� P.w;J /P.�;J /� A2:

Here, we have appealed to the full Poisson A2 condition. This completes the control
of the dual Poisson testing condition.
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