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A two weight theorem for a-fractional singular
integrals with an energy side condition

Eric T. Sawyer and Chun-Yen Shen and Ignacio Uriarte-Tuero

Abstract. Let 0 and w be locally finite positive Borel measures on R"
with no common point masses, and let T% be a standard a-fractional
Calderén-Zygmund operator on R™ with 0 < a < n. Furthermore, assume
as side conditions the A5 conditions and certain a-energy conditions. Then
we show that T is bounded from L? (o) to L? (w) if the cube testing
conditions hold for T and its dual, and if the weak boundedness property
holds for 7.

Conversely, if 7% is bounded from L? (¢) to L? (w), then the testing
conditions hold, and the weak boundedness condition holds. If the vector
of a-fractional Riesz transforms Rg (or more generally a strongly elliptic
vector of transforms) is bounded from L? (o) to L? (w), then the A% con-
ditions hold. We do not know if our energy conditions are necessary when
n > 2.

The innovations in this higher dimensional setting are the control of
functional energy by energy modulo A%, the necessity of the A3 conditions
for elliptic vectors, the extension of certain one-dimensional arguments to
higher dimensions in light of the differing Poisson integrals used in As
and energy conditions, and the treatment of certain complications arising
from the Lacey-Wick Monotonicity Lemma. The main obstacle in higher
dimensions is thus identified as the pair of energy conditions.

1. Introduction

In this paper we prove a two weight inequality for standard a-fractional Calderén-
Zygmund operators T¢ in Euclidean space R”, where we assume the n-dimensional
AZ conditions and certain a-energy conditions as side conditions (in higher dimen-
sions the Poisson kernels used in these two conditions differ). In particular, we show
that for locally finite Borel measures o and w with no common point masses, and
assuming the energy conditions in the Theorem below, a strongly elliptic collection
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of standard a-fractional Calderén-Zygmund operators T is bounded from L? (o)
to L? (w),

(L.1) 1T (foll 2wy S I ll2 oy »

(with 0 < a < n) if and only if the .A$ conditions hold, the cube testing conditions
for T hold, and the weak boundedness property for T® holds. This identifies the
culprit in higher dimensions as the pair of energy conditions. We point out that
these energy conditions are implied by higher dimensional analogues of essentially
all the other side conditions used previously in two weight theory, in particular
doubling conditions and the Energy Hypothesis (1.16) in [LaSaUr2].

The final argument by M. Lacey ([Lac]) in the proof of the Nazarov-Treil-
Volberg conjecture for the Hilbert transform is the culmination of a large body of
work on two-weighted inequalities beginning with the work of Nazarov, Treil and
Volberg ([NaVo], [NTV1], [NTV2], [NTV4] and [Vol]) and continuing with that
of Lacey and the authors ([LaSaUrl], [LaSaUr2], [LaSaShUr] and [LaSaShUr2]),
just to mention a few. See the references for further work. We consider standard
singular integrals T', as well as their a-fractional counterparts 7%, and include

1. the control of the functional energy condition by the energy condition modulo
2
2. a proof of the necessity of the .A$ condition for the boundedness of the vector
of a-fractional Riesz transforms R%",

3. the extensions of certain one-dimensional arguments to higher dimension in
light of the differing Poisson integrals used in the A$ and energy conditions,

4. and the treatment of certain complications arising from the Lacey-Wick
Monotonicity Lemma.

These are the main innovations in this paper. The final point is to adapt the
clever stopping time and recursion arguments of M. Lacey [Lac] to complete the
proof of our theorem, but only after splitting the stopping form into two sublinear
stopping forms dictated by the right hand side of the Lacey-Wick Montonicity
Lemma. The basic idea of the generalization is that all of the decompositions of
functions are carried out independently of «, while the estimates of the resulting
nonlinear forms depend on the a-Poisson integral and the a-energy conditions.

It turns out that in higher dimensions, there are two natural ‘Poisson integrals’
P and P that arise, the usual Poisson integral P that emerges in connection with
energy considerations, and a different Poisson integral P that emerges in connec-
tion with size considerations - in dimension n = 1 these two Poisson integrals
coincide. The standard Poisson integral P appears in the energy conditions, and
the reproducing Poisson integral P appears in the Ay condition. These two ker-
nels coincide in dimension n = 1 for the case a = 0 corresponding to the Hilbert
transform.

Acknowledgement 1. We are grateful to Michael Lacey for pointing out a num-
ber of problems with our arguments and various oversights in the versions of
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[SaShUr], [SaShUr2] (now withdrawn), [SaShUr3| on the arXiv, including the mis-
take in our monotonicity lemma, which has been corrected by M. Lacey and B. Wick
in [LaWi], and in our consequent adaptation of the stopping time and recursion
argument in [Lac]. See these preprints for some of the details.

Remark 1. There is overlap of the previous versions 1-6 of this paper [SaShUr]
with the subsequent work of M. Lacey and B. Wick in versions 1 and 2 of [LaWi],
but the authors there do not acknowledge this overlap. Some results and some de-
tails of arguments in the current paper overlap with those in [LaWi]. In particular:
the Monotonicity Lemma 8 here is due to Lacey and Wick in Lemma 4.2 of [LaWi|;
Lemma 5 here is proved in [LaWi], but with the larger bound A$ there in place of
AS; and an argument treating the additional term in the Lacey- Wick Monotonicity
Lemma as it arises in functional energy is essentially in [LaWi]. We note that the
side condition in [LaWi] - uniformly full dimension - permits a reversal of energy,
something not assumed in this paper, that implies our energy conditions.

2. Statements of results

Now we turn to a precise description of our two weight theorem. We will prove a
two weight inequality for standard a-fractional Calderén-Zygmund operators T
in Euclidean space R™, where we assume the n-dimensional A% and certain -
energy conditions as side conditions. In higher dimensions the Poisson kernels P%
and P? used in defining these two conditions differ. In particular, we show that
for locally finite Borel measures ¢ and w in R™ with no common point masses,
and assuming that both the energy condition and its dual hold, a strongly elliptic
vector of standard a-fractional Calderén-Zygmund operators T¢ is bounded from
L? (o) to L? (w) if and only if the AS conditions hold, along with the cube testing
conditions and the weak boundedness property. In order to state our theorem
precisely, we need to define standard fractional singular integrals, the two different
Poisson kernels, and an energy condition sufficient for use in the proof of the two
weight theorem. These are introduced in the following subsections.

2.1. Standard fractional singular integrals

Let 0 < a < n. Consider a kernel function K*(z,y) defined on R™ x R™ satisfying
the following fractional size and smoothness conditions of order 1 + § for some
6 >0,

(2.1) K (z,y)] < Cezle—y[*™",
IVK® (2,y)] < Cozlz—y" """,
o o o — '\’ aeno1 w1
VK (z,y) = VK® (2",y)| < Coz o=yl |z -yl S <3
7\ 9 /

B a—n— B 1
|VKD‘(x,y)—VKO‘(x,y’)| S CCZ |y y| ‘LL'— | 17 |y y‘ §*~
|z —yl lz—y| = 2
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Then we define a standard a-fractional Calderén-Zygmund operator associated
with such a kernel as follows.

Definition 1. We say that T is a standard a-fractional integral operator with
kernel K¢ if T* is a bounded linear operator from some LP (R™) to some L (R™)
for some fixed 1 < p < q < oo, that is

IT*flagny < Clliflzogny,  fE€LPRY),

if K*(x,y) is defined on R™ x R™ and satisfies (2.1), and if T* and K< are related
by

(2.2) T f(x) = / K* (2, 9)f()dy, a.c- @ & suppf,

whenever f € LP (R™) has compact support in R™. We say K“(x,y) is a standard
a-fractional kernel if it satisfies (2.1).

We note that a more general definition of kernel has only order of smoothness
0 > 0, rather than 1 4 §, but the use of the Monotonicity and Energy Lemmas
below requires order of smoothness more than 1. A smooth truncation of T® has
kernel 15 g (|Jz — y|) K* (z,y) for a smooth function 75z compactly supported in
(6,R), 0 < § < R < o0, and satisfying standard CZ estimates. A typical example
of an a-fractional transform is the a-fractional Riesz vector of operators

RY™ ={R;" :1<{¢<n}, 0<a<n.

The Riesz transforms R,”” are convolution fractional singular integrals R)"“f =
K,"® % f with odd kernel defined by

wt _ Q(w)

1
‘w|n+1—a = |w|n7a’ w = (U} 7“"wn) :

K (w)

The tangent line truncation of the Riesz transform R;"" has kernel Q; (w) ¢§ 5, (|w])
where 9§ , is continuously differentiable on an interval (0,5) with 0 < < R <
S, and where ¢¥§ (r) = r* ™ if § < r < R, and has constant derivative on
both (0,0) and (R,S) where ¢§ g (S) = 0. As shown in the one dimensional
case in [LaSaShUr3], boundedness of R;"® with one set of appropriate truncations
together with the A3 condition below, is equivalent to boundedness of R, with
all truncations.

2.2. Cube testing conditions
The following ‘dual’ cube testing conditions are necessary for the boundedness of

T from L? (o) to L? (w):

1
T2, = sup —/ \T“(1Q0)|2w<oo,
QeQn |Q‘a‘ Q

* 1 ) * 2
(Tha)® = nggﬂ’@/QKT) (1ow)| o < cc.
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2.3. Weak boundedness property

The weak boundedness property for T with constant C' is given by

‘/ Ta (1Q/O’) dw‘ S WBPT"‘ |Q‘w |Ql|o—7
Q

1
for all cubes @, Q' with ol < @

e
@’
and either Q C 3Q" \ Q' or Q' C 3Q \ Q.

Note that the weak boundedness property is implied by either the tripled cube
testing condition,

130T (1QU)HL2(w) < ||1Q||L2(a) ,  for all cubes @ in R,

or the tripled dual cube testing condition. In turn, the tripled cube testing con-
dition can be obtained from the cube testing condition for the truncated weight
pairs (w, 1go). See also Remark 4 below.

2.4. Poisson integrals and A%

Now let p be a locally finite positive Borel measure on R", and suppose @ is a
cube in R™. The two a-fractional Poisson integrals of iz on a cube @ are given by:

o _ Q™
P (Qv:u) = /R" (‘Q|% N x_xQDnJrladﬂ (1')7
o _ Q[ N
H /n (|Q|%+|$7$Q|)2 w(x

We refer to P as the standard Poisson integral and to P® as the reproducing
Poisson integral. Let o and w be locally finite positive Borel measures on R™ with
no common point masses, and suppose 0 < o < n. Recall that the classical AS
constant is defined by

Q, 1Ql
QT Qrt

We now define the one-tailed A$ constant using P*. The energy constants &,
introduced in the next subsection will use the standard Poisson integral P*. Let
Q" denote the collection of all cubes in R™, and denote by D™ or simply D a dyadic
grid in R™.

AS = sup
QGQ’IL

Definition 2. The one-sided constants A3 and A3"" for the weight pair (o,w) are
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given by
"42 = sup P (Qva) 11— < 00,
QeQn QI
Qyx — o |Q|o’
A" = sup PY(Q,w) —7%& < 0.
QeQn Q)

2.5. Good grids and energy conditions

Given a dyadic cube K € D and a positive measure y we define the Haar projection
Ph=> A on K by
JeD: JCK

Pl = 2 S UM and IPLS ey = D D0 [R5,

Jep: JCcK a€ly JeD: JcK a€ly

2

)

and where a Haar basis {h/;*}, cr. and Jep adapted to the measure i is defined in
the section on a weighted Haar basis below. Now we recall the definition of a good
dyadic cube - see [NTV4] and [LaSaUr2] for more detail.

Definition 3. Letr € N and 0 < e < 1. A dyadic cube J is (r,e)-good, or simply
good, if for every dyadic supercube I, it is the case that either J has side length
at least 27F times that of I, or J €, I is (r,e)-deeply embedded in I.

Here we say that a dyadic cube J is (r,e)-deeply embedded in a dyadic cube K,
or simply r-deeply embedded in K, which we write as J €, K, when J C K and
both

1 1
n n
)

(2.3) 7
1 € —€
dist (J,0K) > 5 |J|7 K|

IN

2T |K

We say that J is r-nearby in K when J C K and
1 1
[J|» > 277 |K]|".

The parameters r,e will be fixed sufficiently large and small respectively later in
the proof, and we denote the set of such good dyadic cubes by Dgooq. Throughout
the proof, it will be convenient to also consider pairs of cubes J, K where J is
p-deeply embedded in K, written J €, K and meaning (2.3) holds with the same
€ > 0 but with p in place of r; as well as pairs of cubes J, K where J is p-nearby
in K, |J|% > 2P \K|%7 for a parameter p > r that will be fixed later.

Then we define the smaller ‘good’ Haar projection P%?Od’w by

d, _ , 5
CRTEDTED NP WEN S
JEG(K) Jeg(k) a€ly

where G (K) consists of the good subcubes of K:
G(K)={J € Dgooa : J C K},
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and also the larger ‘subgood’ Haar projection P5iPE°TH by

Pbscdhf = N N AR f= > YT S (SRR, A

JEMggoq () J'CJ JEMgooa (k) J'CJ a€ly

where Mgooa (K) consists of the mazimal good subcubes of K. We thus have
Hpgood,pX’ 2 ‘ Psubgood,,uX’ 2
K 2y — 0K L2 (1)

2
1
IPYx1%.,, :/ X — —/xdz
R 11, Jr

where P/x is the orthogonal projection of the identity function x : R” — R™ onto
the vector-valued subspace of @Zzle (1) consisting of functions supported in I
with p-mean value zero.

Recall that in dimension n = 1, and for a = 0, the energy condition constant
was defined by

IN

dﬂ(x)a X:(‘Tlv"'v'rn)v

) S (P 10\ e
& _IS:IEBT |I|U§_:1(|Ir| ||P]TXHL2(W) .

Our extension of the energy conditions to higher dimensions in this paper will use
the collection My _geep (K) of mazimal r-deeply embedded dyadic subcubes of a
cube K (a subcube J of K is a dyadic subcube of K if J € D when D is a dyadic
grid containing K). We let J* = vJ where v > 2. Then the goodness parameter
r is chosen sufficiently large, depending on ¢ and <y, that the bounded overlap

property

(2.4) Z 1, < Blg ,

JEMy_deep (K)

holds for some positive constant S depending only on n,v,r and e. Indeed, the
maximal r-deeply embedded subcubes J of K satisfy the condition

1—¢

e |J|7 K| < dist (J,K°) < Cy | J|7 K|

Now with 0 < ¢ < 1 and v > 2 fixed, choose r so large that 2-(1-9)r < % Let
y € K. Then if y € vJ, we have

1—e

W< dist (J,K°) <y |J|7 + dist (v, K°) < v |J

£
n

en | J|7 | K w4 dist (y, K°)

which implies
e l1—e
ST K] < dist (y, K°).

< (C” +Cn> 7
2y

But we also have

dist (y, K©) < |J|" +dist (J, K°) < |J|7+Cy |J|* |K TK|

)
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and so altogether,

e e 2
—dist(y, K°) < |J|F K| < dist (y, K°)
5=+ Chr Cn

which proves (2.4) since the number 3 of dyadic numbers 2/ = |J |% that satisfy
this last inequality is bounded independent of K and y.

We will also need the following refinement of My _geep (K) for each £ > 0
that consists of some of the maximal cubes @Q, whose (-fold dyadic parent 7¢Q is
r-deeply embedded in K:

M joep (K) =T € My_geep (7°K) : J C L for some L € Mgeep (K)} -

r—deep

Since J € /\/lfifdeep (K) implies vJ C K, we also have from (2.4) that
(2.5) Z 15 <pPlg, for each ¢ > 0.
Jem®

r—deep

(K)

Of course M? (K) = My—_deep (K), but M (K) is in general a finer

r—deep r—deep
subdecomposition of K the larger ¢ is, and may in fact be empty.

Definition 4. Suppose o and w are positive Borel measures on R™ without common
point masses, and fir v > 2. Then the deep energy condition constant £3°P the
refined energy condition constant ET"ed and finally the energy condition constant
Eq itself, are given by

2
ee 2 _ 1 - pe (']7 11\ Jo-) subgood,w 2
=y B () e

@ L2w)’
_ n w
I=UI, T r=1 JEM;_ geep(Ir ‘J|

n

2
1 P (J,1 2
(gorteﬁned) 2 = supsup E ( Il\"/JJ) Psubgood,wx
1| J L2(w)
620 1 7 Jem? (I) |

r—deep

(ga)Q = (g(;ieep)2+ (ggeﬁned)z .

where sup; is taken over all cubes I, and sup;_y,; _is taken over
1. all dyadic grids D,
2. all D-dyadic cubes I,

3. and all subpartitions {I,},- | of the cube I into D-dyadic subcubes I,.

Note that in the refined energy condition there is no outer decomposition I =
UI,.. There are similar definitions for the dual (backward) energy conditions that
simply interchange o and w everywhere. These definitions of the energy conditions
depend on the choice of v and the goodness parameters r and €. Note that we can
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‘plug the y-hole’ in the Poisson integral P (J, lI\WU) for both £4¢¢P and Effﬁ“ed
using the A% condition and the bounded overlap property (2.5). Indeed, define

(2.6)

(e = mp > % (P“)))

I:UI 0’ r= 1J6Mr deep(l ) |J|n

P (J, 1,0))2
Z () ( g ’

2
P?]ubgood,wxl 7
L?(w)

2
2 sub: d
(Sreﬁnedplug) — Sup Sup Pbu g£00 7wx‘

>0 1 ||, et | 7 L2(w)
r—deep
Then we have both
(2.7) (Edeepplue)?
2
1 & P (J,1 2
Sy 3 (M) o)
I=UI, ‘ ‘g’ r=1 JEMr—deep(lr) |J n L (w)
2
Pa J7 1 su (e]e} w 2
R SIED SN ) [
' " L2(w)
I=UI, a' r=1 JEM,p_ deep(I ) ‘J|

S ()P + SUb T

FOSDS ('”JJL>|J| L

(T r= 1J€Mr deep(I)

(Ea)’+ 45 sup — > |y, S (Ea)” +BAS
1=ur, | ‘U JEM:—deep (I

A

and similarly
(28) ((c/'(l;cﬁncdplug)2 S (5(1;0ﬁncd)2 + BAg

by (2.4) and (2.5) respectively.
In the next remark we give a brief description of how and where these energy
conditions will be implemented in the proof.

Remark 2. There are two layers of dyadic decomposition in the energy condition;
the outer layer I = UI,. which is essentially arbitrary, and an inner layer I, =

U J in which the cubes J are ‘nicely arranged’ within I,.. Relative to this
JEM;y_eep(Ir)

o 2 2
P (']111\'7JJ) Hpsubgood,w ‘
— 1 J X ;

|| n L2 (w)
which resemble a type of AS expression as defined above. The point of the outer
decomposition is to capture ‘stopping time cubes’, which are essentially arbitrary in
this proof, although sometimes restricted to certain collections of good cubes. The

doubly layered decomposition we sum the products (
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point of the inner decomposition is that with J* = ~J for J € My_geep (1), we

have J* C I, and we can then write

P* (J,1;0) =P (J,1;:0) + P* (J,1p j-0),

bgood 2

and use that HP?,“ go0 ’wx‘
L2 (w)
mate the product involving 1«0 by

2 a 2

pe J,lJ*U subgood,w 2 |J>’< Wt J*o' 2 « *

PLULr0) ) pyaosting * o (V) i, < gy,
|J]" L2w) ||

to which we apply the bounded overlap property (2.4), while the remaining product
involving 11\ j=0,

_ subgood,w
= [Ps

2 2
< |J|™ |J], to esti-
(w)

(x—cJ)‘L2

)

o 2
<P (‘]7 lI\J*U) > HPsubgood,wx’ 2
J

|J‘% L2(w)

has a ‘hole’ in the support of 1p\ j«o that contains the support of w in the cube J
well inside the hole, and moreover these holes are ‘nicely arranged’ within I.. Of
particular importance is that for pairwise disjoint subcubes J' C J, the projections

2
HPf;fbgOOd’wa , . are additive, and the Poisson ratios are essentially constant
L2 (w)

P(J 1 y+0)  P*(J1p+0)
we T g

in the proof except for bounding the two testing conditions for the Poisson operator

P, in which case we also use the refined energy condition - see Lemma 12 below.

. The deep energy condition suffices for all arguments

2.6. Statement of the Theorem

We can now state our main two weight theorem. Let Q™ denote the collection of
all cubes in R™, and denote by D" a dyadic grid in R™.

Theorem 1. Suppose that T® is a standard a-fractional Calderon-Zygmund oper-
ator on R™, and that w and o are positive Borel measures on R™ without common
point masses. Set T>f =T (fo) for any smooth truncation of TS.

1. Suppose 0 < a < n and that v > 2 is given. Then the operator T is bounded
from L? (o) to L? (w), i.e.

(2.9) 175 fll 2wy < Mg (1f [l p20y 5

uniformly in smooth truncations of T, and moreover

Nra < Ca (\/Ag A+ T+ T + Ea + EL+ WBPTQ> :

provided that the two dual AS conditions hold, and the two dual testing con-
ditions for T hold, the weak boundedness property for T holds for a suffi-
ciently large constant C' depending on the goodness parameter r, and provided
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that the two dual energy conditions £, + £ < oo hold uniformly over all
dyadic grids D", and where the goodness parameters r and € implicit in the

definition of Mﬁ_deep (K) are fized sufficiently large and small respectively

depending on n, o and 7.
2. Conversely, suppose 0 < « < n and that T = {Tja}j:l is a vector of

Calderon-Zygmund operators with standard kernels {K]O‘} In the range

J
j=1"

0 < a< 3, we assume the following ellipticity condition: there is ¢ > 0 such

that for each unit vector u there is j satisfying
(2.10) |K§ (z,2 + tu)| > ct*™,  teR.
For the range 5 < a < n, we asume the following strong ellipticity condition:

for each m € {1,—1}", there is a sequence of coefficients {)\9”};:1 such that

J
(2.11) Z)\;-"KJ‘-’ (x,x+ta)| >t ", teR.
j=1

holds for all unit vectors u in the n-ant
Vin={z € R" :myz; >0 for1 <i<n}, me{l,-1}".

Furthermore, assume that each operator Tf* is bounded from L? (o) to L* (w),

), 4

Then the fractional AS condition holds, and moreover,

VAS 4+ AL < CNpe.

Problem 1. Given any strongly elliptic vector T of classical a-fractional Calderdon-
Zygmund operators, it is an open question whether or not the energy conditions are
necessary for boundedness of T*. See [SaShUr4] for a failure of energy reversal
in higher dimensions - such an energy reversal was used in dimension n = 1 to
prove the necessity of the energy condition for the Hilbert transform.

L) <Nz ([l 20 -

Remark 3. The boundedness of an individual operator T® cannot in general imply
the finiteness of either AS or E,. For a trivial example, if o and w are supported
on the x-azis in the plane, then the second Riesz tranform Rs is the zero op-
erator from L? (o) to L? (w), simply because the kernel Ko (x,y) of Ry satisfies
K> ((21,0), (y1,0)) = 0 = 0.

T ei—p P

Remark 4. In [LaWi], M. Lacey and B. Wick use the NTV technique of surgery
to show that the weak boundedness property for the Riesz transform wvector R*™
is implied by the AS and cube testing conditions, and this has the consequence
of eliminating the weak boundedness property as a condition. Their proof of this
implication extends to the more general operators T® considered here, and so the
weak boundedness property can be dropped from the statement of Theorem 1.
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3. Proof of Theorem 1

We now give the proof of Theorem 1 in the following 8 sections. Using the good
random grids of Nazarov, Treil and Volberg, a standard argument of NTV, see
e.g. [Vol], reduces the two weight inequality (1.1) for T to proving bounded-
ness of a bilinear form 7% (f,g) with uniform constants over dyadic grids, and
where the Haar supports of the functions f and g are contained in good cubes,
whose children are all good as well, with goodness parameters r < co and € > 0
chosen sufficiently large and small respectively. Here the Haar support of f is
Haarsuppf = {I € D : AJf # 0}, and similarly for g.

In fact we can assume even more, namely that the Haar supports of f and g
are contained in the collection of 7-good cubes

3.1 T ={K eD: 75K are in D(y o)_gooq for all 0 < ¢ < 7},
(r,e)—good D (r.e)—g

that are (r,e)-good and whose £-parents up to level 7 are also (r,e)-good. Here
T > r is a parameter to be fixed in Definition 8 below. We may assume this
restriction on the Haar supports of f and g by choosing (r,e) appropriately and
using the following lemma.

Lemma 1. Givens > 1,t > 2 and 0 < € < 1, we have
D?Sﬁ't,E)ngOd C D(t,zs)fgood )

provided

1
se<t(l—e)—2 andéze—i—ssj .

Proof. Fix goodness parameters r = s+t and ¢, and suppose that s < r (1 —¢)—2.

Choose a good cube I and a supercube K with |I|% < 27T |K\% Set J = 7°1.
Then we have . )
J=7nIC K and |J|" <27%|K|".

Because I is good we have

1 e
dist (1, K°) > 5 |1]7 |K a
and hence also
1 1 e 1-¢ 1
dist (J,K°) > dist (1K) = [J]7 = 5 1|7 K| =20 |1
1 1=\ | 1
e 1-¢ n e 1—¢
N (aak SRR TN R ST
2 \Kﬁ 4

which follows from | w <27 |K w provided we take 9l+sg-r(l-e) < %, ie.

s<r(l—e)—2.
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Finally we choose § > ¢ so that

1 £ 1—¢ _se_2 = l—e s 1-5 1 _t 1
g I IE =270 K 2 g I K, when [J]r <270 K,

1
-2

which follows if we choose ¢ to satisfy

1\¢ 1-e 1 1\9 1-5
2 (2K ) KT = (270K IKT
1 6—e¢
275572 — - 271; .
2( ) )
—se—1 = —t(6—¢);
1
b = 5+S€: .

a

For convenience in notation we will sometimes suppress the dependence on «
in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. More precisely, let D7 = D“ be an (r,e)-good grid on R™, and let

o,a w,b . .
{h] }IGD", acr, and {hJ }JeDw ver be corresponding Haar bases as described
’ n

below, so that

fo= Y Aff= > (LR RPT = > f(Iia) BT,
IeDe IeDe, acl’y, IeDe, acly,

,b ,b ~ b

g = Y os9= > (") gt = > Guse) g
JeDw JeDw, bel', JeDw, bel',

where the appropriate measure is understood in the notation f([ ;a) and g (J;b),
and where these Haar coefficients f (I;a) and g (J;b) vanish if the cubes I and J
are not good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T L) =TS ()= Y,  (T3(AT),A59),

I€D? and JeD¥
on L? (o) x L? (w), i.e.
|7-a (fa g)‘ S ng ||f||L2(U) ||g||L2(w) .

We may assume the two grids D? and D% are equal here, and this we will do
throughout the paper, although we sometimes continue to use the measure as a
superscript on D for clarity of exposition. Roughly speaking, we analyze the form
T*(f,g) by splitting it in a nonlinear way into three main pieces, following in part
the approach in [LaSaShUr2] and [LaSaShUr3]. The first piece consists of cubes
I and J that are either disjoint or of comparable side length, and this piece is
handled using the section on preliminaries of NTV type. The second piece consists
of cubes I and J that overlap, but are ‘far apart’ in a nonlinear way, and this piece
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is handled using the sections on the Intertwining Proposition and the control of the
functional energy condition by the energy condition. Finally, the remaining local
piece where the overlapping cubes are ‘close’ is handled by generalizing methods
of NTV as in [LaSaShUr], and then splitting the stopping form into two sublinear
stopping forms, one of which is handled using techniques of [LaSaUr2], and the
other using the stopping time and recursion of M. Lacey [Lac]. See the schematic
diagram in Subsection 8.4 below.

4. Necessity of the A3 conditions

Here we prove in particular the necessity of the fractional A condition when
0 < a < n, for the a-fractional Riesz vector transform R defined by

@i —yi

n+l—a?

R (o) ()= [ B @dol), K )=
whose kernel K¢ (z,y) satisfies (2.1) for 0 < a < n. Parts of the following argu-
ment are taken from unpublished material obtained in joint work with M. Lacey.
Note also that the necessity of the classical AS condition, for many singular in-
tegral operators, including among others the vector Riesz transforms, the Cauchy

transform and the Beurling transform was obtained previously by Liaw and Treil
[LiTy].

Lemma 2. Suppose 0 < a < n. Let T be any collection of operators with
a-standard fractional kernel satisfying the ellipticity condition (2.10), and in the
case 5 < o < m, we also assume the more restrictive condition (2.11). Then for
0 < a < n we have

AZ S M (1),

Remark 5. Cancellation properties of T play no role in the proof below. Indeed
the proof shows that AS is dominated by the best constant C in the restricted
inequality

IXET*(F) o) < Ol oy s E=R"\ supp f.

Proof. First we give the proof for the case when T is the a-fractional Riesz trans-

form R®, whose kernel is K% (z,y) = \90*;% . Define the 2" generalized n-ants

Q,, for m € {—1,1}", and their translates Q,, (w) for w € R™ by

Qm = {(x1,...yxyn) : mpay > 0},
OQnw) = {z:2—weQ,}, weR"™
Fix m € {—1,1}" and a cube I. For a € R™ and r > 0 let
¢(I)
si(r) = ————t——,
1= el

«

fa,r (y) = 1Q7m(a)ﬁB(07r) (y) S (y)n_ )
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where (7 is the center of the cube I. Now

tD)]z—yl < LI)]x—C|+C(I)[¢—yl
< )+ le =l [ed) + 16 =yl
implies
T s (@) (), wmy R
[z —yl — £(I)
Now the key observation is that with L{ = m - (, we have

Lz-y)=m-(z—y)>lz—yl, z€Qm(y),

which yields

(41 LK (ny) = w
1

> L) s ()" sr(y)" Y,

provided z € Q4 4 (y). Now we note that z € Q,, (y) when z € Q,, (a) and
y € Q_,, (a) to obtain that for z € Q,, (a),

L@y ) do )

LT (furo) () = /Q (

)NB(O,r) |7 — Y|

Y

(D) s ()" / 51 ()™ do (y).

Q_m(a)NB(0,r)

Applying |L¢| < v/n|¢| and our assumed two weight inequality for the fractional
Riesz transform, we see that for r > 0 large,

2
¢ (I)Qa—Qn/ sy (x)Qn—Qa (/ sy (y)2n—2a do (y)) dw (J:)
Qm(a) Q. (a)NB(0,r)

<T@ far ey S R R [ far 2oy = M (RT)? /Q s O AT ).
—m(a)N N

Rearranging the last inequality, we obtain
e [ s ) [ 51 (0" do (y) < M (R,
Qm(a) Q_m(a)NB(0,r)

and upon letting r — oo,

Cou w (z L o ay2
/Qm<a) (€(1) + \x—Czl)LHad ( )/Qm(a) (1) + Iy—Czl)‘H“d () = M (BE)"

Note that the ranges of integration above are pairs of opposing n-ants.
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Fix a cube @, which without loss of generality can be taken to be centered at
the origin, (¢ = 0. Then choose a = (2¢(Q),2¢(Q)) and I = @ so that we have

(o ) (i )

<, oy N o (1) £ 90 (R
Qm(a) (£(Q) + |z) Q-m(a) (£(Q) +[yl)
Now fix m = (1,1, ..., 1) and note that there is a fixed N (independent of ¢ (Q))) and

a fixed collection of rotations {pk}fc\[:17 such that the rotates pp Q. (a), 1 <k < N,
of the n-ant Q,, (a) cover the complement of the ball B (0,4/nf (Q)):

N
B(0,4v/nt (Q))° € | pxQm (a).
k=1

Then we obtain, upon applying the same argument to these rotated pairs of n-ants,
(4.2)

A CI do ()] (@)™ [ do) <M, (RY)?.
</B(o,4ﬁe<cz>)c Q) + |=)* > ()><(Q) /Q )“ - (1Y)

Now we assume for the moment the tailless AS condition

w0 () ()

If we use this with Q" = 41/nQ, together with (4.2), we obtain

([ i) ror [ ), e

1

2

or

o 1 1 1 2 o
Q) |Q|/(1+|ﬁ((§f)%_%dw(x) (@'/Qda> <N, (RY).

Clearly we can reverse the roles of the measures w and ¢ and obtain

AS SN, (RY) + AS

for the kernels K%, 0 < a < n.

More generally, to obtain the case when T'* is elliptic and the tailless AS
condition holds, we note that the key estimate (4.1) above extends to the kernel
ijl APKS of ijl AT in (2.11) if the n-ants above are replaced by thin cones
of sufficently small aperture, and there is in addition sufficient separation between
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opposing cones, which in turn may require a larger constant than 4,/n in the choice
of Q' above.
Finally, we turn to showing that the tailless A condition is implied by the

norm inequality, i.e.
Aa—supE(Q')a( ! / dw) ( ! / d )é <N, (RY)
= IvaYil Ivavil g ~ ;
RY Q'] Jo Q'] Jo

ie. </,dw> <//da> <o, (R QP .

In the range 0 < o < § where we only assume (2.10), we invoke the corresponding
argument in [LaSaUrl]. Indeed, with notation as in that proof, and suppressing
some of the initial work there, then A (w,0;Q) = |Q|,,, where w x o denotes
product measure on R” x R™, and we have

A (w,0;Q0) = > A (,05Q0) + D As (w, 05 Pp).
¢ B

Nl

Now we have

Z-A2 (W,U; Q() = Z |Qc‘w><<7 < Zm@ (RC!)2 |Q(|1_% ,
¢ ¢ c

and

Yl o= Y Y @
¢

KEZ: 28<0(Qo) ¢t £(Q¢)=2F

E o\ "" e
Z (€ (2Qo)> (22"k) " (Whitney)

kEZ: 28<(Qo)

_ K(Qo)n Z 2nk(71+2727"‘)

keZ: 2+ <£(Qo)

Q

2_2a

—2a —a
< Cal(Q0)" £(Q0)"7H) = Ca|Qo x Qo = Ca|Qul'F
provided 0 < o < F. Since w and o have no point masses in common, it is not
hard to show, using that the side length of Pg = P3 x Pé is 27N and dist (P, D) <
C2~V, that we have the following limit,
Z.Ag (w,0;Pg) = 0 as N — oo.
B

Indeed, if o has no point masses at all, then

> Ar(w,iPs) = > |Psl, [P,
8 B

IN

Z |Ps|, | sup |PL/3|U
3 B

C1Qol,, sup!P['g‘g —0as N — oo,
B

A
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while if o contains a point mass ¢d,., then

> Ay(w,0iPg) < > APsl, | swp |P5],
3: J;EP[; B: IEP/g P welp
< C Z |Psl, | = 0as N = o0
B wEPA

since w has no point mass at x. This continues to hold if ¢ contains finitely many
point masses disjoint from those of w, and a limiting argument finally applies. This
completes the proof that A5 < M, (R) for the range 0 < a < 3.

Now we turn to proving A§ 5 N, (RY) for the range § < o < n, where we

assume the stronger ellipticity condition (2.11). So fix a cube Q = H Q; where

i=1
Q; = [a;, b;]. Choose 61 € [a1,b1] so that both

a1,91 HQL

Now denote the two intervals [aj, 61] and [01, b1] by [a}, bj] and [a]*, b1*] where the
order is chosen so that

n

91751] X HQz‘

=2

9

w

ai, bi] x HQi < |la1", 077] % HQi
i=2 i=2 |y
Then we have both
* 1
a]ab HQZ Z 5 ‘Qlw )
a*, by HQz > Lo
Z 5@

Now choose 03 € [az, ba] so that both

a1, b1] % [az, 02] ¥ HQL a7, bi] x [02,b2] x HQL

9

1
4

2
w w

and denote the two intervals [ag, 03] and [0, ba] by [a3, b5] and [a5*, b5*] where the
order is chosen so that

[ai, b7] x [a3,05] x [ @i

<

a7, b7 (a3, b57] HQZ
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Then we have both

1
a7, 7] x [a3, b3] HQZ 719l

Y

w

*% k% ** 1
a7, 617  [a3", b3" HQZ 11l

v

g

Then we choose 03 € [ag, b3] so that both

[ai’ bﬂ X [a27 b2 a37 93 H Qz

v

1
g |Q|w7

* 1% * Lk 1
[a1, b7] X [a3, b5] x [03, b3] x HQz > 3 Q. ;

i=4

w

and continuing in this way we end up with two rectangles,

G = la1,01] x [a3,b3] x ... [ag,, b ],
H = [a7",b7"] x [a’z‘*abi*] X lag”, 0nt]
that satisfy
* 1k % 1% * Ik 1
|G|, = |[a1,b7] x [a3,b3] x ...[a}, b} ]|, > on Q. ,
sk Kok sk pokck sk kok 1
|H|, = |[a1",b]"] x [a5",b5"] x ...[an,bn]\ozz—n|Q|a.

However, the rectangles G and H lie in opposing n-ants at the vertex 6 =

(61,02, ...,0,), and so we can apply (2.11) to obtain that for z € G,

J

J
ST ane) )| = | [ SINKS (@) do o)

i=1
> / o~y do (y) 2 Q11 H,
H

Then from the norm inequality we get

2
J

2
Gl (QF L) £ [ AT (o) d
¢ i
S Molapry / Vido =Ny oy |Hlo
from which we deduce that
2(5-1) < g2ng2(%-1)
QPE QL IQl, $ 2 QPG (G, |H], 22" Tns s

and hence
«@ 2n
AS <2 ‘ﬁz] ARTE
This completes the proof of Lemma 2.
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5. A weighted Haar basis

We will use a construction of the Haar basis in R™ that is adapted to a measure
p (c.f. [NTV2]). Given a dyadic cube @ € D let Ay, denote orthogonal projection

onto the finite dimensional subspace L?Q (u) of L? (1) that consists of linear com-
binations of the indicators of the children € (Q) of @ that have p-mean zero over

Q:

Lé(y)z f= Z agly @ ag ER,/ fdu=0
Qee(@) @

Then we have the important telescoping property for dyadic cubes @1 C @Q2:
(5.1)

Lo, (@) | D AbS@) ] =1, (@) (B, S ~EL,f), QoeC(@), feL(n).
QE[Q1,Q2]

We will at times find it convenient to use a fixed orthonormal basis {h’é’a} of
acly,
Lé () where T',, = {0,1}"\{1} is a convenient index set with 1 = (1, 1,...,1). Then
{h%a} is an orthonormal basis for L? (1), with the understanding
a€T', and Q€D

that we add the constant function 1 if p is a finite measure. In particular we have

2 —~ 2
o =%}§L]f(@>) ,

HPPEDD H%f‘
Q

where
2

fo=x% ,

a€l,

(r15,

and the measure is suppressed in the notation. We also record the following useful
estimate. If I’ is any of the 2" D-children of I, and a € I',,, then

1
< B (h)* < :
VL

(5.2) X, s

6. Monotonicity lemma and Energy lemma

The Monotonicity Lemma below will be used to prove the Energy Lemma, which
is then used in several places in the proof of Theorem 1. The formulation of the
Monotonicity Lemma with m = 2 is due to M. Lacey and B. Wick [LaWi], and
corrects that used in previous versions of this paper.
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6.1. The monotonicity lemma

For 0 < a < n and m € R, we recall the m-weighted fractional Poisson integral

o I
Pm(‘]’u)_/ﬂw (|J%+|y—CJ‘)

e e (y)

where P§ (J, u) = P (J, p) is the standard Poisson integral.

Lemma 3 (Monotonicity). Suppose that I, J and J* are cubes in R™ such that
J C J" C2J* C I, and that i is a signed measure on R™ supported outside I.
Finally suppose that T is a standard fractional singular integral on R™ as defined
in Definition 1 with 0 < a < n. Then we have the estimate

(6.1) IATT el 2y S @ (s ) 5

where for a positive measure v,

2

P (J,v) s (Jv) 2

() 155 72 +<1+|J| % —mylee,w)
1

m; = E%x= W/dew.

Proof. The general case follows easily from the case J* = J, so we assume this
restriction.

Let {h5“}

“(Jv)?

be an orthonormal basis of L? (1) as in the previous section.

acl
Now we use the smoothness estimate (2.1), together with Taylor’s formula and
the vanishing mean of the Haar functions A% and m; = ﬁ fJ xdu (z) € J, to
u
obtain

] = {5 @t @aso b = | [ 5057, i)

= /(Kg () = Ky (my),h5") du (y)‘

: <U VEy (m.)dp <y>} (x - mJ>,h°f“>
(| s (985 @) = Vi () )] o= sl 1)
JE )
J, T
: CCZ|(J||MD 185lr ) + CCZHTJ(I") I = 1005 ot -

d
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6.2. The Energy Lemma

Suppose now we are given a subset H of the dyadic grid D“. Let Py, = 3~ ;.4 AY

be the w-Haar projection onto H. For u,w positive locally finite Borel measures on

R", and H a subset of the dyadic grid D*, we define H* = U {J'eD¥:J C J}
JeH

Lemma 4 (Energy Lemma). Let J be a cube in D¥. Let Wy be an L? (w)
Junction supported in J and with w-integral zero, and denote its Haar support by
H = suppW ;. Let v be a positive measure supported in R™\~vJ with v > 2, and for
each J' € H, let dvy = @ pdv with |oy| < 1. Let T® be a standard a-fractional
Calderdn-Zygmund operator with 0 < o < n. Then with §' = % we have

P (J,v)
S 1¥sllee (

T ||P“7ftx||L2(w)
|J|™ )

1 (Pe., (J,v) "
+ 1l 2w - <1+|J|1 P52y

P (J,v) w
SOl <|J|1> IPFxll 2 »

Do AT (), D5 0),,

J'eH

and in particular the ‘pivotal’ bound

(T (1) 0) | < OVl L2 () P (L VD) A/

Remark 6. The first term on the right side of the energy inequality above is the
‘big’ Poisson integral P% times the ‘small’ energy term ||P‘:r’lx||2L2(w) that is additive
in ‘H, while the second term on the right is the ‘small’ Poisson integral P, s
times the ‘big’ energy term HP“;[*XHLZ(W) that is no longer additive in H. The first
term presents no problems in subsequent analysis due solely to the additivity of the
‘small” energy term. It is the second term that must be handled by special methods.
For example, in the Intertwining Proposition below, the interaction of the singular
integral occurs with a pair of cubes J C I at highly separated levels, where the
goodness of J can exploit the decay &' in the kernel of the ‘small’ Poisson integral
P{, s relative to the ‘big’” Poisson integral P*, and results in a bound directly by the
energy condition. On the other hand, in the local recursion of M. Lacey at the end
of the paper, the separation of levels in the pairs J C I can be as little as a fixed
parameter p, and here we must first separate the stopping form into two sublinear
forms that involve the two estimates respectively. The form corresponding to the
smaller Poisson integral P{, s, is again handled using goodness and the decay 6" in
the kernel, while the form corresponding to the larger Poisson integral P requires
the full force of the stopping time and recursion argument of M. Lacey.

Proof. Using the Monotonicity Lemma 3, followed by |v;/| < v and the Poisson
equivalence

62) Py (J'v)  Pg (Jv)

¥z \Jm ) J'cJc2J, supprn2J =10,

m
n
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we have

> AAGT (v), A5 ),

> (T (v) ,Aﬁ/‘l’ﬂw‘ =

J'eH Jren
Z (I)O‘ (']/’ |VJ'|) HAW’\I/J||L2(W)
J'eH
1
Pa (J/ ) 2 2 %
i « w 2
DY <,1> 1A% %172 (Z ||AJ,\IJJL2(M)>
JEH |J |" Jen
3 1
POZ (J/ V) 2 ) 2 , 1
+{ D <1+5/> > 185X, (Z |A§,\11J||L2(w)>
Jen PAE Ty Jen
P> (J,v 1 ,(J,v) )
5<|}))PMMMMMMW¢<1TF|mﬂmﬁmmw

The last inequality follows from

2
J
5 (“”<’”> S A%,

/m
J'eH |J JrcJ!

2
PO[ J/’
= Z Z <1+§(1y)> |‘A7”X||i2(w)

AR
Jrcg \ g grcaca PAE

| Py (1) ,
S o Z (H ”A X2

,-Y J"eH*

which in turn follows from (recalling § = 24")

2
Z (Plll-&-é (le”)>
1
JJrcJcJ BAR

2
26 1

- > wF|) 1 et )

Jr JCICd R \yJ (|J’ n4 |y — CJ’|>

2
1% Vi

S Z ~28 / 1 e T 4 )

e i P \Jear (11 gy - )

25 2

o 1 < Z ‘J’|" ) ( 146/ (J 1/)) < 1 ( 14687 (J V))
- 25/ 25 ~ 987 T
T\ gicres 11T Nk v | J]™
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Finally we have the ‘pivotal’ bound from (6.2) and

2 2 2
Z ||A§”XHL2(w) =x- mJ||L2(1Jw) < I ],
Jrcg

7. Preliminaries of NTV type

An important reduction of our theorem is delivered by the following two lemmas,
that in the case of one dimension are due to Nazarov, Treil and Volberg (see
[NTV4] and [Vol]). The proofs given there do not extend in standard ways to
higher dimensions, and we use the Weak Boundedness Property to handle the case
of touching cubes, and an application of Schur’s Lemma to handle the case of
separated cubes. The first lemma below is Lemmas 8.1 and 8.7 in [LaWi] but with
the larger constant A$ there in place of A§.

Lemma 5. Suppose T is a standard fractional singular integral with 0 < a < n,
and that all of the cubes I € D7, J € D¥ below are good with goodness parameters
e and r. Fiz a positive integer p > r. For f € L? (0) and g € L* (w) we have
(7.1)

> (T2 (A5, 859)) S (Ta + Ta+ WBPre + /A5 [l 2 9] 12
(I,J)ED xD¥
2P| I|w <|J| W <20 |1 W

and
(7.2) ) (T (AF0), 859)) S VAT 1Fl 20y ol 2 -
(I,J)eD? xD¥
1

INJ=0 and L1 ¢[277,27]
Vi

Lemma 6. Suppose T is a standard fractional singular integral with 0 < a < n,
that all of the cubes I € D, .J € D¥ below are good, that p > r, that f € L? (o) and
g € L? (w), that F C D’ and G C D* are o-Carleson and w-Carleson collections
respectively, i.e.,

> P, SIFl,, FeF, ad > |G, SIGl,, Geg,
F'eF: FICF G'eg: G'ca
that there are numerical sequences {ar (F)}pcr and {Bg (G)}qeg such that
(73) X ar (F)IFl, < £l and Y Be ()16, < lgliae) -
FeF Geg

and finally that for each pair of cubes (I,J) € D7 xD¥, there are bounded functions
Br1.5 and 1,5 supported in I\ 2J and J \ 21 respectively, satisfying

<1

‘ [eS)

181,51l o > 17,0
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Then
(7.4) > (T (Bralrar (F)),A%5g),]
(F,J)EFxD¥
FNJ=0 and |J|% <2~ °|F|%
+ Z (TS (AT f) velaBe (G)),|
(I,G)eD? xG

ING=0 and |I|7 <2~°|G|%
S \/Aig”fHL?(a) HQHL?(w) .

Remark 7. If F and G are o-Carleson and w-Carleson collections respectively,
and if ar (F) = E% |f| and Bg (G) = E% |g|, then the quasiorthogonality condition
(7.3) holds, and this special case of Lemma 6 serves as a basic example.

Remark 8. Lemmas 5 and 6 differ mainly in that an orthogonal collection of Haar
projections is replaced by a quasiorthogonal collection of indicators {1par (F)} per-
More precisely, the main difference between (7.2) and (7.4) is that a Haar pro-
jection AT f or AYg has been replaced with a constant multiple of an indicator
lpar (F) or 168 (G), and in addition, a bounded function is permitted to mul-
tiply the indicator of the cube having larger sidelength.

Proof. Note that in (7.1) we have used the parameter p in the exponent rather
than r, and this is possible because the arguments we use here only require that
there are finitely many levels of scale separating I and J. To handle this term we
first decompose it into

(e} [ea w
E : + E + E ‘<T0 (Alf)aAJg>w|
(I,1)ED? xD¥: JC3I  (I,J)€D xD*: IC3J (1,])€D? xD*
2P |I|% <|J|W <2P|I| 7 2P |I|w <|J|w<2P|I|W 2P |I|% <|J|% <2°|1| %
J¢Z3I and 1¢3J
= A1 + A2 + A3.

The proof of the bound for term Ajs is similar to that of the bound for the left side
of (7.2), and so we will defer the bound for A until after (7.2) has been proved.
We now consider term A; as term A, is symmetric. To handle this term we
will write the Haar functions h{ and h% as linear combinations of the indicators
of the children of their supporting cubes, denoted Iy and Jy respectively. Then
we use the testing condition on Iy and Jy when they overlap, i.e. their interiors
intersect; we use the weak boundedness property on Iy and Jyp: when they touch,
i.e. their interiors are disjoint but their closures intersect (even in just a point); and
finally we use the AS condition when Iy and Jy are separated, i.e. their closures
are disjoint. We will suppose initially that the side length of .J is at most the side

length I, i.e. |J|% < |I\%7 the proof for J = wI being similar but for one point
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mentioned below. So suppose that Iy is a child of I and that Jy is a child of J. If
Jor C Iy we have from (5.2) that,
{o.157),)

§ ) y f7h0'a
|<To' (]‘IS AI f)’l']e’ AJ g>w| g a,i}lepf‘n | |19 ’ |< 119 1J9l>w} \/m
1
(7,57, / 200 /
< . N el Tao‘ 1 d ) 7hw7a> ‘
< a,z}g;n \/m T ‘ ( 19)' W <g J w
(£, hT), | 3 ’
S = e 0l (e )
B R KA

< osup g, [(f,R77),
a,a’ €y,

<g7h°j’“ >w‘ .

The point referred to above is that when J = 7wl we write <T(‘,X (17,), 1J9,>w =
<116,T"‘7 (1J8,)>0_ and get the dual testing constant T7, . If Jy and Iy touch,

then |Jg/|™ < |1y
o,a ‘ g, hw,a/ ‘
(TS (L1, A 1), 1, 85 9),| S sup [&5: 570, | M

a,a’€Ty, \/m \/m
sup W’T;:JWBPT“WK > ‘

a,a’ €l
w,a
{oun57), |
w

= sup WBPra ‘(f, hT®),
a,a’€ly,

Finally, if Jyr and Iy are separated, and if K is the smallest (not necessarily dyadic)

cube containing both Jy and Iy, then dist (Ig, Jor) ~ |K|% and we have

(TS (14,),1,,,) ‘M

a,a’€ly, |Ie\,, 7 ? ¥ V |J9'|w

g, (9.15)

» and we have Jor €3Iy \ Ip, and so

‘<T:f1 (110) ’ 1J9’ >w}

A

(TS (17, A] f) .14, DY 9>w‘

A
]
o

e}

w ‘

ol [Jor], ’

<  sup — —_____fwl
a,a’ €T, \/|Ie dist I@,ng)n \/|J9/|w
Io| | Jyr /
= s ML e [|(g ) |
a,a’ €l dist (Ig, Jg ) w
Ko 1Ky 1/ o wa!
S sup 7na)|<fv I >g| <g,hJ’ > ‘
a,a’ €Ty, ‘K|" w
S VAF swp [(£.07, (g n5 ) |-

a,a’€ly,

Now we sum over all the children of J and I satisfying 277 \I\% < |J\% < 2° |I|%
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for which J C 3I to obtain that
Ay S (Sr. + T, + WBPre + VA5) sup 3 (£ 15, |

!’
@a'€ln (1 yepTxD: Jcar
1 1 1
270 |1|% <|J|F <20|1)%

(9.05) |

Now Cauchy-Schwarz gives the estimate

> > (D)ol 19, BT,

a,a’€l’y (I1,J)eD? xD¥: JC3I
1 1 1
270 I <|J|m <271

i
W=

ag 2 w 2

< sw >, S lekl
@a'€ln | (1 1yeDT xD: JC3I (I,7)€D? xD*: JC3I
27¢|I|w <|J| 7w <20 |1 w 270 1| <|J| 7w <20 |1 W

S 2oy 9l r2qy
This completes our proof of (7.1) save for the deferral of term Az, which we bound
below.

Now we turn to the sum of separated cubes in (7.2) and (7.4). In each of these
inequalities we have either orthogonality or quasiorthogonality, due either to the
presence of a Haar projection such as A{ f, or the presence of an appropriate Car-
leson indicator such as Bp jlpar (F). We will prove below the estimate for the
separated sum corresponding to (7.2). The corresponding estimates for (7.4) are
handled in a similar way, the only difference being that the quasiorthogonality of
Carleson indicators such as S j1paz (F) is used in place of the orthogonality of
Haar functions such as A¢ f. The bounded functions r ; are replaced with con-
stants after an application of the energy lemma, and then the arguments proceed
as below.

We split the pairs (I,J) € D? x D“ occurring in (7.2) into two groups, those
with side length of J smaller than side length of I, and those with side length
of I smaller than side length of J, treating only the former case, the latter being
symmetric. Thus we prove the following bound:

A(f,9) = Z (T3 (ATf), A59),]
(I,J)ED’ xD*
INJ=0 and |J|7 <2~°|I|%

S O VAS ||f||L2(o—) ||g||L2(cu) :

We apply the ‘pivotal’ bound from the Energy Lemma 4 to estimate the inner
product (T (Aff),AYg),, and obtain,

(T5 (ATF) s D590l S NIAF9l L2 ) P (L 1ATFlo) (/1L 5
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Denote by dist the £*° distance in R™: dist (z,y) = maxi<j<n [z; — y;|. We now

estimate separately the long-range and mid-range cases where dist (J,I) > |I |%
holds or not, and we decompose A accordingly:

A(f.g9) = A (f,9) + A (f,9).

The long-range case: We begin with the case where dist (J,I) is at least
|I|71L, i.e. JN3I =0. Since J and I are separated by at least max{|J\% , |I|%}7

we have the inequality

Eivie

IJlf
PO (J,| A7 / AT F () do (y) < ATl oy ———Yte
(L |AT flo) PEpET — 1 AT W)l do (y) < AT Fll g2 ) Gt (1)

since [, 1A% f ()| do (y) < 18 fll 2oy /1T, Thus with A (f, g) = A% (£, g) we

have

Af9) < Y > IAT fll 20y 1859 L2

1 1 1
T€D 7.1 1% <11 %: dist(, I)>\I|W

B / /
X— J
dist (1,.J)" ' 171

Z HA(ITfHL%a) ||AJg||L2(w) AL, J);

(I,J)eP
. g N/
with A(I,J) = J|;
(&) dist (1, )" 17 Il
and P = {(LJ)erD:|J|n§|f|n anddist(I,J)zuﬁ}.

NowletDNz{KED:|K|%:2N}foreaChN€Z. For N € Z and s € Z, we

further decompose A (f, g) by pigeonholing the side lengths of I and J by 2V and
2N =5 respectively:

S Ay (f9):

A(f,9) =
s=0 N€eZ
A (fg) = S 189 e 189l o AT )
(I,))ePy,
where Py = {(I, J) € Dy x Dy : dist (I, J) > |I|%} .

Now A% (f,9) = A% (P%f,P%_.9) where PR, = Z Al denotes Haar pro-
KeDy

jection onto Span {h/* and so by orthogonality of the projections

}KEDM,aan’
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{P‘Z‘M,}MEZ we have

YAV = D AN PRAPR )| < D0 AN PR S 2oy 1P —s9ll 2

NEeZ NEZ NEZ
3 3
o )2 2
< {sup ||A7V||} (Z ||PNf|L2(a>) (Z HP%ngmw))
NezZ NezZ NezZ
<

{sup IIA‘FVII} 120 loll o -
NEZ

Thus it suffices to show an estimate uniform in N with geometric decay in s, and
we will show

(75)  |A% (£.9)| < C2° /A |fll o) 9l 2y . fors >0 and N € Z.

We now pigeonhole the distance between I and J:

A (F9) = D Axe(fi9);
=0

Ave(f9) = Y AT flle(o) 1899l 12y AL T)
(I,)EPR ,
where Py, = {(I,J) € Dy x Dn_ : dist (I, J) = 2V},

If we define H (Af\m> to be the bilinear form on ¢? x ¢? with matrix [A (I, J)](Ivl)epfv,z’

H (Af\, 5) Hp » of H (Ajv g> on the se-
; N ,
quence space £2 is bounded by C2757¢, /AS. In turn, this is equivalent to showing

that the norm H?—l (Bj;,j) Hﬁ—w? of the bilinear form #H (Bj;,j) =H (A‘}”V,@)tr H (A?V,Z)

on the sequence space ¢ is bounded by C?27272¢Ag. Here H (stv,e) is the

then it remains to show that the norm ‘

quadratic form with matrix kernel [va (LT )} rep having entries:
’ ,J'€EDN s

By, (J,J) = > AI,J)AI,J), forJ,J €Dy_,.
IeDy: dist(I,J)=dist(I,J")~2N+¢

We are reduced to showing,

H’H (Bf\,)@)Héz_wQ < C'Q_QS_%A(Ql fors>0,¢>0and N € Z.
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For this we begin by computing By, , (/, J'):

By (L) = 3 — I"]} L LS— T

IeDn
dist(1,.J)~dist(1,J" ) 2N+

1

Iw
X ——————————— /|| _+/|J’
dist (1, J/)" Hlo /17

1
I
IEXD:N 1l dist (2, )" dist (1, J1)" T

dist(I,J)dist (1,7 )2V T

x |7 |’

Now we show that

(76) ||B}SV7£||£2*>£2 Sj 2_25_%*’45 ’

by applying the proof of Schur’s lemma. Fix ¢ > 0 and s > 0. Choose the Schur

function 8 (K) = \/W Fix J € Dy_s. We have
J
> ()
J'€DN_s B
22(N s) ,
N Z Z 11, 22(C+N) (n+1—a) Eaw

J'€Dn_s IeDy
dist(J,J') <2V T2 dist(I,J)~2N ¢

10+4+s 124+4+s
272572€|2 J| ’2 J|w < 2= 25— 2ZAa
2(+N)(n—a) 2(/+N)(n a) ~

A

since I € Dy and dist (I, J) ~ 2V imply that I C 2195 which has side
length comparable to 2¢TN) | and similarly J' C 2'2++5J. Thus we can now
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apply Schur’s argument with 3, (a7)* = 3, (by)* = 1 to obtain

> agbsBi, (1)

J,J'€EDN—s
= Z ajB(J )bJ/B(J/) B (J.J")
= B(J)B(T)
J') 2 Bive (1)
< > (asB(T Zﬁlw 0 Z(bJ B(J) W

J

= Z {Zﬁj }+Z (bs) {ZB BNZJJ’)}
S 272572€Ag¢ <Z (CLJ)2 + Z (bJ/)2> — 2172572£Ag'
J J’!

This completes the proof of (7.6). We can now sum in £ to get (7.5) and we are
done. This completes our proof of the long-range estimate

A8 (f, g) SVA ||f||L2(o') H9||L2(w)

At this point we pause to complete the proof of (7.1). Indeed, the deferred term
Az can be handled using the above argument since 3J NI = ) = J N 3I implies
that we can use the Energy Lemma 4 as we did above.
The mid range case: Let
P= {(J,J) eDxD:Jis good, |J|* <277 1|7, JC3I\I}.
For (I,J) € P, the ‘pivotal’ estimate from the Energy Lemma 4 gives

(TG (A7) D590l S NA59M L2y P (LIATflo) /1], -

Now we pigeonhole the lengths of I and J and the distance between them by
defining

Piva= {(1, J)ED xD: Jis good, |I|7 =2V, [J|7 =2V~ J 3\ 1, 24! <dist (I, J) < Qd}.

Note that the closest a good cube J can come to I is determined by the goodness
inequality, which gives this bound for 2¢ > dist (I, J):

24 >

5= LN gv—s)e _ Lon—cs.
2 )

DN | =

which implies N —es —1 < d < N,
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where the last inequality holds because we are in the case of the mid-range term.
Thus we have

o KT AT 29901 S Y 1894l 120 P* (L1AT flo) /1L,

(I,J)eP (I,J)eP
oo N
=3 Y Y 1850l P flo) /1L,
s=p N€Z d=N-es—1 (I,J)EP} 4

Now we use

P (L |27 flo)

"y — el

2N s
S aerizay 187l v/ 1

and apply Cauchy-Schwarz in J and use J C 31 to get

> NTE(ATF), M%),

/1 (|J 1 . )n+1_a [A7F (y)l do (y)

(I,J)eP
N sV, VI VBRI,
S Z > Z > e 181 ) N
s=p N€Z d=N-es—1 I€Dn
X > 18590175
JEDN_s
JC3I\I and dist(I,J)~2?
< 2N 52N Aa Ao e 3
Yy SN T aw S A e | D 1890050,
s=p NEZ I1€DyN JEDN-s

JC3I\I
S 22_8[1_6(’”-"_1_0{)} V A% ||f||L2(U) ||g||L2(w) 5 V Ag Hf||L2(a') ||g||L2(w) )
$=p

. g N
where in the third line above we have used Zd:N—es—l 2d<ni17a) ~ 2(N755)]£n+1—a) ,

and in the last line % = 2-sll—e(nt+1-a)] followed by Cauchy-Schwarz

in I and N, using that we have bounded overlap in the triples of I for I € Dy.
More precisely, if we define fr = ;cp ATfhT and gr = ) cp A%ghY, then we
have the orthogonality inequality

1
2 2
S Ifnllego lon—sll ey < (Zmnp@) (anNsanM)

NEeZ NeZ NEeZ

1

HfHL?(g) ”g“L?(w) :

We have assumed that 0 < € < nﬂ%a in the calculations above, and this completes
the proof of Lemma 5. m|
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8. Corona Decompositions and splittings

We will use two different corona constructions to reduce matters to the stopping
form, the main part of which is handled by Lacey’s recursion argument, namely
a Calderén-Zygmund decomposition and an energy decomposition of NTV type.
We will then iterate these coronas into a double corona. We first recall our basic
setup. For convenience in notation we will sometimes suppress the dependence on
« in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. We will assume that the good/bad cube machinery of Nazarov, Treil
and Volberg [Vol] is in force here. Let D7 = D“ be an (r,¢)-good grid on R™,

g,a w,b .
and let {h] }IEBU’ acr, and {hJ }IeDw e be corresponding Haar bases as

described above, so that

f=)Y Affandg= Y AYg,

I1eDe JeDw

where the Haar projections A§f and A%g vanish if the cubes I and J are not
good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T (f9) =TS9 = >,  (TS(A7f),AY9),

I€D° and JeDv
on L? (o) x L? (w), i.e.

|Ta (fu g)‘ S mTO‘ ||f||L2(a') ||g||L2(w) .

8.1. The Calderén-Zygmund corona

We now introduce a stopping tree F for the function f € L? (o). Let F be a

collection of Calderén-Zygmund stopping cubes for f, and let D7 = U Cr be the

FEF
associated corona decomposition of the dyadic grid D?.

For a cube I € D? let mpo I be the D?-parent of I in the grid D7, and let mxI
be the smallest member of F that contains I. For F, F’ € F, we say that F”’ is an
F-child of F if 7x (rpsF') = F (it could be that F' = 7p- F’), and we denote by
Cr (F') the set of F-children of F'. For F' € F, define the projection PZ_ onto the

linear span of the Haar functions {h7%}, . cp by

Pe.f=> Aff= > (fh]", h7"

IeCr IeCp, acl’y,

The standard properties of these projections are

f=3ens [ CLNe=0 Wl = 3 1P S,

FeF FeF
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8.2. The energy corona

We must also impose an energy corona decomposition as in [NTV4] and [LaSaUr2].

Definition 5. Given a cube Sy, define S (So) to be the mazimal subcubes I C Sy
such that

(8.1) 2
P« 1 2
3 (W) HPSJ“bgDOd,WX‘

JEMTidEEP(I) |J| py L2(w)

where 3P is the constant in the deep energy condition defined in Definition 4,
and Cepergy 15 a sufficiently large positive constant depending only on T,r,n and
o0

«a. Then define the o-energy stopping cubes of Sy to be the collection S = U Sn
n=0

where Sy = S (Sp) and Sp41 = U S (S) forn > 0.
SeS,

From the energy condition in Definition 4 we obtain the o-Carleson estimate
(82) > I8, <2i1,, IeD’.
SeS: scI

Indeed, using the deep energy condition, the first generation satisfies

(8.3) > 18],

SeSy

> Conergy [ (£27)" + 48] 1,

2
1 pe (J’ ]‘SO\’YJO—) subgood,w 2
= C [ gdeep 2 AO‘- SZS Z ( |J = ’ PJ X‘ L2 (w)
energy ( « ) + 2 €51 JEM 7 _deep(S5)
2
1 pe (J> 1S 0) subgood,w 2
= [ [ cdeep) 2 ] Z Z (io ‘ Py X‘LQ(w)
Cenergy (go‘eep) + Ag S5e81 JeMT—deep(S) |J|
) 2
< Cr,r n,a Z Z pe (J7 1500) ‘ Psubgood,wx‘ 2
- dcc | J % L2 (w)
Cenergy < p) +Ag S€S1 JEMyr—_deep(S) ‘ |
[ _ 1
< T, _ (g;ieepplug)2 |50‘o = 3 |5’0|6 ,
C(energy ( deep) + AS

deepplug)2
(&

provided we take Cenergy = 2Cr 1m0 The third inequality above, in

S GEDLwre
which 7 is replaced by r (but the goodness parameter € > 0 is unchanged), follows
because if J1 € M;_geep (S), then J; C Jo for a unique Jo € My_geep (S) and
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we have |J2\% < 27T \J1|%, hence % < CT’ML’Q%' Subsequent
|m 2| m

generations satisfy a similar estimate, which then easily gives (8.2). We emphasize
that this collection of stopping times depends only on Sy and the weight pair (o, w),
and not on any functions at hand.

Finally, we record the reason for introducing energy stopping times. If

2
P?]ubgood,wxl
L2 (w)

2
P (J,1
(8.4) Xa (Cs)2 = sup i E M ‘
IeCs |I|g' JEM(I)

is (the square of) the a-stopping energy of the weight pair (o,w) with respect to
the corona Cg, then we have the stopping energy bounds

(8.5) X, (Cs) < V10Eder S8,

where the deep energy constant £3°°P is controlled by assumption.

8.3. General stopping data

It is useful to extend our notion of corona decomposition to more general stopping
data. Our general definition of stopping data will use a positive constant Cy > 4.

Definition 6. Suppose we are given a positive constant Cy > 4, a subset F of the
dyadic grid D° (called the stopping times), and a corresponding sequence axr =
{ar (F)}per of nonnegative numbers oy (F)) > 0 (called the stopping data). Let
(F,=<,mx) be the tree structure on F inherited from D, and for each F € F
denote by Cp = {I € D? : wxl = F} the corona associated with F':

Cr={1€D’°:ICF andI ¢ F' for any F' < F}.

We say the triple (Co, F,aF) constitutes stopping data for a function f € L}, (o)
if

1. E9|f| <ar(F) forallI eCpr and F € F,

2. ZF,jF |F'|, < Co|F|, for all F € F,

3. Lperar (F)|F|, <C3£11720);

4. ar (F) < ar (F') whenever F'|F € F with F' C F.

Definition 7. If (Co, F,ax) constitutes (general) stopping data for a function
f €L}, (o), we refer to the othogonal decomposition

F=Y P&t PLf=D DTS

FeF IeCr

as the (general) corona decomposition of f associated with the stopping times F.
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Property (1) says that ar (F') bounds the averages of f in the corona Cp, and
property (2) says that the cubes at the tops of the coronas satisfy a Carleson
condition relative to the weight o. Note that a standard ‘maximal cube’ argument
extends the Carleson condition in property (2) to the inequality

Z |F'|, < Cy|A|, for all open sets A C R.
F/eF: FI'CA

Property (3) is the quasiorthogonality condition that says the sequence of functions
{aF (F) 1r} pcr is in the vector-valued space L? (62; U), and property (4) says that
the control on averages is nondecreasing on the stopping tree F. We emphasize
that we are not assuming in this definition the stronger property that there is
C > 1 such that ar (F') > Car (F) whenever F',F € F with F' & F. Instead,
the properties (2) and (3) substitute for this lack. Of course the stronger property
does hold for the familiar Calderon-Zygmund stopping data determined by the
following requirements for C' > 1,

% |fl > CE%|f| whenever F',F € F with F' C F,
ES|f| < CE%|f| for I €Cp,

which are themselves sufficiently strong to automatically force properties (2) and
(3) with ar (F') =E%|f]-

We have the following useful consequence of (2) and (3) that says the sequence
{ar (F)1r}pcr has a quasiorthogonal property relative to f with a constant Cj
depending only on Cjy:

2
59 S ar ()17

FeF

2
< Collf 20y -
L2(0)

Indeed, the Carleson condition (2) implies a geometric decay in levels of the tree
F, namely that there are positive constants C; and e, depending on Cj, such that
if (’:g,?) (F) denotes the set of n'* generation children of F in F,

> IFl, < (@2 )IF,,  foralln>0and FeF.

Free™ (F):

From this we obtain that

oo (o)
Yo > ar®@IF, < ) Y ar(F)|F, 027 IF,
n=0Free (F): n=0\ Free (F)
< OnJIF,Ce (D27 > ar(F)|FY,
n=0

Free™ ()
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and hence that

doar(F)§Y, Y ar(F)|F,

FeF n=0 F’GQ;")(F)
S Y ar(E)/IF, [ D2 > ap ()R,
FeF n=0 Freel™ (F)
1
1 2
2 %)
_ 2
< (Zewrn) (Sery S e,
FeF n=0

FeF F/ecg’) (F)

(NI

2
S I llze o <Z ar (F) F’IU> S Iz -

F'eF

This proves (8.6) since |3 perar (F) 1FH12(0) is dominated by twice the left
hand side above.

We will use a construction that permits iteration of general corona decomposi-
tions.

Lemma 7. Suppose that (Co, F,ax) constitutes stopping data for a function f €
L}, (o), and that for each F € F, (Co,K (F),ax(r)) constitutes stopping data
for the corona projection PZ_f. There is a positive constant C1, depending only
on Cy, such that if

’C*(F) = {KEIC(F)OCF:aK(F)(K)Za;(F)}
K = |JK @) u{r},
FeF
B o (K) for K eK*(F)\{F}
ax (K) = max{afl(cl(ig),am(p) (F)} for K=F ’ for F € F,

the triple (C1,K, ax) constitutes stopping data for f. We refer to the collection
of cubes IC as the iterated stopping times, and to the orthogonal decomposition
f=2kex Pcf)%f as the iterated corona decomposition of f, where

Ck={IeD:ICK andI¢ K’ for K' <x K}.

Note that in our definition of (Cy, K, ax) we have ‘discarded’ from K (F') all of
those K € K (F) that are not in the corona Cr, and also all of those K € K (F)
for which ay(p) (K) is strictly less than az (). Then the union of over F' of
what remains is our new collection of stopping times. We then define stopping
data ax (K) according to whether or not K € F: if K ¢ F but K € Cp then
ak (K) equals ai(py (K), while if K € F, then ax (K) is the larger of ax(p) (F)
and ar (K).
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Proof. The monotonicity property (4) for the triple (Cy, K, ax) is obvious from
the construction of K and ax (K). To establish property (1), we must distinguish
between the various coronas C, CE(F) and Cf that could be associated with
K € K, when K belongs to any of the stopping trees I, K (F) or F. Suppose
now that I € Ck for some K € K. Then there is a unique F € F such that Ck C
CE(F) C Cf, and so EJ |f| < az (F) by property (1) for the triple (Co, F, ar).
Then ar (F) < ax (K) follows from the definition of ax (K), and we have property
(1) for the triple (Cy, K, ax). Property (2) holds for the triple (C1, KC, ax) since if
K € Cf, then

> Kl = > K+ > > K,
K'<xK K'ek(F): K'CK F'<5F: FICK K'€K(F')

CGiIKl,+ Y,  GiIFl, <203 |K|,.
F'<xF: F'ICK

IN

Finally, property (3) holds for the triple (C1, K, ax) since

ZaK(K)QIKIU = Z Z aIC(F)(K)2|K|g

Kek FEF KeK(F)

Z Cg |‘PgFinz(o.) < Cg Hf”%ﬂ(a) .
FeF

IN

8.4. Doubly iterated coronas and the NTV cube size splitting

Here is a brief schematic diagram of the decompositions, with bounds in 7, used
in this subsection:

(T3 1, 9)
1

B@p (fag) + Bp§ (fag) + Bn (.fag) + B/ (fvg)
¢
1

Tdiagonal (fa g) + Tfarbelow (fa g) + Tfarabove (fa g) + Tdisjoint (fa g)

! !

!
Bép f’ g) Ttlarbelow (f’ g) + T?arbelow (f’ g)

d
(
! N7V
d

B?top (f’ g) + B;laraproduct (f7 g) + Br?ei hbour (f7 g)

Edeer | /AT EN VAS

We begin with the NTV cube size splitting of the inner product (T f, g) , - and
later apply the iterated corona construction - that splits the pairs of cubes (I, J)
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in a simultaneous Haar decomposition of f and g into four groups, namely those
pairs that:

1. are below the size diagonal and p-deeply embedded,
2. are above the size diagonal and p-deeply embedded,
3. are disjoint, and

4. are of p-comparable size.

More precisely we have

(TS f,9), = S TS (ATf) . (AYg).,
IeDe, JeDv
= ST THAT) (A, D (TH(ATS), (AY9),,
IeD?, JeD¥ IeD?, JeD¥
JE,1 JpI
+ Y (TE(AL), (A5, + > (TS (AT F), (L%9)),
IeD°, JeD¥ IeD?, JeD¥
JNI=0 27| /|| <2m

= B@p(fag)+Bp©(fag)+Bﬂ<f7g)+B/(fag)

Lemma 5 in the section on NTV peliminaries show that the disjoint and com-
parable forms Bn (f,g) and B (f,g) are both bounded by the Ag, testing and
weak boundedness property constants. The below and above forms are clearly
symmetric, so we need only consider the form Be, (f, g), to which we turn for the
remainder of the proof.

In order to bound the below form Be, (f, g), we will apply two different corona
decompositions in succession to the function f € L? (o), gaining structure with
each application; first to a boundedness property for f, and then to a regularizing
property of the weight . We first apply the Calderén-Zygmund corona decompo-
sition to the function f € L? (o) obtain

f=> P&f
FeF
Then for each fixed F' € F, construct the energy corona decomposition {Cg}SeS(F)
corresponding to the weight pair (o,w) with top cube Sy = F, as given in Defini-
tion 5. At this point we apply Lemma 7 to obtain iterated stopping times S (F)
and iterated stopping data {ag(].-) (S)}Ses(}_). This gives us the following double

corona decomposition of f,

(8.7) fo= Y P&Lf=> > PLPLf

FeF FEF SES(F)
= Y Pqnepf= D PEf
SeS(F) SES(F)

> P S,

AcA
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where A = S (F) is the double stopping collection for f. We are relabeling the
double corona as A here so as to minimize confusion. We now record the main
facts proved above for the double corona.

Lemma 8. The data A and {aa (A)} 4c 4 satisfy properties (1), (2), (3) and (4)
in Definition 6.

To bound Bg, (f,g) we fix the stopping data A and {a4 (A4)} 4. 4 constructed
above with the double iterated corona. We now consider the following canonical
splitting of the form Be, (f, g) that involves the Haar corona projections PZ = acting
on f and the 7-shifted Haar corona projections P“CJJ;S],ift acting on g. Here the 7-
shifted corona Cg‘sm& is defined to include only those cubes J € Cp that are not
T-nearby B, and to include also such cubes J which in addition are T-nearby in
the children B’ of B.

Definition 8. The parameters T and p are now fized to satisfy
T>randp>r+T,
where r is the goodness parameter already fized.

Definition 9. For B € A we define
cy Mt —{JeCp:Je, BJU U {J€D:J &, B and J is T-nearby in B'} .
B'eC4(B)

The forms Be, (f,g) are no longer linear in f and g as the ‘cut’ is determined

by the coronas Cr and Cg_Shift, which depend on f as well as the measures ¢ and w.
However, if the coronas are held fixed, then the forms can be considered bilinear
in f and g. It is convenient at this point to introduce the following shorthand
notation:

[e% ag w @p J— [e% g w
(T2 (Pe 1), (Poung)) "= D (T2 (A7) (D59, -
I€CF and JeCg~shift
Je,I

We then have the canonical splitting,

(8.8)Be, (f,9)

€
= Z <T§( (PgAf),Pg;—B—shiftg>w
A,BEA
€, €,
= > (TP f) . (Pomg)) T+ 3 (T2 (PES), (P aing))
AeA A « A,BeA B ©
BSA
€, €,
+ 3 <T: (ngf),(Pgé,Mg)>w + 3 <Tg (PgFf),(Pgé,Mg»w
A,BEA A,BeA
B;A ANB=0)

Tdiagonal (f7 g) + Tfarbelow (f7 g) + Tfarabove (fa g) + Tdisjoint (fa g) .
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Now the final two terms Tiarabove (f; 9) and Tdisjoint (f, g) €ach vanish since there
are no pairs (I,J) € Ca x C "M% with both (i) J € I and (ii) either B S Aor
BNA=0.

The far below term Tearbelow (f, g) is bounded using the Intertwining Proposi-
tion and the control of functional energy condition by the energy condition given
in the next two sections. Indeed, assuming these two results, we have from 7 < p
that

Tfarbelow (f7 g) = Z Z <T(;X (Atlff) ) (Ai})g»w

A,BEA IeC, and JGCgfshm
BGA JE I

> D > (T2 (DTF), (DSg))

BeA AcA: B;A IeC, and JGCJTBfShift
JELI

> > > (T2 (ATF), (DSg))

BeA AcA: BGAIeC, and JeCy =Mt

Yy > . (850,

BeA AcA: BGAIeCy and Jecy =Mt
JE,I

= T%arbelow (fa g) - T?arbelow (f; g) .

Now T2 1 elow (f+9) is bounded by NTV,, by Lemma 5.
The form T}, 1010w (f>9) can be written as

T%arbelow (f7 g) = Z Z <T((r1 (A?f) 7gB>w

BeAeD: Bgl

where gg = Z AT/

Jecg—shift

The Intertwining Proposition 1 applies to this latter form and shows that it is
bounded by NTV,, + Fa- Then Proposition 2 shows that §, < AS + &, which
completes the proof that

(89) |Tfarbelow (f? g)| 5 (NTV(X + gOt) Hf||L2(a) ||g||L2(w) .

The boundedness of the diagonal term T giagonal (f; ¢) Will then be reduced to
the forms in the paraproduct/neighbour/stopping form decomposition of NTV.
The stopping form is then further split into two sublinear forms in (11.6) below,
where the boundedness of the more difficult of the two is treated by adapting the
stopping time and recuresion of M. Lacey [Lac]. More precisely, to handle the
diagonal term T giagonal (f,¢), it is enough to consider the individual corona pieces

S

Bép (f? g) = <Tg (PgAf) 7Pg;75hiftg>w 3
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and to prove the following estimate:

L2(w)

82, ()| S WVt €0) (0 () 1A, + P8 Sl ) [P

Indeed, we then have from Cauchy-Schwarz that

582 U]« 52, (1)

1

2
L?(w))

where the last line uses quasiorthogonality in f and orthogonality in both f and
g.

Following arguments in [NTV4], [Vol] and [LaSaShUr], we now use the para-
product / neighbour / stopping splitting of NTV to reduce boundedness of Bép (f,9)
to boundedness of the associated stopping form

> > (E7, A f) (T21avs,, 0%9),

Tesuppf J: JEpI and I;¢A

< (NTVa + &) (ZaA 214, +||PCAf||L2(U)> (ZHszsmg
AcA

AcA
S WTVa+&) Ifll2(o) 1902w -

(8.10) B, (f,9)

where f is supported in the cube A and bounded by a4 (f), the Haar support
Haarsuppf of f is contained in the corona C%, and the Haar support Haarsuppg is
contained in CZ‘*Sh‘&. Indeed, to see this, we note that A7 f =1; A] f and write
both

1, = 15, + Z Lo, >
0(I;)eCp(H\{1s}

17, = 1a—1ay,,

where 0 (I;) € €p (I)\ {I;} ranges over the 2" — 1 D-children of I other than the
child I; that contains J. Then we obtain

(T3 A7 £.050), = (I9 (1, 87 D). 8500, + > (T2 (louy BF £). B59),
0(I;)eCp(H\{1s}
= ( g] Ag f) <1IJTa (1IJ) ) A(u;g>w + Z <T;1 (19(11) A? f) ’A§g>w
6(Iy)eCn(IH\{1s}

= (BF, A f) (T4, AY9),
— (EF, A7 1) (T3 1avs,» A59).,
+ > (T (Logr,y AT £) . D59),

O(I;)e€p(IH\{1s}
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and the corresponding NTV splitting of Bép (f,9):

@P (67 o w
B, (1.9 = (T2(Pe,f). (Pang)) "= D (T2(AN). (&5

I€Cy and Jec =Mt

JE I

= S (B A7) (T4, 05),

I€C, and .]GC;fshm
JE I
- > (ES, AT [)(T91avs,, DY9),
IeCx and JGC;fshift
Jel

+ > > (T3 (Loeryy A7 £), D59),,
I€Cs and Jec, M 0(1;)€p (D\{1,}
Je,I

= B;laraproduct (fv g) - Bftop (f7 g) + B;?eighbour (.fv g) .

The paraproduct form B;‘ampmduct

tion for T%*. Indeed, we have

(f,g) is easily controlled by the testing condi-

B;?araproduct (fv g) = Z ( CITJ CIT f) <T<(711A’ A#g>w

I€C, and JeCi ™~
Jer

- ¥ <T;‘1A,A§g>w{ > (E?Jﬂ?f)}

JecThift IeCa: JEI

= ) (T84, 099), {E?h(J)Jf_Eif}

Jecz—shift

= <T31Aa Z {E}'u(J)Jf—Eif}A‘jg> )

JEC;_Shift "

where 1% (J) denotes the smallest cube I € C4 that contains J, and of course
1% (J) ; denotes its child containing .J. By construction of the corona we have

I%(J), ¢ A, and so E%: ) f’ S EG |f] < aa(A). Note that in our application
J
of the stopping form we have f =Pz f and g = P‘é’r,shift g, and the definitions of
A

the coronas C4 and C;_Shift together with r < 7 < p imply that I%(J), ¢ A for
J c C;—Shift.

Thus from the orthogonality of the Haar projections A%g and the bound on
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the coefficients ‘E}'h(J)Jf - Ejf‘ < aa (A) we have

BﬁaTaproduct (fv g) ‘

<T51Av Z {E?h(J)Jf_E%f} Ai‘]}g>

JEC;_Shiﬂ' "

S aa(A) 11aT81all i) [Por-aing

< Tpa ag (A) (/IAl,

L2 (w)

PwT— hiff .
’ CA sntg L2(w)

Next, the neighbour form B# ghbour (f, g) is easily controlled by the A% con-
dition using the Energy Lemma 4 and the fact that the cubes J are good. In
particular, the information encoded in the stopping tree A plays no role here. We
have

Bfeighbour (fa g) = Z Z <Tga (19(1,1) A? f) ’ A§g>w .
I€Cs and Jec, M 0(1;)ep (N\{1,}
JE,I

Recall that I; is the child of I that contains J. Fix 6§ (I;) € €p (I) \ {I;} momen-
tarily, and an integer s > r. The inner product to be estimated is

(Tg(Lo1,y0 AT f), A%9)
i.e.
<Tz;x (19(1J) AT f) ,A“jg>w = Eg(]J)A?f : <T;v (lg(IJ)) ,A§g>w .

Thus we can write

(8.11)
BrALeighbour (fa g) = Z Z (]Eg(IJ)A([Tf> <Tg (lg(IJ)U) 7A?¢>w
I1€C4 and Jec, M 0(1)ep (D\{1}
JELI

Now we will use the following fractional analogue of the Poisson inequality in
[Vol].

Lemma 9. Suppose that J C I C K and that dist(J,0I) > 3||.J SIR. Then
J 1\ l—e(n+l—a)

(812) Pa(J7O']_K\I> 5 <|| ||1 ) Pa(l,o'lK\[).
Il

Proof. We have

1
P« (J,O'XK\I) ~ E 27k7_a/ dO’,
= 2R Jernaan
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and (2J) N (IA\ I) # () requires

1
n

dist (J,e (1)) < |2¥J

Let kg be the smallest such k. By our distance assumption we must then have

)% 1] < dist (J,e (1)) < 20 |7

VAN
2—k0§<1> .
|I|n

Now let kq be defined by ok1 = M Then assuming ky > ko (the case k1 < ko is

or

||
similar) we have
k1 o) 1
p (‘]7 TX7P 1) ~ { + }2_ka/ do
) k;o kgk:l |2]’3J|1 ™ J(@2RN(KN\T)
1—o
< 9—ko |I| 1n _ 11 _ / do | + 9—k1pa (L oXF I)
|2ko J|" 7 \ [I|7 7™ J(2k10)n(K\T) \
1\ (1—&e)(n+l1—a) 1\ n—a 1
Jn Im o Jm
S <|I||l ) <||J|1> P* (I,oxk\1) + ||I|1 P (I,oxk\1)
which is the inequality (8.12). O

Now fix Iy, Iy € €p (I) with Iy # Iy and assume that J €, Iy. Use ||A§g||L2(w) =

1
|<g, h‘j)w| and “}”li = 27% in the pivotal estimate in the Energy Lemma 4 with
0 n

J C Iy C I to obtain

(15 (11,0), ATg)wl S IIAT Gl 20 /[P (J11,0)
S ATl /171, - 27 P (I, 17,0)
Here we are using (8.12), which applies since J C Ij.
In the sum below, we keep the side length of the cubes J fixed, and of course
J C Iy. We estimate

A(L,0,s) = Z (T3 (1,0A7f) . ATg)w|
J 28| J|% = |17 :ICTo
1l _e(n+l—a))s|mo Ao a w
<2 n(1=e(n+l=a)) |EIQ If‘ p (IO, 1190) Z ||AJg||L2(w) ‘J|w

J:2s|J|m=|I|%: JCI
< 2_(1_8(n+1_a))8|E?9 A?f' Pa(Iov 1[90) |Io|wA(I, 0, S),
A(L,s)* = > 1259170 -

shi 1 1
Jecn Tt o5 g w =|1| 7 JCo
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The last line follows upon using the Cauchy-Schwarz inequality. Using

(8.13) B, A7 f| < \/ES, AT f* < IAT fll 20y Hal, 2,

we can thus estimate A(I,0,s) as follows, in which we use the A$ hypothesis

Uy  _ po .
sup;y 2(17;) =AY < oc:
=

A(L0,s) < 27 w0t A £, AT, 5) - ||, 2 P*(Io, 11,0 o)/ Hol,,
5 R /Ag27%(17€(n+17a))s ||A1f||L2(U) (I, S) ’

since P*(Ip,1;_,0) < % shows that

~ |Ie|T T
Ip| Iy|
L7 P 110) il £ Y0 < /A
) 2
An application of Cauchy-Schwarz using > ;... A(1,5)" = HP‘&’T_shiftg ‘ o) then
A L2 (w
shows that
Y —7(1 e(n+l—a) o ‘ w ’
I;AA (1,0,5) S VA2 #IIPE, fllz2 (o) Persming L

This estimate is summable in s > r, and so the proof of

B’r?ezghbour f’ ’ Vv Aa HPCAfHL2

P T— §hlft
‘ Ca L2(w)

is complete.

It is to the sublinear form on the left side of (11.7) below, derived from the
stopping form Bstop (f,9), that the argument of M. Lacey in [Lac] will be adapted.
This will result in the inequality
(8.14)

B2 (190 S (6257 + V) (0 () A, + o)) Baliny A€ A

where the bounded averages of f in Bstop (f, g) will prove crucial. But first we turn
to completing the proof of the bound (8.9) for the far below form Tarbelow (f9)
using the Intertwining Proposition.

9. Intertwining proposition

Here we generalize the Intertwining Proposition (see e.g. [Expanded]) to higher
dimensions. The main principle here says that, modulo terms that are controlled



TWO WEIGHT BOUNDEDNESS 47

by the functional energy constant §, and the NTV constant N'TV,, (see below),

we can pass the shifted w-corona projection P‘gT,Smft through the operator T* to
B
become the shifted corona projection o-corona projection PZT,shift. More precisely,
B

the idea is that with T2 f = T (fo), the intertwining operator
P it [P T = T2 PT | PE
crshife |Per—shittlo o Fer—shite | Fey

is bounded with constant §o + N7TV,. In those cases where the coronas cg—shi“

and C4 are (almost) disjoint, the intertwining operator reduces (essentially) to

PgT,sl,ift T9Pg K and then combined with the control of the functional energy con-
B

stant §, by the energy condition constant &, and A +.45"", we obtain the required
bound (8.9) for Ttarbelow (£, g) above.

To describe the quantities we use to bound these forms, we need to adapt to
higher dimensions three definitions used for the Hilbert transform that are relevant
to functional energy.

Definition 10. A collection F of dyadic cubes is o-Carleson if

> |Fl, <CFIS|,, SeF
FeF: FCS

The constant C'r is referred to as the Carleson norm of F.

Definition 11. Let F be a collection of dyadic cubes. The good T-shifted corona
corresponding to F is defined by
C%OOd’T_SMﬂ ={Je Dipoa:J €+ F and J &, F' for any F' € €x (F)}.
Note that the collections C%OOd’Tfshift have bounded overlap 7 since for fixed
J, there are at most 7 cubes ' € F with the property that J €, F and J &, F’
for any F’ € €x (F'). Here €x (F) denotes the set of F-children of F. Given any

collection ‘H C D of cubes, and a dyadic cube J, we define the corresponding Haar
projection P3; and its localization P3,. ; to J by

(9.1) 5= Agand Py, = Y Ay,
HeH HeH: HCJ

Definition 12. Let §, be the smallest constant in the ‘functional energy’ inequal-
ity below, holding for all h € L*(0), g € L? (w) and all o-Carleson collections
F:

2
P (J, ho 2
(9.2) Z Z <()> HPLCU?OIJ,T—SIW‘I,;JX’

1
n L2
FEF JEMy—geup(F) |J]™ (

) < SaHhHLz(U) .

There is a similar definition of the dual constant §7,.
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We now show that the functional energy inequality (9.2) suffices to prove
an a-fractional n-dimensional analogue of the Intertwining Proposition (see e.g.
[Expanded]). Let F be any subset of D. For any J € D, we define 7%.J to be
the smallest ' € F that contains J. Then for s > 1, we recursively define 7%J
to be the smallest F' € F that strictly contains 7r5f_1J . This definition satisfies
w5t = m%nleJ for all s,t > 0 and J € D. In particular 7%J = 75 F where
F= 7r0]_-J . In the special case F = D we often suppress the subscript F and simply
write 7* for 75,. Finally, for F' € F, we write €5 (F) = {F' € F: nLF' = F} for
the collection of F-children of F'. Let

NTVo =+ AS +To + WBP,.

Proposition 1 (The Intertwining Proposition). Suppose that F is o-Carleson.
Then

SN (T AT Peirang) | S ot NTVa) 1 2o 1920 -
F w

FeF . I;F

Proof. We let gp = ngood,,shmg and write the left hand side of the display above
F
as

Z Z <Tg A?fng>w: Z <Tc? Z A?f 39F> = Z <Tng,gF>w )

FeF T: I;F FeF I: I;F FeF

where

fr= > Af.

I: IgF

We note that the cubes I occurring in this sum are linearly and consecutively
ordered by inclusion, along with the cubes F’ € F that contain F. More precisely,
we can write

FEFO ;Fl ; F2 ; an ; Fn+1 ; FN

where Fy,, = 72 F for all m > 1. We can also write
F:Fogllgjzg...;Ik;IkJrl;...;IK:FN

where I, = & F for all k > 1. There is a (unique) subsequence {kzm}ivn:l such
that
Fn=1I,, 1<m<AN.

Define -
fr(@) =) A% f ().
=1
Assume now that k,, <k < k,,+1. There are two cases to consider here:

Q(Ik) §é F and H(Ik) cF.
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Suppose first that 0 (1) ¢ F. Then 0 (I) € Cf, . and using a telescoping sum,
we compute that for

T e H(Ik) = Ik+1 \Ik C Fm+1 \ F,.,

we have

fr (@) = )| = |Bso f —B5, f| SEE, L, 11
=k
On the other hand, if 6 (1) € F, then [ € Cf | and we have
fr (@) = B30 f @) = | 32 87, @)| = [Bf,.f ~Bf S| S B, 1] -
t=k+1
Now we write
fr = er+ir,
oF = Z A7 fand Yr = fr — pF ;
k: 0(I)eF
S Tetrigr), = Y. (Tfer.gr),+ Y (T0¢r.gr),
FeF FeF FeF

We can apply (7.4) to the first sum here to obtain

ZSDF

FeF

2
ZQF

FeF L2(w)

N

Z (Tyor, 9F>w NTVq

FeF

L2(o)

N

< NTV, Hf”Lz(g) [Z |9F||12(w)]

FeF
Turning to the second sum we note that

N

el < D (B, 11) Lraam, = EFIFD) 1r+ Z( piiplf1) Lopoipngr
m=0

= (EE|f]) 1r+ Z (E7,pr [f]) Laprnp
FIeF: FCF!

S ar (F) 1F+ Z ar (ﬂ'}'Fl) 17T_7:F’\F’
F'eF: FCF'

< O[].'(F) 17+ Z Ck]:(ﬂ']:F/) ].ﬂfpz 1pe
F'eF: FCF'

= ar(F) 1p+® 1p., for all F' € F,
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where

P = Z Oé]:(F/I) 1pm .

F//ef
Now we write
S (Tvr,gr), = Y (T8 Arvr),gr), + Y (T¢ Apetop),gr), =1 +11.
FcF FeF FeF
Then cube testing and quasiorthogonality give

1< Y (T01r,9r)| S Y ar (F) (TS 1r,gr),|

FeF FeF

< Z aF (F)NTVa\/ [Fl, ||gFHL2(w) SNTVa ||f||L2(a)

FeF

1
2
2
Z gF|L2(w)] :

FeF

Now 1petp is supported outside F, and each J in the Haar support of g is r-
deeply embedded in F, i.e. J € F. Thus we can apply the Energy Lemma 4 to
obtain

11 = | (TS (Lreor), gr),
FeF
pe (J, 1Fu(p0' w

Yy PO el

FEF JEM;y_deep(F) ‘J| L2(w)

P¢ S (J,].FC(I)O') w w
+ Z Z - P(C%"C’d""—‘“h‘fﬁ)*ﬂx ||PJ9F||L2(W)
FEF JEMy—qeep (F) || L2(w)

= Ilg+1Ip.

Then from Cauchy-Schwarz, the functional energy condition, and [[®|2(,) <
[ fllr2(,) We obtain

N

2

L2 (w)

2
P (J, 1p:®
|IIG| S Z Z (M) “Pg%ood,Tfslxift;Jx’

FEF JEMy—aeep(F) |J]™

2

<[> > P59 1172 )

FEF JEMs—dcep (F)

%
S Sall®llLeo lz ||gF||i2(w)] S o llf 2oy N9l 22wy -

FeF

by the bounded overlap by 7 of the shifted coronas Cgc’Od’T*Shift

In term IIp the projections P¥ (cgooam—smite), are no longer almost orthogonal,

and we must instead exploit the decay in the Poisson integral P{", s along with
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goodness of the cubes J. This idea was already used by M. Lacey and B. Wick
in [LaWi] in a similar situation. As a consequence of this decay we will be able
to bound I directly by the energy condition, without having to invoke the more
difficult functional energy condition. For the decay we compute

6/
Pty s (J, ®o) / I
—_— = ——— a2 (y) do (y)
|.J 5 Fe |y —c "0
(o] - 5/
= Z/ L : ® (y) do (y)
T S ereaer \ dist (es, (TEF)Y) )y — ey "TE
o) L & pa 1
< Y 7] P (Lt p0)
= &\ dist (er, (75 F)) 7|7 ’

and then use the goodness inequality

2
Z H9F||L2(w)

F

c 1 1—¢ £ 1 1—¢ £ 1
dist (cs, (7% F)°) > . re B ] > §2t(1,e) |F| 5 |7 > gt-e)-t mi, 7
to conclude that
2 o 2
P?+§ (J, ]_Fc q)O') < —té’(l—e) P (‘]7 1ﬂ_t7_.+1F\W_§_-F(I)U>
93) (" ——] < [D_2 I
|J| ™ por |J| ™
2
< Yoo P (‘L 1”?11?\”}1”@0)
=0 | J]
Now we apply Cauchy-Schwarz to obtain
P 5 (J,1pe®o) || _ "
Ilgp = Z Z 1+ I P(Cicod,‘rfshift)*;Jx , ||PJgF||L2(oJ)
FEF JEM;y_qeep(F) | L2(w)
P, (J,1ped0) >\
146’ \Jy LFe R0 w
< Z Z ( % ) P(céoodn——shift)*;(]x l
FEF JEMy—aeep(F) |J|™ L2(w)

N

2
V1energy [Z ||gF||L2(w)] ;
F

and it remains to estimate Ilepergy. From (9.3) and the deep energy condition we

|

N
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have

11 energy

Z Z Z2—t5 (1-¢)

FeF JEMy_deep (F) t=

_ 22 18" (1— E)Z Z

Ge}—FEQ(H—l)(G) |J

2
(J,l t+1F\ t FCI)O')

7] ’

>

JEMrfdeep(F)

iQ—té’(l—s) Z ar (G)2 Z pe (J, 1G\W3:FO’>

=0 GeF Feel ) (a) |J] ™ JEMe—deen(F)

< 22 t5' (1—) Zaf Y4 |Gl, S Ea ||f||i2(o)'

GeF

IN

pe (J7 1g\ﬂ;F<I>a) ’

n

2

A

This completes the proof of the Intertwining Proposition 1. O

10. Control of functional energy by energy modulo A%

Now we show that the functional energy constants §, are controlled by A$ and
both the deep and refined energy constants £3°°P and £:¢fined defined in Definition

4. Recall (5a)2 = (ESCCP)Q + (€ZYCﬁnCd)2-

Proposition 2.

Fa SEa+ VAT +H VAT and Tl SEX+ VAS +4/ AT .

To prove this proposition, we fix F as in (9.2) and set

(10.1) p=> >

FEF JEMr—deep(F)

2

w T

FJ 1
eE

O(etanianh)

where My _qeep (F') consists of the maximal r-deeply embedded subcubes of F. For
convenience in notation, we denote for any dyadic cube J the localized projection

P(ggood T —shift ,] glVen iIl (9~1) by

w w _ w
PFJ = ciood,r—shift;J = g AJ/~
J'CJ: J/ecéoodn'—shift

We emphasize that the cubes J € My_qeep (F') are not necessarily good, but that
the subcubes J’ C J arising in the projection P} ; are good. We can replace = by

P‘E%goodn‘—shift)* .J
F

i

X

2

L?(w)

‘ PL(C%ood.'rfshift)* .J

ll

X

w 2
> P57z )

2

L (w)
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x — c inside the projection for any choice of ¢ we wish; the projection is unchanged.
Here §, denotes a Dirac unit mass at a point ¢ in the upper half plane Rf_.
We prove the two-weight inequality

102 1P U0 5 (8 + VA + A ) Wl

for all nonnegative f in L? (), noting that F and f are not related here. Above,
P%(-) denotes the a-fractional Poisson extension to the upper half-space RTFI,

t
Py (l',t) = /]R ntl—o dv (y)a

C(ele-yP)

so that in particular

2
X
FJ 1

71

and so (10.2) proves the first line in Proposition 2 upon inspecting (9.2).
By the two-weight inequality for the Poisson operator in [Saw], inequality (10.2)
requires checking these two inequalities

1PN oy = D0 D BU(fo) (e, 1J]7)?

FeF JEMrfdeep(F)

L?(w)

103) [ P00 @) dule.t) = B (110) sz, S (A5 +E2) (D),

(10.4) /R [P (£1 72| 2dor () < (Aa + & \/ﬁ) / Pdu(z,t),

for all dyadic cubes I € D, where T=1x [0, [I]] is the box over I in the upper
half-space, and
t2
it (o) = [ - i (0,)

12+ |z —y?)"

It is important to note that we can choose for D any fixed dyadic grid, the com-
pensating point being that the integrations on the left sides of (10.3) and (10.4)
are taken over the entire spaces R} and R" respectively.

Remark 9. There is a gap in the proof of the Poisson inequality at the top of page
542 in [Saw]. However, this gap can be fixed as in [SaWh] or [LaSaUrl].

The following elementary Poisson inequalities will be used extensively.

Lemma 10. Suppose that J, K, I are cubes satisfying J C K C 2K C I, and that
1 is a positive measure supported in R™ \ I. Then

P (Jp) o P(K,p) _ P (J 28
[J]" |K|™ ||
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Proof. We have

1
P (J, 1 J|"
(iu) _ i/ /| (o),
1
Bk EE (|J|n +|xch|)

where J C K C 2K C I implies that

1 1
[J|" + |z —csl = |K[" +]z—ck], xe€R"\I

Now we record the bounded overlap of the projections P ;.

Lemma 11. Suppose P% ; is as above and fix any Iy € D. If J € My_geep (F)
for some F € F with F 2 Iy and P$. ; # 0, then

F= ng)lo for some 0 < 0 < 7.
As a consequence we have the bounded overlap,

#{FE}":JCIO;FforsomeJEMr_deep(F) with P%,J#O}gr.

Proof. Indeed, if J' € Cgfgi’T_Shift for some ¢ > 7, then either J' N 7r§2)10 =0 or
71'}— 0

J D ﬂgf-))fo. Since J C Iy C ﬂ(fO)IO, we cannot have J’ contained in J, and this
shows that P¥,, =0. O
7T]_- Io,-]

Finally we record the only place in the proof where the refined energy condition
is used. This lemma will be used in bounding both of the Poisson testing conditions.

Lemma 12. Let F and {P%J} FeF be as above. For any dyadic cube
e

Mr—deep(F)
Iy € D define
2
_ P*(J,1pn1,0) w 2
(105) B(lo)= > > (J T 1P s -
FeF: F;IO JGMr,dgep(F): JCIy | |

Then

(10.6) B(Ip) <7 ((g;eﬁnedplug)2 n (gadeepplug)2) ‘IO|U <7 ((5a)2 +ﬁA§) |I()‘a .
Proof. Define

A(Io)={J CIy:J € My_geep (F) for some F 2 Iy with P% ; #0}.

By Lemma 11 we may pigeonhole the cubes J in A (Iy) as follows:

M) = Ao Allo)={J Clo: T € Me—seap (n910) }.
=0
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Now fix ¢, and for each J in the pairwise disjoint decomposition A, (Ip) of Iy,
note that either J must contain some K € M;y_geep (In) or J C K for some
K e Mrfdeep (IO)7

A[ (IO) _ Ablg ( ) Asmall (IO) :

Azman (Ip) = {Je€eA(lp):JCK for some K € My_geep (10)} 5
and we make the corresponding decomposition of B (Ip);
B (IO) — Bbig (IO) + Bsmall (IO) :

2
. T P> (J,1 w
Bblg/small (IO) = Z Z <(TILIOJ)> Z HPF,JXHiZ(w) .

=0 JEA?ig/small(ID) |J| FeF: Fgfo and JEM,y_deep(F)

Turning first to B¥™!! (Iy), we use that the projections P ; are orthogonal in
F for each J, to obtain

2
sma a pe (J, 1] 0') w
I W N e
=0 JeAzma“(lo) |J| n
S (et |, S (€a) + B3] (Mol

where the final estimate follows from (2.8), and this is the only point in the proof
of Theorem 1 that the refined energy condition is used. .
Turning now to the more delicate term B (Iy), we write for J € A% (o),

2
2w Z Z ”Aﬁ”a"”iz(w)

J'CJ: J’ good a€l

= > DAY, + > [

)
L2
J'EN(I): J'CJ a€l KEMy—deep(In): KCJ ()

HPgJood,wX‘

and then using that the projections P% ; are orthogonal in F' for each J, we estimate

UNTSIE SN (P“”) 3 P2

=0 ]eAblg |J " FeF: F;Io and JEM;_geep (F)

IN

z’: > (PO‘ (. 1110a)>2 HP%ood,wX’ 2

. w L2 (w)
£=0 jeAbE(1y) 7]

T o 2
YD (””‘”) S 8%,

£=0 JEAbig(I) |J|n J'eEN(Iy): J'CJ

2
+Z Z (P leo )) Z Hpigbgood,wxlz
(

B L2(w)L2
(=0 JeAiE (1) |J‘ K€My —doop(lo): KCJ (WI*w)

B8 (I,) + BY8 (Iy)
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Now we have

2
: T Pe (1o, 1
BY® (Iy) =~ (W> D a2 PP
(=0 J'EN(Io) [ To| ™ JEN(To)
2
a Pe (o, 15,0 2 Ao
< YN () <H> 1o/ |Tol,, S 727 A3 [T,

=0 | To| ™

Using P (J,1;,0) = P (J,150) +P© (J, IIO\JU), we have

2
; (J, 1 o) ‘ 2
bi J subgood,w
mray ~ 3 ¥ (BU) 5 et
=0 JeA(Io) bk KEMy_acep(Io): KCJ
2
J 1[0\10') subgood,w 2
3y (M O
=0 JeAy(Io) I KEMy—aoop(Io): KCJ
= By®(ly) + By (o) -
Now

J|, < 12" AS | 1o

o

2
; a P (J,150)|J 2
ng(IO)S Z ( ( JL)| |o’> |J

=0 JGAEig(Io) ‘J|"

. PY(J, 17\ 0O PY(K, 1\ jo
and since (I I?\ ) < (I lf\ ) for K C J, we have
J|w K|w

- P (J1550) |
BY(L) = Y )

=0 JeAbE (1)) KEMr—deep(lo): KCJ |J|™

N 2
<P (K,1,0\Ja)> ’

1

i£(7,) KEMr_deep(l0): KCJ |K |~

N 2
K, 110\1(0)) ‘

(]
]

Ps}l{lbgood,wx‘ 2
L?(w)

K

. 2
Ps}l{lbgood,wx‘
L2(w)

A
NSM
M

2
Pil{lbgood,wxl
L2(w)

1]

n

P (
=0 big KeM Ip): KCJ |K
JENE(Ig) KEMr— aeep(f0): KC.

T a 2
S Z (P (K,].Ilo\KO')> ‘
(o)

Psubg00d7wx‘ 2
(=0 KEMy—goep | K[

K L2(w)

S 7l ), S 7 ((€20) + pA ) ol

where the final line follows from (2.7). O
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10.1. The Poisson testing inequality

Fix I € D. We split the integration on the left side of (10.3) into a local and global
piece:

/ P (1;0)% dp = /IED‘" (170)% dp +/ P (1;0)® dy = Local + Global.
R+ T RTTINT

Here is a brief schematic diagram of the decompositions, with bounds in 7, used
in this subsection:

Local
1
LocalP"s +  Local™® Global
ee 2 \I/
i (£a7) and A + B + C +
A + B A3 A5
(Edeer)® + A3 (€2)” + A3

We turn first to estimating the local term Local.
An important consequence of the fact that I and J lie in the same grid D = D*,
is that (¢ (J),|J|) € I if and only if J C I. Thus we have

/gPa(lla)($,®2du(x,ﬂ
2

X

=YY ) (e ) PR

FeF JeMr_qeep(F): JCI |J
X

= Z Z P (J,1,0)° [P, T 720

FeF JeMy_qeep(F): JCI

n

L2 (w)

In the first stage of the proof, we ‘create some holes’ by restricting the support
of o to the cube F in the ‘plugged’ local sum below:

2
LocalPé = Z Z <W> HP%JXHQL?(W)

1
FEF JEMy_qeep(F): JCI |J|™

2
Ay ey e

FeF: FCI  FeF: F2I) JEMr_dcep(F): JCI
= A+ B.

Then a trivial application of the deep energy condition (where ‘trivial’ means that
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the outer decomposition is just a single cube) gives

2
P (1, 1p0) ) o g2
pe ¥y (PO
FEF: FCI JEMy—_goep(F) ||
< YT (gleewwtue)® R < (€24 A3) |11, |

FeF: FCI

since || P%,quiz < PﬁxHiz(w), where we recall that the energy constant £leepplug

(w)
is defined in (2.6). We also used that the stopping cubes F satisfy a o-Carleson

measure estimate,

Z |F|U§‘Fo|cr

FeF: FCF,

Lemma 12 applies with Iy = I to the remaining term B to obtain the bound
B <7 ((€a)+845) 111, -

It remains then to show the inequality with ‘holes’, where the support of o is
restricted to the complement of the cube F. For I € D we define

Fr={FeF:F&I}.

Lemma 13. We have

2
P> (J,1 w ce
(108) Z Z <(1I\FO.)) |‘PF,.]33H2Lz(w) Sz (55 p)2 |I|o
(F) !

FeFr JEMr_deep

Proof. We consider the space E% of square summable sequences on the index set
F where

F={(FJ):FeF and J € My_aeep (F)}

is the index set of pairs (F,J*) occurring in the sum in (10.8). We now take a
sequence a = {aF’J}(F ner € K% with ap ; > 0 and estimate

P (J,1pp0) |
s=y Y P e
FeF; JEMr—deep(F) |J‘ "
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by
pe J, 1 ’ A
S = Z Z Z ( o 1) ||P%,JXHL2(Q)) ar,J
FeFr JeMr_acep(F) F'€F: FCF'GI | J]™
pe J, 1 ’ g
= Z Z Z ( WF;F \F ) ||P%,JXHL2(Q;) ag,j
F'eFr FEF: FCF' JEMy_qeep(F) |J|™
P« J,]_ ’ iz
= Z Z Z Z ( TrrlF \F ) ||P%,JX||L2(w) ag,j
F'€Fr KEMy_deep(F') FEF: FCF' JEMy_qeep(F): JCK |J|"
P« K,]. ’ g
< Z Z ( ﬂZF \F10) Z Z HP%,JXHL%W) ar.Jj,
F'eFr KEMy_deep(F') |K | FEF: FCF’ JEMy_geep(F): JCK

by the Poisson inequalities in Lemma 10. We now invoke

Z Z HP(;?,JXHL%UJ) ar,J

FeF: FCF' JEMy_deep(F): JCK

< Z Z HP%’JxH;(w)
FEF: FCF' JEMy—qoep(F): JCK
2
X Z Z a%,J
FeF: FCF' JEMy_geep(F): JCK
N ||P%/,KXHL2(W) HQ%’,KaHz} ’

where for K € My_geep (F’) and f € L? (w),

w — w
FIK = F.J

FEF: FCF' JEMy_geep(F): JCK

while for K € My_geep (F') and a = {aG’L}(G,L)eF € €2F,

QFxa = Z Z QF,sa;

FeF: FCF' JEMy—deep(F): JCK
w _
FJa = {1(FaJ)aG7L}(G,L)EF'

Thus Q“}%, 7 acts on the sequence a by projecting onto the coordinate in F indexed
by (F,J).

Now denote by d(F) = dz (F,I) the distance from F' to I in the tree F.
Since the collection F satisfies a Carleson condition, we have geometric decay in
generations:

S IFL g2, . k>0
FeFr: d(F)=k
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Thus we can write

P (K, 1, pnp . .
EREEDS 3 ( iF\Fa) 1P k] e 1Q5 el
F'€F1 KEMy_deep(F') | K[
s P (K, 1, pr . .
-y ¥ > ( 1F\Fa) 1P Xl o o Q]
k=0 F'eFy: d(F")=k KEMy_deep(F’) |K[™ d

o0

> A,

k=0

where by the deep energy condition,

1
2

2
PO (K, 1, pr g .

Ay S Z Z ( ( zF\F U)) P ,)KXHQLQ(W)

F'eFr: d(F)=k KEM;_acop(F’) | K| ™

2
w 2
x Z Z ”Q ’,KaHeZ;
F'eFr: d(F)=k KEMy_aeep(F")
2
I ) D SR W I 119

F''eFy: d(F')=k—1
1
< e (27 1),) fally

and we finally obtain

i 1
ISI < kzgieep (2% 11,)" lalle S ggeer\ /I, lall -
=0

By duality of ¢} we now conclude that
P (J,1
Z Z ( ( 11\F0')> H JXHL2 (Egeep)2|l|g7
FE]:I JeMr—deep(F) |J‘ "
which is (10.8). O

Now we turn to proving the following estimate for the global part of the first
testing condition (10.3):

/Rn+1\fpa (Lr0)* dp S A3 |11,

We begin by decomposing the integral on the left into four pieces where we use
F ~ J to denote the sum over those F' € F such that J € My_geep (F'). Note that
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given J, there are at most a fixed number C' of F' € F such that F' ~ J. We have:
2

2
[ooraera= Y Ewo(alt) X e
R7L+1\f R ) J;
* J: (eq |l ) eRTHNT JEMe S () | L)
) 2
ES X
=3 X X X Ao (w ) Y PR
JN3I=p  JC3I\I JNI=0 J2I FeF | J]" L2(w)
71w <) 77 > 1) e Mo
= A+B+C+D.

We further decompose term A according to the length of J and its distance
from I, and then use Lemma 11 to obtain:

x> 1 2
2™ | J|n
A4 3 ZZ Z <_|n|+1a|f|a> T|J],
m=0k=1 jcgh+tip\3ks dist (J, I)
l[w =2~ 1|
I (1], [35+21\ 3¢1]
S 27m u @11
mzo kzl ER S
3k+11’ |3k+1I|
N 9—2m N\ g 2k:{ o o Vi1 < a9 1),
mz() Z 13721 %)
Set 7* = U {K e caodmshilt g g } which is the union of

FEF JEMy_geep(F)
all K occurring in the projections P§. ;. We further decompose term B according
to the length of J and use the fractional version of the Poisson inequality (8.12)
in Lemma 9 on the neighbour I’ of I containing K (essentially in [Vol]),

n

| (K, 1]0) ~ <K
|I|n

where we have used that P* (I’,1;0) ~ P*(I,1;0) and that the cubes K € J*
are good. We then obtain from Lemma 11

2
Pe (J,1 .
Z ( ( 71110)> Z ||PF7J:CHZLZ(W)

JC3INI ]| FEF
JEM;_deep (F)

2
Z S ()P (ﬁ”g) rIK],

2—2(n+1—a)e
) P*(I,1;0)®, KeJ* KcC3I\I,

B

S
KC3I\T
|K|n—2—’"|1|3»
3I |31
< TZ 2— 2 2(n+1-a)e ‘ | | | |I| Ag |I|O-

37120-%)
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For term C we will have to group the cubes J into blocks B;, and then exploit
Lemma 11. We first split the sum according to whether or not I intersects the

E.T. SAWYER AND C.-Y. SHEN AND I. URIARTE-TUERO

triple of J:

Q

We first consider C;.

. Now we further decompose the sum in Cy by grouping the cubes J into
the Whitney cubes B;, and then using Lemma 11:
2
) 1 . )
¢ < 1 1 s Z HPF,JXHLz(w)
i=1J: JCB; (|J\F + dist (J, I)) FeF
JEM;_deep (F)
2
oo 1 . )
’S Z 1 n+l—o |I|o Z Z HPF,JXHLz(w)
i=1 (uﬁ|”4—dﬁt(3h])> J: JCB; FeF
JEM;_deep (F)
2
> 1 2
S > 1 =L > T,
i=1 (|Bi|H + dist (BZ-,I)> J: JCB;
2
(o)
1 2
sy 1 =111, | T1Bl7 1B,
i=1 (|Bl-|? + dist (Bi,I)>
|B; } s
S T e e, STAYT I,
{z 1 \B|
and
S BLL g
i=1 |B\ 17& 1 = ‘Bi|2(17%) N
1, < / D
~ 7 —————dw (x)
T Z B, dist (z, )"~
~ — dw (z)
|I|1 Z \I " +d25t (z,1)?
I *
— | |o' a( )SA(QX, .

ER

D

>+ )

J: IN3J=0  J: IC3J\J
s L 1 1

[J|7>[Im g > || =
C1 + Cs.

(|J\% + dist (J, 1)

1)

11,

FeF

n+l—a
) JEM_deep(F)

Let M be the maximal dyadic cubes in {Q :3Q NI = 0},
and then let {B;};2, be an enumeration of those @ € M whose side length is at

least |I\%

2

L2(w)
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Next we turn to estimating term Cy where the triple of J contains I but J
itself does not. Note that there are at most 2™ such cubes J of a given side length,
one in each ‘generalized octant’ relative to I. So with this in mind we sum over
the cubes J according to their lengths to obtain

[e’e] 1
|J|™ w X
C2 = Z Z 1 n+l—a |I|O’ Z F.J 1
m=0 J: IC3J\J (\J n + dist (J, I)) FeF PR
L omyp L JEMy—deep(F)
|J|n72 ‘I‘n
: 1 3. 2ma,
< T|3-2MI|, =71 I],
Z: (ml—) 3-2m1] {ml_ Z 0] } |
I .
< {I'|1'f7>“ IW)}IJ<TA§" 1,
since
> |t 2"1
> HE - 18-2"1], s | /Z 13.%,(@ dw () < P* (I, w).
=0 |2m1\ - 2m1|

Finally, we turn to term D, which is handled in the same way as term Cs.
The cubes J occurring here are included in the set of ancestors Ay = wgc )T of T ,
1 <k < 0o. We thus have from Lemma 11 again,

2
DS
FeF
ArEM;_deep (F)

2 «

Il |A I >t w
Z<| o ‘Hlf a> TAkw:T{ |1|fg > | |2(1") |Ak|w}|l|0

=1 \ | A& 17 o AU

o pa ]
S {WP (L,w) o ]y S AL,

2
X

| Ag |

w
F, A,

D = S P*(150) (C(Ak),|Ak%
k=1

L2(w)

N

7 / |I|
A = 1 ) dw
z} 27y Akl Z \Ak\ Ay () dw ()
Il‘

n—«

n

1]

/ (|I|% + dist (:c,I))2

A

dw (z) =P (I,w).

2

L2 (w)
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10.2. The dual Poisson testing inequality

Again we split the integration on the left side of (10.4) into local and global parts:
(10.9)

/[Pa*(tlf,u)]Qa = /[]P’a*(tlfu)Pa + / [P**(t171)]°0 = Local + Global.
R I R\I

Here is a brief schematic diagram of the decompositions, with bounds in —, used
in this subsection:

Local
i
Us
1 Global
Tg)roximal + Vqremote \L
) and A
AS + Ea /AT + A !
Ay
Tdiﬁerence 4 Tintersection
A + Ear /AT + AS Eor/AT

We begin with the local part Local. Note that the right hand side of (10.4) is

(10.10) JRZED DD SN ¥

Fe]: JeMr—deep(F)
JcI

We now compute

o ”P%,JXH%Z(w)
(10.11) P (t1p) (y) = n i e
FeF JGMr—deep(F) (|J| " + |y - CJ|)
JCI

and then expand the square and integrate to obtain that the local term Local is

Z Z / HPF,JXHLz(w) HPF’,J’XHLz(w)
I

| |i | | — | |i ‘ | T ado (y) -
- [l (J"er*CJ) <J’n+yfcj/)

JEMy _deep (F) J/EMr—dOOP(F/)
JCI

J'cI

1 1 . ,
n < |J|™. We fix an integer s, and consider

By symmetry we may assume that |.J/
1 1
those cubes J and J' with |J/|» = 27%|J|=. For fixed s we will control the
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expression

n= ¥ >

F,F/GJ: JGMr—deep(F)v JIEM"*deep(F,)
1 1
JJ'CL, |J =270

IPEx]7 ¢ Pg [
X/ N = 7)l+17a n = ’I’)H*lfozda— (¥),
Ly =el) (117 + =)

by proving that

(10.12) U, <275 (Ag‘ + & \//Tg) .

With this accomplished, we can sum in s > 0 to control the local term Local.
Our first decomposition is to write

(1013) Us — TSPYOXimal + ‘/Sremote ,

where we fix ¢ > 0 to be chosen later (¢ = 5~ works), and in the ‘proximal’

term TProximal we restrict the summation over pairs of cubes J,.J' to those sat-
isfying |e(J) — ¢ (J')| < 2% |J|™; while in the ‘remote’ term VI°™°% we restrict
the summation over pairs of cubes J, .J’ to those satisfying the opposite inequality
le(J)—c(J)| > 2% |J|%. Then we further decompose

1
n

remote __ rpdifference intersection
‘/s - Ts + Ts ’

where in the ‘difference’ term T31fference we restict integration in y to the difference
I\ B(J,J') of I and

1
B(J,J')=B (C.I, 3 leg — CJ/|> ,

the ball centered at c¢; with radius %|CJ — ¢y|; while in the ‘intersection’ term
Tintersection we regtict integration in y to the intersection I N B (J, J') of I with the

ball B (J,J'); i.e.

Tintersection —
s = E E

FF'€F JEMy—deep(F), J'€Mr—deep (F')
LTI, | [F =2 )
() —e()|z2: 04|

1
n

></ HPF’JXHLQ(UJ) HPF/vJ,XHLQ(UJ) do‘( )
1 n+l—a 1 n+l—a Y)
0BG (17 ly—esl) (1717 + = el

We will exploit the restriction of integration to I N B (J,J'), together with the
condition L .
leg —cpr| = 220FD LT = 2% ||
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in establishing (10.17) below, which will then give an estimate for the term 7 ntersection
using an argument dual to that used for the other terms TProximal and Tdifference
to which we now turn.

We have
rpproximal _ Z Z
1 =
F.F'eF JEMs _dcep(F), J' €My _dcep(F")
LI'CI, | 7|7 =272 7% and |ey—c,/|<2°|J| %
2 2
HPUI.'L,JXHLz(w) HP%’,J’XHLz(w) d
X 7 1 n+l—a 1 n+l—«a O'(y)
(1% +ly=eal) ™ (1717 +ly—el)
< MPeImA NN [Pz,
FeF My _deep(F)
JCI
where

Msprommal = sup sup Agrommal (J) :
FEF JEMyr_deep(F)

A]S)roximal (J) = Z Z /S(J’,J) (y) do (y) ;

I
Fle]: JleMr—deep(F/)
1 1 1
J'CI, || " =27*|J|% and |es—c,|<2%¢|J| ™

I . 1 HP%/,J’XHiz(w)
S(J',J) ({17) = 1 n+l—a 1 n+l—a?
(1% +ly=es) (1717 +ly—eol)

and similarly

Tdifference —
s = E E

F,F/E]: JEMr—deep(F)v J’eMr—deep(F/>

1 1 1
JJ'CL, || w =272 |% and |cj—cy|>2°¢|J|n

X/ HPFJXHLZ(“,) HPF’J’XHLz(w) do (1)
1 n+l—a 1 n+l—a )
MBI (| 4 ly—esl) (11 +ly = )

VD D DI N

Fe]:Mrfdeep(F)
JCI

IN

where

M;iifference = sup sup Agemote (J) :
FeF JGMr—deep(F)

3 3 [ s, wdow.
INB(J,J")

Fer J' €My _acep(F')
1 1 1
J'CI, || m=27%|J|n and |cy—c,/|>2%¢|J|n

Agiﬂ”erence (J)
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The restriction of integration in Adifference to 1\ B (J, J’) will be used to establish
(10.15) below.

Now fix J as in MProximal respectively Mdifference and decompose the sum over
J'in Aproximal (1) yespectively Adifference (1) by

gl () =3 > | 86 o )

Frer J/EMr—dccp(F/)
J'ci, | %:2’S\J\% and |cj—c | <2°%|J|%
oo
S YD VR OTLIOED S SRS I K
F'eF cyr€2J Freri=1 ¢ 21 \2%7 !
les—cyr|<2€ || m les—cr|<25¢|J| ™

oo
Z Ag)roxlmal,é (J) ,
£=0

respectively

A;iiﬁerence J —_ / S o y do y
() = Y > i S0 )7 )

Fer J/EMrfdeep(F/)
1 . 1 . 1
J'CI, || m=27"|J| % and |ey—c,r|>2°¢|J|n

-y ¥ / SE, ) () do ()
I\NB(J,J")

F'eF cpre2d
1
|CJ76J/|2255‘J‘;

DD VD VR N 0

(=1F'eF ¢ e2tttg\2%7
1
les—cyr|>2% ||
oo
difference,f
> Al (J).

£=0

Let m be the smallest integer for which

(10.14) 27" /n <

cm»—u
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Now decompose the integrals over I in APToximal.f (1) by

Agroximal,o (J)

Alsaroximal,é (J) _

> X [ shawdaw

F'eF cpe2d \4J
1
leg—cgr|<2%¢ || n

+ Z Z /mu S(FJ//,J) (y)do (y)

F'eF ey €2J
1
leg—cyr|<2%¢|J| ™

Aproximal,o (J) + Aproximal,O (J) ,

s, far s,near

DD SR A Lt
FreF cpeattt\e2ts naeeeJ
les—cyr|<2°|J| 7

DD
FreF ¢, e2t+1\2%

1
|CJ75J/ |<2SE‘J‘H

v Y [ sty wiew
FIeF o ,e2t 1 \2tJ In2t=m.g

1
|CJ76J/ |<2S€‘J‘H

Aproximal,é (J) + Aproximal,@ (J) 4 Aproximal,[ (J) 7 ¢ 2 1.

s, far s,near s,close

/ SE, ) () do ()
IN(2¢+2 J\2¢=mJ)
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Similarly we decompose the integrals over I* = I\ B (J,J') in Adifference.t (1) 1y

A;iifference,o (J) — Z Z /I*\4J S(F‘J//’J) (y> do (y)

F'eF ey €2
1
les—eyr|>2°|J|

X st wdw

F'eF cr€2J
1
les—cyr|22°¢]J|n

Adif‘fercncc,o (J) + Adifference,O (J) ,

s, far s,near

A;ﬁfference,é (J) — Z Z /I S(IT],,)J) (y) do (y)

*\ 9l+2
FreF ¢, e2tt1g\2% \22g

1
lea—egr |22 || 7
>

FreF ¢, e3t+1g\3%
1
les—cyr|22°¢ T

LD I SR B A L)

* L—m
FreF ¢, e2t+1g\2% natmmd

1
les—cyr[22°° ||

= Adif‘fercncc,[ (J) + Adiﬁerence,f (J) + Adiﬁcrcncc,é (J) ’ ¢ > 1.

s, far s,near s,close

/ S () do (y)
I*n(20+2 J\2¢-m J)

We now note the important point that the close terms Agif’l’:;zal’e (J) and Agfg(;r;; )

both wvanish for £ > s because of the decomposition (10.13):

(1015) Aproximal,é (J) _ Adiﬁerence,é (J) _ 0, 0>1+es.

s,close s,close
Indeed, if c;r € 24417\ 2¢, then we have

1 Y] 1
(1016) 52 |J n < |CJ_CJ/ y

and if £ > 1+ €s, then

1
n

|CJ o CJ/| > 9es |J‘% _ 2(1+€)s |J/

It now follows from the definition of V, and T in (10.13), that AP*%™ab6 (1) — 0,

s,close

and so we are left to consider the term AT (J) where the integration is

taken over the set I\ B(J,.J'). But we are also restricted in ATTerencet (1) 4o

s,close
integrating over the cube 2¢=™.J, which is contained in B (.J,J") by (10.16). Indeed,
1
the smallest ball centered at ¢ (J) that contains 2°~™J has radius /n2¢=™ |J| =,
which by (10.14) and (10.16) is at most 2 |J|% < %les — ey, the radius of
B(J,J'). Thus the range of integration in the term A%Mereneet (1) ig the empty

s,close

set, and so Adferencel (1 — 0 ag well as AP*O™L4 (1) — 0. This proves (10.15).

s,close s,close
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From now on we may replace I \ B(J,J') by I since all the terms are pos-
itive, and we treat TProximal and Tdifference i the same way now that the terms
Apmxlmal “(J) and Adlfference £ (J) both vanish for £ > 14¢es. Thus we will suppress

s,close s,close
the superscripts proxunal and difference in the far, near and close decomposition

of AProximally py anq gdifferencet (1) © {sing the bounded overlap of the shifted

s,close s,close
coronas CgOOd’Tfshlft we have > P4 xH2 < 7|J'|"|J'|, and so
F ) F'eF FrLa L2 (w) = w

2
n

A (7)) = ﬁwﬂ B @) do (v)

F/E]:c 1€2J

A

1% 10,
! Z /1\ 3J)( )2(n+1a)d0(y)

cr€2J ‘J|n —Hy—cJ|

2
J|
= 727% [, / | do (y),
Z I\(3) <|J| (n+1—a)

cy€2J +|ych|)

which is dominated by

1

7'2_2S ‘3‘]|w / f 2(n—a) do (y)
NED (177 + Jy = e )
. 131, I o
~ . / : | dow
|4J| 1\(3J) (m; Fly— CJ|)
3J
N < 1|f7 PY(3J,0) ST27HAS .
|3J|
To estimate the near term AY .. (J), we initially keep the energy H Py gz |i2(w)
and write
AS near ( ) = Z Z / S(J’ J) )dg (y)
F/eF cpe2y 7 INEGT)
1 IP%, J/XH ()
~ Z / (n+1 @) ntl—a do (y)
FreF ey 2y /106G [J]™ <|J’ w4+ \y—cﬂ)
1 2 1
= Y g 2 Pl [ o )
F’€.7-'|‘]| S(n+1 )CJIGQJ (w) IN(3J) <|J/‘%+|yfc‘]/‘)n a

1 w 2 J,1 o
= > —rama 2 PRl P2 L),

rrer [ =y |
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Now by Cauchy-Schwarz and Lemma 12, this is dominated by

1 w 2
RG] > > P57 7o )

F'eF c¢(J')€2J and J'CI

1
2 2
Pe (J/1
Jdr T ||P°;,,J/Xy|;(w)< ( m<4J>o—)>

1
1
F'eF cye2d and J'CI PAE

2

1 2
S T Trieay | T Z Ty | Ean/T 1471,
|| ey €2J
1
2—3 J n 4J 4J
< T# 13| ,Ear/ 4], S T27°E, ‘1 L Il E ST27E8AS
|J‘E(”+1_O‘) w o |J|;("—CV) |J 7 (n—a)

Here Lemma 12 applies to the expression

2 P (J',117(4.0)0) ’
Z Z HPW’J’XHH(W) ,

1
I
F'eFcy€2J and J'CI |‘]|

M
since U J' C 3J and we can write 3J = U L; as a union of M < 3™ maximal
cy€2J =1

dyadic cubes L; contained in 3.J. Then each J’ with c;; € 2J and J’ C I must be
contained in some cube L;, and we can apply Lemma 12 with I = L;, 1 <7 < M.

Similarly, for £ > 1, we can estimate the far term

Aﬁ,far(J) = / S(FJ/J)(y)dU(y)
cpre(@r\(2tg) TN
2
TR
< / B 1 | '™ | |w2(n+1704)d0—(y)
cyre@rT T\ (267) T INEHE) (IJIE +|y—cﬂ)
]
_ —2s / "
- >, / » - s 4o (v)
cre(20t1) I\(2¢F2.0) (|J n o \y—c,1|)
2
7|7
" o—2s9—(2 / 26|
~ 27 S, / . - s 4o (v).
cr€(20H1) INEFE) (I2£J\"+Iy—cw\)
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which is at most
1

9—2s9—L% |22+2J|w/ - ey 4o (v)
YT
| n—ao
32 20"
~ —232—5% ‘ ; 1_|;1 / - | J 3 do (y)
13677 S ser) (|2€J|;+\y—02u|>
—2s9—(2 ’2”2”7‘“) o (9l+2 —2s9—£2 fa
S 272 4P (22 ),0) p S 2727 AT .
|2£J‘ n
The near term A% .., (J) is
/ St (v) do (1)
€21 \20 ] IN(2¢+2 J\2¢=mJ)
2
1 HPUIi“’,J’XHp(w)
~ 1(n+l-a) 1 nt+l—a do (y)
et IR ) [9101-9) 7| (171 + 1y —er])
1 2 1
e T S—")
|2€—1J|z(n+1—a) Ry L2 (w) IN(2¢+2 7\2¢-m J) (|J/‘% +ly _CJ/‘) +

and is dominated by

1 " 2 P (I, 15n0e20)0)
0 L(nt+1-a) Z HP ,’J/XHLZ(W) e
|2¢=m J| = e €T I\2E |J/|»
2
1 2
o > PE e
|2¢=m g (=) c €201 J\20 ] «
e (7,1 o)\’ :
w 2 s Lin(aet2.)
S P, ( it ) .
¢y €201 J\2¢L ] PAR
This can now be estimated using ||P“}%,,J,z |2L2(w) < |J’|% |J'|,, and Lemma 12 to
get
Al e () S 270278 1 V120801 Eay 12042
o jt=m |1 ) 0
2043 J 2043 J
s ot [ 2L 2l
2648 71w 248 7|10

< 2752 wELJAY .
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In order to apply Lemma 12 above, we choose a ‘tripled’ dyadic cube 3@ such that
U 7 c3Qand 3Q|" <3-241|J
g €201 J\2¢ T
12 to the maximal dyadic cubes in 3@Q), of which there are at most 3". We are also
using here that m ~ 1 + %logQ n is harmless. These estimates are summable in
both s and ¢.
Now we turn to the terms Af ;. (J), and recall from (10.15) that AL .. (J) =
0if £ > 1+es. So we now suppose that £ < 1+es. We have, with m as in (10.14),
AL ctose (J)

s,close

1
n

. Then as before we apply Lemma

/ S(J’,J) (y) do (y)
In(2t—mJ)

€201 J\2¢T

w 2
1 HPF’,J/XHLz(w)
)n+17a |2£J|%(n+1—a)

Q

o (y)

cyr€20H1T\2 ] + |y — ¢l

/m(zf—mJ) (m "

1

do (y) -

Q

c g/ 622+1J\22J

Z ||Pw/7J/XHi,2(w) , ighn«klfoz) / !
2471 0@ (1717 + |y = ]

)n—i-l—a
2

Now we use the inequality ||P°I§,’J/ZH2LQ(M) < |J'|™ ||, to get the relatively crude

estimate

1

1
|2ZJ|%(n+1fa) /Im(leuj) <|J

1 n+l—a
T

’2€+1J‘ ‘2é—mJ‘ B |2€+1J’ |26+1J’ L
w g < 2s w led 2£(n 1-a)
‘2€J|711(n+1—a) |J|%(n+1—a) ~ |2£+1J|17% |2€+1J|17%

S 272524(7171704)‘43 5 275143

Aﬁ,close (J) S 2725 |J|% |2Z+1J|w

do (y)

A

272 | ]|

prgvided th.at ¢ < 2. But we are as§uming { < 1+ es here and so we obtain a
suitable estimate for A% /., (J) provided we choose 0 < & < +.
Remark 10. We cannot simply sum the estimate

1 PO (J, 190-1,0)
QZJ‘%(nH*a) |J‘%

s,close ’

AZ (J) S 2725 ‘J|% |2€+1J’w
|
over all £ > 1 to get

ST (1) S22P (1,0) S It < o2pe (10) P (),
) 7 ¢ |2‘J\;(n+lia) “

since we only have control of the product P (J,0)P (J,w) in dimension n = 1,
where the two Poisson kernels P and P coincide, and the two-tailed Ay condition
is known to hold.
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The above estimates prove
Tsproximal 4 T;iiﬁerence 5 9—$ (Arz)z 4 ga\/Aig + A(Q)L) )

Now we return to the term,

Tintersection — Z Z
K =
FF'e€F JeM;_acep(F), JIEMrdeOP(F/)
J;J/CIa |J/ %:27S|J|%
|C(J)_C(J/)|225(1+s)|J/|%

Py x| Py, x|
H F,J HL2(W) ” F,J HL2(WT)L+1_Q o (y).

g
INB(J,J") <|J L

1 n+l—a 1
Fly-al) (- e)

It will suffice to show that Tintersection gatisfies the estimate,

Tintersection S 27565@\/@ Z Z ||Pu};‘,JXH%2(w) = 27868a@/ft2dﬂ .

FeF JeM;y_qeep(F)
JCI

Using B (J,J') = B (cy, 5 |c; — c;r|), we can write (suppressing some notation for
clarity),

2 2
Tintcrscction / HPUFJ"JXHLQ(‘U) ’|PU§,’J/X|’L2(W do (y)
+1- 1=
FF 57 08I0 ()% 4 Jy - CJ|)n " (117 + 1y - CJ/|)n+ "
2 2 1
~ Igﬁ; ; HP%JXHLZ(“,) HP%’,J’XHH(UJ) ey — CJI|n+1—(x
1
></ , 1 n+l—a dO’ (y)
INB(J,J) <|J " 4y — CJ|)
1 P> (J,1 /
o PR [Py e )
EF' g —crl | J|™
P (J,1 /
B N S 3 B R
F'
and it remains to show that for each J’,
o ||P%,JXH2Lz(w) P (J, 11np(s,0)0) < o—es P
S:(J)=) > o e T S2Ea/AS
s ;

F J: ‘C(J)—(,( )|>25<1+E>|J
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We write
1 2 P (J,110p(4,010)
/ ~ w >
Ss(J) = Z 1 iy Z Z HPF’JXHLz(w) ‘Jﬁ
k>s(14e)—m (2 |J ”) F J: |CJ_CJ/|N21C‘J/|%
1
= — Sf (J/) )
k>s(14e)—m (2k |J/ %)TH—l :

where by |c; — /| ~ 2K \J’\% we mean 2¥ |J’|% <lej —cyr| < 2K+ |J’|%. Here m
is as in (10.14), and we are using the inequality,

(10.17) E+m>(1+4+¢)s.

Indeed, in the term V, we have |c; —cy| > 201+e)s |J’|%, and combined with
1
ley —cgr| < /m2F|J'|", we obtain (10.17).
Now we apply Cauchy-Schwarz and Lemma 12 to get

2

Sk < Z Z ’|P°§,JXH2L2(W)
F

1
J: leg—cy|m2k|J | n

2
P (J, 110500
Jdy v ||P%,Jx||iz<w)( ( “”B“”’)

1
1 J|m
Fogles—c |2k 00w |l

1
2

2

S EDS R | (e 2k
J: |c,]7cJ/|z2k\J’\TlL
< 620 |7 \/|02kjf|w\/|2kjf|g < 7Ea/AG2 [T 2| T

%(nJrlfoz)
;

TE0/AG252k M=) | g1

provided
B(J,J) c C2*J.

But this follows from |cy — c /| =~ 2F |J’|% and (10.17), which shows in particular
that £ > s + ¢. Then we have

1
SS (J/) = 1\ nt+l—« Sf (J/)
k>(1+e)s—m (2k |J/|;)
S EaVAY 1 - 9s9k(n—a) |J/|%("+1—a)
k>(1+€)s—m (Qk ‘J’|%)
S GaAS D> 2R S275E,\ /A3,

k>(14€)s—m
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which is summable in s. This completes the proof of (10.12), and hence of the
estimate for the local part Local in (10.9) of the second testing condition (10.4).

It remains to prove the following estimate for the global part Global in (10.9)
of the second testing condition (10.4):

[ pemre s A5,
R\I
We decompose the integral on the left into two pieces:
/ [Pa*(tlfu)}zo = / [Pa*(tlﬂt)]Qo + / [Pa*(tlf,u)]za = A+ B.
R\I R\3T 3I\I

We further decompose term A in annuli and use (10.11) to obtain

oo

A = / P (t1+))%0
S [ )

m=1
r 2

— Hp‘f«“,JX”%z(w)
= > > > S| do(y)
m—1 3m+1\3m] Fe}—JeMr—deep(F) (‘J|+|y_CJ‘)
L Jcr

- 2

9]
w 1
5 Z /m+1 m Z Z ||PF’JXH%2(UJ) 1 2(n+1—a) do (y) ’
m=1"3 IN3™I | pcr JeMrJ_d;cp(F) (3m |]| n)
C

Now use (10.10) and

2
[fan=Y S Pl £ - e)la < TR
1 FEF JEM;_deep(F)
JCI

to obtain that

e} ) 1
4= mz—:l/3m+11\3m1 [/thdlu] [|I| |I|‘”} 1)2(n+1—a)d0 )

(3m hE

> gmHig| |3mrip
S {2_3132777,‘ ’w’ ‘a}[/jl@dﬂ]fsAg/fthdu

|3m+1[|2(1_%)

Finally, we estimate term B by using (10.11) to write

||P%,JX||%2(W)
B = Z Z n+l—« dU (y) )
3INI | per JEM;_deep(F) (1] + [y —csl)
JCI
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and then expanding the square and calculating as in the proof of the local part
given earlier to obtain the bound AY. The details are similar, but easier in that
the energy condition is not needed, and they are left to the reader.

11. The stopping form

In this section we adapt the argument of M. Lacey in [Lac| to apply in the setting
of a general a-fractional Calderén-Zygmund operator T¢ in R™ using the Mono-
tonicity Lemma 3 and our energy condition in Definition 4. We will prove the
bound (8.14) for the stopping form

(111) Bs{%op (f’ g) = Z (E?J A? f) <T;1A\I‘]7A§g>w

I€C, and JeC =Mt
JE,1;

= Z (EF A7 F){T51ar, AYg),,
I: mI€C4s and JGC:{SN&
JE,T
where we have made the ‘change of dummy variable’ I; — I for convenience in
notation (recall that the child of I that contains J is denoted ;).

However, the Monotonicity Lemma of Lacey and Wick has an additional term
on the right hand side, and our energy condition is not a direct generalization of
the one-dimensional energy condition. These differences in higher dimension result
in changes and complications that must be tracked throughout the argument. In
particular, we find it necessary to separate the interaction of the two terms on the
right side of the Monotonicity Lemma by splitting the stopping form into the two
corresponding sublinear forms in (11.6) below. Recall that for A € A the shifted
corona is given in Definition 9 by

Chilt —{JeCa:J e, AU U {JeD:JE, Aand Jis T-nearby in A},
A’eC 4 (A)

and the restricted corona by Cy = C/, \ {A}.

Definition 13. Suppose that A € A and that P C C'y x Cz_smﬂ. We say that the
collection of pairs P is A-admissible if

* (good and p-deeply embedded) J is good and J €, I C A for every (I,J) €
P,

 (tree-connected in the first component) if Iy C I and both (Iy,J) € P
and (Iz,J) € P, then (I,J) € P for every I in the geodesic [[1, ]3] =
{IeD:1I, CICIL}.

The basic example of an admissible collection of pairs is obtained from the pairs
of cubes summed in the stopping form B;“top (f,g) in (8.14);
(11.2) _
PA={(1,7):1€C)and J € Cy """ where J is 7-good, J €, I and I ¢ A},
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where the condition I ¢ A is automatic from the definition of €7, """ and the
choice of parameter r < 7 < p in Definition 8. Recall also that J is 7-good if
J e D(Tr’s)fgood as in (3.1), i.e. if J and its £-parents up to level 7 are all good.

Definition 14. Suppose that A € A and that P is an A-admissible collection of

pairs. Define the associated stopping form B?{Z; by

AP — AN « w
Bstop (f’g) = Z (EI Aﬂ'[ f) <Ta' ]'A\I’ AJg>w .
(I,J)eP
ﬂlEsupp]? and I¢A

Given an A-admissible collection P of pairs define the reduced collection Pred
as follows. For each fixed J let I be the largest good cube I such that (I, .J) € P.
Then set
Ped={(I,J)eP:IcCIy

Clearly P**d is A-admissible. Now recall our assumption that the Haar support
of f is contained in the set of good cubes whose children are all good as well.

This assumption has the important implication that Big; (f,9) = Bﬁgfjed (f,9)-
Indeed, if (Z,.J) € P\ P! then nI ¢ Haarsuppf and so EJ A%, f = 0. Thus
for the purpose of bounding the stopping form, we may assume that the following

additional property holds for any A-admissible collection of pairs P:

o if (I,J) € P is maximal in the sense that I D I’ for all I’ satisfying (I',J) €
P, then I is good.

Note that there is an asymmetry in our definition of P**9 here, namely that the
second components J are required to be 7-good, while the maximal first compo-
nents I are required to be good. Of course the treatment of the dual stopping forms
will use the reversed requirements, and this accounts for our symmetric restrictions
imposed on the Haar supports of f and g at the outset of the proof.

Definition 15. We say that an admissible collection P is reduced if P = Pme¢,
so that the additional property above holds.

Note that Bigg (f,9) = B;‘{;]; (PZA /s P‘é’,,ﬁhiftg) Recall that the deep energy
A

condition constant £3¢°P is given by

2
s P (J,
(526613)25 sup ﬁz Z ( ( 1I\7JU)> ‘

2
b d
a psubgoo ,wx‘
I=UI, o r=1 JEMrfdeep(Ir) |J| "

7 L2(w)

Proposition 3. Suppose that A € A and that P is an A-admissible collection of

pairs. Then the stopping form Bi’(z; satisfies the bound

(113)  [BAZ (£.9)] < (€2 + /A3 (||f||L2<g>+aA (f)\/|A|a> 90l 220 -
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With this proposition in hand, we can complete the proof of (8.14), and hence

of Theorem 1, by summing over the stopping cubes A € A with the choice P4 of
A-admissible pairs for each A:

SR ()| s D0 (st + VAS) IPea sl

AcA AcA

1
2
(ot v (S Petion) (35 o
AcA AcA
(&2 + VAT £l 2o Iollzeca -

A

P+ —snis
’ Ca g L2 (w)

A

1
2 2
L2<w>>

since the coronas C4 are pairwise disjoint in A, and the shifted coronas C:{Shift
have bounded overlap:

AN

E 1or—enin < 71p.
A
AcA

To prove Proposition 3, we begin by letting IIoP consist of the second compo-
nents of the pairs in P and writing

Bion (f9) = > (T2¢7,059),;
JellsP

where ¢ = > EF(ALS) 1avg -
IeCa: (I,J)EP

By the tree-connected property of P, and the telescoping property of martingale
differences, together with the bound a4 (A) on the averages of f in the corona Cy4,
we have

(11.4) 07| S aa(A) 1),

where Ip (J) = m{] : (I,J) € P} is the smallest cube I for which (I,J) € P.
Another important property of these functions is the sublinearity:

(11.5) AR ‘w?l . P=PUP;.

+ ’90?2

Now apply the Monotonicity Lemma 3 to the inner product (T'¢;, AYg)  to
obtain

P (J,lps Lavip()0)
1
||
+P(11+6 (J» le 1A\IP(J)0')
1
||

(T3 es A59),l S AT L2 () 1859 22 ()

HP§X||L2(W) ||A§9||L2(w) :
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Thus we have

(11.6)

IN

Z PS¢ (J, || Lavip(1)0) |
1

\A§X||L2(w) ||A§9||L2(w)
Jella P |J‘"

‘ Bstop g) ‘

(sl Lavip (o
6
by M LG X[ ) 189911 L2 0

JeIls P ‘J|n
AP
|B|stop 1,A% ( ’g) + |B‘stop,1+5,PW (f’ g) ’

where we have dominated the stopping form by two sublinear stopping forms that
involve the Poisson integrals of order 1 and 1 + § respectively, and where the
smaller Poisson integral P{", s is multiplied by the larger projection P4l L2(w)"
This splitting turns out to be successful in separating the two energy terms from
the right hand side of the Energy Lemma, because of the two properties (11.4) and
(11.5) above. It remains to show the two inequalities:

17 BAD A (F9) S (820 + VAT ) aa (4) 1AL, gl o

for f € L? (o) satisfying where E7 |f| < a4 (A) for all I € Cy4; and

(1]‘8) |B‘stop 1+0,Pw (f’ g) S (5geep + V Ag) ||fHL2(a') HgHLQ(w)ﬂ

where we only need the case P = P4 in this latter inequality as there is no recur-
sion involved in treating this second sublinear form. We consider first the easier
inequality (11.8) that does not require recursion. In the subsequent subsections we
will control the more difficult inequality (11.7) by adapting the stopping time and

recursion of M. Lacey to the sublinear form |B|$’O7;1,Aw (f,9)

11.1. The second inequality

Now we turn to proving (11.8), i.e

|B|gtop71+5 po (f19) S (ggeep + \/A%) Hf||L2(a) ||g||L2(w) )

where since

lpa| = > EJ(ALS) 1ayg| < > |E7 (A7, f) Lav],

IeCa: (I,J)EP IeCa: (I,J)EP
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the sublinear form |B|3’£ 14+5.p~ can be dominated and then decomposed by pi-

geonholing the ratio of side lengths of J and I:

Peys (1 les| Lavip()o)

AP w w
BT e () = 3 1Pl 20 1850120

1
Jells P |J|n
P (J,[ES (A, )| 14\ 0
S i G LAC RN ANV
(I.))eP ||
_ A,P;s .
= Z |B stop,1+4,Pw (f) 9)7
s=0
. Pa J, |EJ (AZ f)|1A o0 w w
|B|$£ﬁ+5,w (f9) = Z fes ( ! LI o) 1Pl 2wy 12591 2wy -
(I.))eP |J|™
|J| 7 =275 1|

Here we have the entire projection P4x onto all of the dyadic subintervals of J, but
this is offset by the smaller Poisson integral P¢, ;. We will now adapt the argument
for the stopping term starting on page 42 of [LaSaUr2], where the geometric gain
from the assumed Energy Hypothesis there will be replaced by a geometric gain
from the smaller Poisson integral P{", 5 used here.

First, we exploit the additional decay in the Poisson integral P¢, s as follows.

Suppose that (I,.J) € P with |J n =9 |7 % . We then compute
Py (4 EF (82,0)| Lavio I o
b ORHE& ) [ g (g, )10 )
| J]™ Ay — eyl

1 )
EiE E7 (A7)
< . X do
> /A\I (dlst (C,], Ic) ‘y _ CJ|7L+1—a (y)

1 8
I Pe (J,|EF (A%, 6)| Lavio)
dist (¢, I°) \Jﬁ

3

and use the goodness inequality,

1—

|I| n

dist (¢, I°) > SR > 2288 gy

N =
N —

to conclude that
(11.9)

(P?M (1 [EF (A7) Lavi(n)o) < g-s8(1-2) P (J|EF (A7 f)[Lav10)
1 ~ 1
|| |J|"
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We next claim that for s > 0 an integer,
4o (L BT (A7 ) 1avio w w
( A ) HPJXHL?(w) HAJgHL2(UJ)

AP 144
|B|st0pj+5,P“’ (f,9) = Z I
(I.))eP |J|™
|77 =2==| 1|

S 2700 (84 4 \/AT) 1 fl ooy N9l iee)

from which (11.8) follows upon summing in s > 0. Now using both
1

1
ES (A% f)| = —/Azfdas AT ey e
BN = g [ 185510 SUBZ o)

n 2 o 2
2 ||fHL2(g) = Z”AMJCHLZ(U) ’

IeD

we apply Cauchy-Schwarz in the I variable above to see that

2
A,P;s
Bl cape (:9)] S 11200y

1 P¢ § J, 1A 70 w w
2\ X Phes (1 2a0) o o 1850 mc
IeCa 1, J: (I,J)eP ||

[J|m=27" 1w

We can then estimate the sum inside the square brackets by

2
1 (P (a0 w
PPys (1, Lavio) IPSXN72 () S gl 7o) A(s)*

w |12
SR SR R S
J: (I,J)eP 4 ]|

I€ECh J: (I,J)eP
|7 % =2=°|1| % |J| 7 =2 1|
where
1 (P, (Lias0))
2 146 (S LA\1I0 w2
A(s)” = sup W <+1> ||PJXHL2(w) :
IeCa J: (I,J)eP o ‘J|"

T =27 1|
Finally then we turn to the analysis of the supremum in last display. From the

Poisson decay (11.9) we have
Pe (J, 1L s0) )
y LA\IO w12

1
A(s)? S sup 270079 3" :
reca 1l Ji (L))eP ]
|J|w=2=°|1|%
5 27255(176) [(ggeep)Q —|—AS:| ’
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where the last inequality is the one for which the definition of energy stopping
cubes was designed. Indeed, from Definition 5, as (I, J) € P, we have that I is not
a stopping cube in A, and hence that (8.1) fails to hold, delivering the estimate
above since J €, I good must be contained in some K € M;_geep (I), and since
P*(J,1a\10) ~ P*(K,14\70)

7w In 1
pigeonholed by |J|™ =277 |I|~.

. The terms ||P§:E||iz(w) are additive since the J's are

11.2. The first inequality and the recursion of M. Lacey

Now we turn to proving the more difficult inequality (11.7). Recall that in dimen-
sion n = 1 the energy condition

. o0

> 1 aly E(Jn,w)? P (Jn110)* S NTV) I, | JncC,
n=1

n=1

could not be used in the NTV argument, because the set functional J — |J|  E (J, w)?
failed to be superadditive. On the other hand, the pivotal condition of NTV,

Be o)

Sl P (10 S, | Jnc,
n=1

n=1

succeeded in the NTV argument because the set functional J — |J|, is trivially
superadditive, indeed additive. The final piece of the argument needed to prove the
NTV conjecture was found by M. Lacey in [Lac], and amounts to first replacing
the additivity of the functional J — |J|, with the additivity of the projection
functional H — HP;J_LxHiz(w) defined on subsets H of the dyadic grid D. Then a
stopping time argument relative to this more subtle functional, together with a
clever recursion, constitute the main new ingredients in Lacey’s argument [Lac].

To begin the extension to a more general Calderén-Zygmund operator 7%, we
also recall the stopping energy generalized to higher dimensions by

o 2 1 b« (Jle\'yJo-) 2
xoerssp i Y (BLawa))

2
: 2 PsubgOOd#’X‘
reca U1, JEMy_deep(I) 71

7 L2(w)

where My_geep (I) is the set of maximal r-deeply embedded subcubes of I where r
is the goodness parameter. What now follows is an adaptation to our deep energy
condition and the sublinear form |B|S’O7; 1 aw Of the arguments of M. Lacey in [Lac].

We have the following Poisson inequality for cubes B C A C I:

P (4,1 1
(11.10) M ~ / ——do(y)
|A|™ na (ly —cal)

1 P (B,1p40)
—————do (y) & ——————.
/I\A (ly — e ) z

A
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11.3. The stopping energy

Fix A € A. We will use a ‘decoupled’ modification of the stopping energy X (C4).
Suppose that P is an A-admissible collection of pairs of cubes in the product set
D X Dgpoa of pairs of dyadic cubes in R™ with second component good. For an
admissible collection P let II;P and IIsP be the cubes in the first and second
components of the pairs in P respectively, let IIP = II;P UII,P, and for K € nP
define the 7-deep projection of P relative to K by

7 Pp = {JellbP: Je, K}.

Now the cubes J in II3P are of course always good, but this is not the case for
cubes I in I1;P. Indeed, the collection P is tree-connected in the first component,
and it is clear that there can be many bad cubes in a connected geodesic in the
tree D. But the Haar support of f is contained in good cubes I, and we may
also assume that the children of these cubes I are good. As a consequence we
may always assume that our A-admissible collections P are reduced in the sense
of Definition 15. Thus we will use as our ‘size testing collection’ of cubes for P the
collection

[reccdbelowp — (K" ¢ D : K’ is good and K’ C K for some K € TP},

which consists of all the good subcubes of any cube in ITP. Note that the maximal
cubes in ITP = IIP*4 are already good themselves, and so we have the important
property that

(11.11) (I,J) € P =P implies I C K for some cube K € I[8°°dPelowp,

Now define the ‘size functional’ SSZ‘: (P) of P as follows. Recall that a projection
P4, on x satisfies

2
IPSxl T2y = D 189072
JeH

Definition 16. If P is A-admissible, define

2

L2(w) |

n

1 Pa (Ka ]'A\KJ
11.12) 824 (P)* = HP o ‘
(1) S PP m( K e

We should remark that that the cubes K in II8°°dbelowp that fail to contain
any T-parents of cubes from IIyP will not contribute to the size functional since
17 79°PD is empty in this case. We note three essential properties of this defi-
nition of size functional:

1. Monotonicity of size: SE% (P) < 842 (Q) if P c Q,

s1ze s1ze

2. Goodness of testing cubes: IJgocdbelowp — Dgoods

3. Control by deep energy condition: S22 (P) < £deep 4 | /AT

si1ze
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The monotonicity property follows from I[soedbelowp  [goodbelow g o [T57dePp
I1X°779°P 9 and the goodness property follows from the definition of ITseodbelowp,
The control property is contained in the next lemma, which uses the stopping en-
ergy control for the form Bftop (f, g) associated with A.

Lemma 14. If P4 is as in (11.2) and P C P4, then
SGA(P) < X (Ca) S E2 + /AT

Proof. Suppose that K € I18°°4PelowD  To prove the first inequality in the state-
ment we note that

2

2
1 (P (K, 14 x0) ’P“’ .
K,7—deep 5\ *
K], |K|% (1 P) L2(w)
2
Pe (K,1 2
< [;l ( ( ) 114\K0)> Z ‘P?]ubgood,wx‘ ]
|K], |K|™ FeMEm () L2(w)
1 Pe (J,1ax0) \ 2
y LA\KO ‘ subgood,w ‘
G P S A Sl P
~ K] 2 ( || ) ! Hllrew)
UJGMrfdeep(K)

2
PZUbgOOd’wX‘

<X
Lz(w) — Ot(CA)7

2

1 P (J,14\,,0)

< N AT T
saro v | |

T
T JEMy_deep(K) ||

where the first inequality above follows since every J/ € ITX7~9PP is contained in
some J € My _deep (I), the second inequality follows from (11.10) with J C K C A,
and then the third inequality follows since J &, I implies vJ C I by (2.4), and
finally since IIX""79PP = ) if K ¢ A and K ¢ C4 by (11.13) below. The second
inequality in the statement of the lemma follows from (8.5). O

The following useful fact is needed above and will be used later as well:
(11.13) KCAand K ¢ Cy = IIE77dPp — ),

To see this, suppose that K € C:,_Shift \ Ca. Then K C A’ for some A’ € €4 (A),
and so if there is J € IX779PP then |J|* < 277 |K|* < 2-7 |A/|", which
implies that J ¢ C77*™Mf which contradicts TI5 "~ 4°PP < ¢7shift,

Now define an atomic measure wp in the upper half space R:L_H by

wp= D0 185l 8, kY
Jella P

)

Define the tent T (K) over a cube K to be the convex hull of the n-cube K x {0}
and the point (CK, |K|%> € R, Define the 7-deep tent T™~9°°P (K) over a cube
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K to be the restriction of the tent T (K) to those points at depth 7 or more below
K:

3

Thus using that Hf mdeepp o rsoodbelowd we can rewrite the size functional
(11.12) of P as

T7—dee (f) = {(yﬂf) ET(K):t<2 7 |K

(11.14) 824 (P)* = sup

1 pe (K, 1A\KU)
size K ellgoodbelow p |K‘o'

w 7T—deep )

It will be convenient to write

<Pa (K, lf\KU) ) QWP (TT,deep (K)),

v (K;P)° i

n

so that we have simply

v (K;P)?
8;‘;2 (77)2: sup (K P)” .
Kengoodbelow'p |K|O'

Remark 11. The functional wp (T™~%P (K)) is increasing in K, while the func-

tional P(Ll‘i\lw) s ‘almost decreasing’ in K: if Ky C K then
P (K, 14\ k0) B / do (y)
1 - n+l—a
K| A\K (|K%+\y—cK\)

(V)" " do (y)
e /A\K ( ;

1 n+l—o
Kol + 1y = i, |)
< C / do (y) _ o P (Ko 1avk,0)
= n,o ntl—a — “no 1 )
Ao (1Ko " +ly = ex, ) Kol ™

since |Ko|™ + |y — cr,| < |K|™ + |y — ek | + $diam (K) fory € A\ K.

11.4. The recursion
Recall that if P is an admissible collection for a dyadic cube A, the corresponding
sublinear form in (11.7) is given in (11.6) by
3 P (7] Lavip(1)0)
1
Jells P |J| "

where 7 = Z E7 (A7) Tavs -
IeCa: (1,J)eEP

AP
|B|stop717AW (f7 g)

AT L2 () 18791 L2 () 5
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In the notation for |B|btop 1. A We are omitting dependence on the parameter «,
and to avoid clutter, we will often do so from now on when the dependence on «
is inconsequential. Following Lacey [Lac], we now claim the following proposition,
from which we obtain (11.7) as a corollary below. Motivated by the conclusion
of Proposition 3, we define the restricted norm ‘ﬁs’ig;’L A of the sublinear form

|B|Stop 1.nw to be the best constant ‘ﬂi’o@,m in the inequality

Ko (119) < 0T o (aa ()AL 4 151 ) ol

where f € L? (o) satisfies EF |f| < a4 (A) for all I € C§°%.

Proposition 4. (This is a variant for sublinear forms of the Size Lemma in Lacey
[Lac]) Suppose € > 0. Let P be an admissible collection of pairs for a dyadic cube
A. Then we can decompose P into two disjoint collections P = PP qnd
further decompose P into pairwise disjoint collections Pymal, PS’”“”...’P;"L“”...

i.€. -
__ pbig,* small
P = PUIy (UHP@ ) :

such that the collections P*9 and Py are admissible and satisfy

(11.15) sup Siyt (Pme!)” < e85 (P)?,
£>1
and
small
(11.16) WQ’ZZ,LA < C.8%2 (P) + \/nTbup‘ﬁstZ;fl A -

Corollary 1. The sublinear stopping form inequality (11.7) holds.

Proof of the Corollary. Set Q° = PA. Apply Proposition 4 to obtain a subdecom-
position {Q}}Zl of Q% such that

A,Q° a,A 0 =
mstop,l,A < C. 851ze (Q ) + nTsup mstop 1,A

sup S (QF) <852 (2%

oo
Now apply Proposition 4 to each Q} to obtain a subdecomposition {Q% k}k of
P S =1
9} such that

A,Q} @A (A1 = A,Q7 &
sJtstop,l,A = C Ssme (Qé) +vnt bup sJ’tstop,l,A ’

sup 83 (97 ) < sss;: (Qr)-

A
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Altogether we have

WAL < CLSTA(QY) + VT sup { ST (QF) + v sup i
stop,1,A = €%size Z>Il) €%size 4 k>Ii stop,1,A
A,QF
= C. {S:fzf (Q°) + \/nresgé’: (QO)} + (n1) 281331 RN

Then with { = v/n7, we obtain by induction for every N € N,

Mioia < O {851 (Q") +¢esht (@) + VeVl ()]

NoR
+CN+1 Sup 9’tstop,l,A
meNN
Now we may assume the collection Q° = P4 of pairs is finite (simply trun-
cate the corona C4 and obtain bounds independent of the truncation) and so
N+1

SUD, e NN+1 ‘J’(S’O%”{ A = 0 for N large enough. Then we obtain (11.7) if we choose
0<e< 1%_( and apply Lemma 14. O

Proof of Proposition 4. Recall that the ‘size testing collection’ of cubes I18°°dPelowp
is the collection of all good subcubes of a cube in IIP. We may assume that P is

a finite collection. Begin by defining the collection Ly to consist of the minimal
dyadic cubes K in T18°°9P¢low D gych that

e (K7P)2 a,A 2
0w Z ESsi;e P N

[oa

where we recall that
P (K, 14 x0) )
) U —
v (K P) = (“) wp (T779°P (K) .

Note that such minimal cubes exist when 0 < & < 1 because S22 (P)? is the

size

supremum over K € [J800dbelowp of %Ip)z A key property of the the minimality
requirement is that
P (K/ 7))2 s )
(11.17) W <e857 (P)”,
ag

for all K’ € I18°°4PelowD with K’ & K and K € L.

We now perform a stopping time argument ‘from the bottom up’ with respect
to the atomic measure wp in the upper half space. This construction of a stopping
time ‘from the bottom up’ is one of two key innovations in Lacey’s argument [Lac],
the other being the recursion described in Proposition 4.

We refer to Ly as the initial or level 0 generation of stopping times. Choose
p = 1+¢e. We then recursively define a sequence of generations {L,, },°_ by letting
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L., consist of the minimal dyadic cubes L in I18°°4PelowD that contain a cube from
some previous level Ly, £ < m, such that

(11.18) wp (TT79P (L)) > pwp U T7—deep (1))

Since P is finite this recursion stops at some level M. We then let L£;41 consist
of all the maximal cubes in I18°°9PeloWD that are not already in some L£,,. Thus
Lar+1 will contain either none, some, or all of the maximal cubes in I1&°°dbelowp,
We do not of course have (11.18) for A’ € Ls41 in this case, but we do have that
(11.18) fails for subcubes K of A’ € Lj4; that are not contained in any other
L € L,,, and this is sufficient for the arguments below.

We now define the collections P*™%! and P*9. The collection P will consist
of those pairs (I,.J) € P for which there is L € £ with J €, L C I, and Psmall

will consist of the remaining pairs. But a considerable amount of further analysis
M

is required to prove the conclusion of the proposition. First, let £ = U L., be
m=0

the tree of stopping energy cubes defined above. By our construction above, the

maximal elements in £ are the maximal cubes in I18°°dPelowD  For I, € £, denote

by Cr, the corona associated with L in the tree L,

Co={KeD:KCLandthereisno L' € £L with K ¢ L' G L},
and define the shifted corona by
Ciht = (K e(,: K e, L}U U {KeD:K &, Land K is T-nearby in L'}.
Lrees(L)

Now the parameter m in L,, refers to the level at which the stopping construction
was performed, but for L € L,,, the corona children L’ of L are not all necessarily
in L£,,—1, but may be in £,,_; for ¢ large. Thus we need to introduce the notion
of geometric depth d in the tree £ by defining

Go = {Le€L:Lismaximal},
Gi = {LeL:Lismaximal wrt L G Lo for some Lo € Go},
Gar1 = {L€L:Lis maximal wrt L ; Lg for some Ly € G4},

We refer to Gy as the d** generation of cubes in the tree £, and say that the cubes
in G4 are at depth d in the tree £. Thus the cubes in G; are the stopping cubes in
L that are d levels in the geometric sense below the top level.



90 E.T. SAWYER AND C.-Y. SHEN AND I. URIARTE-TUERO

Then for L € G4 and t > 0 define
Pre={{,J)eP:1€CpandJeCp " for some L' € G4y with L' C L}.

In particular, (I,J) € Pr implies that I is in the corona Cy,, and that J is in a
shifted corona CJ, "M that is ¢ levels of generation below Cr,. We emphasize the
distinction ‘generation’ as this refers to the depth rather than the level of stopping
construction. For ¢t = 0 we further decompose Py, o as

PL 0 — 'Psma”UPﬁ%;
Psm“” = {(I,J)€Pro:1+#L},
Prd = {(I.J)€PLo: I =L},

with one exeption: if L € L7411 we set P,‘-j’éa” = Pr o since in this case L fails to
satisfy (11.18) as pointed out above. Then we set

bei!J = { U szg} U U U ,PL,t 5
LEL t>1LeLl
[ pgmall }Zo = {pz?ga”}Leﬁ ,  after relabelling.

It is important to note that by (11.11), every pair (I,J) € P will be included in

either P*™a or P9, Now we turn to proving the inequalities (11.15) and (11.16).
To prove the inequality (11.15), it suffices with the above relabelling to prove

the following claim:

(11.19) SLA (Pt < (p—1)STA(P)?,  LeL.

size s1ze

To see (11.19), suppose first that L ¢ Lpr41. In the case that L € L is an initial
generation cube, then from (11.17) we obtain that

SOL A (rPsmall)

s1ze

< sup

K’ eIlgoodbelowp. K’gL |K,‘O’ s1ze

1 <Pa (K/,lA\K/O')

2
o ) wp (TT79eP (K')) < eS%2A (P)?.
K|

Now suppose that L ¢ Ly and also that L ¢ Lpr41. Pick a pair (1,J) € PE’B“”.
Then I is in the strict corona C;, and J is in the -shifted corona C]*M Since
Psma” is a finite collection, the definition of S’ (’Psm"”) shows that there is a

size
CU.be K e Hgoodbelowrpsmall so that

2
ng? (Psma”) = ‘I;| (P (K, 1?\[(0_)) wp (T‘rideep (K)) .

Now define
t' =t (K) =max{s: there is L' € L, with L' C K}.
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First, suppose that ¢ = 0 so that K does not contain any L’ € £. Then it follows
from our construction at level £ = 0 that

n

2
Pe(K,1
I ( (u} Mm)) wp (T774 (K)) < =832 (P)?,

and hence from p = 1 + ¢ we obtain

S3A (Pt < eSS (P)? = (p— 1) S3A (P)?.

size size size

Now suppose that ¢ > 1. Then K fails the stopping condition (11.18) with m =
t' + 1, and so

wp (TT—deep (K)) < pwp U 7 —deep (L/>
t/
L'e U Ly: L'cK
£=0

Now we use the crucial fact that wp is additive and finite to obtain from this that

(11.20) wp | T77deeP (K)\ U T7—deer (1))
tl
L'e Ly: I'cK
£=0

= wp (TT—deep (K)) —wp U TT—deep (L/)
t/
L'e U Ly I'CcK
£=0

IN

(p—1wp U TP (L)
tl
vel|JLo: U'CK
=0
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Thus using

WPZ':'S”” (T‘r—deep (K)) < wp T‘r—deep (K) \ U TT—deep (L/) ,
t/
L'e U L, L' CK
£=0

and (11.20) we have

SoA (Pﬂ%au)?

size

2
1 P (K1 o
< sup ( A\K ) wp T‘rfdeep (K) \ U T‘rfdeep (Ll)
KengOOdbclow'pz%all |K|o' |K n Y
Le U Ly I'c K
=0

1 p (K’ 1A\KU) ’ T—deep /

< (p=-1) sup 7 T wp U T (L")
KEHgOOdbelOW'PZ"féa” ‘ |a |K| n Y

velJLe: U'cK
=0

and we can continue with

Sl)é7A (Pz%a”)

size

< -1 su
- (p ) KGHgoo(E)elow'p |K‘O'

< (p-1)84 (P

size

1 (P (K, 14 k0)
K["

2
) wp (Tr—dccp (K))

In the remaining case where L € L£);,1 we can include L as a testing cube K
and the same reasoning applies. This completes the proof of (11.19).

To prove the other inequality (11.16), we need a lemma to bound the norm of
certain ‘straddled’ stopping forms by the size functional Sgéf, and another lemma
to bound sums of ‘mutually orthogonal’ stopping forms. We interrupt the proof to
turn to these matters. U

11.4.1. The Straddling Lemma. Given an admissible collection of pairs Q for
A, and a subpartition S C I18°°dPelow g of pairwise disjoint cubes in A, we say
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that Q 7-straddles S if for every pair (I,J) € Q there is S € SN[J, I] where [J, I]
denotes the geodesic in the dyadic tree D that connects J to I, and moreover that
J €, S. Denote by N pggid (S) the finite collection of cubes that are both good
and (p — 7)-nearby in S. For any good dyadic cube S € Dyqoq, we will also need
the collection W&°°4 (S) of maximal good subcubes I of S whose triples 31 are
contained in S.

Lemma 15. Let S be a subpartition of A, and suppose that Q is an admissible
collection of pairs for A such that S C HgOOdbeZO“’Q, and such that Q T-straddles
S. Then we have the sublinear form bound

A,Q A S A
mstop,LA S 0137'7[) gug Sso;ze (Q) S Cl‘ﬂ'aﬂssaize (Q)v
€

where 8% s an S-localized version of 8% with an S-hole given by
(11.21)
1 (P (K 1a50)\
St (97 = sup K : f\s wg (T7~ % (K)).
KeN?(5)uwed(s) K|, |K|™

Proof. For S € Slet Q% ={(I,J)€ Q:J &, S C I}. We begin by using that Q
7-straddles S, together with the sublinearity property (11.5) of @?, to write

P (1, |9%] Lavig(s)0)

A7 w w
B2, L (fg) = 3 1 89%] 2oy 1259 2o

1
Jella P ‘J|n
P ()91
P ‘ A\IQ(J)0>
< Z Z T HA7XHL2(@ ||A§9||L2(w)?
Ses JEst‘deeepQ |J|n

Z E7 (A77f) 1avs -

1€l Q5: (1,J)€Q’

S
where gp?

At this point, with S fixed for the moment, we consider separately the finitely
1 1

many cases |J| =27%|S|" where s > p and where 7 < s < p. More precisely, we

pigeonhole the side length of J € I1,Q° = Hg’deeepQ by

0f = {(1,7)€ Q%7 €m0 and |J]* <27 Is|* ),

QS

{(I,J) € 0%:JellL,0% and |J|* =2 |5|%}, r<s<p.

Then we have

1,05 = {JeHQQS:|J\%grP\S

1
n
’

s s o -5 (g
1,05 = {JGHQQ I =2 |S|"}, r<s<p,
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and we make the corresponding decomposition for the sublinear form

Bla A (f9) = Blawia(fo)+ > Bl A (f.9)
T<s<p
QS
p (J7 ©r" ‘ 1A\IQ*(J)0'>
= > > . 1AS%] L) 1899 200
SES JEIL Q5 PR

03
Ji|es” ‘ 1A\Igsu>0)

pe (
+ Z Z Z T 1A% L2y 12590 L2y -

7<s<p SES JEI, Q5 ||

By the tree-connected property of Q, and the telescoping property of martingale
differences, together with the bound a4 (A) on the averages of f in the corona Ca,
we have

o
P

)

o
(11.22) ’gol,

S aa(A) Iargs ),

where Igs (J) = ﬂ {1:(1,7)¢ QS} is the smallest cube I for which (I, .J) € Q.

S
Case for |B|3;st1 A (f.g) when 7 < s < p: Now is a crucial definition that
permits us to bound the form by the size functional with a large hole. Let

C;g =" (HQQSS)

be the collection of 7-parents of cubes in I1,QY, and denote by M? the set of
mazimal cubes in the collection C2. We have that the cubes in M% are good by
our assumption that the Haar support of g is contained in the 7-good grid grid
Dl, o) good> and so ME C N,_; (S). Here is the first of two key inclusions:

(11.23) J €, K C Sif K€ M?Z is the unique cube containing .J.
Let I, = 755 so that for each J in Il Qf we have the second key inclusion
(11.24) m’J =1, Clgs (J).

Now each K € M? is also (p — 7)-deeply embedded in I, if p > r + 7, so that
in particular, 3K C I,. This and (11.24) have the consequence that the following
Poisson inequalities hold:

P (J’IA\IQS(J)U) _ P (L1ag0) _ P(K, 1a0) _ P (K 1a\s0)
71 A L

n

Let 1,95 (K) = {J € 1,09 : J C K}. Let

1
n

m05], = {7emas: |7|F =2 |K|*},

[HZQE]Z = {J’ D JCJeTLQ8 |J’\% = 2*Z|K|%}.
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Now set Qs = U Q5. We apply (11.22) and Cauchy-Schwarz in .J to bound
ses

A, Qs
|B|stop71,A (f? g) by

A Y <K1A\sff> [T

SES KeMs |K[™

b

L2(w)

[P

L2 HST deepQ Kg‘

where the localized projections P“ are defined in (9.1) above.

S T—deer g ¢

Thus using Cauchy-Schwarz in K we have that

A Y Ikl

SeES KeM?

1 pe (K, lA\SJ) w
vl et

m(A)supszz:;‘S Q> > UKL | lglew

Se SeS KeN,_-(9)
a,A; S’
< sup S5t (Q) aa (A) M||g||L2(w) ;
Ses

since J € M C K by (11.23), since M5 C N,_, (S), and since the collection of
cubes U M? is pairwise disjoint in A.
Ses
A4,Q. . . S — 7 s
Case for B[ "5 A (f,9): This time we let CY = 7 (I1;Q7) and denote by
M? the set of mazimal cubes in the collection C¥. We have the two key inclusions,

Biogpsl A (f, g)’ is bounded by

pw
L2(w) H 11> Qs

Nl=

IN

Je, Me, . Sift M e M? is the unique cube containing J,

and

P’ J C S Clg(J).

Moreover there is K € W#°°d (S) that contains M. Thus 3K C S and we have

pe (J,].A\S(T) < P« (K, ]_A\SO')
P/ ¢

)

n

and [ps] S aa(A)las. Now set Q, = U Q. Arguing as above, but with
ses
weeed (S) in place of N,,_; (S), and using J €, I (J), we can bound \B|Stop o (fr9)
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WY Y iEl,

SeS Keweeod ()
1 (P“ (K,1450)

>< 1
VIK], |K|™

) [Pz, ) [Pz .,
%

AN

m(A)sugss;:;‘?S(Q) o> UKL gl

Se 5€8 Kewsood(S)

< sup Sg;?;s (Q)aa(A) M||g||L2(w) .

Ses

We now sum these bounds in s and * and use supgcg SeAS (Q) < suA (Q) to

size size

complete the proof of Lemma 15. O

11.4.2. The Orthogonality Lemma. Given a set {Q,,},-_, of admissible col-
lections for A, we say that the collections Q,, are mutually orthogonal, if each
collection Q,,, satisfies

Om C U {-Am,j X Bm,j} )

=0

where the sets {4y, ;},, ; and {Bm ;},, ; each have bounded overlap on the dyadic
grid D:

o0 o0
> 14,,<Alpand Y 1p, < Blp.

m,j=0 m,j=0

Lemma 16. Suppose that {Q,,},°_, is a set of admissible collections for A that

o0
are mutually orthogonal. Then if Q = U Om, the sublinear stopping form
m=0
A,Q . : A,Q <
Blitop.1.a (f:9) has its restricted norm My =, A controlled by the supremum of

: A,Qm .
the restricted norms ‘ﬁstop’l’A.

AQ A, Qm
‘ﬁstw’l’A < vVnAB si%mstonlaé'
m

Proof. If P7, = Z Z AZ; (note the parent 7l in the projection AZ; because
J>0I€ A, ;
of our ‘change of dummy variable’ in (11.1)) and P¥, = Z Z A%, then we
§>0 JEBm ;
have

Biion” (f.9) = Ban™ (P7.f.Ping).

stop stop
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and
o £12 o 2
> 1Pl < s [y < AP e
m>0 m>03>0
w 112 2
S Pl < 3 S|P, < Bloliae -
m>0 m>0 >0 (@)

The sublinear inequality (11.5) and Cauchy-Schwarz now give

A,Qm A,Qm o
| stop,l A (f’ ) < Z ‘Blstop,l A Z mStOP Hme||L2 ||P g||L2
m>0 m>0
A,Qm 2 2
< (SUP mstop,l,A) Z ||ngbeL2(a) Z ||P#Lg||L2(U)
m>0 m>0 m>0

IN

(su% m:;;%,r;,&) VIABVE 2o 9l oo -

m>

a

11.4.3. Completion of the proof. Now we return to the proof of inequality
(11.16) in Proposition 4.

Proof of (11.16). Recall that

o~ {UmU YU P = U

LeL t>1Lel
big _ big bzg big bzg _
Q = U PL,O ) P ) PL ,t-
LeL t>1 Lec

We first consider the collection Q)Y = U 7321%, and claim that
Lec

blg
(11.25) Noni'a <CSGL(PLS) <SGt (), LerL,

s1ze

To see this we note that 771"9 7-straddles the trivial collection {L} consisting of a
single cube, since the pairs (I J) that arise in PL ‘0 have I = L and J in the shifted

corona C; " Thus we can apply Lemma 15 with Q = PZZ’% and § = {L} to
obtain (11.25).
Next, we observe that the collections P?’% are mutually orthogonal, namely

b i
Pry C Coxcphrt,

Z 1CL S 1 and Z 1cz—shift S T.

Lel LeL
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Thus the Orthogonality Lemma 16 shows that
A, Qb S S a,A
mstop?l,A < nr Sup mstop 1,A < nTCSslze (P) .

Now we turn to the collection

= UUra-Ur

t>1LeL t>1
P o= |JPra. tx0.
LeLl
We claim that
big
(11.26) Nl f < Cp 5852 (P),  t>1.

Note that with this claim established, we have

A, Pbi9 A, Qb A,Qb nA ,Qbis Z a,A
9’tstop,l,A < s)/tstop,l,A + 9’tstop 1 A stop 1,A + sJtstop 1,A < C sze (P)

which proves (11.16) if we apply the Orthogonal Lemma 16 to the set of collections
{Piralty rec» Which is mutually orthogonal since Pyl C Cp x Crshif | With
this the proof of Proposition 4 is now complete since p = 1 4+ ¢. Thus it remains
only to show that (11.26) holds.

The cases 1 <t < r+ 1 can be handled with relative ease since decay in ¢ is
not needed there. Indeed, Pr; T-straddles the collection €, (L) of L-children of
L, and so the Straddling Lemma applies to give

Niopii'a < OS2 (Pry) < OS3 (P).

size s1ze
and then the Orthogonality Lemma 16 applies to give

AP, big — APrL.¢ o, A
mstop,l,A < nt Sup sjt::top 1,A < c nTSsizc (P) ’

since {Prt},c, is mutually orthogonal as Pr; C Cr x C7, shift with L € G4 and
L' € Gyyy for depth d = d (L).

Now we consider the case t > r 4+ 2, where it is essential to obtain decay in t.
We again apply Lemma 15 to P, with S = €, (L), but this time we must use the
stronger localized bounds S5 A5 With an S-hole, that give

size

(11.27) NP <0 osup SEAS(PLy),  t>0.

stop,1,A size
Sec, (L)

Fix L € Gq. Now we note that if J € IT7~9°P, ; then J belongs to the 7-shifted

corona Czd_f?’ft for some cube Lt € G4.;. Then 7.J is 7 levels above .J, hence in

the corona Cra++. This cube L+ lies in some child S € S = €, (L). So fix S € S
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and a cube L € G4, that is contained in S with ¢ > r + 2. Now the cubes
K that arise in the supremum defining Sgéf;s (Prs+) in (11.21) belong to either

N7 (S) or Weeed (). We will consider these two cases separately.

So first suppose that K € N,_. (S). A simple induction on levels yields

wp,, (TT74P(K)) = Z \\A§X|‘i2(w)
Jels m—deerp,
JCK
< wp U TT—deep (Ld—i-t)

LitteGay s LITICK

< 1&)73 U 7 —deep (Ld-l-t—l)
P Ldt+t-1€Gq ,_q: LA+t-1CK
S p U wp (T (K)), £ > p— 742,

Thus we have

1 <Pa (K,]_A\S(T

) 2
K] K ) wpy,, (T (K))

n

2
1 pe (K 1A\SU)
< —t ’ Tr—deep (1)) < —tSO_é7A 2
=0 |K|U< ) I ST P)

Now suppose that K € We°°d(S) and that J € I1;7 PP, and J C K.
There is a unique cube L € G4, .11 such that J ¢ L+ ¢ §. Now LA+r+!
is good so L™+ €. §. Thus in particular 3L4**1 C S so that L4+l C K.
The above simple induction applies here to give

2 _
Z |\A‘jx||L2(w) < wp U 7 —deep (Ld+t)
Jeng,r—deep,PL . Ld+tegd+t: Lm,—tch+r+1
JC L+l '
5 p—(t—l—r)wp (TT—deep (Ld+r+1)) , t>r+ 2.
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Thus we have,

2
P (K, 1
<("‘\“’)> S ek,

|K|™ Jenfr—deerp,
JCK
P (K, 14\50) i (t—1 d dir+1
< Cl——"T=) p 7 Y wp (T (L)
|K|n Ld+r+1€gd+r+1
Ld+r+1CK

IN

size

2
Cp~ 7t (P (K’li“\sa)) wp (T774P (K)) < Cp~ 0850 (P)*.

So altogether we conclude that

sup SeAS (’PL¢)2

size

See. (L)
1 (P (K 1ago) )
y LA\KO w2
= sup sup IP9%|l7 2.,
See, (L) KEN, - (S)uweood(S) K], ( \Kﬁ > Z THIEAW)

Jeng,r—deeppht
JCK

< Cr,T,ppitSsoiééf (7))2 )
and combined with (11.27) this gives (11.26). As we pointed out above, this
completes the proof of Proposition 4, hence of Proposition 3, and finally of Theorem
1. O
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