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A two weight theorem for α-fractional singular
integrals with an energy side condition

Eric T. Sawyer and Chun-Yen Shen and Ignacio Uriarte-Tuero

Abstract. Let σ and ω be locally finite positive Borel measures on Rn
with no common point masses, and let Tα be a standard α-fractional
Calderón-Zygmund operator on Rn with 0 ≤ α < n. Furthermore, assume
as side conditions theAα2 conditions and certain α-energy conditions. Then
we show that Tα is bounded from L2 (σ) to L2 (ω) if the cube testing
conditions hold for Tα and its dual, and if the weak boundedness property
holds for Tα.

Conversely, if Tα is bounded from L2 (σ) to L2 (ω), then the testing
conditions hold, and the weak boundedness condition holds. If the vector
of α-fractional Riesz transforms Rα

σ (or more generally a strongly elliptic
vector of transforms) is bounded from L2 (σ) to L2 (ω), then the Aα2 con-
ditions hold. We do not know if our energy conditions are necessary when
n ≥ 2.

The innovations in this higher dimensional setting are the control of
functional energy by energy modulo Aα2 , the necessity of the Aα2 conditions
for elliptic vectors, the extension of certain one-dimensional arguments to
higher dimensions in light of the differing Poisson integrals used in A2

and energy conditions, and the treatment of certain complications arising
from the Lacey-Wick Monotonicity Lemma. The main obstacle in higher
dimensions is thus identified as the pair of energy conditions.

1. Introduction

In this paper we prove a two weight inequality for standard α-fractional Calderón-
Zygmund operators Tα in Euclidean space Rn, where we assume the n-dimensional
Aα2 conditions and certain α-energy conditions as side conditions (in higher dimen-
sions the Poisson kernels used in these two conditions differ). In particular, we show
that for locally finite Borel measures σ and ω with no common point masses, and
assuming the energy conditions in the Theorem below, a strongly elliptic collection
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of standard α-fractional Calderón-Zygmund operators Tα is bounded from L2 (σ)
to L2 (ω),

(1.1) ‖Tα (fσ)‖L2(ω) . ‖f‖L2(σ) ,

(with 0 ≤ α < n) if and only if the Aα2 conditions hold, the cube testing conditions
for Tα hold, and the weak boundedness property for Tα holds. This identifies the
culprit in higher dimensions as the pair of energy conditions. We point out that
these energy conditions are implied by higher dimensional analogues of essentially
all the other side conditions used previously in two weight theory, in particular
doubling conditions and the Energy Hypothesis (1.16) in [LaSaUr2].

The final argument by M. Lacey ([Lac]) in the proof of the Nazarov-Treil-
Volberg conjecture for the Hilbert transform is the culmination of a large body of
work on two-weighted inequalities beginning with the work of Nazarov, Treil and
Volberg ([NaVo], [NTV1], [NTV2], [NTV4] and [Vol]) and continuing with that
of Lacey and the authors ([LaSaUr1], [LaSaUr2], [LaSaShUr] and [LaSaShUr2]),
just to mention a few. See the references for further work. We consider standard
singular integrals T , as well as their α-fractional counterparts Tα, and include

1. the control of the functional energy condition by the energy condition modulo
Aα2 ,

2. a proof of the necessity of the Aα2 condition for the boundedness of the vector
of α-fractional Riesz transforms Rα,n,

3. the extensions of certain one-dimensional arguments to higher dimension in
light of the differing Poisson integrals used in the Aα2 and energy conditions,

4. and the treatment of certain complications arising from the Lacey-Wick
Monotonicity Lemma.

These are the main innovations in this paper. The final point is to adapt the
clever stopping time and recursion arguments of M. Lacey [Lac] to complete the
proof of our theorem, but only after splitting the stopping form into two sublinear
stopping forms dictated by the right hand side of the Lacey-Wick Montonicity
Lemma. The basic idea of the generalization is that all of the decompositions of
functions are carried out independently of α, while the estimates of the resulting
nonlinear forms depend on the α-Poisson integral and the α-energy conditions.

It turns out that in higher dimensions, there are two natural ‘Poisson integrals’
P and P that arise, the usual Poisson integral P that emerges in connection with
energy considerations, and a different Poisson integral P that emerges in connec-
tion with size considerations - in dimension n = 1 these two Poisson integrals
coincide. The standard Poisson integral P appears in the energy conditions, and
the reproducing Poisson integral P appears in the A2 condition. These two ker-
nels coincide in dimension n = 1 for the case α = 0 corresponding to the Hilbert
transform.

Acknowledgement 1. We are grateful to Michael Lacey for pointing out a num-
ber of problems with our arguments and various oversights in the versions of
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[SaShUr], [SaShUr2] (now withdrawn), [SaShUr3] on the arXiv, including the mis-
take in our monotonicity lemma, which has been corrected by M. Lacey and B. Wick
in [LaWi], and in our consequent adaptation of the stopping time and recursion
argument in [Lac]. See these preprints for some of the details.

Remark 1. There is overlap of the previous versions 1-6 of this paper [SaShUr]
with the subsequent work of M. Lacey and B. Wick in versions 1 and 2 of [LaWi],
but the authors there do not acknowledge this overlap. Some results and some de-
tails of arguments in the current paper overlap with those in [LaWi]. In particular:
the Monotonicity Lemma 3 here is due to Lacey and Wick in Lemma 4.2 of [LaWi];
Lemma 5 here is proved in [LaWi], but with the larger bound Aα2 there in place of
Aα2 ; and an argument treating the additional term in the Lacey-Wick Monotonicity
Lemma as it arises in functional energy is essentially in [LaWi]. We note that the
side condition in [LaWi] - uniformly full dimension - permits a reversal of energy,
something not assumed in this paper, that implies our energy conditions.

2. Statements of results

Now we turn to a precise description of our two weight theorem. We will prove a
two weight inequality for standard α-fractional Calderón-Zygmund operators Tα

in Euclidean space Rn, where we assume the n-dimensional Aα2 and certain α-
energy conditions as side conditions. In higher dimensions the Poisson kernels Pα
and Pα used in defining these two conditions differ. In particular, we show that
for locally finite Borel measures σ and ω in Rn with no common point masses,
and assuming that both the energy condition and its dual hold, a strongly elliptic
vector of standard α-fractional Calderón-Zygmund operators Tα is bounded from
L2 (σ) to L2 (ω) if and only if the Aα2 conditions hold, along with the cube testing
conditions and the weak boundedness property. In order to state our theorem
precisely, we need to define standard fractional singular integrals, the two different
Poisson kernels, and an energy condition sufficient for use in the proof of the two
weight theorem. These are introduced in the following subsections.

2.1. Standard fractional singular integrals

Let 0 ≤ α < n. Consider a kernel function Kα(x, y) defined on Rn×Rn satisfying
the following fractional size and smoothness conditions of order 1 + δ for some
δ > 0,

|Kα (x, y)| ≤ CCZ |x− y|α−n ,(2.1)

|∇Kα (x, y)| ≤ CCZ |x− y|α−n−1
,

|∇Kα (x, y)−∇Kα (x′, y)| ≤ CCZ

(
|x− x′|
|x− y|

)δ
|x− y|α−n−1

,
|x− x′|
|x− y|

≤ 1

2
,

|∇Kα (x, y)−∇Kα (x, y′)| ≤ CCZ

(
|y − y′|
|x− y|

)δ
|x− y|α−n−1

,
|y − y′|
|x− y|

≤ 1

2
.
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Then we define a standard α-fractional Calderón-Zygmund operator associated
with such a kernel as follows.

Definition 1. We say that Tα is a standard α-fractional integral operator with
kernel Kα if Tα is a bounded linear operator from some Lp (Rn) to some Lq (Rn)
for some fixed 1 < p ≤ q <∞, that is

‖Tαf‖Lq(Rn) ≤ C ‖f‖Lp(Rn) , f ∈ Lp (Rn) ,

if Kα(x, y) is defined on Rn×Rn and satisfies (2.1), and if Tα and Kα are related
by

(2.2) Tαf(x) =

∫
Kα(x, y)f(y)dy, a.e.- x /∈ suppf,

whenever f ∈ Lp (Rn) has compact support in Rn. We say Kα(x, y) is a standard
α-fractional kernel if it satisfies (2.1).

We note that a more general definition of kernel has only order of smoothness
δ > 0, rather than 1 + δ, but the use of the Monotonicity and Energy Lemmas
below requires order of smoothness more than 1. A smooth truncation of Tα has
kernel ηδ,R (|x− y|)Kα (x, y) for a smooth function ηδ,R compactly supported in
(δ,R), 0 < δ < R < ∞, and satisfying standard CZ estimates. A typical example
of an α-fractional transform is the α-fractional Riesz vector of operators

Rα,n = {Rα,n` : 1 ≤ ` ≤ n} , 0 ≤ α < n.

The Riesz transforms Rn,α` are convolution fractional singular integrals Rn,α` f ≡
Kn,α
` ∗ f with odd kernel defined by

Kα,n
` (w) ≡ w`

|w|n+1−α ≡
Ω` (w)

|w|n−α
, w =

(
w1, ..., wn

)
.

The tangent line truncation of the Riesz transformRα,n` has kernel Ω` (w)ψαδ,R (|w|)
where ψαδ,R is continuously differentiable on an interval (0, S) with 0 < δ < R <

S, and where ψαδ,R (r) = rα−n if δ ≤ r ≤ R, and has constant derivative on
both (0, δ) and (R,S) where ψαδ,R (S) = 0. As shown in the one dimensional

case in [LaSaShUr3], boundedness of Rn,α` with one set of appropriate truncations
together with the Aα2 condition below, is equivalent to boundedness of Rn,α` with
all truncations.

2.2. Cube testing conditions

The following ‘dual’ cube testing conditions are necessary for the boundedness of
Tα from L2 (σ) to L2 (ω):

T2
Tα ≡ sup

Q∈Qn

1

|Q|σ

∫
Q

|Tα (1Qσ)|2 ω <∞,

(T∗Tα)
2 ≡ sup

Q∈Qn

1

|Q|ω

∫
Q

∣∣(Tα)
∗

(1Qω)
∣∣2 σ <∞.
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2.3. Weak boundedness property

The weak boundedness property for Tα with constant C is given by∣∣∣∣∫
Q

Tα (1Q′σ) dω

∣∣∣∣ ≤ WBPTα√|Q|ω |Q′|σ,
for all cubes Q,Q′ with

1

C
≤ |Q|

1
n

|Q′|
1
n

≤ C,

and either Q ⊂ 3Q′ \Q′ or Q′ ⊂ 3Q \Q.

Note that the weak boundedness property is implied by either the tripled cube
testing condition,

‖13QTα (1Qσ)‖L2(ω) . ‖1Q‖L2(σ) , for all cubes Q in Rn,

or the tripled dual cube testing condition. In turn, the tripled cube testing con-
dition can be obtained from the cube testing condition for the truncated weight
pairs (ω,1Qσ). See also Remark 4 below.

2.4. Poisson integrals and Aα
2

Now let µ be a locally finite positive Borel measure on Rn, and suppose Q is a
cube in Rn. The two α-fractional Poisson integrals of µ on a cube Q are given by:

Pα (Q,µ) ≡
∫
Rn

|Q|
1
n(

|Q|
1
n + |x− xQ|

)n+1−α dµ (x) ,

Pα (Q,µ) ≡
∫
Rn

 |Q|
1
n(

|Q|
1
n + |x− xQ|

)2


n−α

dµ (x) .

We refer to Pα as the standard Poisson integral and to Pα as the reproducing
Poisson integral. Let σ and ω be locally finite positive Borel measures on Rn with
no common point masses, and suppose 0 ≤ α < n. Recall that the classical Aα2
constant is defined by

Aα2 ≡ sup
Q∈Qn

|Q|σ
|Q|1−

α
n

|Q|ω
|Q|1−

α
n
.

We now define the one-tailed Aα2 constant using Pα. The energy constants Eα
introduced in the next subsection will use the standard Poisson integral Pα. Let
Qn denote the collection of all cubes in Rn, and denote by Dn or simply D a dyadic
grid in Rn.

Definition 2. The one-sided constants Aα2 and Aα,∗2 for the weight pair (σ, ω) are



6 E.T. Sawyer and C.-Y. Shen and I. Uriarte-Tuero

given by

Aα2 ≡ sup
Q∈Qn

Pα (Q, σ)
|Q|ω
|Q|1−

α
n
<∞,

Aα,∗2 ≡ sup
Q∈Qn

Pα (Q,ω)
|Q|σ
|Q|1−

α
n
<∞.

2.5. Good grids and energy conditions

Given a dyadic cube K ∈ D and a positive measure µ we define the Haar projection
PµK ≡

∑
J∈D: J⊂K

4µJ on K by

PµKf =
∑

J∈D: J⊂K

∑
a∈Γn

〈f, hµ,aJ 〉µ h
µ,a
J and ‖PµKf‖

2

L2(µ) =
∑

J∈D: J⊂K

∑
a∈Γn

∣∣∣〈f, hµ,aJ 〉µ∣∣∣2 ,
and where a Haar basis {hµ,aJ }a∈Γn and J∈D adapted to the measure µ is defined in
the section on a weighted Haar basis below. Now we recall the definition of a good
dyadic cube - see [NTV4] and [LaSaUr2] for more detail.

Definition 3. Let r ∈ N and 0 < ε < 1. A dyadic cube J is (r, ε)-good, or simply
good, if for every dyadic supercube I, it is the case that either J has side length
at least 2−r times that of I, or J br I is (r, ε)-deeply embedded in I.

Here we say that a dyadic cube J is (r, ε)-deeply embedded in a dyadic cube K,
or simply r-deeply embedded in K, which we write as J br K, when J ⊂ K and
both

|J |
1
n ≤ 2−r |K|

1
n ,(2.3)

dist (J, ∂K) ≥ 1

2
|J |

ε
n |K|

1−ε
n .

We say that J is r-nearby in K when J ⊂ K and

|J |
1
n > 2−r |K|

1
n .

The parameters r, ε will be fixed sufficiently large and small respectively later in
the proof, and we denote the set of such good dyadic cubes by Dgood. Throughout
the proof, it will be convenient to also consider pairs of cubes J,K where J is
ρ-deeply embedded in K, written J bρ K and meaning (2.3) holds with the same
ε > 0 but with ρ in place of r; as well as pairs of cubes J,K where J is ρ-nearby

in K, |J |
1
n > 2−ρ |K|

1
n , for a parameter ρ� r that will be fixed later.

Then we define the smaller ‘good’ Haar projection Pgood,ω
K by

Pgood,µ
K f ≡

∑
J∈G(K)

4µJf =
∑

J∈G(K)

∑
a∈Γn

〈f, hµ,aJ 〉µ h
µ,a
J ,

where G (K) consists of the good subcubes of K:

G (K) ≡ {J ∈ Dgood : J ⊂ K} ,
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and also the larger ‘subgood’ Haar projection Psubgood,µ
K by

Psubgood,µ
K f ≡

∑
J∈Mgood(K)

∑
J′⊂J

4µJ′f =
∑

J∈Mgood(K)

∑
J′⊂J

∑
a∈Γn

〈f, hµ,aJ′ 〉µ h
µ,a
J′ ,

where Mgood (K) consists of the maximal good subcubes of K. We thus have∥∥∥Pgood,µ
K x

∥∥∥2

L2(µ)
≤

∥∥∥Psubgood,µ
K x

∥∥∥2

L2(µ)

≤ ‖PµIx‖2L2(µ) =

∫
I

∣∣∣∣∣x−
(

1

|I|µ

∫
I

xdx

)∣∣∣∣∣
2

dµ (x) , x = (x1, ..., xn) ,

where PµIx is the orthogonal projection of the identity function x : Rn → Rn onto
the vector-valued subspace of ⊕nk=1L

2 (µ) consisting of functions supported in I
with µ-mean value zero.

Recall that in dimension n = 1, and for α = 0, the energy condition constant
was defined by

E2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

(
Pα (Ir,1Iσ)

|Ir|

)2 ∥∥PωIrx∥∥2

L2(ω)
.

Our extension of the energy conditions to higher dimensions in this paper will use
the collection Mr−deep (K) of maximal r-deeply embedded dyadic subcubes of a
cube K (a subcube J of K is a dyadic subcube of K if J ∈ D when D is a dyadic
grid containing K). We let J∗ = γJ where γ ≥ 2. Then the goodness parameter
r is chosen sufficiently large, depending on ε and γ, that the bounded overlap
property

(2.4)
∑

J∈Mr−deep(K)

1J∗ ≤ β1K ,

holds for some positive constant β depending only on n, γ, r and ε. Indeed, the
maximal r-deeply embedded subcubes J of K satisfy the condition

cn |J |
ε
n |K|

1−ε
n ≤ dist (J,Kc) ≤ Cn |J |

ε
n |K|

1−ε
n .

Now with 0 < ε < 1 and γ ≥ 2 fixed, choose r so large that 2−(1−ε)r < cn
2γ . Let

y ∈ K. Then if y ∈ γJ , we have

cn |J |
ε
n |K|

1−ε
n ≤ dist (J,Kc) ≤ γ |J |

1
n + dist (γJ,Kc) ≤ γ |J |

1
n + dist (y,Kc) ,

which implies
cn
2
|J |

ε
n |K|

1−ε
n ≤ dist (y,Kc) .

But we also have

dist (y,Kc) ≤ |J |
1
n+dist (J,Kc) ≤ |J |

1
n+Cn |J |

ε
n |K|

1−ε
n ≤

(
cn
2γ

+ Cn

)
|J |

ε
n |K|

1−ε
n ,
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and so altogether,

1
cn
2γ + Cn

dist (y,Kc) ≤ |J |
ε
n |K|

1−ε
n ≤ 2

cn
dist (y,Kc) ,

which proves (2.4) since the number β of dyadic numbers 2j = |J |
1
n that satisfy

this last inequality is bounded independent of K and y.
We will also need the following refinement of Mr−deep (K) for each ` ≥ 0

that consists of some of the maximal cubes Q, whose `-fold dyadic parent π`Q is
r-deeply embedded in K:

M`
r−deep (K) ≡

{
J ∈Mr−deep

(
π`K

)
: J ⊂ L for some L ∈Mdeep (K)

}
.

Since J ∈M`
r−deep (K) implies γJ ⊂ K, we also have from (2.4) that

(2.5)
∑

J∈M(`)
r−deep(K)

1J∗ ≤ β1K , for each ` ≥ 0.

Of course M0
r−deep (K) = Mr−deep (K), but M`

r−deep (K) is in general a finer
subdecomposition of K the larger ` is, and may in fact be empty.

Definition 4. Suppose σ and ω are positive Borel measures on Rn without common
point masses, and fix γ ≥ 2. Then the deep energy condition constant Edeep

α , the
refined energy condition constant Erefined

α , and finally the energy condition constant
Eα itself, are given by

(
Edeep
α

)2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
Pα
(
J,1I\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
,

(
Erefined
α

)2 ≡ sup
`≥0

sup
I

1

|I|σ

∑
J∈M`

r−deep(I)

(
Pα
(
J,1I\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

(Eα)
2 ≡

(
Edeep
α

)2
+
(
Erefined
α

)2
.

where supI is taken over all cubes I, and supI=∪̇Ir is taken over

1. all dyadic grids D,

2. all D-dyadic cubes I,

3. and all subpartitions {Ir}∞r=1 of the cube I into D-dyadic subcubes Ir.

Note that in the refined energy condition there is no outer decomposition I =
∪̇Ir. There are similar definitions for the dual (backward) energy conditions that
simply interchange σ and ω everywhere. These definitions of the energy conditions
depend on the choice of γ and the goodness parameters r and ε. Note that we can
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‘plug the γ-hole’ in the Poisson integral Pα
(
J,1I\γJσ

)
for both Edeep

α and Erefined
α

using the Aα2 condition and the bounded overlap property (2.5). Indeed, define

(2.6)(
Edeepplug
α

)2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
Pα (J,1Iσ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
,

(
Erefinedplug
α

)2 ≡ sup
`≥0

sup
I

1

|I|σ

∑
J∈M`

r−deep(I)

(
Pα (J,1Iσ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
.

Then we have both(
Edeepplug
α

)2
(2.7)

. sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
Pα
(
J,1I\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

+ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
Pα (J,1γJσ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

. (Eα)
2

+ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
|γJ |σ
|J |

1
n

)2

|J |
2
n |J |ω

. (Eα)
2

+Aα2 sup
I=∪̇Ir

1

|I|σ

∑
J∈Mr−deep(Ir)

|γJ |σ . (Eα)
2

+ βAα2 ,

and similarly

(2.8)
(
Erefinedplug
α

)2
.
(
Erefined
α

)2
+ βAα2

by (2.4) and (2.5) respectively.

In the next remark we give a brief description of how and where these energy
conditions will be implemented in the proof.

Remark 2. There are two layers of dyadic decomposition in the energy condition;
the outer layer I = ∪̇Ir which is essentially arbitrary, and an inner layer Ir =

·⋃
J∈Mr−deep(Ir)

J in which the cubes J are ‘nicely arranged’ within Ir. Relative to this

doubly layered decomposition we sum the products

(
Pα(J,1I\γJσ)

|J|
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
,

which resemble a type of Aα2 expression as defined above. The point of the outer
decomposition is to capture ‘stopping time cubes’, which are essentially arbitrary in
this proof, although sometimes restricted to certain collections of good cubes. The
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point of the inner decomposition is that with J∗ = γJ for J ∈ Mr−deep (Ir), we
have J∗ ⊂ Ir and we can then write

Pα (J,1Iσ) = Pα (J,1J∗σ) + Pα
(
J,1I\J∗σ

)
,

and use that
∥∥∥Psubgood,ω

J x
∥∥∥2

L2(ω)
=
∥∥∥Psubgood,ω

J (x− cJ)
∥∥∥2

L2(ω)
≤ |J |

2
n |J |ω to esti-

mate the product involving 1J∗σ by(
Pα (J,1J∗σ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
.

(
|J∗|

α
n−1 |J∗|σ
|J |

1
n

)2

|J |
2
n |J |ω . Aα2 |J∗|σ ,

to which we apply the bounded overlap property (2.4), while the remaining product
involving 1I\J∗σ, (

Pα
(
J,1I\J∗σ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
,

has a ‘hole’ in the support of 1I\J∗σ that contains the support of ω in the cube J
well inside the hole, and moreover these holes are ‘nicely arranged’ within Ir. Of
particular importance is that for pairwise disjoint subcubes J ′ ⊂ J , the projections∥∥∥Psubgood,ω

J′ x
∥∥∥2

L2(ω)
are additive, and the Poisson ratios are essentially constant

Pα(J′,1I\J∗σ)
|J′|

1
n

≈ Pα(J,1I\J∗σ)
|J|

1
n

. The deep energy condition suffices for all arguments

in the proof except for bounding the two testing conditions for the Poisson operator
P, in which case we also use the refined energy condition - see Lemma 12 below.

2.6. Statement of the Theorem

We can now state our main two weight theorem. Let Qn denote the collection of
all cubes in Rn, and denote by Dn a dyadic grid in Rn.

Theorem 1. Suppose that Tα is a standard α-fractional Calderón-Zygmund oper-
ator on Rn, and that ω and σ are positive Borel measures on Rn without common
point masses. Set Tασ f = Tα (fσ) for any smooth truncation of Tασ .

1. Suppose 0 ≤ α < n and that γ ≥ 2 is given. Then the operator Tασ is bounded
from L2 (σ) to L2 (ω), i.e.

(2.9) ‖Tασ f‖L2(ω) ≤ NTασ
‖f‖L2(σ) ,

uniformly in smooth truncations of Tα, and moreover

NTασ
≤ Cα

(√
Aα2 +Aα,∗2 + TTα + T∗Tα + Eα + E∗α +WBPTα

)
,

provided that the two dual Aα2 conditions hold, and the two dual testing con-
ditions for Tα hold, the weak boundedness property for Tα holds for a suffi-
ciently large constant C depending on the goodness parameter r, and provided
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that the two dual energy conditions Eα + E∗α < ∞ hold uniformly over all
dyadic grids Dn, and where the goodness parameters r and ε implicit in the
definition of M`

r−deep (K) are fixed sufficiently large and small respectively
depending on n, α and γ.

2. Conversely, suppose 0 ≤ α < n and that Tα =
{
Tαj
}J
j=1

is a vector of

Calderón-Zygmund operators with standard kernels
{
Kα
j

}J
j=1

. In the range

0 ≤ α < n
2 , we assume the following ellipticity condition: there is c > 0 such

that for each unit vector u there is j satisfying

(2.10)
∣∣Kα

j (x, x+ tu)
∣∣ ≥ ctα−n, t ∈ R.

For the range n
2 ≤ α < n, we asume the following strong ellipticity condition:

for each m ∈ {1,−1}n, there is a sequence of coefficients
{
λmj
}J
j=1

such that

(2.11)

∣∣∣∣∣∣
J∑
j=1

λmj K
α
j (x, x+ tu)

∣∣∣∣∣∣ ≥ ctα−n, t ∈ R.

holds for all unit vectors u in the n-ant

Vm = {x ∈ Rn : mixi > 0 for 1 ≤ i ≤ n} , m ∈ {1,−1}n .

Furthermore, assume that each operator Tαj is bounded from L2 (σ) to L2 (ω),∥∥∥(Tαj )σ f∥∥∥L2(ω)
≤ NTαj

‖f‖L2(σ) .

Then the fractional Aα2 condition holds, and moreover,√
Aα2 +Aα,∗2 ≤ CNTα .

Problem 1. Given any strongly elliptic vector Tα of classical α-fractional Calderón-
Zygmund operators, it is an open question whether or not the energy conditions are
necessary for boundedness of Tα. See [SaShUr4] for a failure of energy reversal
in higher dimensions - such an energy reversal was used in dimension n = 1 to
prove the necessity of the energy condition for the Hilbert transform.

Remark 3. The boundedness of an individual operator Tα cannot in general imply
the finiteness of either Aα2 or Eα. For a trivial example, if σ and ω are supported
on the x-axis in the plane, then the second Riesz tranform R2 is the zero op-
erator from L2 (σ) to L2 (ω), simply because the kernel K2 (x, y) of R2 satisfies
K2 ((x1, 0) , (y1, 0)) = 0−0

|x1−y1|3−α
= 0.

Remark 4. In [LaWi], M. Lacey and B. Wick use the NTV technique of surgery
to show that the weak boundedness property for the Riesz transform vector Rα,n

is implied by the Aα2 and cube testing conditions, and this has the consequence
of eliminating the weak boundedness property as a condition. Their proof of this
implication extends to the more general operators Tα considered here, and so the
weak boundedness property can be dropped from the statement of Theorem 1.
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3. Proof of Theorem 1

We now give the proof of Theorem 1 in the following 8 sections. Using the good
random grids of Nazarov, Treil and Volberg, a standard argument of NTV, see
e.g. [Vol], reduces the two weight inequality (1.1) for Tα to proving bounded-
ness of a bilinear form T α (f, g) with uniform constants over dyadic grids, and
where the Haar supports of the functions f and g are contained in good cubes,
whose children are all good as well, with goodness parameters r <∞ and ε > 0
chosen sufficiently large and small respectively. Here the Haar support of f is
Haarsuppf̂ = {I ∈ D : 4σI f 6= 0}, and similarly for g.

In fact we can assume even more, namely that the Haar supports of f and g
are contained in the collection of τ -good cubes

(3.1) Dτ(r,ε)−good ≡
{
K ∈ D : π`DK are in D(r,ε)−good for all 0 ≤ ` ≤ τ

}
,

that are (r, ε)-good and whose `-parents up to level τ are also (r, ε)-good. Here
τ > r is a parameter to be fixed in Definition 8 below. We may assume this
restriction on the Haar supports of f and g by choosing (r, ε) appropriately and
using the following lemma.

Lemma 1. Given s ≥ 1, t ≥ 2 and 0 < ε < 1, we have

Ds
(s+t,ε)−good ⊂ D(t,δ)−good ,

provided

sε < t (1− ε)− 2 and δ = ε+
sε+ 1

t
.

Proof. Fix goodness parameters r = s+t and ε, and suppose that s < r (1− ε)−2.

Choose a good cube I and a supercube K with |I|
1
n ≤ 2−r |K|

1
n . Set J ≡ πsI.

Then we have
J = πsI ⊂ K and |J |

1
n ≤ 2−t |K|

1
n .

Because I is good we have

dist (I,Kc) ≥ 1

2
|I|

ε
n |K|

1−ε
n ,

and hence also

dist (J,Kc) ≥ dist (I,Kc)− |J |
1
n ≥ 1

2
|I|

ε
n |K|

1−ε
n − 2s |I|

1
n

=
1

2
|I|

ε
n |K|

1−ε
n

1− 21+s

(
|I|

1
n

|K|
1
n

)1−ε
 ≥ 1

4
|I|

ε
n |K|

1−ε
n

which follows from |I|
1
n ≤ 2−r |K|

1
n provided we take 21+s2−r(1−ε) ≤ 1

2 , i.e.

s < r (1− ε)− 2.
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Finally we choose δ > ε so that

1

4
|I|

ε
n |K|

1−ε
n = 2−sε−2 |J |

ε
n |K|

1−ε
n ≥ 1

2
|J |

δ
n |K|

1−δ
n , when |J |

1
n ≤ 2−t |K|

1
n ,

which follows if we choose δ to satisfy

2−sε−2
(

2−t |K|
1
n

)ε
|K|

1−ε
n =

1

2

(
2−t |K|

1
n

)δ
|K|

1−δ
n ;

2−sε−2 =
1

2

(
2−t
)δ−ε

;

−sε− 1 = −t (δ − ε) ;

δ = ε+
sε+ 1

t
.

2

For convenience in notation we will sometimes suppress the dependence on α
in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. More precisely, let Dσ = Dω be an (r, ε)-good grid on Rn, and let

{hσ,aI }I∈Dσ, a∈Γn
and

{
hω,bJ

}
J∈Dω, b∈Γn

be corresponding Haar bases as described

below, so that

f =
∑
I∈Dσ

4σI f =
∑

I∈Dσ, a∈Γn

〈f, hσ,aI 〉 h
σ,a
I =

∑
I∈Dσ, a∈Γn

f̂ (I; a) hσ,aI ,

g =
∑
J∈Dω

4ωJg =
∑

J∈Dω, b∈Γn

〈
g, hω,bJ

〉
hω,bJ =

∑
J∈Dω, b∈Γn

ĝ (J ; b) hω,bJ ,

where the appropriate measure is understood in the notation f̂ (I; a) and ĝ (J ; b),

and where these Haar coefficients f̂ (I; a) and ĝ (J ; b) vanish if the cubes I and J
are not good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T α (f, g) ≡ 〈Tασ (f) , g〉ω =
∑

I∈Dσ and J∈Dω
〈Tασ (4σI f) ,4ωJg〉ω

on L2 (σ)× L2 (ω), i.e.

|T α (f, g)| ≤ NTασ
‖f‖L2(σ) ‖g‖L2(ω) .

We may assume the two grids Dσ and Dω are equal here, and this we will do
throughout the paper, although we sometimes continue to use the measure as a
superscript on D for clarity of exposition. Roughly speaking, we analyze the form
T α (f, g) by splitting it in a nonlinear way into three main pieces, following in part
the approach in [LaSaShUr2] and [LaSaShUr3]. The first piece consists of cubes
I and J that are either disjoint or of comparable side length, and this piece is
handled using the section on preliminaries of NTV type. The second piece consists
of cubes I and J that overlap, but are ‘far apart’ in a nonlinear way, and this piece
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is handled using the sections on the Intertwining Proposition and the control of the
functional energy condition by the energy condition. Finally, the remaining local
piece where the overlapping cubes are ‘close’ is handled by generalizing methods
of NTV as in [LaSaShUr], and then splitting the stopping form into two sublinear
stopping forms, one of which is handled using techniques of [LaSaUr2], and the
other using the stopping time and recursion of M. Lacey [Lac]. See the schematic
diagram in Subsection 8.4 below.

4. Necessity of the Aα
2 conditions

Here we prove in particular the necessity of the fractional Aα2 condition when
0 ≤ α < n, for the α-fractional Riesz vector transform Rα defined by

Rα (fσ) (x) =

∫
Rn
Rαj (x, y)f (y) dσ (y) , Kα

j (x, y) =
xj − yj

|x− y|n+1−α ,

whose kernel Kα
j (x, y) satisfies (2.1) for 0 ≤ α < n. Parts of the following argu-

ment are taken from unpublished material obtained in joint work with M. Lacey.
Note also that the necessity of the classical Aα2 condition, for many singular in-
tegral operators, including among others the vector Riesz transforms, the Cauchy
transform and the Beurling transform was obtained previously by Liaw and Treil
[LiTr].

Lemma 2. Suppose 0 ≤ α < n. Let Tα be any collection of operators with
α-standard fractional kernel satisfying the ellipticity condition (2.10), and in the
case n

2 ≤ α < n, we also assume the more restrictive condition (2.11). Then for
0 ≤ α < n we have

Aα2 . Nα (Tα) .

Remark 5. Cancellation properties of Tα play no role in the proof below. Indeed
the proof shows that Aα2 is dominated by the best constant C in the restricted
inequality

‖χETα(fσ)‖L2,∞(ω) ≤ C ‖f‖L2(σ) , E = Rn \ supp f.

Proof. First we give the proof for the case when Tα is the α-fractional Riesz trans-
form Rα, whose kernel is Kα (x, y) = x−y

|x−y|n+1−α . Define the 2n generalized n-ants

Qm for m ∈ {−1, 1}n, and their translates Qm (w) for w ∈ Rn by

Qm = {(x1, ..., xn) : mkxk > 0} ,
Qm (w) = {z : z − w ∈ Qm} , w ∈ Rn.

Fix m ∈ {−1, 1}n and a cube I. For a ∈ Rn and r > 0 let

sI (x) =
` (I)

` (I) + |x− ζI |
,

fa,r (y) = 1Q−m(a)∩B(0,r) (y) sI (y)
n−α

,



Two weight boundedness 15

where ζI is the center of the cube I. Now

` (I) |x− y| ≤ ` (I) |x− ζI |+ ` (I) |ζI − y|
≤ [` (I) + |x− ζI |] [` (I) + |ζI − y|]

implies
1

|x− y|
≥ 1

` (I)
sI (x) sI (y) , x, y ∈ Rn.

Now the key observation is that with Lζ ≡ m · ζ, we have

L (x− y) = m · (x− y) ≥ |x− y| , x ∈ Qm (y) ,

which yields

L (Kα (x, y)) =
L (x− y)

|x− y|n+1−α(4.1)

≥ 1

|x− y|n−α
≥ ` (I)

α−n
sI (x)

n−α
sI (y)

n−α
,

provided x ∈ Q+,+ (y). Now we note that x ∈ Qm (y) when x ∈ Qm (a) and
y ∈ Q−m (a) to obtain that for x ∈ Qm (a),

L (Tα (fa,rσ) (x)) =

∫
Q−m(a)∩B(0,r)

L (x− y)

|x− y|n+1−α sI (y) dσ (y)

≥ ` (I)
α−n

sI (x)
n−α

∫
Q−m(a)∩B(0,r)

sI (y)
2n−2α

dσ (y) .

Applying |Lζ| ≤
√
n |ζ| and our assumed two weight inequality for the fractional

Riesz transform, we see that for r > 0 large,

` (I)
2α−2n

∫
Qm(a)

sI (x)
2n−2α

(∫
Q−m(a)∩B(0,r)

sI (y)
2n−2α

dσ (y)

)2

dω (x)

≤ ‖LT (σfa,r)‖2L2(ω) . Nα (Rα)
2 ‖fa,r‖2L2(σ) = Nα (Rα)

2
∫
Q−m(a)∩B(0,r)

sI (y)
2n−2α

dσ (y) .

Rearranging the last inequality, we obtain

` (I)
2α−2n

∫
Qm(a)

sI (x)
2n−2α

dω (x)

∫
Q−m(a)∩B(0,r)

sI (y)
2n−2α

dσ (y) . Nα (Rα)
2
,

and upon letting r →∞,∫
Qm(a)

` (I)
2−α

(` (I) + |x− ζI |)4−2α dω (x)

∫
Q−m(a)

` (I)
2−α

(` (I) + |y − ζI |)4−2α dσ (y) . Nα (Rα)
2
.

Note that the ranges of integration above are pairs of opposing n-ants.
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Fix a cube Q, which without loss of generality can be taken to be centered at
the origin, ζQ = 0. Then choose a = (2` (Q) , 2` (Q)) and I = Q so that we have(∫

Qm(a)

` (Q)
n−α

(` (Q) + |x|)2n−2α dω (x)

)(
` (Q)

α−n
∫
Q

dσ

)

≤ Cα

∫
Qm(a)

` (Q)
n−α

(` (Q) + |x|)2n−2α dω (x)

∫
Q−m(a)

` (Q)
n−α

(` (Q) + |y|)2n−2α dσ (y) . Nα (Rα)
2
.

Now fix m = (1, 1, ..., 1) and note that there is a fixed N (independent of ` (Q)) and

a fixed collection of rotations {ρk}Nk=1, such that the rotates ρkQm (a), 1 ≤ k ≤ N ,
of the n-ant Qm (a) cover the complement of the ball B (0, 4

√
n` (Q)):

B
(
0, 4
√
n` (Q)

)c ⊂ N⋃
k=1

ρkQm (a) .

Then we obtain, upon applying the same argument to these rotated pairs of n-ants,
(4.2)(∫

B(0,4
√
n`(Q))

c

` (Q)
n−α

(` (Q) + |x|)2n−2α dω (x)

)(
` (Q)

α−n
∫
Q

dσ

)
. Nα (Rα)

2
.

Now we assume for the moment the tailless Aα2 condition

` (Q′)
2(α−n)

(∫
Q′
dω

)(∫
Q′
dσ

)
≤ Aα2 .

If we use this with Q′ = 4
√
nQ, together with (4.2), we obtain(∫

` (Q)
n−α

(` (Q) + |x|)2n−2α dω (x)

) 1
2 (

` (Q)
α−n

∫
Q

dσ

) 1
2

. Nα (Rα)

or

` (Q)
α

 1

|Q|

∫
1(

1 +
|x−ζQ|
`(Q)

)2n−2α dω (x)


1
2 (

1

|Q|

∫
Q

dσ

) 1
2

. Nα (Rα) .

Clearly we can reverse the roles of the measures ω and σ and obtain

Aα2 . Nα (Rα) +Aα2

for the kernels Kα, 0 ≤ α < n.
More generally, to obtain the case when Tα is elliptic and the tailless Aα2

condition holds, we note that the key estimate (4.1) above extends to the kernel∑J
j=1 λ

m
j K

α
j of

∑J
j=1 λ

m
j T

α
j in (2.11) if the n-ants above are replaced by thin cones

of sufficently small aperture, and there is in addition sufficient separation between
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opposing cones, which in turn may require a larger constant than 4
√
n in the choice

of Q′ above.
Finally, we turn to showing that the tailless Aα2 condition is implied by the

norm inequality, i.e.

Aα2 ≡ sup
Q′

` (Q′)
α
(

1

|Q′|

∫
Q′
dω

) 1
2
(

1

|Q′|

∫
Q′
dσ

) 1
2

. Nα (Rα) ;

i.e.

(∫
Q′
dω

)(∫
Q′
dσ

)
. Nγ (Rγ)

2 |Q′|2−
2α
n .

In the range 0 ≤ α < n
2 where we only assume (2.10), we invoke the corresponding

argument in [LaSaUr1]. Indeed, with notation as in that proof, and suppressing
some of the initial work there, then A2 (ω, σ;Q) = |Q|ω×σ where ω × σ denotes
product measure on Rn × Rn, and we have

A2 (ω, σ;Q0) =
∑
ζ

A2 (ω, σ;Qζ) +
∑
β

A2 (ω, σ;Pβ) .

Now we have∑
ζ

A2 (ω, σ;Qζ) =
∑
ζ

|Qζ |ω×σ ≤
∑
ζ

Nα (Rα)
2 |Qζ |1−

α
n ,

and∑
ζ

|Qζ |1−
α
n =

∑
k∈Z: 2k≤`(Q0)

∑
ζ: `(Qζ)=2k

(
22nk

)1−αn
≈

∑
k∈Z: 2k≤`(Q0)

(
2k

` (Q0)

)−n (
22nk

)1−αn (Whitney)

= ` (Q0)
n

∑
k∈Z: 2k≤`(Q0)

2nk(−1+2− 2α
n )

≤ Cα` (Q0)
n
` (Q0)

n(1− 2α
n ) = Cα |Q0 ×Q0|2−

2α
n = Cα |Q0|1−

α
n ,

provided 0 ≤ α < n
2 . Since ω and σ have no point masses in common, it is not

hard to show, using that the side length of Pβ = Pβ×P ′β is 2−N and dist (Pβ ,D) ≤
C2−N , that we have the following limit,∑

β

A2 (ω, σ;Pβ)→ 0 as N →∞.

Indeed, if σ has no point masses at all, then∑
β

A2 (ω, σ;Pβ) =
∑
β

|Pβ |ω
∣∣P ′β∣∣σ

≤

∑
β

|Pβ |ω

 sup
β

∣∣P ′β∣∣σ
≤ C |Q0|ω sup

β

∣∣P ′β∣∣σ → 0 as N →∞,
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while if σ contains a point mass cδx, then

∑
β: x∈P ′β

A2 (ω, σ;Pβ) ≤

 ∑
β: x∈P ′β

|Pβ |ω

 sup
β: x∈P ′β

∣∣P ′β∣∣σ
≤ C

 ∑
β: x∈P ′β

|Pβ |ω

→ 0 as N →∞

since ω has no point mass at x. This continues to hold if σ contains finitely many
point masses disjoint from those of ω, and a limiting argument finally applies. This
completes the proof that Aα2 . Nα (Rα) for the range 0 ≤ α < n

2 .
Now we turn to proving Aα2 . Nα (Rα) for the range n

2 ≤ α < n, where we

assume the stronger ellipticity condition (2.11). So fix a cube Q =

n∏
i=1

Qi where

Qi = [ai, bi]. Choose θ1 ∈ [a1, b1] so that both∣∣∣∣∣[a1, θ1]×
n∏
i=2

Qi

∣∣∣∣∣
ω

,

∣∣∣∣∣[θ1, b1]×
n∏
i=2

Qi

∣∣∣∣∣
ω

≥ 1

2
|Q|ω .

Now denote the two intervals [a1, θ1] and [θ1, b1] by [a∗1, b
∗
1] and [a∗∗1 , b

∗∗
1 ] where the

order is chosen so that∣∣∣∣∣[a∗1, b∗1]×
n∏
i=2

Qi

∣∣∣∣∣
σ

≤

∣∣∣∣∣[a∗∗1 , b∗∗1 ]×
n∏
i=2

Qi

∣∣∣∣∣
σ

.

Then we have both ∣∣∣∣∣[a∗1, b∗1]×
n∏
i=2

Qi

∣∣∣∣∣
ω

≥ 1

2
|Q|ω ,∣∣∣∣∣[a∗∗1 , b∗∗1 ]×

n∏
i=2

Qi

∣∣∣∣∣
σ

≥ 1

2
|Q|σ .

Now choose θ2 ∈ [a2, b2] so that both∣∣∣∣∣[a∗1, b∗1]× [a2, θ2]×
n∏
i=3

Qi

∣∣∣∣∣
ω

,

∣∣∣∣∣[a∗1, b∗1]× [θ2, b2]×
n∏
i=3

Qi

∣∣∣∣∣
ω

≥ 1

4
|Q|ω ,

and denote the two intervals [a2, θ2] and [θ2, b2] by [a∗2, b
∗
2] and [a∗∗2 , b

∗∗
2 ] where the

order is chosen so that∣∣∣∣∣[a∗∗1 , b∗∗1 ]× [a∗2, b
∗
2]×

n∏
i=2

Qi

∣∣∣∣∣
σ

≤

∣∣∣∣∣[a∗∗1 , b∗∗1 ]× [a∗∗2 , b
∗∗
2 ]×

n∏
i=2

Qi

∣∣∣∣∣
σ

.
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Then we have both ∣∣∣∣∣[a∗1, b∗1]× [a∗2, b
∗
2]×

n∏
i=3

Qi

∣∣∣∣∣
ω

≥ 1

4
|Q|ω ,∣∣∣∣∣[a∗∗1 , b∗∗1 ]× [a∗∗2 , b

∗∗
2 ]×

n∏
i=3

Qi

∣∣∣∣∣
σ

≥ 1

4
|Q|σ .

Then we choose θ3 ∈ [a3, b3] so that both∣∣∣∣∣[a∗1, b∗1]× [a∗2, b
∗
2]× [a3, θ3]×

n∏
i=4

Qi

∣∣∣∣∣
ω

≥ 1

8
|Q|ω ,∣∣∣∣∣[a∗1, b∗1]× [a∗2, b

∗
2]× [θ3, b3]×

n∏
i=4

Qi

∣∣∣∣∣
ω

≥ 1

8
|Q|ω ,

and continuing in this way we end up with two rectangles,

G ≡ [a∗1, b
∗
1]× [a∗2, b

∗
2]× ... [a∗n, b∗n] ,

H ≡ [a∗∗1 , b
∗∗
1 ]× [a∗∗2 , b

∗∗
2 ]× ... [a∗∗n , b∗∗n ] ,

that satisfy

|G|ω = |[a∗1, b∗1]× [a∗2, b
∗
2]× ... [a∗n, b∗n]|ω ≥

1

2n
|Q|ω ,

|H|σ = |[a∗∗1 , b∗∗1 ]× [a∗∗2 , b
∗∗
2 ]× ... [a∗∗n , b∗∗n ]|σ ≥

1

2n
|Q|σ .

However, the rectangles G and H lie in opposing n-ants at the vertex θ =
(θ1, θ2, ..., θn), and so we can apply (2.11) to obtain that for x ∈ G,∣∣∣∣∣∣

J∑
j=1

λmj T
α
j (1Hσ) (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
H

J∑
j=1

λmj K
α
j (x, y) dσ (y)

∣∣∣∣∣∣
&

∫
H

|x− y|α−n dσ (y) & |Q|
α
n−1 |H|σ .

Then from the norm inequality we get

|G|ω
(
|Q|

α
n−1 |H|σ

)2

.
∫
G

∣∣∣∣∣∣
J∑
j=1

λmj T
α
j (1Hσ)

∣∣∣∣∣∣
2

dω

. N∑J
j=1 λ

m
j T

α
j

∫
12
Hdσ = N∑J

j=1 λ
m
j T

α
j
|H|σ ,

from which we deduce that

|Q|2(
α
n−1) |Q|ω |Q|σ . 22n |Q|2(

α
n−1) |G|ω |H|σ . 22nN∑J

j=1 λ
m
j T

α
j
,

and hence
Aα2 . 22nN∑J

j=1 λ
m
j T

α
j
.

This completes the proof of Lemma 2. 2
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5. A weighted Haar basis

We will use a construction of the Haar basis in Rn that is adapted to a measure
µ (c.f. [NTV2]). Given a dyadic cube Q ∈ D let 4µQ denote orthogonal projection

onto the finite dimensional subspace L2
Q (µ) of L2 (µ) that consists of linear com-

binations of the indicators of the children C (Q) of Q that have µ-mean zero over
Q:

L2
Q (µ) ≡

f =
∑

Q′∈C(Q)

aQ′1Q′ : aQ′ ∈ R,
∫
Q

fdµ = 0

 .

Then we have the important telescoping property for dyadic cubes Q1 ⊂ Q2:
(5.1)

1Q0 (x)

 ∑
Q∈[Q1,Q2]

4µQf (x)

 = 1Q0 (x)
(
EµQ0

f − EµQ2
f
)
, Q0 ∈ C (Q1) , f ∈ L2 (µ) .

We will at times find it convenient to use a fixed orthonormal basis
{
hµ,aQ

}
a∈Γn

of

L2
Q (µ) where Γn ≡ {0, 1}n\{1} is a convenient index set with 1 = (1, 1, ..., 1). Then{
hµ,aQ

}
a∈Γn and Q∈D

is an orthonormal basis for L2 (µ), with the understanding

that we add the constant function 1 if µ is a finite measure. In particular we have

‖f‖2L2(µ) =
∑
Q

∥∥∥4µQf∥∥∥2

L2(µ)
=
∑
Q

∑
a∈Γn

∣∣∣f̂ (Q)
∣∣∣2 ,

where ∣∣∣f̂ (Q)
∣∣∣2 ≡ ∑

a∈Γn

∣∣∣∣〈f, hµ,aQ 〉
µ

∣∣∣∣2 ,
and the measure is suppressed in the notation. We also record the following useful
estimate. If I ′ is any of the 2n D-children of I, and a ∈ Γn, then

(5.2) |EµI′h
µ,a
I | ≤

√
EµI′ (h

µ,a
I )

2 ≤ 1√
|I ′|µ

.

6. Monotonicity lemma and Energy lemma

The Monotonicity Lemma below will be used to prove the Energy Lemma, which
is then used in several places in the proof of Theorem 1. The formulation of the
Monotonicity Lemma with m = 2 is due to M. Lacey and B. Wick [LaWi], and
corrects that used in previous versions of this paper.
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6.1. The monotonicity lemma

For 0 ≤ α < n and m ∈ R+, we recall the m-weighted fractional Poisson integral

Pαm (J, µ) ≡
∫
Rn

|J |
m
n(

|J |
1
n + |y − cJ |

)n+m−α dµ (y) ,

where Pα1 (J, µ) = Pα (J, µ) is the standard Poisson integral.

Lemma 3 (Monotonicity). Suppose that I, J and J∗ are cubes in Rn such that
J ⊂ J∗ ⊂ 2J∗ ⊂ I, and that µ is a signed measure on Rn supported outside I.
Finally suppose that Tα is a standard fractional singular integral on Rn as defined
in Definition 1 with 0 < α < n. Then we have the estimate

(6.1) ‖4ωJTαµ‖L2(ω) . Φα (J, |µ|) ,

where for a positive measure ν,

Φα (J, ν)
2 ≡

(
Pα (J, ν)

|J |
1
n

)2

‖4ωJx‖2L2(ω) +

(
Pα1+δ (J, ν)

|J |
1
n

)2

‖x−mJ‖2L2(1Jω) ,

mJ ≡ EωJx =
1

|J |ω

∫
J

xdω.

Proof. The general case follows easily from the case J∗ = J , so we assume this
restriction.

Let {hω,aJ }a∈Γ be an orthonormal basis of L2
J (µ) as in the previous section.

Now we use the smoothness estimate (2.1), together with Taylor’s formula and
the vanishing mean of the Haar functions hω,aJ and mJ ≡ 1

|J|µ

∫
J

xdµ (x) ∈ J , to

obtain

∣∣〈Tαµ, hω,aJ 〉ω∣∣ =

∣∣∣∣∫ {∫ Kα (x, y)hω,aJ (x) dω (x)

}
dµ (y)

∣∣∣∣ =

∣∣∣∣∫ 〈Kα
y , h

ω,a
J

〉
ω
dµ (y)

∣∣∣∣
=

∣∣∣∣∫ 〈Kα
y (x)−Kα

y (mJ) , hω,aJ
〉
ω
dµ (y)

∣∣∣∣
≤

∣∣∣∣〈[∫ ∇Kα
y (mJ) dµ (y)

]
(x−mJ) , hω,aJ

〉
ω

∣∣∣∣
+

〈[∫
sup
θJ∈J

∣∣∇Kα
y (θJ)−∇Kα

y (mJ)
∣∣ dµ (y)

]
|x−mJ | , |hω,aJ |

〉
ω

. CCZ
Pα (J, |µ|)
|J |

1
n

‖4ωJx‖L2(ω) + CCZ
Pα1+δ (J, |µ|)

|J |
1
n

‖x−mJ‖L2(1Jω) .

2
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6.2. The Energy Lemma

Suppose now we are given a subset H of the dyadic grid Dω. Let PωH =
∑
J∈H4ωJ

be the ω-Haar projection onto H. For µ, ω positive locally finite Borel measures on

Rn, and H a subset of the dyadic grid Dω, we define H∗ ≡
⋃
J∈H
{J ′ ∈ Dω : J ′ ⊂ J}.

Lemma 4 (Energy Lemma). Let J be a cube in Dω. Let ΨJ be an L2 (ω)
function supported in J and with ω-integral zero, and denote its Haar support by
H = suppΨ̂J . Let ν be a positive measure supported in Rn \γJ with γ ≥ 2, and for
each J ′ ∈ H, let dνJ′ = ϕJ′dν with |ϕJ′ | ≤ 1. Let Tα be a standard α-fractional
Calderón-Zygmund operator with 0 ≤ α < n. Then with δ′ = δ

2 we have∣∣∣∣∣ ∑
J′∈H

〈Tα (νJ′) ,4ωJ′ΨJ〉ω

∣∣∣∣∣ . ‖ΨJ‖L2(ω)

(
Pα (J, ν)

|J |
1
n

)
‖PωHx‖L2(ω)

+ ‖ΨJ‖L2(ω)

1

γδ′

(
Pα1+δ′ (J, ν)

|J |
1
n

)
‖PωH∗x‖L2(ω)

. ‖ΨJ‖L2(ω)

(
Pα (J, ν)

|J |
1
n

)
‖PωH∗x‖L2(ω) ,

and in particular the ‘pivotal’ bound

|〈Tα (ν) ,ΨJ〉ω| ≤ C ‖ΨJ‖L2(ω) Pα (J, |ν|)
√
|J |ω .

Remark 6. The first term on the right side of the energy inequality above is the
‘big’ Poisson integral Pα times the ‘small’ energy term ‖PωHx‖2L2(ω) that is additive
in H, while the second term on the right is the ‘small’ Poisson integral Pα1+δ′

times the ‘big’ energy term ‖PωH∗x‖L2(ω) that is no longer additive in H. The first
term presents no problems in subsequent analysis due solely to the additivity of the
‘small’ energy term. It is the second term that must be handled by special methods.
For example, in the Intertwining Proposition below, the interaction of the singular
integral occurs with a pair of cubes J ⊂ I at highly separated levels, where the
goodness of J can exploit the decay δ′ in the kernel of the ‘small’ Poisson integral
Pα1+δ′ relative to the ‘big’ Poisson integral Pα, and results in a bound directly by the
energy condition. On the other hand, in the local recursion of M. Lacey at the end
of the paper, the separation of levels in the pairs J ⊂ I can be as little as a fixed
parameter ρ, and here we must first separate the stopping form into two sublinear
forms that involve the two estimates respectively. The form corresponding to the
smaller Poisson integral Pα1+δ′ is again handled using goodness and the decay δ′ in
the kernel, while the form corresponding to the larger Poisson integral Pα requires
the full force of the stopping time and recursion argument of M. Lacey.

Proof. Using the Monotonicity Lemma 3, followed by |νJ′ | ≤ ν and the Poisson
equivalence

(6.2)
Pαm (J ′, ν)

|J ′|
m
n

≈ Pαm (J, ν)

|J |
m
n

, J ′ ⊂ J ⊂ 2J, suppν ∩ 2J = ∅,
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we have∣∣∣∣∣ ∑
J′∈H

〈Tα (νJ′) ,4ωJ′ΨJ〉ω

∣∣∣∣∣ =

∣∣∣∣∣ ∑
J′∈H

〈4ωJ′Tα (νJ′) ,4ωJ′ΨJ〉ω

∣∣∣∣∣
.

∣∣∣∣∣ ∑
J′∈H

Φα (J ′, |νJ′ |) ‖4ωJ′ΨJ‖L2(ω)

∣∣∣∣∣
.

∑
J′∈H

(
Pα (J ′, ν)

|J ′|
1
n

)2

‖4ωJ′x‖
2
L2(ω)

 1
2 (∑

J′∈H
‖4ωJ′ΨJ‖2L2(ω)

) 1
2

+

∑
J′∈H

(
Pα1+δ (J ′, ν)

|J ′|
1
n

)2 ∑
J′′⊂J′

‖4ωJ′′x‖
2
L2(ω)

 1
2 (∑

J′∈H
‖4ωJ′ΨJ‖2L2(ω)

) 1
2

.

(
Pα (J, ν)

|J |
1
n

)
‖PωHx‖L2(ω) ‖ΨJ‖L2(ω) +

1

γδ′

(
Pα1+δ′ (J, ν)

|J |
1
n

)
‖PωH∗x‖L2(ω) ‖ΨJ‖L2(ω) .

The last inequality follows from

∑
J′∈H

(
Pα1+δ (J ′, ν)

|J ′|
1
n

)2 ∑
J′′⊂J′

‖4ωJ′′x‖
2
L2(ω)

=
∑
J′′⊂J

 ∑
J′: J′′⊂J′⊂J

(
Pα1+δ (J ′, ν)

|J ′|
1
n

)2
 ‖4ωJ′′x‖2L2(ω)

.
1

γ2δ′

∑
J′′∈H∗

(
Pα1+δ′ (J

′′, ν)

|J ′′|
1
n

)2

‖4ωJ′′x‖
2
L2(ω) ,

which in turn follows from (recalling δ = 2δ′)

∑
J′: J′′⊂J′⊂J

(
Pα1+δ (J ′, ν)

|J ′|
1
n

)2

=
∑

J′: J′′⊂J′⊂J
|J ′|

2δ
n

∫
Rn\γJ

1(
|J ′|

1
n + |y − cJ′ |

)n+1+δ−α dν (y)


2

.
∑

J′: J′′⊂J′⊂J

1

γ2δ′
|J ′|

2δ
n

|J |
2δ
n

∫
Rn\γJ

|J |
δ′
n(

|J |
1
n + |y − cJ |

)n+1+δ′−α dν (y)


2

=
1

γ2δ′

( ∑
J′: J′′⊂J′⊂J

|J ′|
2δ
n

|J |
2δ
n

)(
Pα1+δ′ (J, ν)

|J |
1
n

)2

.
1

γ2δ′

(
Pα1+δ′ (J, ν)

|J |
1
n

)2

.
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Finally we have the ‘pivotal’ bound from (6.2) and∑
J′′⊂J

‖4ωJ′′x‖
2
L2(ω) = ‖x−mJ‖2L2(1Jω) ≤ |J |

2
n |J |ω .

2

7. Preliminaries of NTV type

An important reduction of our theorem is delivered by the following two lemmas,
that in the case of one dimension are due to Nazarov, Treil and Volberg (see
[NTV4] and [Vol]). The proofs given there do not extend in standard ways to
higher dimensions, and we use the Weak Boundedness Property to handle the case
of touching cubes, and an application of Schur’s Lemma to handle the case of
separated cubes. The first lemma below is Lemmas 8.1 and 8.7 in [LaWi] but with
the larger constant Aα2 there in place of Aα2 .

Lemma 5. Suppose Tα is a standard fractional singular integral with 0 ≤ α < n,
and that all of the cubes I ∈ Dσ, J ∈ Dω below are good with goodness parameters
ε and r. Fix a positive integer ρ > r. For f ∈ L2 (σ) and g ∈ L2 (ω) we have
(7.1) ∑

(I,J)∈Dσ×Dω

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

|〈Tασ (4σI f) ,4ωJg〉ω| .
(
Tα + T∗α +WBPTα +

√
Aα2

)
‖f‖L2(σ) ‖g‖L2(ω)

and

(7.2)
∑

(I,J)∈Dσ×Dω

I∩J=∅ and
|J|

1
n

|I|
1
n

/∈[2−ρ,2ρ]

|〈Tασ (4σI f) ,4ωJg〉ω| .
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) .

Lemma 6. Suppose Tα is a standard fractional singular integral with 0 ≤ α < n,
that all of the cubes I ∈ Dσ, J ∈ Dω below are good, that ρ > r, that f ∈ L2 (σ) and
g ∈ L2 (ω), that F ⊂ Dσ and G ⊂ Dω are σ-Carleson and ω-Carleson collections
respectively, i.e.,∑
F ′∈F : F ′⊂F

|F ′|σ . |F |σ , F ∈ F , and
∑

G′∈G: G′⊂G
|G′|ω . |G|ω , G ∈ G,

that there are numerical sequences {αF (F )}F∈F and {βG (G)}G∈G such that

(7.3)
∑
F∈F

αF (F )
2 |F |σ ≤ ‖f‖

2
L2(σ) and

∑
G∈G

βG (G)
2 |G|σ ≤ ‖g‖

2
L2(σ) ,

and finally that for each pair of cubes (I, J) ∈ Dσ×Dω, there are bounded functions
βI,J and γI,J supported in I \ 2J and J \ 2I respectively, satisfying

‖βI,J‖∞ , ‖γI,J‖∞ ≤ 1.
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Then ∑
(F,J)∈F×Dω

F∩J=∅ and |J|
1
n≤2−ρ|F |

1
n

∣∣〈Tασ (βF,J1FαF (F )) ,4ωJg〉ω
∣∣(7.4)

+
∑

(I,G)∈Dσ×G
I∩G=∅ and |I|

1
n≤2−ρ|G|

1
n

∣∣〈Tασ (4σI f) , γI,G1GβG (G)〉ω
∣∣

.
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) .

Remark 7. If F and G are σ-Carleson and ω-Carleson collections respectively,
and if αF (F ) = EσF |f | and βG (G) = EωG |g|, then the quasiorthogonality condition
(7.3) holds, and this special case of Lemma 6 serves as a basic example.

Remark 8. Lemmas 5 and 6 differ mainly in that an orthogonal collection of Haar
projections is replaced by a quasiorthogonal collection of indicators {1FαF (F )}F∈F .
More precisely, the main difference between (7.2) and (7.4) is that a Haar pro-
jection 4σI f or 4ωJg has been replaced with a constant multiple of an indicator
1FαF (F ) or 1GβG (G), and in addition, a bounded function is permitted to mul-
tiply the indicator of the cube having larger sidelength.

Proof. Note that in (7.1) we have used the parameter ρ in the exponent rather
than r, and this is possible because the arguments we use here only require that
there are finitely many levels of scale separating I and J . To handle this term we
first decompose it into

∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

+
∑

(I,J)∈Dσ×Dω: I⊂3J

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

+
∑

(I,J)∈Dσ×Dω

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

J 6⊂3I and I 6⊂3J


|〈Tασ (4σI f) ,4ωJg〉ω|

≡ A1 +A2 +A3.

The proof of the bound for term A3 is similar to that of the bound for the left side
of (7.2), and so we will defer the bound for A3 until after (7.2) has been proved.

We now consider term A1 as term A2 is symmetric. To handle this term we
will write the Haar functions hσI and hωJ as linear combinations of the indicators
of the children of their supporting cubes, denoted Iθ and Jθ′ respectively. Then
we use the testing condition on Iθ and Jθ′ when they overlap, i.e. their interiors
intersect; we use the weak boundedness property on Iθ and Jθ′ when they touch,
i.e. their interiors are disjoint but their closures intersect (even in just a point); and
finally we use the Aα2 condition when Iθ and Jθ′ are separated, i.e. their closures
are disjoint. We will suppose initially that the side length of J is at most the side

length I, i.e. |J |
1
n ≤ |I|

1
n , the proof for J = πI being similar but for one point
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mentioned below. So suppose that Iθ is a child of I and that Jθ′ is a child of J . If
Jθ′ ⊂ Iθ we have from (5.2) that,

∣∣〈Tασ (1Iθ 4σI f) ,1Jθ′ 4
ω
J g
〉
ω

∣∣ . sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

∣∣〈Tασ (1Iθ ) ,1Jθ′
〉
ω

∣∣
∣∣∣〈g, hω,a′J

〉
ω

∣∣∣√
|Jθ′ |ω

. sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

(∫
Jθ′

|Tασ (1Iθ )|
2
dω

) 1
2 ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣
. sup

a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

TTα |Iθ|
1
2
σ

∣∣∣〈g, hω,a′J

〉
ω

∣∣∣
. sup

a,a′∈Γn

TTα
∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣ .
The point referred to above is that when J = πI we write

〈
Tασ (1Iθ ) ,1Jθ′

〉
ω

=〈
1Iθ , T

α,∗
ω

(
1Jθ′

)〉
σ

and get the dual testing constant T∗Tα . If Jθ′ and Iθ touch,

then |Jθ′ |
1
n ≤ |Iθ|

1
n and we have Jθ′ ⊂ 3Iθ \ Iθ, and so

∣∣〈Tασ (1Iθ 4σI f) ,1Jθ′ 4
ω
J g
〉
ω

∣∣ . sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

∣∣〈Tασ (1Iθ ) ,1Jθ′
〉
ω

∣∣
∣∣∣〈g, hω,a′J

〉
ω

∣∣∣√
|Jθ′ |ω

. sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

WBPTα
√
|Iθ|σ |Jθ′ |ω

∣∣∣〈g, hω,a′J

〉
ω

∣∣∣√
|Jθ′ |ω

= sup
a,a′∈Γn

WBPTα
∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣ .
Finally, if Jθ′ and Iθ are separated, and if K is the smallest (not necessarily dyadic)

cube containing both Jθ′ and Iθ, then dist (Iθ, Jθ′) ≈ |K|
1
n and we have

∣∣〈Tασ (1Iθ 4σI f) ,1Jθ′ 4
ω
J g
〉
ω

∣∣ . sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

∣∣〈Tασ (1Iθ ) ,1Jθ′
〉
ω

∣∣
∣∣∣〈g, hω,a′J

〉
ω

∣∣∣√
|Jθ′ |ω

. sup
a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣√
|Iθ|σ

1

dist (Iθ, Jθ′)
n−α |Iθ|σ |Jθ′ |ω

∣∣∣〈g, hω,a′J

〉
ω

∣∣∣√
|Jθ′ |ω

= sup
a,a′∈Γn

√
|Iθ|σ |Jθ′ |ω

dist (Iθ, Jθ′)
n−α

∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣
. sup

a,a′∈Γn

√
|K|σ |K|ω
|K|

1
n (n−α)

∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣
.

√
Aα2 sup

a,a′∈Γn

∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣ .
Now we sum over all the children of J and I satisfying 2−ρ |I|

1
n ≤ |J |

1
n ≤ 2ρ |I|

1
n
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for which J ⊂ 3I to obtain that

A1 .
(
TTα + T∗Tα +WBPTα +

√
Aα2

)
sup

a,a′∈Γn

∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

∣∣〈f, hσ,aI 〉σ∣∣ ∣∣∣〈g, hω,a′J

〉
ω

∣∣∣ .
Now Cauchy-Schwarz gives the estimate∑

a,a′∈Γn

∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

|〈f, hσI 〉σ| |〈g, h
ω
I 〉ω|

≤ sup
a,a′∈Γn

 ∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

|〈f, hσI 〉σ|
2


1
2
 ∑

(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|
1
n≤|J|

1
n≤2ρ|I|

1
n

|〈g, hωJ 〉ω|
2


1
2

. ‖f‖L2(σ) ‖g‖L2(ω) ,

This completes our proof of (7.1) save for the deferral of term A3, which we bound
below.

Now we turn to the sum of separated cubes in (7.2) and (7.4). In each of these
inequalities we have either orthogonality or quasiorthogonality, due either to the
presence of a Haar projection such as 4σI f , or the presence of an appropriate Car-
leson indicator such as βF,J1FαF (F ). We will prove below the estimate for the
separated sum corresponding to (7.2). The corresponding estimates for (7.4) are
handled in a similar way, the only difference being that the quasiorthogonality of
Carleson indicators such as βF,J1FαF (F ) is used in place of the orthogonality of
Haar functions such as 4σI f . The bounded functions βF,J are replaced with con-
stants after an application of the energy lemma, and then the arguments proceed
as below.

We split the pairs (I, J) ∈ Dσ × Dω occurring in (7.2) into two groups, those
with side length of J smaller than side length of I, and those with side length
of I smaller than side length of J , treating only the former case, the latter being
symmetric. Thus we prove the following bound:

A (f, g) ≡
∑

(I,J)∈Dσ×Dω

I∩J=∅ and |J|
1
n≤2−ρ|I|

1
n

|〈Tασ (4σI f) ,4ωJg〉ω|

.
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) .

We apply the ‘pivotal’ bound from the Energy Lemma 4 to estimate the inner
product 〈Tασ (4σI f) ,4ωJg〉ω and obtain,

|〈Tασ (4σI f) ,4ωJg〉ω| . ‖4
ω
Jg‖L2(ω) Pα (J, |4σI f |σ)

√
|J |ω ,



28 E.T. Sawyer and C.-Y. Shen and I. Uriarte-Tuero

Denote by dist the `∞ distance in Rn: dist (x, y) = max1≤j≤n |xj − yj |. We now

estimate separately the long-range and mid-range cases where dist (J, I) ≥ |I|
1
n

holds or not, and we decompose A accordingly:

A (f, g) ≡ Along (f, g) +Amid (f, g) .

The long-range case: We begin with the case where dist (J, I) is at least

|I|
1
n , i.e. J ∩ 3I = ∅. Since J and I are separated by at least max

{
|J |

1
n , |I|

1
n

}
,

we have the inequality

Pα (J, |4σI f |σ) ≈
∫
I

|J |
1
n

|y − cJ |n+1−α |4
σ
I f (y)| dσ (y) ≤ ‖4σI f‖L2(σ)

|J |
1
n
√
|I|σ

dist (I, J)
n+1−α ,

since
∫
I
|4σI f (y)| dσ (y) ≤ ‖4σI f‖L2(σ)

√
|I|σ. Thus with A (f, g) = Along (f, g) we

have

A (f, g) ≤
∑
I∈D

∑
J : |J|

1
n≤|I|

1
n : dist(I,J)≥|I|

1
n

‖4σI f‖L2(σ) ‖4
ω
Jg‖L2(ω)

× |J |
1
n

dist (I, J)
n+1−α

√
|I|σ

√
|J |ω

≡
∑

(I,J)∈P

‖4σI f‖L2(σ) ‖4
ω
Jg‖L2(ω)A (I, J) ;

with A (I, J) ≡ |J |
1
n

dist (I, J)
n+1−α

√
|I|σ

√
|J |ω;

and P ≡
{

(I, J) ∈ D ×D : |J |
1
n ≤ |I|

1
n and dist (I, J) ≥ |I|

1
n

}
.

Now let DN ≡
{
K ∈ D : |K|

1
n = 2N

}
for each N ∈ Z. For N ∈ Z and s ∈ Z+, we

further decompose A (f, g) by pigeonholing the side lengths of I and J by 2N and
2N−s respectively:

A (f, g) =

∞∑
s=0

∑
N∈Z

AsN (f, g) ;

AsN (f, g) ≡
∑

(I,J)∈PsN

‖4σI f‖L2(σ) ‖4
ω
Jg‖L2(ω)A (I, J)

where PsN ≡
{

(I, J) ∈ DN ×DN−s : dist (I, J) ≥ |I|
1
n

}
.

Now AsN (f, g) = AsN
(
PσNf,P

ω
N−sg

)
where PµM =

∑
K∈DM

4µK denotes Haar pro-

jection onto Span {hµ,aK }K∈DM ,a∈Γn
, and so by orthogonality of the projections
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{PµM}M∈Z we have

∣∣∣∣∣∑
N∈Z

AsN (f, g)

∣∣∣∣∣ =
∑
N∈Z

∣∣AsN (PσNf,PωN−sg)∣∣ ≤∑
N∈Z
‖AsN‖ ‖PσNf‖L2(σ)

∥∥PωN−sg∥∥L2(ω)

≤
{

sup
N∈Z
‖AsN‖

}(∑
N∈Z
‖PσNf‖

2
L2(σ)

) 1
2
(∑
N∈Z

∥∥PωN−sg∥∥2

L2(ω)

) 1
2

≤
{

sup
N∈Z
‖AsN‖

}
‖f‖L2(σ) ‖g‖L2(ω) .

Thus it suffices to show an estimate uniform in N with geometric decay in s, and
we will show

(7.5) |AsN (f, g)| ≤ C2−s
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) , for s ≥ 0 and N ∈ Z.

We now pigeonhole the distance between I and J :

AsN (f, g) =

∞∑
`=0

AsN,` (f, g) ;

AsN,` (f, g) ≡
∑

(I,J)∈PsN,`

‖4σI f‖L2(σ) ‖4
ω
Jg‖L2(ω)A (I, J)

where PsN,` ≡
{

(I, J) ∈ DN ×DN−s : dist (I, J) ≈ 2N+`
}
.

If we defineH
(
AsN,`

)
to be the bilinear form on `2×`2 with matrix [A (I, J)](I,J)∈PsN,`

,

then it remains to show that the norm
∥∥∥H(AsN,`)∥∥∥

`2→`2
of H

(
AsN,`

)
on the se-

quence space `2 is bounded by C2−s−`
√
Aα2 . In turn, this is equivalent to showing

that the norm
∥∥∥H(BsN,`)∥∥∥

`2→`2
of the bilinear formH

(
BsN,`

)
≡ H

(
AsN,`

)tr

H
(
AsN,`

)
on the sequence space `2 is bounded by C22−2s−2`Aα2 . Here H

(
BsN,`

)
is the

quadratic form with matrix kernel
[
BsN,` (J, J ′)

]
J,J ′∈DN−s

having entries:

BsN,` (J, J ′) ≡
∑

I∈DN : dist(I,J)≈dist(I,J′)≈2N+`

A (I, J)A (I, J ′) , for J, J ′ ∈ DN−s.

We are reduced to showing,

∥∥H (BsN,`)∥∥`2→`2 ≤ C2−2s−2`Aα2 for s ≥ 0, ` ≥ 0 and N ∈ Z.
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For this we begin by computing BsN,` (J, J ′):

BsN,` (J, J ′) =
∑
I∈DN

dist(I,J)≈dist(I,J′)≈2N+`

|J |
1
n

dist (I, J)
n+1−α

√
|I|σ

√
|J |ω

× |J ′|
1
n

dist (I, J ′)
n+1−α

√
|I|σ

√
|J ′|ω

=


∑
I∈DN

dist(I,J)≈dist(I,J′)≈2N+`

|I|σ
1

dist (I, J)
n+1−α

dist (I, J ′)
n+1−α


× |J |

1
n |J ′|

1
n

√
|J |ω

√
|J ′|ω.

Now we show that

(7.6)
∥∥BsN,`∥∥`2→`2 . 2−2s−2`Aα2 ,

by applying the proof of Schur’s lemma. Fix ` ≥ 0 and s ≥ 0. Choose the Schur
function β (K) = 1√

|K|ω
. Fix J ∈ DN−s. We have

∑
J′∈DN−s

β (J)

β (J ′)
BsN,` (J, J ′)

.
∑

J′∈DN−s
dist(J,J ′)≤2N+`+2


∑
I∈DN

dist(I,J)≈2N+`

|I|σ


22(N−s)

22(`+N)(n+1−α)
|J ′|ω

. 2−2s−2`

∣∣210+`+sJ
∣∣
σ

2(`+N)(n−α)

∣∣212+`+sJ
∣∣
ω

2(`+N)(n−α)
. 2−2s−2`Aα2 ,

since I ∈ DN and dist (I, J) ≈ 2N+` imply that I ⊂ 210+`+sJ which has side
length comparable to 2(`+N), and similarly J ′ ⊂ 212+`+sJ . Thus we can now
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apply Schur’s argument with
∑
J (aJ)

2
=
∑
J′ (bJ′)

2
= 1 to obtain∑

J,J ′∈DN−s

aJbJ′B
s
N,` (J, J ′)

=
∑

J,J ′∈DN−s

aJβ (J) bJ′β (J ′)
BsN,` (J, J ′)

β (J)β (J ′)

≤
∑
J

(aJβ (J))
2
∑
J′

BsN,` (J, J ′)

β (J)β (J ′)
+
∑
J′

(bJ′β (J ′))
2 B

s
N,` (J, J ′)

β (J)β (J ′)

=
∑
J

(aJ)
2

{∑
J′

β (J)

β (J ′)
BsN,` (J, J ′)

}
+
∑
J′

(bJ′)
2

{∑
J

β (J ′)

β (J)
BsN,` (J, J ′)

}

. 2−2s−2`Aα2

(∑
J

(aJ)
2

+
∑
J′

(bJ′)
2

)
= 21−2s−2`Aα2 .

This completes the proof of (7.6). We can now sum in ` to get (7.5) and we are
done. This completes our proof of the long-range estimate

Along (f, g) .
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) .

At this point we pause to complete the proof of (7.1). Indeed, the deferred term
A3 can be handled using the above argument since 3J ∩ I = ∅ = J ∩ 3I implies
that we can use the Energy Lemma 4 as we did above.

The mid range case: Let

P ≡
{

(I, J) ∈ D ×D : J is good, |J |
1
n ≤ 2−ρ |I|

1
n , J ⊂ 3I \ I

}
.

For (I, J) ∈ P, the ‘pivotal’ estimate from the Energy Lemma 4 gives

|〈Tασ (4σI f) ,4ωJg〉ω| . ‖4
ω
Jg‖L2(ω) Pα (J, |4σI f |σ)

√
|J |ω .

Now we pigeonhole the lengths of I and J and the distance between them by
defining

PsN,d ≡
{

(I, J) ∈ D ×D : J is good, |I|
1
n = 2N , |J |

1
n = 2N−s, J ⊂ 3I \ I, 2d−1 ≤ dist (I, J) ≤ 2d

}
.

Note that the closest a good cube J can come to I is determined by the goodness
inequality, which gives this bound for 2d ≥ dist (I, J):

2d ≥ 1

2
|I|

1−ε
n |J |

ε
n =

1

2
2N(1−ε)2(N−s)ε =

1

2
2N−εs;

which implies N − εs− 1 ≤ d ≤ N,
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where the last inequality holds because we are in the case of the mid-range term.
Thus we have∑

(I,J)∈P

|〈Tασ (4σI f) ,4ωJg〉ω| .
∑

(I,J)∈P

‖4ωJg‖L2(ω) Pα (J, |4σI f |σ)
√
|J |ω

=

∞∑
s=ρ

∑
N∈Z

N∑
d=N−εs−1

∑
(I,J)∈PsN,d

‖4ωJg‖L2(ω) Pα (J, |4σI f |σ)
√
|J |ω.

Now we use

Pα (J, |4σI f |σ) =

∫
I

|J |
1
n(

|J |
1
n + |y − cJ |

)n+1−α |4
σ
I f (y)| dσ (y)

.
2N−s

2d(n+1−α)
‖4σI f‖L2(σ)

√
|I|σ

and apply Cauchy-Schwarz in J and use J ⊂ 3I to get∑
(I,J)∈P

|〈Tασ (4σI f) ,4ωJg〉ω|

.
∞∑
s=ρ

∑
N∈Z

N∑
d=N−εs−1

∑
I∈DN

2N−s2N(n−α)

2d(n+1−α)
‖4σI f‖L2(σ)

√
|I|σ

√
|3I|ω

2N(n−α)

×
√√√√√ ∑

J∈DN−s
J⊂3I\I and dist(I,J)≈2d

‖4ωJg‖
2
L2(ω)

.
∞∑
s=ρ

∑
N∈Z

2N−s2N(n−α)

2(N−εs)(n+1−α)

√
Aα2

∑
I∈DN

‖4σI f‖L2(σ)

√√√√ ∑
J∈DN−s
J⊂3I\I

‖4ωJg‖
2
L2(ω)

.
∞∑
s=ρ

2−s[1−ε(n+1−α)]
√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) .

√
Aα2 ‖f‖L2(σ) ‖g‖L2(ω) ,

where in the third line above we have used
∑N
d=N−εs−1

1
2d(n+1−α) ≈ 1

2(N−εs)(n+1−α) ,

and in the last line 2N−s2N(n−α)

2(N−εs)(n+1−α) = 2−s[1−ε(n+1−α)] followed by Cauchy-Schwarz
in I and N , using that we have bounded overlap in the triples of I for I ∈ DN .
More precisely, if we define fk ≡

∑
I∈Dk 4

σ
I fh

σ
I and gk ≡

∑
I∈Dk 4

ω
Jgh

ω
J , then we

have the orthogonality inequality

∑
N∈Z
‖fN‖L2(σ) ‖gN−s‖L2(ω) ≤

(∑
N∈Z
‖fN‖2L2(σ)

) 1
2
(∑
N∈Z
‖gN−s‖2L2(ω)

) 1
2

= ‖f‖L2(σ) ‖g‖L2(ω) .

We have assumed that 0 < ε < 1
n+1−α in the calculations above, and this completes

the proof of Lemma 5. 2
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8. Corona Decompositions and splittings

We will use two different corona constructions to reduce matters to the stopping
form, the main part of which is handled by Lacey’s recursion argument, namely
a Calderón-Zygmund decomposition and an energy decomposition of NTV type.
We will then iterate these coronas into a double corona. We first recall our basic
setup. For convenience in notation we will sometimes suppress the dependence on
α in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. We will assume that the good/bad cube machinery of Nazarov, Treil
and Volberg [Vol] is in force here. Let Dσ = Dω be an (r, ε)-good grid on Rn,

and let {hσ,aI }I∈Dσ, a∈Γn
and

{
hω,bJ

}
J∈Dω, b∈Γn

be corresponding Haar bases as

described above, so that

f =
∑
I∈Dσ

4σI f and g =
∑
J∈Dω

4ωJg ,

where the Haar projections 4σI f and 4ωJg vanish if the cubes I and J are not
good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T α (f, g) ≡ 〈Tασ (f) , g〉ω =
∑

I∈Dσ and J∈Dω
〈Tασ (4σI f) ,4ωJg〉ω

on L2 (σ)× L2 (ω), i.e.

|T α (f, g)| ≤ NTα ‖f‖L2(σ) ‖g‖L2(ω) .

8.1. The Calderón-Zygmund corona

We now introduce a stopping tree F for the function f ∈ L2 (σ). Let F be a

collection of Calderón-Zygmund stopping cubes for f , and let Dσ =
⋃
F∈F
CF be the

associated corona decomposition of the dyadic grid Dσ.

For a cube I ∈ Dσ let πDσI be the Dσ-parent of I in the grid Dσ, and let πFI
be the smallest member of F that contains I. For F, F ′ ∈ F , we say that F ′ is an
F-child of F if πF (πDσF

′) = F (it could be that F = πDσF
′), and we denote by

CF (F ) the set of F-children of F . For F ∈ F , define the projection PσCF onto the
linear span of the Haar functions {hσ,aI }I∈CF , a∈Γn

by

PσCF f =
∑
I∈CF

4σI f =
∑

I∈CF , a∈Γn

〈f, hσ,aI 〉σ h
σ,a
I .

The standard properties of these projections are

f =
∑
F∈F

PσCF f,

∫ (
PσCF f

)
σ = 0, ‖f‖2L2(σ) =

∑
F∈F

∥∥PσCF f∥∥2

L2(σ)
.
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8.2. The energy corona

We must also impose an energy corona decomposition as in [NTV4] and [LaSaUr2].

Definition 5. Given a cube S0, define S (S0) to be the maximal subcubes I ⊂ S0

such that
(8.1)∑
J∈Mτ−deep(I)

(
Pα
(
J,1S0\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
≥ Cenergy

[(
Edeep
α

)2
+Aα2

]
|I|σ ,

where Edeep
α is the constant in the deep energy condition defined in Definition 4,

and Cenergy is a sufficiently large positive constant depending only on τ, r, n and

α. Then define the σ-energy stopping cubes of S0 to be the collection S =

∞⋃
n=0

Sn

where S0 = S (S0) and Sn+1 =
⋃
S∈Sn

S (S) for n ≥ 0.

From the energy condition in Definition 4 we obtain the σ-Carleson estimate

(8.2)
∑

S∈S: S⊂I
|S|σ ≤ 2 |I|σ , I ∈ Dσ.

Indeed, using the deep energy condition, the first generation satisfies∑
S∈S1

|S|σ(8.3)

≤ 1

Cenergy

[(
Edeep
α

)2

+Aα2

] ∑
S∈S1

∑
J∈Mτ−deep(S)

(
Pα
(
J,1S0\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

≤ 1

Cenergy

[(
Edeep
α

)2

+Aα2

] ∑
S∈S1

∑
J∈Mτ−deep(S)

(
Pα (J,1S0

σ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

≤ Cτ,r,n,α

Cenergy

[(
Edeep
α

)2

+Aα2

] ∑
S∈S1

∑
J∈Mr−deep(S)

(
Pα (J,1S0

σ)

|J |
1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

≤ Cτ,r,n,α

Cenergy

[(
Edeep
α

)2

+Aα2

] (Edeepplug
α

)2 |S0|σ =
1

2
|S0|σ ,

provided we take Cenergy = 2Cτ,r,n,α
(Edeepplugα )

2

(Edeepα )
2
+Aα2

. The third inequality above, in

which τ is replaced by r (but the goodness parameter ε > 0 is unchanged), follows
because if J1 ∈ Mτ−deep (S), then J1 ⊂ J2 for a unique J2 ∈ Mr−deep (S) and
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we have |J2|
1
n ≤ 2τ−r |J1|

1
n , hence

Pα(J1,1S0σ)
|J1|

1
n

≤ Cτ,r,n,α
Pα(J2,1S0σ)
|J2|

1
n

. Subsequent

generations satisfy a similar estimate, which then easily gives (8.2). We emphasize
that this collection of stopping times depends only on S0 and the weight pair (σ, ω),
and not on any functions at hand.

Finally, we record the reason for introducing energy stopping times. If

(8.4) Xα (CS)
2 ≡ sup

I∈CS

1

|I|σ

∑
J∈M(I)

(
Pα
(
J,1S\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

is (the square of) the α-stopping energy of the weight pair (σ, ω) with respect to
the corona CS , then we have the stopping energy bounds

(8.5) Xα (CS) ≤
√

10Edeep
α , S ∈ S,

where the deep energy constant Edeep
α is controlled by assumption.

8.3. General stopping data

It is useful to extend our notion of corona decomposition to more general stopping
data. Our general definition of stopping data will use a positive constant C0 ≥ 4.

Definition 6. Suppose we are given a positive constant C0 ≥ 4, a subset F of the
dyadic grid Dσ (called the stopping times), and a corresponding sequence αF ≡
{αF (F )}F∈F of nonnegative numbers αF (F ) ≥ 0 (called the stopping data). Let
(F ,≺, πF ) be the tree structure on F inherited from Dσ, and for each F ∈ F
denote by CF = {I ∈ Dσ : πFI = F} the corona associated with F :

CF = {I ∈ Dσ : I ⊂ F and I 6⊂ F ′ for any F ′ ≺ F} .

We say the triple (C0,F , αF ) constitutes stopping data for a function f ∈ L1
loc (σ)

if

1. EσI |f | ≤ αF (F ) for all I ∈ CF and F ∈ F ,

2.
∑
F ′�F |F ′|σ ≤ C0 |F |σ for all F ∈ F ,

3.
∑
F∈F αF (F )

2 |F |σ ≤C2
0 ‖f‖

2
L2(σ),

4. αF (F ) ≤ αF (F ′) whenever F ′, F ∈ F with F ′ ⊂ F .

Definition 7. If (C0,F , αF ) constitutes (general) stopping data for a function
f ∈ L1

loc (σ), we refer to the othogonal decomposition

f =
∑
F∈F

PσCF f ; PσCF f ≡
∑
I∈CF

4σI f,

as the (general) corona decomposition of f associated with the stopping times F .
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Property (1) says that αF (F ) bounds the averages of f in the corona CF , and
property (2) says that the cubes at the tops of the coronas satisfy a Carleson
condition relative to the weight σ. Note that a standard ‘maximal cube’ argument
extends the Carleson condition in property (2) to the inequality∑

F ′∈F : F ′⊂A
|F ′|σ ≤ C0 |A|σ for all open sets A ⊂ R.

Property (3) is the quasiorthogonality condition that says the sequence of functions
{αF (F ) 1F }F∈F is in the vector-valued space L2

(
`2;σ

)
, and property (4) says that

the control on averages is nondecreasing on the stopping tree F . We emphasize
that we are not assuming in this definition the stronger property that there is
C > 1 such that αF (F ′) > CαF (F ) whenever F ′, F ∈ F with F ′ $ F . Instead,
the properties (2) and (3) substitute for this lack. Of course the stronger property
does hold for the familiar Calderón-Zygmund stopping data determined by the
following requirements for C > 1,

EσF ′ |f | > CEσF |f | whenever F ′, F ∈ F with F ′ $ F,

EσI |f | ≤ CEσF |f | for I ∈ CF ,

which are themselves sufficiently strong to automatically force properties (2) and
(3) with αF (F ) = EσF |f |.

We have the following useful consequence of (2) and (3) that says the sequence
{αF (F ) 1F }F∈F has a quasiorthogonal property relative to f with a constant C ′0
depending only on C0:

(8.6)

∥∥∥∥∥∑
F∈F

αF (F ) 1F

∥∥∥∥∥
2

L2(σ)

≤ C ′0 ‖f‖
2
L2(σ) .

Indeed, the Carleson condition (2) implies a geometric decay in levels of the tree
F , namely that there are positive constants C1 and ε, depending on C0, such that

if C
(n)
F (F ) denotes the set of nth generation children of F in F ,∑

F ′∈C(n)
F (F ):

|F ′|σ ≤
(
C12−εn

)2 |F |σ , for all n ≥ 0 and F ∈ F .

From this we obtain that

∞∑
n=0

∑
F ′∈C(n)

F (F ):

αF (F ′) |F ′|σ ≤
∞∑
n=0

√√√√ ∑
F ′∈C(n)

F (F )

αF (F ′)
2 |F ′|σC12−εn

√
|F |σ

≤ C1

√
|F |σCε

√√√√√ ∞∑
n=0

2−εn
∑

F ′∈C(n)
F (F )

αF (F ′)
2 |F ′|σ,
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and hence that

∑
F∈F

αF (F )


∞∑
n=0

∑
F ′∈C(n)

F (F )

αF (F ′) |F ′|σ


.

∑
F∈F

αF (F )
√
|F |σ

√√√√√ ∞∑
n=0

2−εn
∑

F ′∈C(n)
F (F )

αF (F ′)
2 |F ′|σ

.

(∑
F∈F

αF (F )
2 |F |σ

) 1
2

 ∞∑
n=0

2−εn
∑
F∈F

∑
F ′∈C(n)

F (F )

αF (F ′)
2 |F ′|σ


1
2

. ‖f‖L2(σ)

(∑
F ′∈F

αF (F ′)
2 |F ′|σ

) 1
2

. ‖f‖2L2(σ) .

This proves (8.6) since
∥∥∑

F∈F αF (F ) 1F
∥∥2

L2(σ)
is dominated by twice the left

hand side above.
We will use a construction that permits iteration of general corona decomposi-

tions.

Lemma 7. Suppose that (C0,F , αF ) constitutes stopping data for a function f ∈
L1
loc (σ), and that for each F ∈ F ,

(
C0,K (F ) , αK(F )

)
constitutes stopping data

for the corona projection PσCF f . There is a positive constant C1, depending only
on C0, such that if

K∗ (F ) ≡
{
K ∈ K (F ) ∩ CF : αK(F ) (K) ≥ αF (F )

}
K ≡

⋃
F∈F
K∗ (F ) ∪ {F} ,

αK (K) ≡ αK(F ) (K) for K ∈ K∗ (F ) \ {F}
max

{
αF (F ) , αK(F ) (F )

}
for K = F

, for F ∈ F ,

the triple (C1,K, αK) constitutes stopping data for f . We refer to the collection
of cubes K as the iterated stopping times, and to the orthogonal decomposition
f =

∑
K∈K PCKKf as the iterated corona decomposition of f , where

CKK ≡ {I ∈ D : I ⊂ K and I 6⊂ K ′ for K ′ ≺K K} .

Note that in our definition of (C1,K, αK) we have ‘discarded’ from K (F ) all of
those K ∈ K (F ) that are not in the corona CF , and also all of those K ∈ K (F )
for which αK(F ) (K) is strictly less than αF (F ). Then the union of over F of
what remains is our new collection of stopping times. We then define stopping
data αK (K) according to whether or not K ∈ F : if K /∈ F but K ∈ CF then
αK (K) equals αK(F ) (K), while if K ∈ F , then αK (K) is the larger of αK(F ) (F )
and αF (K).



38 E.T. Sawyer and C.-Y. Shen and I. Uriarte-Tuero

Proof. The monotonicity property (4) for the triple (C1,K, αK) is obvious from
the construction of K and αK (K). To establish property (1), we must distinguish

between the various coronas CKK , CK(F )
K and CFK that could be associated with

K ∈ K, when K belongs to any of the stopping trees K, K (F ) or F . Suppose
now that I ∈ CKK for some K ∈ K. Then there is a unique F ∈ F such that CKK ⊂
CK(F )
K ⊂ CFF , and so EσI |f | ≤ αF (F ) by property (1) for the triple (C0,F , αF ).

Then αF (F ) ≤ αK (K) follows from the definition of αK (K), and we have property
(1) for the triple (C1,K, αK). Property (2) holds for the triple (C1,K, αK) since if
K ∈ CFF , then∑

K′�KK

|K ′|σ =
∑

K′∈K(F ): K′⊂K

|K ′|σ +
∑

F ′≺FF : F ′⊂K

∑
K′∈K(F ′)

|K ′|σ

≤ C2
0 |K|σ +

∑
F ′≺FF : F ′⊂K

C2
0 |F ′|σ ≤ 2C2

0 |K|σ .

Finally, property (3) holds for the triple (C1,K, αK) since∑
K∈K

αK (K)
2 |K|σ =

∑
F∈F

∑
K∈K(F )

αK(F ) (K)
2 |K|σ

≤
∑
F∈F

C2
0

∥∥PσCF f∥∥2

L2(σ)
≤ C2

0 ‖f‖
2
L2(σ) .

2

8.4. Doubly iterated coronas and the NTV cube size splitting

Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

〈Tασ f, g〉ω
↓

Bbρ (f, g) + Bρc (f, g) + B∩ (f, g) + B� (f, g)

↓ dual NT Vα NT Vα
↓

Tdiagonal (f, g) + Tfarbelow (f, g) + Tfarabove (f, g) + Tdisjoint (f, g)

↓ ↓ ∅ ∅
↓ ↓

BAbρ (f, g) T1
farbelow (f, g) + T2

farbelow (f, g)

↓ NT Vα + Eα NT Vα
↓

BAstop (f, g) + BAparaproduct (f, g) + BAneighbour (f, g)

Edeep
α +

√
Aα2 TTα

√
Aα2

We begin with the NTV cube size splitting of the inner product 〈Tασ f, g〉ω - and
later apply the iterated corona construction - that splits the pairs of cubes (I, J)
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in a simultaneous Haar decomposition of f and g into four groups, namely those
pairs that:

1. are below the size diagonal and ρ-deeply embedded,

2. are above the size diagonal and ρ-deeply embedded,

3. are disjoint, and

4. are of ρ-comparable size.

More precisely we have

〈Tασ f, g〉ω =
∑

I∈Dσ, J∈Dω
〈Tασ (4σI f) , (4ωI g)〉ω

=
∑

I∈Dσ, J∈Dω
JbρI

〈Tασ (4σI f) , (4ωJg)〉ω +
∑

I∈Dσ, J∈Dω
JρcI

〈Tασ (4σI f) , (4ωJg)〉ω

+
∑

I∈Dσ, J∈Dω
J∩I=∅

〈Tασ (4σI f) , (4ωJg)〉ω +
∑

I∈Dσ, J∈Dω
2−nρ≤|J|�|I|≤2nρ

〈Tασ (4σI f) , (4ωJg)〉ω

= Bbρ (f, g) + B
ρc (f, g) + B∩ (f, g) + B� (f, g) .

Lemma 5 in the section on NTV peliminaries show that the disjoint and com-
parable forms B∩ (f, g) and B� (f, g) are both bounded by the Aα2 , testing and
weak boundedness property constants. The below and above forms are clearly
symmetric, so we need only consider the form Bbρ (f, g), to which we turn for the
remainder of the proof.

In order to bound the below form Bbρ (f, g), we will apply two different corona
decompositions in succession to the function f ∈ L2 (σ), gaining structure with
each application; first to a boundedness property for f , and then to a regularizing
property of the weight σ. We first apply the Calderón-Zygmund corona decompo-
sition to the function f ∈ L2 (σ) obtain

f =
∑
F∈F

PσCσF f.

Then for each fixed F ∈ F , construct the energy corona decomposition {CσS}S∈S(F )

corresponding to the weight pair (σ, ω) with top cube S0 = F , as given in Defini-
tion 5. At this point we apply Lemma 7 to obtain iterated stopping times S (F)
and iterated stopping data

{
αS(F) (S)

}
S∈S(F)

. This gives us the following double

corona decomposition of f ,

f =
∑
F∈F

PσCσF f =
∑
F∈F

∑
S∈S(F )

PσCσSP
σ
CσF
f(8.7)

=
∑

S∈S(F )

PσCσS∩CσF f =
∑

S∈S(F)

PσCσSf

≡
∑
A∈A

PσCAf,
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where A ≡ S (F) is the double stopping collection for f . We are relabeling the
double corona as A here so as to minimize confusion. We now record the main
facts proved above for the double corona.

Lemma 8. The data A and {αA (A)}A∈A satisfy properties (1), (2), (3) and (4)
in Definition 6.

To bound Bbρ (f, g) we fix the stopping data A and {αA (A)}A∈A constructed
above with the double iterated corona. We now consider the following canonical
splitting of the form Bbρ (f, g) that involves the Haar corona projections PσCA acting
on f and the τ -shifted Haar corona projections PωCτ−shift

B

acting on g. Here the τ -

shifted corona Cτ−shift
B is defined to include only those cubes J ∈ CB that are not

τ -nearby B, and to include also such cubes J which in addition are τ -nearby in
the children B′ of B.

Definition 8. The parameters τ and ρ are now fixed to satisfy

τ > r and ρ > r + τ,

where r is the goodness parameter already fixed.

Definition 9. For B ∈ A we define

Cτ−shift
B = {J ∈ CB : J bτ B}∪

⋃
B′∈CA(B)

{J ∈ D : J bτ B and J is τ -nearby in B′} .

The forms Bbρ (f, g) are no longer linear in f and g as the ‘cut’ is determined

by the coronas CF and Cτ−shift
G , which depend on f as well as the measures σ and ω.

However, if the coronas are held fixed, then the forms can be considered bilinear
in f and g. It is convenient at this point to introduce the following shorthand
notation:〈

Tασ
(
PσCF f

)
,
(
PωCτ−shift

G

g
)〉bρ

ω
≡

∑
I∈CF and J∈Cτ−shift

G
JbρI

〈Tασ (4σI f) , (4ωJg)〉ω .

We then have the canonical splitting,

Bbρ (f, g)(8.8)

=
∑

A,B∈A

〈
Tασ
(
PσCAf

)
,PωCτ−shift

B

g
〉bρ
ω

=
∑
A∈A

〈
Tασ
(
PσCAf

)
,
(
PωCτ−shift

A

g
)〉bρ

ω
+

∑
A,B∈A
B$A

〈
Tασ
(
PσCAf

)
,
(
PωCτ−shift

B

g
)〉bρ

ω

+
∑

A,B∈A
B%A

〈
Tασ
(
PσCF f

)
,
(
PωCτ−shift

G

g
)〉bρ

ω
+

∑
A,B∈A
A∩B=∅

〈
Tασ
(
PσCF f

)
,
(
PωCτ−shift

G

g
)〉bρ

ω

≡ Tdiagonal (f, g) + Tfarbelow (f, g) + Tfarabove (f, g) + Tdisjoint (f, g) .
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Now the final two terms Tfarabove (f, g) and Tdisjoint (f, g) each vanish since there
are no pairs (I, J) ∈ CA × Cτ−shift

B with both (i) J b I and (ii) either B $ A or
B ∩A = ∅.

The far below term Tfarbelow (f, g) is bounded using the Intertwining Proposi-
tion and the control of functional energy condition by the energy condition given
in the next two sections. Indeed, assuming these two results, we have from τ < ρ
that

Tfarbelow (f, g) =
∑

A,B∈A
B$A

∑
I∈CA and J∈Cτ−shift

B
JbρI

〈Tασ (4σI f) , (4ωJg)〉ω

=
∑
B∈A

∑
A∈A: B$A

∑
I∈CA and J∈Cτ−shift

B
JbρI

〈Tασ (4σI f) , (4ωJg)〉ω

=
∑
B∈A

∑
A∈A: B$A

∑
I∈CA and J∈Cτ−shift

B

〈Tασ (4σI f) , (4ωJg)〉ω

−
∑
B∈A

∑
A∈A: B$A

∑
I∈CA and J∈Cτ−shift

B
J 6bρI

〈Tασ (4σI f) , (4ωJg)〉ω

= T1
farbelow (f, g)− T2

farbelow (f, g) .

Now T2
far below (f, g) is bounded by NT Vα by Lemma 5.

The form T1
farbelow (f, g) can be written as

T1
farbelow (f, g) =

∑
B∈A

∑
I∈D: B$I

〈Tασ (4σI f) , gB〉ω ;

where gB ≡
∑

J∈Cτ−shift
B

4ωJg .

The Intertwining Proposition 1 applies to this latter form and shows that it is
bounded by NT Vα + Fα. Then Proposition 2 shows that Fα . Aα2 + Eα, which
completes the proof that

(8.9) |Tfarbelow (f, g)| . (NT Vα + Eα) ‖f‖L2(σ) ‖g‖L2(ω) .

The boundedness of the diagonal term Tdiagonal (f, g) will then be reduced to
the forms in the paraproduct/neighbour/stopping form decomposition of NTV.
The stopping form is then further split into two sublinear forms in (11.6) below,
where the boundedness of the more difficult of the two is treated by adapting the
stopping time and recuresion of M. Lacey [Lac]. More precisely, to handle the
diagonal term Tdiagonal (f, g), it is enough to consider the individual corona pieces

BAbρ (f, g) ≡
〈
Tασ
(
PσCAf

)
,PωCτ−shift

A

g
〉b
ω
,
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and to prove the following estimate:∣∣∣BAbρ (f, g)
∣∣∣ . (NT Vα + Eα)

(
αA (A)

√
|A|σ +

∥∥PσCAf∥∥L2(σ)

) ∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

.

Indeed, we then have from Cauchy-Schwarz that∑
A∈A

∣∣∣BAbρ (f, g)
∣∣∣ =

∑
A∈A

∣∣∣BAbρ (PσCAf,PωCτ−shift
A

g
)∣∣∣

. (NT Vα + Eα)

(∑
A∈A

αA (A)
2 |A|σ +

∥∥PσCAf∥∥2

L2(σ)

) 1
2
(∑
A∈A

∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

) 1
2

. (NT Vα + Eα) ‖f‖L2(σ) ‖g‖L2(ω) ,

where the last line uses quasiorthogonality in f and orthogonality in both f and
g.

Following arguments in [NTV4], [Vol] and [LaSaShUr], we now use the para-
product / neighbour / stopping splitting of NTV to reduce boundedness of BAbρ (f, g)
to boundedness of the associated stopping form

(8.10) BAstop (f, g) ≡
∑

I∈suppf̂

∑
J: JbρI and IJ /∈A

(
EσIJ 4

σ
I f
) 〈

Tασ 1A\IJ ,4
ω
Jg
〉
ω
,

where f is supported in the cube A and bounded by αA (f), the Haar support

Haarsuppf̂ of f is contained in the corona CσA, and the Haar support Haarsuppĝ is
contained in Cτ−shift

A . Indeed, to see this, we note that 4σI f = 1I 4σI f and write
both

1I = 1IJ +
∑

θ(IJ )∈CD(I)\{IJ}

1θ(IJ ) ,

1IJ = 1A − 1A\IJ ,

where θ (IJ) ∈ CD (I) \ {IJ} ranges over the 2n − 1 D-children of I other than the
child IJ that contains J . Then we obtain

〈Tασ 4σI f,4ωJg〉ω = 〈Tασ (1IJ 4σI f) ,4ωJg〉ω +
∑

θ(IJ )∈CD(I)\{IJ}

〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω

=
(
EσIJ 4

σ
I f
)
〈1IJTασ (1IJ ) ,4ωJg〉ω +

∑
θ(IJ )∈CD(I)\{IJ}

〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω

=
(
EσIJ 4

σ
I f
)
〈Tασ 1A,4ωJg〉ω

−
(
EσIJ 4

σ
I f
) 〈
Tασ 1A\IJ ,4

ω
Jg
〉
ω

+
∑

θ(IJ )∈CD(I)\{IJ}

〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω
,
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and the corresponding NTV splitting of BAbρ (f, g):

BAbρ (f, g) =
〈
Tασ
(
PσCAf

)
,
(
PωCτ−shift

A

g
)〉bρ

ω
=

∑
I∈CA and J∈Cτ−shift

A
JbρI

〈Tασ (4σI f) , (4ωJg)〉ω

=
∑

I∈CA and J∈Cτ−shift
A

JbρI

(
EσIJ 4

σ
I f
)
〈Tασ 1A,4ωJg〉ω

−
∑

I∈CA and J∈Cτ−shift
A

JbI

(
EσIJ 4

σ
I f
) 〈
Tασ 1A\IJ ,4

ω
Jg
〉
ω

+
∑

I∈CA and J∈Cτ−shift
A

JbρI

∑
θ(IJ )∈CD(I)\{IJ}

〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω

≡ BAparaproduct (f, g)− BAstop (f, g) + BAneighbour (f, g) .

The paraproduct form BAparaproduct (f, g) is easily controlled by the testing condi-
tion for Tα. Indeed, we have

BAparaproduct (f, g) =
∑

I∈CA and J∈Cτ−shift
A

JbI

(
EσIJ 4

σ
I f
)
〈Tασ 1A,4ωJg〉ω

=
∑

J∈Cτ−shift
A

〈Tασ 1A,4ωJg〉ω

{ ∑
I∈CA: JbI

(
EσIJ 4

σ
I f
)}

=
∑

J∈Cτ−shift
A

〈Tασ 1A,4ωJg〉ω
{
EσI\(J)J

f − EσAf
}

=

〈
Tασ 1A,

∑
J∈Cτ−shift

A

{
EσI\(J)J

f − EσAf
}
4ωJ g

〉
ω

,

where I\ (J) denotes the smallest cube I ∈ CA that contains J , and of course
I\ (J)J denotes its child containing J . By construction of the corona we have

I\ (J)J /∈ A, and so
∣∣∣EσI\(J)J

f
∣∣∣ . EσA |f | ≤ αA (A). Note that in our application

of the stopping form we have f = PσCAf and g = PωCτ−shift
A

g, and the definitions of

the coronas CA and Cτ−shift
A together with r < τ < ρ imply that I\ (J)J /∈ A for

J ∈ Cτ−shift
A .

Thus from the orthogonality of the Haar projections 4ωJg and the bound on
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the coefficients
∣∣∣EσI\(J)J

f − EσAf
∣∣∣ . αA (A) we have

∣∣BAparaproduct (f, g)
∣∣ =

∣∣∣∣∣∣∣
〈
Tασ 1A,

∑
J∈Cτ−shift

A

{
EσI\(J)J

f − EσAf
}
4ωJ g

〉
ω

∣∣∣∣∣∣∣
. αA (A) ‖1ATασ 1A‖L2(σ)

∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

≤ TTα αA (A)
√
|A|σ

∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

.

Next, the neighbour form BAneighbour (f, g) is easily controlled by the Aα2 con-
dition using the Energy Lemma 4 and the fact that the cubes J are good. In
particular, the information encoded in the stopping tree A plays no role here. We
have

BAneighbour (f, g) =
∑

I∈CA and J∈Cτ−shift
A

JbρI

∑
θ(IJ )∈CD(I)\{IJ}

〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω
.

Recall that IJ is the child of I that contains J . Fix θ (IJ) ∈ CD (I) \ {IJ} momen-
tarily, and an integer s ≥ r. The inner product to be estimated is〈

Tασ (1θ(IJ )σ∆σ
I f),∆ω

Jφ
〉
ω
,

i.e. 〈
Tασ
(
1θ(IJ ) 4σI f

)
,4ωJg

〉
ω

= Eσθ(IJ )∆
σ
I f ·

〈
Tασ
(
1θ(IJ )

)
,4ωJg

〉
ω
.

Thus we can write
(8.11)

BAneighbour (f, g) =
∑

I∈CA and J∈Cτ−shift
A

JbρI

∑
θ(IJ )∈CD(I)\{IJ}

(
Eσθ(IJ )∆

σ
I f
) 〈

Tασ
(
1θ(IJ )σ

)
,∆ω

Jφ
〉
ω

Now we will use the following fractional analogue of the Poisson inequality in
[Vol].

Lemma 9. Suppose that J ⊂ I ⊂ K and that dist (J, ∂I) > 1
2 ||J |

ε
n |I|

1−ε
n . Then

(8.12) Pα(J, σ1K\I) .

(
|J |

1
n

|I|
1
n

)1−ε(n+1−α)

Pα(I, σ1K\I).

Proof. We have

Pα
(
J, σχK\I

)
≈
∞∑
k=0

2−k
1

|2kJ |1−
α
n

∫
(2kJ)∩(K\I)

dσ,
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and
(
2kJ

)
∩
(
Î \ I

)
6= ∅ requires

dist (J, e (I)) ≤
∣∣2kJ∣∣ 1n .

Let k0 be the smallest such k. By our distance assumption we must then have

|J |
ε
n |I|

1−ε
n ≤ dist (J, e (I)) ≤ 2k0 |J |

1
n ,

or

2−k0 ≤

(
|J |

1
n

|I|
1
n

)1−ε

.

Now let k1 be defined by 2k1 ≡ |I|
1
n

|J|
1
n

. Then assuming k1 > k0 (the case k1 ≤ k0 is

similar) we have

Pα
(
J, σχÎ\I

)
≈

{
k1∑
k=k0

+

∞∑
k=k1

}
2−k

1

|2kJ |1−
α
n

∫
(2kJ)∩(K\I)

dσ

. 2−k0
|I|1−

α
n

|2k0J |1−
α
n

(
1

|I|1−
α
n

∫
(2k1J)∩(K\I)

dσ

)
+ 2−k1Pα

(
I, σχÎ\I

)

.

(
|J |

1
n

|I|
1
n

)(1−ε)(n+1−α)(
|I|

1
n

|J |
1
n

)n−α
Pα
(
I, σχK\I

)
+
|J |

1
n

|I|
1
n

Pα
(
I, σχK\I

)
,

which is the inequality (8.12). 2

Now fix I0, Iθ ∈ CD (I) with I0 6= Iθ and assume that J br I0. Use ‖∆ω
Jg‖L2(ω) =∣∣〈g, hωJ 〉ω∣∣ and |J|

1
n

|I0|
1
n

= 2−s in the pivotal estimate in the Energy Lemma 4 with

J ⊂ I0 ⊂ I to obtain

|〈Tασ (1Iθσ) ,∆ω
Jg〉ω| . ‖∆ω

Jg‖L2(ω)

√
|J |ωPα (J,1Iθσ)

. ‖∆ω
Jg‖L2(ω)

√
|J |ω · 2

− 1
n (1−ε(n+1−α))sPα (I0,1Iθσ)

Here we are using (8.12), which applies since J ⊂ I0.
In the sum below, we keep the side length of the cubes J fixed, and of course

J ⊂ I0. We estimate

A(I, θ, s) ≡
∑

J : 2s|J|
1
n=|I|

1
n :J⊂I0

|〈Tασ (1Iθσ∆σ
I f) ,∆ω

Jg〉ω|

≤ 2−
1
n (1−ε(n+1−α))s|EσIθ∆

σ
I f | Pα(I0,1Iθσ)

∑
J : 2s|J|

1
n=|I|

1
n : J⊂I0

‖∆ω
Jg‖L2(ω)

√
|J |ω

≤ 2−(1−ε(n+1−α))s|EσIθ∆
σ
I f | Pα(I0,1Iθσ)

√
|I0|ωΛ(I, θ, s),

Λ(I, s)2 ≡
∑

J∈Cτ−shift
A : 2s|J|

1
n=|I|

1
n : J⊂I0

‖∆ω
Jg‖

2
L2(ω) .
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The last line follows upon using the Cauchy-Schwarz inequality. Using

(8.13)
∣∣EσIθ∆σ

I f
∣∣ ≤√EσIθ |∆

σ
I f |

2 ≤ ‖∆σ
I f‖L2(σ) |Iθ|

− 1
2

σ ,

we can thus estimate A(I, θ, s) as follows, in which we use the Aα2 hypothesis

supI
|I|σ|I|ω

|I|2(1−α
n )

= Aα2 <∞:

A(I, θ, s) . 2−
1
n (1−ε(n+1−α))s ‖∆σ

I f‖L2(σ) Λ(I, θ, s) · |Iθ|−
1
2

σ Pα(I0,1Iθσ)
√
|I0|ω

.
√
Aα2 2−

1
n (1−ε(n+1−α))s ‖∆σ

I f‖L2(σ) Λ (I, s) ,

since Pα(Iθ,1I−θσ) . |Iθ|σ
|Iθ|1−

α
n

shows that

|Iθ|−
1
2

σ Pα(I0,1Iθσ)
√
|I0|ω .

√
|Iθ|σ

√
|I0|ω

|I|1−
α
n

.
√
Aα2 .

An application of Cauchy-Schwarz using
∑
I∈CA Λ (I, s)

2
=
∥∥∥PωCτ−shift

A

g
∥∥∥2

L2(ω)
then

shows that∑
I∈CA

A(I, θ, s) .
√
Aα2 2−

1
n (1−ε(n+1−α))s‖PσCAf‖L2(σ)

∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

.

This estimate is summable in s ≥ r, and so the proof of∣∣BAneighbour (f, g)
∣∣ .√Aα2 ∥∥PσCAf∥∥L2(σ)

∥∥∥PωCτ−shift
A

g
∥∥∥
L2(ω)

is complete.

It is to the sublinear form on the left side of (11.7) below, derived from the
stopping form BAstop (f, g), that the argument of M. Lacey in [Lac] will be adapted.
This will result in the inequality
(8.14)∣∣BAstop (f, g)

∣∣ . (Edeep
α +

√
Aα2

) (
αA (A)

√
|A|σ + ‖f‖L2(σ)

)
‖g‖L2(ω) , A ∈ A,

where the bounded averages of f in BAstop (f, g) will prove crucial. But first we turn
to completing the proof of the bound (8.9) for the far below form Tfarbelow (f, g)
using the Intertwining Proposition.

9. Intertwining proposition

Here we generalize the Intertwining Proposition (see e.g. [Expanded]) to higher
dimensions. The main principle here says that, modulo terms that are controlled
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by the functional energy constant Fα and the NTV constant NT Vα (see below),
we can pass the shifted ω-corona projection PωCτ−shift

B

through the operator Tα to

become the shifted corona projection σ-corona projection PσCτ−shift
B

. More precisely,

the idea is that with Tασ f ≡ Tα (fσ), the intertwining operator

PωCτ−shift
B

[
PωCτ−shift

B

Tασ − Tασ PσCτ−shift
B

]
PσCA

is bounded with constant Fα +NT Vα. In those cases where the coronas Cτ−shift
B

and CA are (almost) disjoint, the intertwining operator reduces (essentially) to
PωCτ−shift

B

Tασ P
σ
CA , and then combined with the control of the functional energy con-

stant Fα by the energy condition constant Eα and Aα2 +Aα,∗2 , we obtain the required
bound (8.9) for Tfarbelow (f, g) above.

To describe the quantities we use to bound these forms, we need to adapt to
higher dimensions three definitions used for the Hilbert transform that are relevant
to functional energy.

Definition 10. A collection F of dyadic cubes is σ-Carleson if∑
F∈F : F⊂S

|F |σ ≤ CF |S|σ , S ∈ F .

The constant CF is referred to as the Carleson norm of F .

Definition 11. Let F be a collection of dyadic cubes. The good τ -shifted corona
corresponding to F is defined by

Cgood,τ−shift
F ≡

{
J ∈ Dωgood : J bτ F and J 6bτ F ′ for any F ′ ∈ CF (F )

}
.

Note that the collections Cgood,τ−shift
F have bounded overlap τ since for fixed

J , there are at most τ cubes F ∈ F with the property that J bτ F and J 6bτ F ′
for any F ′ ∈ CF (F ). Here CF (F ) denotes the set of F-children of F . Given any
collection H ⊂ D of cubes, and a dyadic cube J , we define the corresponding Haar
projection PωH and its localization PωH;J to J by

(9.1) PωH =
∑
H∈H

4ωH and PωH;J =
∑

H∈H: H⊂J
4ωH .

Definition 12. Let Fα be the smallest constant in the ‘functional energy’ inequal-
ity below, holding for all h ∈ L2 (σ), g ∈ L2 (ω) and all σ-Carleson collections
F :

(9.2)
∑
F∈F

∑
J∈Mr−deep(F )

(
Pα (J, hσ)

|J |
1
n

)2 ∥∥∥PωCgood,τ−shift
F ;J

x
∥∥∥2

L2(ω)
≤ Fα‖h‖L2(σ) .

There is a similar definition of the dual constant F∗α.
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We now show that the functional energy inequality (9.2) suffices to prove
an α-fractional n-dimensional analogue of the Intertwining Proposition (see e.g.
[Expanded]). Let F be any subset of D. For any J ∈ D, we define π0

FJ to be
the smallest F ∈ F that contains J . Then for s ≥ 1, we recursively define πsFJ
to be the smallest F ∈ F that strictly contains πs−1

F J . This definition satisfies
πs+tF J = πsFπ

t
FJ for all s, t ≥ 0 and J ∈ D. In particular πsFJ = πsFF where

F = π0
FJ . In the special case F = D we often suppress the subscript F and simply

write πs for πsD. Finally, for F ∈ F , we write CF (F ) ≡
{
F ′ ∈ F : π1

FF
′ = F

}
for

the collection of F-children of F . Let

NT Vα ≡
√
Aα2 + Tα +WBPα.

Proposition 1 (The Intertwining Proposition). Suppose that F is σ-Carleson.
Then∣∣∣∣∣∣

∑
F∈F

∑
I: I%F

〈
Tασ 4σI f,PωCgood,τ−shift

F

g
〉
ω

∣∣∣∣∣∣ . (Fα +NT Vα) ‖f‖L2(σ) ‖g‖L2(ω) .

Proof. We let gF = Pω
Cgood,τ−shift
F

g and write the left hand side of the display above
as

∑
F∈F

∑
I: I%F

〈Tασ 4σI f, gF 〉ω =
∑
F∈F

〈
Tασ

 ∑
I: I%F

4σI f

 , gF

〉
ω

≡
∑
F∈F

〈Tασ fF , gF 〉ω ,

where
fF ≡

∑
I: I%F

4σI f .

We note that the cubes I occurring in this sum are linearly and consecutively
ordered by inclusion, along with the cubes F ′ ∈ F that contain F . More precisely,
we can write

F ≡ F0 $ F1 $ F2 $ ... $ Fn $ Fn+1 $ ...FN

where Fm = πmF F for all m ≥ 1. We can also write

F = F0 $ I1 $ I2 $ ... $ Ik $ Ik+1 $ ... $ IK = FN

where Ik = πkDF for all k ≥ 1. There is a (unique) subsequence {km}Nm=1 such
that

Fm = Ikm , 1 ≤ m ≤ N.

Define

fF (x) =

∞∑
`=1

4σI`f (x) .

Assume now that km ≤ k < km+1. There are two cases to consider here:

θ (Ik) /∈ F and θ (Ik) ∈ F .
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Suppose first that θ (Ik) /∈ F . Then θ (Ik) ∈ CσFm+1
and using a telescoping sum,

we compute that for

x ∈ θ (Ik) = Ik+1 \ Ik ⊂ Fm+1 \ Fm,

we have

|fF (x)| =

∣∣∣∣∣
∞∑
`=k

4σI`f (x)

∣∣∣∣∣ =
∣∣∣Eσθ(Ik)f − EσIKf

∣∣∣ . EσFm+1
|f | .

On the other hand, if θ (Ik) ∈ F , then Ik+1 ∈ CσFm+1
and we have

∣∣∣fF (x)−4σθ(Ik)f (x)
∣∣∣ =

∣∣∣∣∣
∞∑

`=k+1

4σI`f (x)

∣∣∣∣∣ =
∣∣∣EσIk+1

f − EσIKf
∣∣∣ . EσFm+1

|f | .

Now we write

fF = ϕF + ψF ,

ϕF ≡
∞∑

k: θ(Ik)∈F

4σIkf and ψF = fF − ϕF ;

∑
F∈F

〈Tασ fF , gF 〉ω =
∑
F∈F

〈Tασ ϕF , gF 〉ω +
∑
F∈F

〈Tασ ψF , gF 〉ω .

We can apply (7.4) to the first sum here to obtain∣∣∣∣∣∑
F∈F

〈Tασ ϕF , gF 〉ω

∣∣∣∣∣ . NT Vα

∥∥∥∥∥∑
F∈F

ϕF

∥∥∥∥∥
L2(σ)

∥∥∥∥∥∑
F∈F

gF

∥∥∥∥∥
2

L2(ω)

. NT Vα ‖f‖L2(σ)

[∑
F∈F
‖gF ‖2L2(ω)

] 1
2

.

Turning to the second sum we note that

|ψF | ≤
N∑
m=0

(
EσFm+1

|f |
)

1Fm+1\Fm = (EσF |f |) 1F +

N∑
m=0

(
Eσ
πm+1
F F

|f |
)

1πm+1
F F\πmF F

= (EσF |f |) 1F +
∑

F ′∈F : F⊂F ′

(
EσπFF ′ |f |

)
1πFF ′\F ′

≤ αF (F ) 1F +
∑

F ′∈F : F⊂F ′
αF (πFF

′) 1πFF ′\F ′

≤ αF (F ) 1F +
∑

F ′∈F : F⊂F ′
αF (πFF

′) 1πFF ′ 1F c

= αF (F ) 1F + Φ 1F c , for all F ∈ F ,
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where
Φ ≡

∑
F ′′∈F

αF (F ′′) 1F ′′ .

Now we write∑
F∈F

〈Tασ ψF , gF 〉ω =
∑
F∈F

〈Tασ (1FψF ) , gF 〉ω +
∑
F∈F

〈Tασ (1F cψF ) , gF 〉ω ≡ I + II.

Then cube testing and quasiorthogonality give

|I| ≤
∑
F∈F

|〈Tασ 1F , gF 〉ω| .
∑
F∈F

αF (F ) |〈Tασ 1F , gF 〉ω|

.
∑
F∈F

αF (F )NT Vα
√
|F |σ ‖gF ‖L2(ω) . NT Vα ‖f‖L2(σ)

[∑
F∈F
‖gF ‖2L2(ω)

] 1
2

.

Now 1F cψF is supported outside F , and each J in the Haar support of gF is r-
deeply embedded in F , i.e. J br F . Thus we can apply the Energy Lemma 4 to
obtain

|II| =

∣∣∣∣∣∑
F∈F
〈Tασ (1F cψF ) , gF 〉ω

∣∣∣∣∣
.

∑
F∈F

∑
J∈Mr−deep(F )

Pα (J,1F cΦσ)

|J |
1
n

∥∥∥PωCgood,τ−shift
F ;J

x
∥∥∥
L2(ω)

‖PωJgF ‖L2(ω)

+
∑
F∈F

∑
J∈Mr−deep(F )

Pα1+δ′ (J,1F cΦσ)

|J |
1
n

∥∥∥∥Pω(Cgood,τ−shift
F )

∗
;J

x

∥∥∥∥
L2(ω)

‖PωJgF ‖L2(ω)

≡ IIG + IIB .

Then from Cauchy-Schwarz, the functional energy condition, and ‖Φ‖L2(σ) .
‖f‖L2(σ) we obtain

|IIG| ≤

∑
F∈F

∑
J∈Mr−deep(F )

(
Pα (J,1F cΦσ)

|J |
1
n

)2 ∥∥∥PωCgood,τ−shift
F ;J

x
∥∥∥2

L2(ω)

 1
2

×

∑
F∈F

∑
J∈Mr−deep(F )

‖PωJgF ‖
2
L2(ω)

 1
2

. Fα ‖Φ‖L2(σ)

[∑
F∈F
‖gF ‖2L2(ω)

] 1
2

. Fα ‖f‖L2(σ) ‖g‖L2(ω) ,

by the bounded overlap by τ of the shifted coronas Cgood,τ−shift
F .

In term IIB the projections Pω
(Cgood,τ−shift
F )

∗
;J

are no longer almost orthogonal,

and we must instead exploit the decay in the Poisson integral Pα1+δ along with
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goodness of the cubes J . This idea was already used by M. Lacey and B. Wick
in [LaWi] in a similar situation. As a consequence of this decay we will be able
to bound IIB directly by the energy condition, without having to invoke the more
difficult functional energy condition. For the decay we compute

Pα1+δ′ (J,Φσ)

|J |
1
n

=

∫
F c

|J |
δ′
n

|y − cJ |n+1+δ−αΦ (y) dσ (y)

≤
∞∑
t=0

∫
πt+1
F F\πtFF

(
|J |

1
n

dist
(
cJ , (πtFF )

c)
)δ′

1

|y − cJ |n+1−αΦ (y) dσ (y)

≤
∞∑
t=0

(
|J |

1
n

dist
(
cJ , (πtFF )

c)
)δ′ Pα

(
J,1πt+1

F F\πtFF
Φσ
)

|J |
1
n

,

and then use the goodness inequality

dist
(
cJ ,
(
πtFF

)c) ≥ 1

2

∣∣πtFF ∣∣ 1−εn |J | εn ≥ 1

2
2t(1−ε) |F |

1−ε
n |J |

ε
n ≥ 2t(1−ε)−1 |J |

1
n ,

to conclude that

(
Pα1+δ (J,1F cΦσ)

|J |
1
n

)2

.

 ∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1πt+1

F F\πtFF
Φσ
)

|J |
1
n

2

(9.3)

.
∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1πt+1

F F\πtFF
Φσ
)

|J |
1
n

2

.

Now we apply Cauchy-Schwarz to obtain

IIB =
∑
F∈F

∑
J∈Mr−deep(F )

Pα1+δ′ (J,1F cΦσ)

|J |
1
n

∥∥∥∥Pω(Cgood,τ−shift
F )

∗
;J

x

∥∥∥∥
L2(ω)

‖PωJgF ‖L2(ω)

≤

∑
F∈F

∑
J∈Mr−deep(F )

(
Pα1+δ′ (J,1F cΦσ)

|J |
1
n

)2 ∥∥∥∥Pω(Cgood,τ−shift
F )

∗
;J

x

∥∥∥∥2

L2(ω)

 1
2 [∑

F

‖gF ‖2L2(ω)

] 1
2

≡
√
IIenergy

[∑
F

‖gF ‖2L2(ω)

] 1
2

,

and it remains to estimate IIenergy. From (9.3) and the deep energy condition we
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have

IIenergy

≤
∑
F∈F

∑
J∈Mr−deep(F )

∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1πt+1

F F\πtFF
Φσ
)

|J |
1
n

2 ∥∥∥∥Pω(Cgood,τ−shift
F )

∗
;J

x

∥∥∥∥2

L2(ω)

=

∞∑
t=0

2−tδ
′(1−ε)

∑
G∈F

∑
F∈C(t+1)

F (G)

Pα
(
J,1G\πtFFΦσ

)
|J |

1
n

2 ∑
J∈Mr−deep(F )

∥∥∥∥Pω(Cgood,τ−shift
F )

∗
;J

x

∥∥∥∥2

L2(ω)

.
∞∑
t=0

2−tδ
′(1−ε)

∑
G∈F

αF (G)
2

∑
F∈C(t+1)

F (G)

Pα
(
J,1G\πtFFσ

)
|J |

1
n

2 ∑
J∈Mr−deep(F )

‖PωJx‖2L2(ω)

.
∞∑
t=0

2−tδ
′(1−ε)

∑
G∈F

αF (G)
2 Eα |G|σ . Eα ‖f‖2L2(σ) .

This completes the proof of the Intertwining Proposition 1. 2

10. Control of functional energy by energy modulo Aα
2

Now we show that the functional energy constants Fα are controlled by Aα2 and
both the deep and refined energy constants Edeep

α and Erefined
α defined in Definition

4. Recall (Eα)
2

=
(
Edeep
α

)2
+
(
Erefined
α

)2
.

Proposition 2.

Fα . Eα +
√
Aα2 +

√
Aα,∗2 and F∗α . E∗α +

√
Aα2 +

√
Aα,∗2 .

To prove this proposition, we fix F as in (9.2) and set

(10.1) µ ≡
∑
F∈F

∑
J∈Mr−deep(F )

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

· δ(
c(J),|J|

1
n

) ,

whereMr−deep (F ) consists of the maximal r-deeply embedded subcubes of F . For
convenience in notation, we denote for any dyadic cube J the localized projection
Pω
Cgood,τ−shift
F ;J

given in (9.1) by

PωF,J ≡ PωCgood,τ−shift
F ;J

=
∑

J′⊂J: J′∈Cgood,τ−shift
F

4ωJ′ .

We emphasize that the cubes J ∈Mr−deep (F ) are not necessarily good, but that
the subcubes J ′ ⊂ J arising in the projection PωF,J are good. We can replace x by
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x−c inside the projection for any choice of c we wish; the projection is unchanged.
Here δq denotes a Dirac unit mass at a point q in the upper half plane R2

+.
We prove the two-weight inequality

(10.2) ‖Pα(fσ)‖L2(Rn+1
+ ,µ) .

(
Eα +

√
Aα2 +

√
Aα,∗2

)
‖f‖L2(σ) ,

for all nonnegative f in L2 (σ), noting that F and f are not related here. Above,
Pα(·) denotes the α-fractional Poisson extension to the upper half-space Rn+1

+ ,

Pαν (x, t) ≡
∫
Rn

t(
t2 + |x− y|2

)n+1−α
2

dν (y) ,

so that in particular

‖Pα(fσ)‖2L2(Rn+1
+ ,µ) =

∑
F∈F

∑
J∈Mr−deep(F )

Pα (fσ) (c(J), |J |
1
n )2

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

,

and so (10.2) proves the first line in Proposition 2 upon inspecting (9.2).
By the two-weight inequality for the Poisson operator in [Saw], inequality (10.2)

requires checking these two inequalities

(10.3)

∫
Rn+1

+

Pα (1Iσ) (x, t)
2
dµ (x, t) ≡ ‖Pα (1Iσ)‖2L2(Î,µ) .

(
Aα,∗2 + E2

α

)
σ(I) ,

(10.4)

∫
R

[Pα∗(t1Îµ)]2dσ(x) .
(
Aα2 + Eα

√
Aα2
)∫

Î

t2dµ(x, t),

for all dyadic cubes I ∈ D, where Î = I × [0, |I|] is the box over I in the upper
half-space, and

Pα∗(t1Îµ) (x) =

∫
Î

t2

(t2 + |x− y|2)
n+1−α

2

dµ (y, t) .

It is important to note that we can choose for D any fixed dyadic grid, the com-
pensating point being that the integrations on the left sides of (10.3) and (10.4)
are taken over the entire spaces Rn+ and Rn respectively.

Remark 9. There is a gap in the proof of the Poisson inequality at the top of page
542 in [Saw]. However, this gap can be fixed as in [SaWh] or [LaSaUr1].

The following elementary Poisson inequalities will be used extensively.

Lemma 10. Suppose that J,K, I are cubes satisfying J ⊂ K ⊂ 2K ⊂ I, and that
µ is a positive measure supported in Rn \ I. Then

Pα (J, µ)

|J |
1
n

.
Pα (K,µ)

|K|
1
n

.
Pα (J, µ)

|J |
1
n

.
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Proof. We have

Pα (J, µ)

|J |
1
n

=
1

|J |
1
n

∫
|J |

1
n(

|J |
1
n + |x− cJ |

)n+1−α dµ (x) ,

where J ⊂ K ⊂ 2K ⊂ I implies that

|J |
1
n + |x− cJ | ≈ |K|

1
n + |x− cK | , x ∈ Rn \ I.

2

Now we record the bounded overlap of the projections PωF,J .

Lemma 11. Suppose PωF,J is as above and fix any I0 ∈ D. If J ∈ Mr−deep (F )

for some F ∈ F with F % I0 and PωF,J 6= 0, then

F = π
(`)
F I0 for some 0 ≤ ` ≤ τ.

As a consequence we have the bounded overlap,

#
{
F ∈ F : J ⊂ I0 $ F for some J ∈Mr−deep (F ) with PωF,J 6= 0

}
≤ τ.

Proof. Indeed, if J ′ ∈ Cgood,τ−shift

π
(`)
F I0

for some ` > τ , then either J ′ ∩ π(0)
F I0 = ∅ or

J ′ ⊃ π
(0)
F I0. Since J ⊂ I0 ⊂ π

(0)
F I0, we cannot have J ′ contained in J , and this

shows that Pω
π
(`)
F I0,J

= 0. 2

Finally we record the only place in the proof where the refined energy condition
is used. This lemma will be used in bounding both of the Poisson testing conditions.

Lemma 12. Let F and
{
PωF,J

}
F∈F

J∈Mr−deep(F )
be as above. For any dyadic cube

I0 ∈ D define

(10.5) B (I0) ≡
∑

F∈F : F%I0

∑
J∈Mr−deep(F ): J⊂I0

(
Pα (J,1F∩I0σ)

|J |
1
n

)2 ∥∥PωF,Jx
∥∥2

L2(ω)
.

Then

(10.6) B (I0) . τ
((
Erefinedplug
α

)2
+
(
Edeepplug
α

)2) |I0|σ . τ
(

(Eα)
2

+ βAα2

)
|I0|σ .

Proof. Define

Λ (I0) ≡
{
J ⊂ I0 : J ∈Mr−deep (F ) for some F % I0 with PωF,J 6= 0

}
.

By Lemma 11 we may pigeonhole the cubes J in Λ (I0) as follows:

Λ (I0) =

τ⋃
`=0

Λ` (I0) ; Λ` (I0) ≡
{
J ⊂ I0 : J ∈Mr−deep

(
π

(`)
F I0

)}
.
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Now fix `, and for each J in the pairwise disjoint decomposition Λ` (I0) of I0,
note that either J must contain some K ∈ Mr−deep (I0) or J ⊂ K for some
K ∈Mr−deep (I0);

Λ` (I0) = Λbig
` (I0) ∪ Λsmall

` (I0) ;

Λsmall
` (I0) ≡ {J ∈ Λ` (I0) : J ⊂ K for some K ∈Mr−deep (I0)} ,

and we make the corresponding decomposition of B (I0);

B (I0) = Bbig (I0) +Bsmall (I0) ;

Bbig/small (I0) ≡
τ∑
`=0

∑
J∈Λ

big/small
` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2 ∑
F∈F : F%I0 and J∈Mr−deep(F )

∥∥PωF,Jx
∥∥2

L2(ω)
.

Turning first to Bsmall (I0), we use that the projections PωF,J are orthogonal in
F for each J , to obtain

Bsmall (I0) ≤
τ∑
`=0

∑
J∈Λsmall

` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2

‖PωJx‖2L2(ω)(10.7)

. τ
(
Erefinedplug
α

)2 |I0|σ . τ
[
(Eα)

2
+ βAα2

]
|I0|σ ,

where the final estimate follows from (2.8), and this is the only point in the proof
of Theorem 1 that the refined energy condition is used.

Turning now to the more delicate term Bbig (I0), we write for J ∈ Λbig
` (I0),∥∥∥Pgood,ω

J x
∥∥∥2

L2(ω)
=

∑
J′⊂J: J′ good

∑
a∈Γ

‖4ω,aJ′ x‖2L2(ω)

=
∑

J′∈N (I): J′⊂J

∑
a∈Γ

‖4ω,aJ x‖2L2(ω) +
∑

K∈Mr−deep(I0): K⊂J

∥∥∥Pgood,ω
K x

∥∥∥2

L2(ω)
,

and then using that the projections PωF,J are orthogonal in F for each J , we estimate

Bbig (I0) =
τ∑
`=0

∑
J∈Λbig

` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2 ∑
F∈F : F%I0 and J∈Mr−deep(F )

∥∥PωF,Jx
∥∥2

L2(ω)

≤
τ∑
`=0

∑
J∈Λbig

` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2 ∥∥∥Pgood,ω
J x

∥∥∥2

L2(ω)

=

τ∑
`=0

∑
J∈Λbig

` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2 ∑
J′∈N (I0): J′⊂J

‖4ωJx‖2L2(ω)

+

τ∑
`=0

∑
J∈Λbig

` (I0)

(
Pα (J,1I0σ)

|J |
1
n

)2 ∑
K∈Mr−deep(I0): K⊂J

∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)L2(ω)

≡ Bbig
1 (I0) +Bbig

2 (I0) .
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Now we have

Bbig
1 (I0) ≈

τ∑
`=0

∑
J′∈N (I0)

(
Pα (I0,1I0σ)

|I0|
1
n

)2 ∑
J′∈N (I0)

‖4ωJx‖2L2(ω)

.
τ∑
`=0

(#N (I0))

(
Pα (I0,1I0σ)

|I0|
1
n

)2

|I0|
2
n |I0|ω . τ2nrAα2 |I0|σ .

Using Pα (J,1I0σ) = Pα (J,1Jσ) + Pα
(
J,1I0\Jσ

)
, we have

Bbig
2 (I0) ≈

τ∑
`=0

∑
J∈Λ`(I0)

(
Pα (J,1Jσ)

|J |
1
n

)2 ∑
K∈Mr−deep(I0): K⊂J

∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

+

τ∑
`=0

∑
J∈Λ`(I0)

(
Pα
(
J,1I0\Jσ

)
|J |

1
n

)2 ∑
K∈Mr−deep(I0): K⊂J

∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

≡ Bbig
3 (I0) +Bbig

4 (I0) .

Now

Bbig
3 (I0) .

τ∑
`=0

∑
J∈Λbig

` (I0)

(
Pα (J,1Jσ) |J |σ

|J |
1
n

)2

|J |
2
n |J |ω . τ2nrAα2 |I0|σ ,

and since
Pα(J,1I0\Jσ)

|J|
1
n

≤ Pα(K,1I0\Jσ)
|K|

1
n

for K ⊂ J , we have

Bbig
4 (I0) =

τ∑
`=0

∑
J∈Λbig

` (I0)

∑
K∈Mr−deep(I0): K⊂J

(
Pα
(
J,1I0\Jσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

.
τ∑
`=0

∑
J∈Λbig

` (I0)

∑
K∈Mr−deep(I0): K⊂J

(
Pα
(
K,1I0\Jσ

)
|K|

1
n

)2 ∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

≤
τ∑
`=0

∑
J∈Λbig

` (I0)

∑
K∈Mr−deep(I0): K⊂J

(
Pα
(
K,1I0\Kσ

)
|K|

1
n

)2 ∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

≤
τ∑
`=0

∑
K∈Mr−deep(I0)

(
Pα
(
K,1I0\Kσ

)
|K|

1
n

)2 ∥∥∥Psubgood,ω
K x

∥∥∥2

L2(ω)

. τ
(
Edeepplug
α

)2 |I0|σ . τ
((
Edeep
α

)2
+ βAα2

)
|I0|σ ,

where the final line follows from (2.7). 2
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10.1. The Poisson testing inequality

Fix I ∈ D. We split the integration on the left side of (10.3) into a local and global
piece:∫
Rn+1

+

Pα (1Iσ)
2
dµ =

∫
Î

Pα (1Iσ)
2
dµ+

∫
Rn+1

+ \Î
Pα (1Iσ)

2
dµ ≡ Local + Global.

Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

Local
↓

Localplug + Localhole

↓
(
Edeep
α

)2
↓
A + B(

Edeep
α

)2
+Aα2 (Eα)

2
+Aα2

and

Global
↓
A + B + C + D

Aα2 Aα2 Aα,∗2 Aα,∗2

.

We turn first to estimating the local term Local.

An important consequence of the fact that I and J lie in the same grid D = Dω,
is that (c (J) , |J |) ∈ Î if and only if J ⊂ I. Thus we have∫

Î

Pα (1Iσ) (x, t)
2
dµ (x, t)

=
∑
F∈F

∑
J∈Mr−deep(F ): J⊂I

Pα (1Iσ)
(
cJ , |J |

1
n

)2
∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

=
∑
F∈F

∑
J∈Mr−deep(F ): J⊂I

Pα (J,1Iσ)
2 ‖PωF,J

x

|J |
1
n

‖2L2(ω).

In the first stage of the proof, we ‘create some holes’ by restricting the support
of σ to the cube F in the ‘plugged’ local sum below:

Localplug ≡
∑
F∈F

∑
J∈Mr−deep(F ): J⊂I

(
Pα (J,1F∩Iσ)

|J |
1
n

)2 ∥∥PωF,Jx
∥∥2

L2(ω)

=

 ∑
F∈F : F⊂I

+
∑

F∈F : F%I

 ∑
J∈Mr−deep(F ): J⊂I

(
Pα (J,1F∩Iσ)

|J |
1
n

)2 ∥∥PωF,Jx
∥∥2

L2(ω)

= A+B.

Then a trivial application of the deep energy condition (where ‘trivial’ means that
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the outer decomposition is just a single cube) gives

A ≤
∑

F∈F : F⊂I

∑
J∈Mr−deep(F )

(
Pα (J,1Fσ)

|J |
1
n

)2 ∥∥PωF,Jx
∥∥2

L2(ω)

≤
∑

F∈F : F⊂I

(
Edeepplug
α

)2 |F |σ .
(
E2
α +Aα2

)
|I|σ ,

since
∥∥PωF,Jx∥∥2

L2(ω)
≤ ‖PωJx‖2L2(ω), where we recall that the energy constant Edeepplug

α

is defined in (2.6). We also used that the stopping cubes F satisfy a σ-Carleson
measure estimate, ∑

F∈F : F⊂F0

|F |σ . |F0|σ .

Lemma 12 applies with I0 = I to the remaining term B to obtain the bound

B ≤ τ
(

(Eα)
2

+ βAα2

)
|I|σ .

It remains then to show the inequality with ‘holes’, where the support of σ is
restricted to the complement of the cube F . For I ∈ D we define

FI ≡ {F ∈ F : F & I} .

Lemma 13. We have

(10.8)
∑
F∈FI

∑
J∈Mr−deep(F )

(
Pα
(
J,1I\Fσ

)
|J |

1
n

)2 ∥∥PωF,Jx∥∥2

L2(ω)
.
(
Edeep
α

)2 |I|σ .
Proof. We consider the space `2z of square summable sequences on the index set
z where

z ≡ {(F, J) : F ∈ FI and J ∈Mr−deep (F )}

is the index set of pairs (F, J∗) occurring in the sum in (10.8). We now take a
sequence a = {aF,J}(F,J)∈z ∈ `

2
z with aF,J ≥ 0 and estimate

S ≡
∑
F∈FI

∑
J∈Mr−deep(F )

Pα
(
J,1I\Fσ

)
|J |

1
n

∥∥PωF,Jx
∥∥
L2(ω)

aF,J
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by

S =
∑
F∈FI

∑
J∈Mr−deep(F )

∑
F ′∈F : F⊂F ′$I

Pα
(
J,1πFF ′\F ′σ

)
|J |

1
n

∥∥PωF,Jx
∥∥
L2(ω)

aF,J

=
∑
F ′∈FI

∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F )

Pα
(
J,1πFF ′\F ′σ

)
|J |

1
n

∥∥PωF,Jx
∥∥
L2(ω)

aF,J

=
∑
F ′∈FI

∑
K∈Mr−deep(F ′)

∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

Pα
(
J,1πFF ′\F ′σ

)
|J |

1
n

∥∥PωF,Jx
∥∥
L2(ω)

aF,J

.
∑
F ′∈FI

∑
K∈Mr−deep(F ′)

Pα
(
K,1πFF ′\F ′σ

)
|K|

1
n

∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

∥∥PωF,Jx
∥∥
L2(ω)

aF,J ,

by the Poisson inequalities in Lemma 10. We now invoke∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

∥∥PωF,Jx
∥∥
L2(ω)

aF,J

.

 ∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

∥∥PωF,Jx
∥∥2

L2(ω)

 1
2

×

 ∑
F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

a2
F,J

 1
2

.
∥∥PωF ′,Kx

∥∥
L2(ω)

∥∥QωF ′,Ka∥∥`2z ,

where for K ∈Mr−deep (F ′) and f ∈ L2 (ω),

PωF ′,K ≡
∑

F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

PωF,J ,

while for K ∈Mr−deep (F ′) and a = {aG,L}(G,L)∈z ∈ `
2
z,

QωF ′,Ka ≡
∑

F∈F : F⊂F ′

∑
J∈Mr−deep(F ): J⊂K

QωF,Ja;

QωF,Ja ≡
{
1(F,J)aG,L

}
(G,L)∈z .

Thus QωF,J acts on the sequence a by projecting onto the coordinate in z indexed
by (F, J).

Now denote by d (F ) ≡ dF (F, I) the distance from F to I in the tree F .
Since the collection F satisfies a Carleson condition, we have geometric decay in
generations: ∑

F∈FI : d(F )=k

|F |σ . 2−δk |I|σ , k ≥ 0.
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Thus we can write

|S| .
∑
F ′∈FI

∑
K∈Mr−deep(F ′)

Pα
(
K,1πFF ′\F ′σ

)
|K|

1
n

∥∥PωF ′,Kx
∥∥
L2(ω)

∥∥QωF ′,Ka∥∥`2z
=

∞∑
k=0

∑
F ′∈FI : d(F ′)=k

∑
K∈Mr−deep(F ′)

Pα
(
K,1πFF ′\F ′σ

)
|K|

1
n

∥∥PωF ′,Kx
∥∥
L2(ω)

∥∥QωF ′,Ka∥∥`2z
≡

∞∑
k=0

Ak,

where by the deep energy condition,

Ak .

 ∑
F ′∈FI : d(F ′)=k

∑
K∈Mr−deep(F ′)

(
Pα
(
K,1πFF ′\F ′σ

)
|K|

1
n

)2 ∥∥PωF ′,Kx
∥∥2

L2(ω)

 1
2

×

 ∑
F ′∈FI : d(F ′)=k

∑
K∈Mr−deep(F ′)

∥∥QωF ′,Ka∥∥2

`2z

 1
2

.

(Edeep
α

)2 ∑
F ′′∈FI : d(F ′′)=k−1

|F ′′|σ

 1
2

‖a‖`2z

. Edeep
α

(
2−δk |I|σ

) 1
2 ‖a‖`2z ,

and we finally obtain

|S| .
∞∑
k=0

Edeep
α

(
2−δk |I|σ

) 1
2 ‖a‖`2z . Edeep

α

√
|I|σ ‖a‖`2z .

By duality of `2z we now conclude that

∑
F∈FI

∑
J∈Mr−deep(F )

(
Pα
(
J,1I\Fσ

)
|J |

1
n

)2 ∥∥PωF,Jx
∥∥2

L2(ω)
.
(
Edeep
α

)2 |I|σ ,
which is (10.8). 2

Now we turn to proving the following estimate for the global part of the first
testing condition (10.3):∫

Rn+1
+ \Î

Pα (1Iσ)
2
dµ . Aα,∗2 |I|σ .

We begin by decomposing the integral on the left into four pieces where we use
F ∼ J to denote the sum over those F ∈ F such that J ∈Mr−deep (F ). Note that
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given J , there are at most a fixed number C of F ∈ F such that F ∼ J . We have:∫
Rn+1

+ \Î
Pα (1Iσ)

2
dµ =

∑
J:
(
cJ ,|J|

1
n

)
∈Rn+1

+ \Î

Pα (1Iσ)
(
cJ , |J |

1
n

)2 ∑
F∈F

J∈Mr−deep(F )

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

=


∑

J∩3I=∅
|J|

1
n≤|I|

1
n

+
∑

J⊂3I\I

+
∑
J∩I=∅
|J|

1
n>|I|

1
n

+
∑
J%I

Pα (1Iσ)
(
cJ , |J |

1
n

)2 ∑
F∈F

J∈Mr−deep(F )

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

= A+B + C +D.

We further decompose term A according to the length of J and its distance
from I, and then use Lemma 11 to obtain:

A .
∞∑
m=0

∞∑
k=1

∑
J⊂3k+1I\3kI
|J|

1
n=2−m|I|

1
n

(
2−m |I|

1
n

dist (J, I)
n+1−α |I|σ

)2

τ |J |ω

.
∞∑
m=0

2−2m
∞∑
k=1

|I|
2
n |I|σ

∣∣3k+1I \ 3kI
∣∣
ω

|3kI|2(1+ 1
n−

α
n )

|I|σ

.
∞∑
m=0

2−2m
∞∑
k=1

3−2k

{∣∣3k+1I
∣∣
σ

∣∣3k+1I
∣∣
ω

|3kI|2(1−αn )

}
|I|σ . Aα2 |I|σ .

Set J ∗ ≡
⋃
F∈F

⋃
J∈Mr−deep(F )

{
K ∈ Cgood,τ−shift

F : K ⊂ J
}

, which is the union of

all K occurring in the projections PωF,J . We further decompose term B according
to the length of J and use the fractional version of the Poisson inequality (8.12)
in Lemma 9 on the neighbour I ′ of I containing K (essentially in [Vol]),

Pα (K,1Iσ)
2 .

(
|K|

1
n

|I|
1
n

)2−2(n+1−α)ε

Pα (I,1Iσ)
2
, K ∈ J ∗,K ⊂ 3I \ I,

where we have used that Pα (I ′,1Iσ) ≈ Pα (I,1Iσ) and that the cubes K ∈ J ∗
are good. We then obtain from Lemma 11

B =
∑

J⊂3I\I

(
Pα (J,1Iσ)

|J |
1
n

)2 ∑
F∈F

J∈Mr−deep(F )

∥∥PωF,Jx∥∥2

L2(ω)

.
∞∑
m=0

∑
K⊂3I\I

|K|
1
n=2−m|I|

1
n

(
2−m

)2−2(n+1−α)ε

(
|I|σ
|I|1−

α
n

)2

τ |K|ω

≤ τ

∞∑
m=0

(
2−m

)2−2(n+1−α)ε |3I|σ |3I|ω
|3I|2(1−αn )

|I|σ . τAα2 |I|σ .



62 E.T. Sawyer and C.-Y. Shen and I. Uriarte-Tuero

For term C we will have to group the cubes J into blocks Bi, and then exploit
Lemma 11. We first split the sum according to whether or not I intersects the
triple of J :

C ≈


∑

J: I∩3J=∅
|J|

1
n>|I|

1
n

+
∑

J: I⊂3J\J
|J|

1
n>|I|

1
n


 |J |

1
n(

|J |
1
n + dist (J, I)

)n+1−α |I|σ


2 ∑

F∈F
J∈Mr−deep(F )

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

= C1 + C2.

We first consider C1. Let M be the maximal dyadic cubes in {Q : 3Q ∩ I = ∅},
and then let {Bi}∞i=1 be an enumeration of those Q ∈ M whose side length is at

least |I|
1
n . Now we further decompose the sum in C1 by grouping the cubes J into

the Whitney cubes Bi, and then using Lemma 11:

C1 ≤
∞∑
i=1

∑
J: J⊂Bi

 1(
|J |

1
n + dist (J, I)

)n+1−α |I|σ


2 ∑

F∈F
J∈Mr−deep(F )

∥∥PωF,Jx
∥∥2

L2(ω)

.
∞∑
i=1

 1(
|Bi|

1
n + dist (Bi, I)

)n+1−α |I|σ


2 ∑
J: J⊂Bi

∑
F∈F

J∈Mr−deep(F )

∥∥PωF,Jx
∥∥2

L2(ω)

.
∞∑
i=1

 1(
|Bi|

1
n + dist (Bi, I)

)n+1−α |I|σ


2 ∑
J: J⊂Bi

τ |J |
2
n |J |ω

.
∞∑
i=1

 1(
|Bi|

1
n + dist (Bi, I)

)n+1−α |I|σ


2

τ |Bi|
2
n |Bi|ω

. τ

{ ∞∑
i=1

|Bi|ω |I|σ
|Bi|2(1−αn )

}
|I|σ . τAα,∗2 |I|σ ,

and
∞∑
i=1

|Bi|ω |I|σ
|Bi|2(1−αn )

=
|I|σ
|I|1−

α
n

∞∑
i=1

|I|1−
α
n

|Bi|2(1−αn )
|Bi|ω

≈
|I|σ
|I|1−

α
n

∞∑
i=1

∫
Bi

|I|1−
α
n

dist (x, I)
2(n−α)

dω (x)

≈
|I|σ
|I|1−

α
n

∞∑
i=1

∫
Bi

(
|I|

1
n

|I|
1
n + dist (x, I)

2

)n−α
dω (x)

=
|I|σ
|I|1−

α
n
Pα (I, ω) ≤ Aα,∗2 .
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Next we turn to estimating term C2 where the triple of J contains I but J
itself does not. Note that there are at most 2n such cubes J of a given side length,
one in each ‘generalized octant’ relative to I. So with this in mind we sum over
the cubes J according to their lengths to obtain

C2 =

∞∑
m=0

∑
J: I⊂3J\J
|J|

1
n=2m|I|

1
n

 |J |
1
n(

|J |
1
n + dist (J, I)

)n+1−α |I|σ


2 ∑

F∈F
J∈Mr−deep(F )

∥∥∥∥∥PωF,J x

|J |
1
n

∥∥∥∥∥
2

L2(ω)

.
∞∑
m=0

(
|I|σ

|2mI|1−
α
n

)2

τ |3 · 2mI|ω = τ

{
|I|σ
|I|1−

α
n

∞∑
m=0

|I|1−
α
n |3 · 2mI|ω

|2mI|2(1−αn )

}
|I|σ

. τ

{
|I|σ
|I|1−

α
n
Pα (I, ω)

}
|I|σ ≤ τA

α,∗
2 |I|σ ,

since

∞∑
m=0

|I|1−
α
n |3 · 2nI|ω

|2mI|2(1−αn )
=

∫ ∞∑
m=0

|I|1−
α
n

|2mI|2(1−αn )
13·2mI (x) dω (x) . Pα (I, ω) .

Finally, we turn to term D, which is handled in the same way as term C2.

The cubes J occurring here are included in the set of ancestors Ak ≡ π
(k)
D I of I,

1 ≤ k <∞. We thus have from Lemma 11 again,

D =

∞∑
k=1

Pα (1Iσ)
(
c (Ak) , |Ak|

1
n

)2 ∑
F∈F

Ak∈Mr−deep(F )

∥∥∥∥PωF,Ak x

|Ak|
1
n

∥∥∥∥2

L2(ω)

.
∞∑
k=1

(
|I|σ |Ak|

1
n

|Ak|1+ 1−α
n

)2

τ |Ak|ω = τ

{
|I|σ
|I|1−

α
n

∞∑
k=1

|I|1−
α
n

|Ak|2(1−αn )
|Ak|ω

}
|I|σ

.

{
|I|σ
|I|1−

α
n
Pα (I, ω)

}
|I|σ . Aα,∗2 |I|σ ,

since

∞∑
k=1

|I|1−
α
n

|Ak|2(1−αn )
|Ak|ω =

∫ ∞∑
k=1

|I|1−
α
n

|Ak|2(1−αn )
1Ak(x)dω (x)

=

∫ ∞∑
k=1

1

22(1−αn )k
|I|1−

α
n

|I|2(1−αn )
1Ak(x)dω (x)

.
∫  |I|

1
n(

|I|
1
n + dist (x, I)

)2


n−α

dω (x) = Pα (I, ω) .
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10.2. The dual Poisson testing inequality

Again we split the integration on the left side of (10.4) into local and global parts:
(10.9)∫

R
[Pα∗(t1Îµ)]2σ =

∫
I

[Pα∗(t1Îµ)]2σ +

∫
R\I

[Pα∗(t1Îµ)]2σ ≡ Local + Global.

Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

Local
↓
Us
↓

T proximal
s + V remote

s

Aα2 + Eα
√
Aα2 +Aα2 ↓

↓
T difference
s + T intersection

s

Aα2 + Eα
√
Aα2 +Aα2 Eα

√
Aα2

and

Global
↓
A + B

Aα2 Aα2

.

We begin with the local part Local. Note that the right hand side of (10.4) is

(10.10)

∫
Î

t2dµ =
∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω) ,

We now compute

(10.11) Pα∗
(
t1Îµ

)
(y) =

∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α ,

and then expand the square and integrate to obtain that the local term Local is

∑
F∈F

J∈Mr−deep(F )
J⊂I

∑
F ′∈F

J′∈Mr−deep(F ′)
J′⊂I

∫
I

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y) .

By symmetry we may assume that |J ′|
1
n ≤ |J |

1
n . We fix an integer s, and consider

those cubes J and J ′ with |J ′|
1
n = 2−s |J |

1
n . For fixed s we will control the
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expression

Us ≡
∑

F,F ′∈F

∑
J∈Mr−deep(F ), J ′∈Mr−deep(F ′)

J,J ′⊂I, |J′|
1
n=2−s|J|

1
n

×
∫
I

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y) ,

by proving that

(10.12) Us . 2−εs
(
Aα2 + Eα

√
Aα2

)
.

With this accomplished, we can sum in s ≥ 0 to control the local term Local.
Our first decomposition is to write

(10.13) Us = T proximal
s + V remote

s ,

where we fix ε > 0 to be chosen later (ε = 1
2n works), and in the ‘proximal’

term T proximal
s we restrict the summation over pairs of cubes J, J ′ to those sat-

isfying |c (J)− c (J ′)| < 2sε |J |
1
n ; while in the ‘remote’ term V remote

s we restrict
the summation over pairs of cubes J, J ′ to those satisfying the opposite inequality

|c (J)− c (J ′)| ≥ 2sε |J |
1
n . Then we further decompose

V remote
s = T difference

s + T intersection
s ,

where in the ‘difference’ term T difference
s we restict integration in y to the difference

I \B (J, J ′) of I and

B (J, J ′) ≡ B
(
cJ ,

1

2
|cJ − cJ′ |

)
,

the ball centered at cJ with radius 1
2 |cJ − cJ′ |; while in the ‘intersection’ term

T intersection
s we restict integration in y to the intersection I ∩B (J, J ′) of I with the

ball B (J, J ′); i.e.

T intersection
s ≡

∑
F,F ′∈F

∑
J∈Mr−deep(F ), J ′∈Mr−deep(F ′)

J,J ′⊂I, |J′|
1
n=2−s|J|

1
n

|c(J)−c(J′)|≥2s(1+ε)|J′|
1
n

×
∫
I∩B(J,J ′)

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y) ,

We will exploit the restriction of integration to I ∩ B (J, J ′), together with the
condition

|cJ − cJ′ | ≥ 2s(1+ε) |J ′|
1
n = 2sε |J |

1
n ,
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in establishing (10.17) below, which will then give an estimate for the term T intersection
s

using an argument dual to that used for the other terms T proximal
s and T difference

s ,
to which we now turn.

We have

T proximal
s ≡

∑
F,F ′∈F

∑
J∈Mr−deep(F ), J′∈Mr−deep(F ′)

J,J ′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |<2sε|J|

1
n

×
∫
I

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

≤Mproximal
s

∑
F∈F

∑
Mr−deep(F )

J⊂I

‖PωF,Jz‖2ω,

where

Mproximal
s ≡ sup

F∈F
sup

J∈Mr−deep(F )

Aproximal
s (J) ;

Aproximal
s (J) ≡

∑
F ′∈F

∑
J′∈Mr−deep(F ′)

J′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |<2sε|J|

1
n

∫
I

S(J′,J) (y) dσ (y) ;

SF
′

(J′,J) (x) ≡ 1(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α ,

and similarly

T difference
s ≡

∑
F,F ′∈F

∑
J∈Mr−deep(F ), J ′∈Mr−deep(F ′)

J,J ′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |≥2sε|J|

1
n

×
∫
I\B(J,J ′)

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

≤Mdifference
s

∑
F∈F

∑
Mr−deep(F )

J⊂I

‖PωF,Jz‖2ω;

where

Mdifference
s ≡ sup

F∈F
sup

J∈Mr−deep(F )

Aremote
s (J) ;

Adifference
s (J) ≡

∑
F ′∈F

∑
J′∈Mr−deep(F ′)

J′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |≥2sε|J|

1
n

∫
I\B(J,J ′)

SF
′

(J′,J) (y) dσ (y) .
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The restriction of integration in Adifference
s to I \B (J, J ′) will be used to establish

(10.15) below.

Now fix J as in Mproximal
s respectively Mdifference

s , and decompose the sum over
J ′ in Aproximal

s (J) respectively Adifference
s (J) by

Aproximal
s (J) =

∑
F ′∈F

∑
J′∈Mr−deep(F ′)

J′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |<2sε|J|

1
n

∫
I

SF
′

(J′,J) (y) dσ (y)

=
∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|
1
n

∫
I

SF
′

(J′,J) (y) dσ (y) +
∑
F ′∈F

∞∑
`=1

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |<2sε|J|

1
n

∫
I

SF
′

(J′,J) (y) dσ (y)

≡
∞∑
`=0

Aproximal,`
s (J) ,

respectively

Adifference
s (J) =

∑
F ′∈F

∑
J′∈Mr−deep(F ′)

J′⊂I, |J′|
1
n=2−s|J|

1
n and |cJ−cJ′ |≥2sε|J|

1
n

∫
I\B(J,J ′)

SF
′

(J′,J) (y) dσ (y)

=
∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|
1
n

∫
I\B(J,J ′)

SF
′

(J′,J) (y) dσ (y)

+

∞∑
`=1

∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |≥2sε|J|

1
n

∫
I\B(J,J ′)

SF
′

(J′,J) (y) dσ (y)

≡
∞∑
`=0

Adifference,`
s (J) .

Let m be the smallest integer for which

(10.14) 2−m
√
n ≤ 1

3
.
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Now decompose the integrals over I in Aproximal,`
s (J) by

Aproximal,0
s (J) =

∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|
1
n

∫
I\4J

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|
1
n

∫
I∩4J

SF
′

(J′,J) (y) dσ (y)

≡ Aproximal,0
s,far (J) +Aproximal,0

s,near (J) ,

Aproximal,`
s (J) =

∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |<2sε|J|

1
n

∫
I\2`+2J

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |<2sε|J|

1
n

∫
I∩(2`+2J\2`−mJ)

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |<2sε|J|

1
n

∫
I∩2`−mJ

SF
′

(J′,J) (y) dσ (y)

≡ Aproximal,`
s,far (J) +Aproximal,`

s,near (J) +Aproximal,`
s,close (J) , ` ≥ 1.
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Similarly we decompose the integrals over I∗ ≡ I \B (J, J ′) in Adifference,`
s (J) by

Adifference,0
s (J) =

∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|
1
n

∫
I∗\4J

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|
1
n

∫
I∗∩4J

SF
′

(J′,J) (y) dσ (y)

≡ Adifference,0
s,far (J) +Adifference,0

s,near (J) ,

Adifference,`
s (J) =

∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |≥2sε|J|

1
n

∫
I∗\2`+2J

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈3`+1J\3`J
|cJ−cJ′ |≥2sε|J|

1
n

∫
I∗∩(2`+2J\2`−mJ)

SF
′

(J′,J) (y) dσ (y)

+
∑
F ′∈F

∑
cJ′∈2`+1J\2`J
|cJ−cJ′ |≥2sε|J|

1
n

∫
I∗∩2`−mJ

SF
′

(J′,J) (y) dσ (y)

≡ Adifference,`
s,far (J) +Adifference,`

s,near (J) +Adifference,`
s,close (J) , ` ≥ 1.

We now note the important point that the close termsAproximal,`
s,close (J) andAdifference,`

s,close (J)
both vanish for ` > εs because of the decomposition (10.13):

(10.15) Aproximal,`
s,close (J) = Adifference,`

s,close (J) = 0, ` > 1 + εs.

Indeed, if cJ′ ∈ 2`+1J \ 2`J , then we have

(10.16)
1

2
2` |J |

1
n ≤ |cJ − cJ′ | ,

and if ` > 1 + εs, then

|cJ − cJ′ | ≥ 2εs |J |
1
n = 2(1+ε)s |J ′|

1
n .

It now follows from the definition of Vs and Ts in (10.13), that Aproximal,`
s,close (J) = 0,

and so we are left to consider the term Adifference,`
s,close (J), where the integration is

taken over the set I \ B (J, J ′). But we are also restricted in Adifference,`
s,close (J) to

integrating over the cube 2`−mJ , which is contained in B (J, J ′) by (10.16). Indeed,

the smallest ball centered at c (J) that contains 2`−mJ has radius
√
n 1

22`−m |J |
1
n ,

which by (10.14) and (10.16) is at most 1
42` |J |

1
n ≤ 1

2 |cJ − cJ′ |, the radius of

B (J, J ′). Thus the range of integration in the term Adifference,`
s,close (J) is the empty

set, and so Adifference,`
s,close (J) = 0 as well as Aproximal,`

s,close (J) = 0. This proves (10.15).
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From now on we may replace I \ B (J, J ′) by I since all the terms are pos-
itive, and we treat T proximal

s and T difference
s in the same way now that the terms

Aproximal,`
s,close (J) and Adifference,`

s,close (J) both vanish for ` > 1+εs. Thus we will suppress
the superscripts proximal and difference in the far, near and close decomposition
of Aproximal,`

s,close (J) and Adifference,`
s,close (J). Using the bounded overlap of the shifted

coronas Cgood,τ−shift
F , we have

∑
F ′∈F

∥∥PωF ′,J′x∥∥2

L2(ω)
≤ τ |J ′|

2
n |J ′|ω and so

A0
s,far (J) =

∑
F ′∈F

∑
cJ′∈2J

∫
I\(3J)

SF
′

(J′,J) (y) dσ (y)

. τ
∑

cJ′∈2J

∫
I\(3J)

|J ′|
2
n |J ′|ω(

|J |
1
n + |y − cJ |

)2(n+1−α)
dσ (y)

= τ2−2s

 ∑
cJ′∈2J

|J ′|ω

∫
I\(3J)

|J |
2
n(

|J |
1
n + |y − cJ |

)2(n+1−α)
dσ (y) ,

which is dominated by

τ2−2s |3J |ω
∫
I\(3J)

1(
|J |

1
n + |y − cJ |

)2(n−α)
dσ (y)

≈ τ2−2s |3J |ω
|4J |1−

α
n

∫
I\(3J)

 |J |
1
n(

|J |
1
n + |y − cJ |

)2


n−α

dσ (y)

. τ2−2s |3J |ω
|3J |1−

α
n
Pα (3J, σ) . τ2−2sAα2 .

To estimate the near term A0
s,near (J), we initially keep the energy

∥∥PωF ′,J′z∥∥2

L2(ω)

and write

A0
s,near (J) =

∑
F ′∈F

∑
cJ′∈2J

∫
I∩(3J)

SF
′

(J′,J) (y) dσ (y)

≈
∑
F ′∈F

∑
cJ′∈2J

∫
I∩(3J)

1

|J |
1
n (n+1−α)

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

=
∑
F ′∈F

1

|J |
1
n (n+1−α)

∑
cJ′∈2J

∥∥PωF ′,J′x∥∥2

L2(ω)

∫
I∩(3J)

1(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

=
∑
F ′∈F

1

|J |
1
n (n+1−α)

∑
cJ′∈2J

∥∥PωF ′,J′x∥∥2

L2(ω)

Pα
(
J ′,1I∩(3J)σ

)
|J ′|

1
n

.
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Now by Cauchy-Schwarz and Lemma 12, this is dominated by

1

|J |
1
n (n+1−α)

∑
F ′∈F

∑
c(J′)∈2J and J′⊂I

∥∥PωF ′,J′x∥∥2

L2(ω)

 1
2

×

∑
F ′∈F

∑
cJ′∈2J and J′⊂I

∥∥PωF ′,J′x∥∥2

L2(ω)

(
Pα
(
J ′,1I∩(4J)σ

)
|J ′|

1
n

)2
 1

2

.
1

|J |
1
n (n+1−α)

τ ∑
cJ′∈2J

|J ′|
2
n |J ′|ω

 1
2

Eα
√
τ |4J |σ

. τ
2−s |J |

1
n

|J |
1
n (n+1−α)

√
|3J |ωEα

√
|4J |σ . τ2−sEα

√
|4J |ω
|J |

1
n (n−α)

|4J |σ
|J |

1
n (n−α)

. τ2−sEα
√
Aα2 .

Here Lemma 12 applies to the expression

∑
F ′∈F

∑
cJ′∈2J and J′⊂I

∥∥PωF ′,J′x∥∥2

L2(ω)

(
Pα
(
J ′,1I∩(4J)σ

)
|J ′|

1
n

)2

,

since
⋃

cJ′∈2J

J ′ ⊂ 3J and we can write 3J =

M⋃
i=1

Li as a union of M ≤ 3n maximal

dyadic cubes Li contained in 3J . Then each J ′ with cJ′ ∈ 2J and J ′ ⊂ I must be
contained in some cube Li, and we can apply Lemma 12 with I0 = Li, 1 ≤ i ≤M .

Similarly, for ` ≥ 1, we can estimate the far term

A`s,far (J) =
∑

cJ′∈(2`+1J)\(2`J)

∫
I\(2`+2J)

SF
′

(J′,J) (y) dσ (y)

.
∑

cJ′∈(2`+1J)\(2`J)

∫
I\(2`+2J)

|J ′|
2
n |J ′|ω(

|J |
1
n + |y − cJ |

)2(n+1−α)
dσ (y)

= 2−2s

 ∑
cJ′∈(2`+1J)

|J ′|ω

∫
I\(2`+2J)

|J |
2
n(

|J |
1
n + |y − cJ |

)2(n+1−α)
dσ (y)

≈ 2−2s2−`
2
n

 ∑
cJ′∈(2`+1J)

|J ′|ω

∫
I\(2`+2J)

∣∣2`J∣∣ 2n(
|2`J |

1
n + |y − c2`J |

)2(n+1−α)
dσ (y) ,
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which is at most

2−2s2−`
2
n

∣∣2`+2J
∣∣
ω

∫
I\(2`+2J)

1(
|2`J |

1
n + |y − c2`J |

)2(n−α)
dσ (y)

≈ 2−2s2−`
2
n

∣∣3`+2J
∣∣
ω

|3`J |1−
α
n

∫
I\(3`+2J)

 ∣∣2`J∣∣ 1n(
|2`J |

1
n + |y − c2`J |

)2


n−α

dσ (y)

. 2−2s2−`
2
n

{∣∣2`+2J
∣∣
ω

|2`J |1−
α
n
Pα
(
2`+2J, σ

)}
. 2−2s2−`

2
nAα2 .

The near term A`s,near (J) is

∑
cJ′∈2`+1J\2`J

∫
I∩(2`+2J\2`−mJ)

SF
′

(J′,J) (y) dσ (y)

≈
∑

cJ′∈2`+1J\2`J

∫
I∩(2`+2J\2`−mJ)

1∣∣2`(1−ε)J∣∣ 1n (n+1−α)

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

=
1

|2`−1J |
1
n (n+1−α)

∑
cJ′∈2`+1J\2`J

∥∥PωF ′,J′x∥∥2

L2(ω)

∫
I∩(2`+2J\2`−mJ)

1(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y) ,

and is dominated by

1

|2`−mJ |
1
n (n+1−α)

∑
cJ′∈2`+1J\2`J

∥∥PωF ′,J′x∥∥2

L2(ω)

Pα
(
J ′,1I∩(2`+2J)σ

)
|J ′|

1
n

≤ 1

|2`−mJ |
1
n (n+1−α)

 ∑
cJ′∈2`+1J\2`J

∥∥PωF ′,J′x∥∥2

L2(ω)

 1
2

×

 ∑
cJ′∈2`+1J\2`J

∥∥PωF ′,J′x∥∥2

L2(ω)

(
Pα
(
J ′,1I∩(2`+2J)σ

)
|J ′|

1
n

)2
 1

2

.

This can now be estimated using
∥∥PωF ′,J′z∥∥2

L2(ω)
≤ |J ′|

2
n |J ′|ω and Lemma 12 to

get

A`s,near (J) . 2−s2−
`
n

∣∣2`J∣∣ 1n
|2`−mJ |

1
n (n+1−α)

√
|2`+3J |ωEα

√
|2`+2J |σ

. 2−s2−
`
n Eα

√
|2`+3J |ω
|2`+3J |1−

α
n

|2`+3J |σ
|2`+3J |1−

α
n

. 2−s2−
`
n Eα

√
Aα2 .
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In order to apply Lemma 12 above, we choose a ‘tripled’ dyadic cube 3Q such that⋃
cJ′∈2`+1J\2`J

J ′ ⊂ 3Q and |3Q|
1
n ≤ 3 · 2`+1 |J |

1
n . Then as before we apply Lemma

12 to the maximal dyadic cubes in 3Q, of which there are at most 3n. We are also
using here that m ≈ 1 + 1

2 log2 n is harmless. These estimates are summable in
both s and `.

Now we turn to the terms A`s,close (J), and recall from (10.15) that A`s,close (J) =
0 if ` > 1 + εs. So we now suppose that ` ≤ 1 + εs. We have, with m as in (10.14),

A`s,close (J)

=
∑

cJ′∈2`+1J\2`J

∫
I∩(2`−mJ)

S(J′,J) (y) dσ (y)

≈
∑

cJ′∈2`+1J\2`J

∫
I∩(2`−mJ)

1(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)

|2`J |
1
n (n+1−α)

dσ (y)

≈

 ∑
cJ′∈2`+1J\2`J

∥∥PωF ′,J′x∥∥2

L2(ω)

 1

|2`J |
1
n (n+1−α)

∫
I∩(2`−mJ)

1(
|J |

1
n + |y − cJ |

)n+1−α dσ (y) .

Now we use the inequality
∥∥PωF ′,J′z∥∥2

L2(ω)
≤ |J ′|

2
n |J ′|ω to get the relatively crude

estimate

A`s,close (J) . 2−2s |J |
2
n
∣∣2`+1J

∣∣
ω

1

|2`J |
1
n (n+1−α)

∫
I∩(2`−mJ)

1(
|J |

1
n + |y − cJ |

)n+1−α dσ (y)

. 2−2s |J |
2
n

∣∣2`+1J
∣∣
ω

|2`J |
1
n (n+1−α)

∣∣2`−mJ∣∣
σ

|J |
1
n (n+1−α)

. 2−2s

∣∣2`+1J
∣∣
ω

|2`+1J |1−
α
n

∣∣2`+1J
∣∣
σ

|2`+1J |1−
α
n

2`(n−1−α)

. 2−2s2`(n−1−α)Aα2 . 2−sAα2

provided that ` ≤ s
n . But we are assuming ` ≤ 1 + εs here and so we obtain a

suitable estimate for A`s,close (J) provided we choose 0 < ε < 1
n .

Remark 10. We cannot simply sum the estimate

A`s,close (J) . 2−2s |J |
2
n
∣∣2`+1J

∣∣
ω

1

|2`J |
1
n (n+1−α)

Pα (J,12`−1Jσ)

|J |
1
n

,

over all ` ≥ 1 to get

∑
`

A`s,close (J) . 2−2sPα (J, σ)
∑
`

|J |
1
n

|2`J |
1
n (n+1−α)

∣∣2`+1J
∣∣
ω
. 2−2sPα (J, σ) Pα (J, ω) ,

since we only have control of the product P (J, σ) P (J, ω) in dimension n = 1,
where the two Poisson kernels P and P coincide, and the two-tailed A2 condition
is known to hold.
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The above estimates prove

T proximal
s + T difference

s . 2−s
(
Aα2 + Eα

√
Aα2 +Aα2

)
.

Now we return to the term,

T intersection
s ≡

∑
F,F ′∈F

∑
J∈Mr−deep(F ), J ′∈Mr−deep(F ′)

J,J ′⊂I, |J′|
1
n=2−s|J|

1
n

|c(J)−c(J′)|≥2s(1+ε)|J′|
1
n

×
∫
I∩B(J,J ′)

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y) .

It will suffice to show that T intersection
s satisfies the estimate,

T intersection
s . 2−sεEα

√
Aα2

∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω) = 2−sεEα
√
Aα2

∫
Î

t2dµ .

Using B (J, J ′) = B
(
cJ ,

1
2 |cJ − cJ′ |

)
, we can write (suppressing some notation for

clarity),

T intersection
s =

∑
F,F ′

∑
J,J ′

∫
I∩B(J,J ′)

∥∥PωF,Jx
∥∥2

L2(ω)(
|J |

1
n + |y − cJ |

)n+1−α

∥∥PωF ′,J′x∥∥2

L2(ω)(
|J ′|

1
n + |y − cJ′ |

)n+1−α dσ (y)

≈
∑
F,F ′

∑
J,J ′

∥∥PωF,Jx
∥∥2

L2(ω)

∥∥PωF ′,J′x∥∥2

L2(ω)

1

|cJ − cJ′ |n+1−α

×
∫
I∩B(J,J ′)

1(
|J |

1
n + |y − cJ |

)n+1−α dσ (y)

≈
∑
F,F ′

∑
J,J ′

∥∥PωF,Jx
∥∥2

L2(ω)

∥∥PωF ′,J′x∥∥2

L2(ω)

1

|cJ − cJ′ |n+1−α
Pα
(
J,1I∩B(J,J ′)σ

)
|J |

1
n

≤
∑
F ′

∑
J′

∥∥PωF ′,J′x∥∥2

L2(ω)

∑
F

∑
J

1

|cJ − cJ′ |n+1−α
∥∥PωF,Jx

∥∥2

L2(ω)

Pα
(
J,1I∩B(J,J ′)σ

)
|J |

1
n

,

and it remains to show that for each J ′,

Ss (J ′) ≡
∑
F

∑
J: |c(J)−c(J′)|≥2s(1+ε)|J′|

1
n

∥∥PωF,Jx
∥∥2

L2(ω)

|cJ − cJ′ |n+1−α
Pα
(
J,1I∩B(J,J ′)σ

)
|J |

1
n

. 2−εsEα
√
Aα2 .
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We write

Ss (J ′) ≈
∑

k≥s(1+ε)−m

1(
2k |J ′|

1
n

)n+1−α

∑
F

∑
J: |cJ−cJ′ |≈2k|J′|

1
n

∥∥PωF,Jx
∥∥2

L2(ω)

Pα
(
J,1I∩B(J,J ′)σ

)
|J |

1
n

≡
∑

k≥s(1+ε)−m

1(
2k |J ′|

1
n

)n+1−αS
k
s (J ′) ,

where by |cJ − cJ′ | ≈ 2k |J ′|
1
n we mean 2k |J ′|

1
n ≤ |cJ − cJ′ | ≤ 2k+1 |J ′|

1
n . Here m

is as in (10.14), and we are using the inequality,

(10.17) k +m ≥ (1 + ε) s.

Indeed, in the term Vs we have |cJ − cJ′ | ≥ 2(1+ε)s |J ′|
1
n , and combined with

|cJ − cJ′ | ≤
√
n2k |J ′|

1
n , we obtain (10.17).

Now we apply Cauchy-Schwarz and Lemma 12 to get

Sks (J ′) ≤

∑
F

∑
J: |cJ−cJ′ |≈2k|J′|

1
n

∥∥PωF,Jx
∥∥2

L2(ω)


1
2

×

∑
F

∑
J: |cJ−cJ′ |≈2k|J′|

1
n

∥∥PωF,Jx
∥∥2

L2(ω)

(
Pα
(
J,1I∩B(J,J ′)σ

)
|J |

1
n

)2


1
2

.

τ ∑
J: |cJ−cJ′ |≈2k|J′|

1
n

|J |
2
n |J |ω


1
2 (
τE2

α

∣∣2kJ ′∣∣
σ

) 1
2

. τEα2s |J ′|
1
n

√
|C2kJ ′|ω

√
|2kJ ′|σ . τEα

√
Aα2 2s |J ′|

1
n
∣∣2kJ ′∣∣1−αn

= τEα
√
Aα2 2s2k(n−α) |J ′|

1
n (n+1−α)

,

provided
B (J, J ′) ⊂ C2kJ ′.

But this follows from |cJ − cJ′ | ≈ 2k |J ′|
1
n and (10.17), which shows in particular

that k ≥ s+ c. Then we have

Ss (J ′) =
∑

k≥(1+ε)s−m

1(
2k |J ′|

1
n

)n+1−αS
k
s (J ′)

. Eα
√
Aα2

∑
k≥(1+ε)s−m

1(
2k |J ′|

1
n

)n+1−α 2s2k(n−α) |J ′|
1
n (n+1−α)

. Eα
√
Aα2

∑
k≥(1+ε)s−m

2s−k . 2−εsEα
√
Aα2 ,
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which is summable in s. This completes the proof of (10.12), and hence of the
estimate for the local part Local in (10.9) of the second testing condition (10.4).

It remains to prove the following estimate for the global part Global in (10.9)
of the second testing condition (10.4):∫

R\I
[Pα∗(t1Îµ)]2σ . Aα2 |I|σ .

We decompose the integral on the left into two pieces:∫
R\I

[Pα∗(t1Îµ)]2σ =

∫
R\3I

[Pα∗(t1Îµ)]2σ +

∫
3I\I

[Pα∗(t1Îµ)]2σ = A+B.

We further decompose term A in annuli and use (10.11) to obtain

A =

∞∑
m=1

∫
3m+1I\3mI

[Pα∗(t1Îµ)]2σ

=

∞∑
m=1

∫
3m+1I\3mI

∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω)

(|J |+ |y − cJ |)n+1−α


2

dσ (y)

.
∞∑
m=1

∫
3m+1I\3mI

∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω)


2

1(
3m |I|

1
n

)2(n+1−α)
dσ (y) .

Now use (10.10) and∫
Î

t2dµ =
∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω) . ‖1I (x− cI)‖2L2(ω) ≤ |I|
2 |I|ω

to obtain that

A .
∞∑
m=1

∫
3m+1I\3mI

[∫
Î

t2dµ

] [
|I|2 |I|ω

] 1(
3m |I|

1
n

)2(n+1−α)
dσ (y)

.

{ ∞∑
m=1

3−2m

∣∣3m+1I
∣∣
ω

∣∣3m+1I
∣∣
σ

|3m+1I|2(1−αn )

}[∫
Î

t2dµ

]
. Aα2

∫
Î

t2dµ.

Finally, we estimate term B by using (10.11) to write

B =

∫
3I\I

∑
F∈F

∑
J∈Mr−deep(F )

J⊂I

‖PωF,Jx‖2L2(ω)

(|J |+ |y − cJ |)n+1−α


2

dσ (y) ,
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and then expanding the square and calculating as in the proof of the local part
given earlier to obtain the bound Aα2 . The details are similar, but easier in that
the energy condition is not needed, and they are left to the reader.

11. The stopping form

In this section we adapt the argument of M. Lacey in [Lac] to apply in the setting
of a general α-fractional Calderón-Zygmund operator Tα in Rn using the Mono-
tonicity Lemma 3 and our energy condition in Definition 4. We will prove the
bound (8.14) for the stopping form

BAstop (f, g) ≡
∑

I∈CA and J∈Cτ−shift
A

JbρIJ

(
EσIJ 4

σ
I f
) 〈
Tασ 1A\IJ ,4

ω
Jg
〉
ω

(11.1)

=
∑

I: πI∈CA and J∈Cτ−shift
A

JbρI

(EσI 4σπI f)
〈
Tασ 1A\I ,4ωJg

〉
ω
,

where we have made the ‘change of dummy variable’ IJ → I for convenience in
notation (recall that the child of I that contains J is denoted IJ).

However, the Monotonicity Lemma of Lacey and Wick has an additional term
on the right hand side, and our energy condition is not a direct generalization of
the one-dimensional energy condition. These differences in higher dimension result
in changes and complications that must be tracked throughout the argument. In
particular, we find it necessary to separate the interaction of the two terms on the
right side of the Monotonicity Lemma by splitting the stopping form into the two
corresponding sublinear forms in (11.6) below. Recall that for A ∈ A the shifted
corona is given in Definition 9 by

Cτ−shift
A = {J ∈ CA : J bτ A}∪

⋃
A′∈CA(A)

{J ∈ D : J bτ A and J is τ -nearby in A′} ,

and the restricted corona by C′A = C′A \ {A}.

Definition 13. Suppose that A ∈ A and that P ⊂ C′A × C
τ−shift
A . We say that the

collection of pairs P is A-admissible if

• (good and ρ-deeply embedded) J is good and J bρ I ⊂ A for every (I, J) ∈
P,

• (tree-connected in the first component) if I1 ⊂ I2 and both (I1, J) ∈ P
and (I2, J) ∈ P, then (I, J) ∈ P for every I in the geodesic [I1, I2] =
{I ∈ D : I1 ⊂ I ⊂ I2}.

The basic example of an admissible collection of pairs is obtained from the pairs
of cubes summed in the stopping form BAstop (f, g) in (8.14);
(11.2)
PA ≡

{
(I, J) : I ∈ C′A and J ∈ Cτ−shift

A where J is τ -good, J bρ I and I /∈ A
}
,
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where the condition I /∈ A is automatic from the definition of Cτ−shift
A and the

choice of parameter r < τ < ρ in Definition 8. Recall also that J is τ -good if
J ∈ Dτ(r,ε)−good as in (3.1), i.e. if J and its `-parents up to level τ are all good.

Definition 14. Suppose that A ∈ A and that P is an A-admissible collection of
pairs. Define the associated stopping form BA,Pstop by

BA,Pstop (f, g) ≡
∑

(I,J)∈P
πI∈suppf̂ and I /∈A

(EσI 4σπI f)
〈
Tασ 1A\I ,4ωJg

〉
ω
.

Given an A-admissible collection P of pairs define the reduced collection Pred

as follows. For each fixed J let Ired
J be the largest good cube I such that (I, J) ∈ P.

Then set
Pred ≡

{
(I, J) ∈ P : I ⊂ Ired

J

}
.

Clearly Pred is A-admissible. Now recall our assumption that the Haar support
of f is contained in the set of good cubes whose children are all good as well.

This assumption has the important implication that BA,Pstop (f, g) = BA,P
red

stop (f, g).

Indeed, if (I, J) ∈ P \ Pred then πI 6∈ Haarsuppf and so EσI 4σπI f = 0. Thus
for the purpose of bounding the stopping form, we may assume that the following
additional property holds for any A-admissible collection of pairs P:

• if (I, J) ∈ P is maximal in the sense that I ⊃ I ′ for all I ′ satisfying (I ′, J) ∈
P, then I is good.

Note that there is an asymmetry in our definition of Pred here, namely that the
second components J are required to be τ -good, while the maximal first compo-
nents I are required to be good. Of course the treatment of the dual stopping forms
will use the reversed requirements, and this accounts for our symmetric restrictions
imposed on the Haar supports of f and g at the outset of the proof.

Definition 15. We say that an admissible collection P is reduced if P = Pred,
so that the additional property above holds.

Note that BA,Pstop (f, g) = BA,Pstop

(
PσCAf,P

ω
Cτ−shift
A

g
)

. Recall that the deep energy

condition constant Edeep
α is given by

(
Edeep
α

)2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr−deep(Ir)

(
Pα
(
J,1I\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
.

Proposition 3. Suppose that A ∈ A and that P is an A-admissible collection of
pairs. Then the stopping form BA,Pstop satisfies the bound

(11.3)
∣∣∣BA,Pstop (f, g)

∣∣∣ . (Edeep
α +

√
Aα2

)(
‖f‖L2(σ) + αA (f)

√
|A|σ

)
‖g‖L2(ω) .
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With this proposition in hand, we can complete the proof of (8.14), and hence
of Theorem 1, by summing over the stopping cubes A ∈ A with the choice PA of
A-admissible pairs for each A:∑
A∈A

∣∣∣BA,PAstop (f, g)
∣∣∣ .

∑
A∈A

(
Edeep
α +

√
Aα2

)
‖PCAf‖L2(σ)

∥∥∥PCτ−shift
A

g
∥∥∥
L2(ω)

.
(
Edeep
α +

√
Aα2

)(∑
A∈A
‖PCAf‖

2
L2(σ)

) 1
2
(∑
A∈A

∥∥∥PCτ−shift
A

g
∥∥∥2

L2(ω)

) 1
2

.
(
Edeep
α +

√
Aα2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

since the coronas CσA are pairwise disjoint in A, and the shifted coronas Cτ−shift
A

have bounded overlap: ∑
A∈A

1Cτ−shift
A

≤ τ1D.

To prove Proposition 3, we begin by letting Π2P consist of the second compo-
nents of the pairs in P and writing

BA,Pstop (f, g) =
∑

J∈Π2P

〈
Tασ ϕ

P
J ,4ωJg

〉
ω

;

where ϕPJ ≡
∑

I∈CA: (I,J)∈P

EσI (4σπIf) 1A\I .

By the tree-connected property of P, and the telescoping property of martingale
differences, together with the bound αA (A) on the averages of f in the corona CA,
we have

(11.4)
∣∣ϕPJ ∣∣ . αA (A) 1A\IP(J),

where IP (J) ≡
⋂
{I : (I, J) ∈ P} is the smallest cube I for which (I, J) ∈ P.

Another important property of these functions is the sublinearity:

(11.5)
∣∣ϕPJ ∣∣ ≤ ∣∣∣ϕP1

J

∣∣∣+
∣∣∣ϕP2

J

∣∣∣ , P = P1∪̇P2 .

Now apply the Monotonicity Lemma 3 to the inner product 〈Tασ ϕJ ,4ωJg〉ω to
obtain

|〈Tασ ϕJ ,4ωJg〉ω| .
Pα
(
J, |ϕJ |1A\IP(J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

+
Pα1+δ

(
J, |ϕJ |1A\IP(J)σ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω) .
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Thus we have

(11.6)∣∣∣BA,Pstop (f, g)
∣∣∣ ≤ ∑

J∈Π2P

Pα1
(
J, |ϕJ |1A\IP(J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

+
∑

J∈Π2P

Pα1+δ

(
J, |ϕJ |1A\IP(J)σ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

≡ |B|A,Pstop,1,4ω (f, g) + |B|A,Pstop,1+δ,Pω (f, g) ,

where we have dominated the stopping form by two sublinear stopping forms that
involve the Poisson integrals of order 1 and 1 + δ respectively, and where the
smaller Poisson integral Pα1+δ is multiplied by the larger projection ‖PωJx‖L2(ω).
This splitting turns out to be successful in separating the two energy terms from
the right hand side of the Energy Lemma, because of the two properties (11.4) and
(11.5) above. It remains to show the two inequalities:

(11.7) |B|A,Pstop,1,4ω (f, g) .
(
Edeep
α +

√
Aα2

)
αA (A)

√
|A|σ ‖g‖L2(ω) ,

for f ∈ L2 (σ) satisfying where EσI |f | ≤ αA (A) for all I ∈ CA; and

(11.8) |B|A,Pstop,1+δ,Pω (f, g) .
(
Edeep
α +

√
Aα2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

where we only need the case P = PA in this latter inequality as there is no recur-
sion involved in treating this second sublinear form. We consider first the easier
inequality (11.8) that does not require recursion. In the subsequent subsections we
will control the more difficult inequality (11.7) by adapting the stopping time and

recursion of M. Lacey to the sublinear form |B|A,Pstop,1,4ω (f, g).

11.1. The second inequality

Now we turn to proving (11.8), i.e.

|B|A,Pstop,1+δ,Pω (f, g) .
(
Edeep
α +

√
Aα2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

where since

|ϕJ | =

∣∣∣∣∣∣
∑

I∈CA: (I,J)∈P

EσI (4σπIf) 1A\I

∣∣∣∣∣∣ ≤
∑

I∈CA: (I,J)∈P

∣∣EσI (4σπIf) 1A\I
∣∣ ,
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the sublinear form |B|A,Pstop,1+δ,Pω can be dominated and then decomposed by pi-
geonholing the ratio of side lengths of J and I:

|B|A,Pstop,1+δ,Pω (f, g) =
∑

J∈Π2P

Pα1+δ

(
J, |ϕJ |1A\IP(J)σ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

≤
∑

(I,J)∈P

Pα1+δ

(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

≡
∞∑
s=0

|B|A,P;s
stop,1+δ,Pω (f, g) ;

|B|A,P;s
stop,1+δ,Pω (f, g) ≡

∑
(I,J)∈P

|J|
1
n=2−s|I|

1
n

Pα1+δ

(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω) .

Here we have the entire projection PωJx onto all of the dyadic subintervals of J , but
this is offset by the smaller Poisson integral Pα1+δ. We will now adapt the argument
for the stopping term starting on page 42 of [LaSaUr2], where the geometric gain
from the assumed Energy Hypothesis there will be replaced by a geometric gain
from the smaller Poisson integral Pα1+δ used here.

First, we exploit the additional decay in the Poisson integral Pα1+δ as follows.

Suppose that (I, J) ∈ P with |J |
1
n = 2−s |I|

1
n . We then compute

Pα1+δ

(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

=

∫
A\I

|J |
δ
n

|y − cJ |n+1+δ−α |E
σ
I (4σπIf)| dσ (y)

≤
∫
A\I

(
|J |

1
n

dist (cJ , Ic)

)δ
|EσI (4σπIf)|
|y − cJ |n+1−α dσ (y)

≤

(
|J |

1
n

dist (cJ , Ic)

)δ
Pα
(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

,

and use the goodness inequality,

dist (cJ , I
c) ≥ 1

2
|I|

1−ε
n |J |

ε
n ≥ 1

2
2s(1−ε) |J |

1
n ,

to conclude that
(11.9)(

Pα1+δ

(
J, |EσI (4σπIf)|1A\I(J)σ

)
|J |

1
n

)
. 2−sδ(1−ε)

Pα
(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

.
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We next claim that for s ≥ 0 an integer,

|B|A,P;s
stop,1+δ,Pω (f, g) =

∑
(I,J)∈P

|J|
1
n=2−s|I|

1
n

Pα1+δ

(
J, |EσI (4σπIf)|1A\Iσ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

. 2−sδ(1−ε)
(
Edeep
α +

√
Aα2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

from which (11.8) follows upon summing in s ≥ 0. Now using both

|EσI (4σπIf)| =
1

|I|σ

∫
I

|4σπIf | dσ ≤ ‖4σπIf‖L2(σ)

1√
|I|σ

,

2n ‖f‖2L2(σ) =
∑
I∈D
‖4σπIf‖

2
L2(σ) ,

we apply Cauchy-Schwarz in the I variable above to see that[
|B|A,P;s

stop,1+δ,Pω (f, g)
]2

. ‖f‖2L2(σ)

×

∑
I∈CA

 1√
|I|σ

∑
J: (I,J)∈P
|J|

1
n=2−s|I|

1
n

Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

‖PωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)


2

1
2

.

We can then estimate the sum inside the square brackets by

∑
I∈CA


∑

J: (I,J)∈P
|J|

1
n=2−s|I|

1
n

‖4ωJg‖
2
L2(ω)


∑

J: (I,J)∈P
|J|

1
n=2−s|I|

1
n

1

|I|σ

(
Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

)2

‖PωJx‖2L2(ω) . ‖g‖
2
L2(ω)A (s)

2
,

where

A (s)
2 ≡ sup

I∈CA

∑
J: (I,J)∈P
|J|

1
n=2−s|I|

1
n

1

|I|σ

(
Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

)2

‖PωJx‖2L2(ω) .

Finally then we turn to the analysis of the supremum in last display. From the
Poisson decay (11.9) we have

A (s)
2 . sup

I∈CA

1

|I|σ
2−sδ(1−ε)

∑
J: (I,J)∈P
|J|

1
n=2−s|I|

1
n

(
Pα
(
J,1A\Iσ

)
|J |

1
n

)2

‖PωJx‖
2
L2(ω)

. 2−2sδ(1−ε)
[(
Edeep
α

)2
+Aα2

]
,
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where the last inequality is the one for which the definition of energy stopping
cubes was designed. Indeed, from Definition 5, as (I, J) ∈ P, we have that I is not
a stopping cube in A, and hence that (8.1) fails to hold, delivering the estimate
above since J bρ I good must be contained in some K ∈ Mr−deep (I), and since
Pα(J,1A\Iσ)
|J|

1
n

≈ Pα(K,1A\Iσ)
|J|

1
n

. The terms ‖PωJx‖
2
L2(ω) are additive since the J ′s are

pigeonholed by |J |
1
n = 2−s |I|

1
n .

11.2. The first inequality and the recursion of M. Lacey

Now we turn to proving the more difficult inequality (11.7). Recall that in dimen-
sion n = 1 the energy condition

∞∑
n=1

|Jn|ω E (Jn, ω)
2

P (Jn,1Iσ)
2 . (NT V) |I|σ ,

·⋃∞
n=1

Jn ⊂ I,

could not be used in the NTV argument, because the set functional J → |J |ω E (J, ω)
2

failed to be superadditive. On the other hand, the pivotal condition of NTV,

∞∑
n=1

|Jn|ω P (Jn,1Iσ)
2 . |I|σ ,

·⋃∞
n=1

Jn ⊂ I,

succeeded in the NTV argument because the set functional J → |J |ω is trivially
superadditive, indeed additive. The final piece of the argument needed to prove the
NTV conjecture was found by M. Lacey in [Lac], and amounts to first replacing
the additivity of the functional J → |J |ω with the additivity of the projection

functional H → ‖PωHx‖
2
L2(ω) defined on subsets H of the dyadic grid D. Then a

stopping time argument relative to this more subtle functional, together with a
clever recursion, constitute the main new ingredients in Lacey’s argument [Lac].

To begin the extension to a more general Calderón-Zygmund operator Tα, we
also recall the stopping energy generalized to higher dimensions by

Xα (CA)
2 ≡ sup

I∈CA

1

|I|σ

∑
J∈Mr−deep(I)

(
Pα
(
J,1A\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
,

whereMr−deep (I) is the set of maximal r-deeply embedded subcubes of I where r
is the goodness parameter. What now follows is an adaptation to our deep energy
condition and the sublinear form |B|A,Pstop,1,4ω of the arguments of M. Lacey in [Lac].
We have the following Poisson inequality for cubes B ⊂ A ⊂ I:

Pα
(
A,1I\Aσ

)
|A|

1
n

≈
∫
I\A

1

(|y − cA|)n+1−α dσ (y)(11.10)

.
∫
I\A

1

(|y − cB |)n+1−α dσ (y) ≈
Pα
(
B,1I\Aσ

)
|B|

1
n

.
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11.3. The stopping energy

Fix A ∈ A. We will use a ‘decoupled’ modification of the stopping energy X (CA).
Suppose that P is an A-admissible collection of pairs of cubes in the product set
D × Dgood of pairs of dyadic cubes in Rn with second component good. For an
admissible collection P let Π1P and Π2P be the cubes in the first and second
components of the pairs in P respectively, let ΠP ≡ Π1P ∪Π2P, and for K ∈ πP
define the τ -deep projection of P relative to K by

ΠK,τ−deep
2 P ≡ {J ∈ Π2P : J bτ K} .

Now the cubes J in Π2P are of course always good, but this is not the case for
cubes I in Π1P. Indeed, the collection P is tree-connected in the first component,
and it is clear that there can be many bad cubes in a connected geodesic in the
tree D. But the Haar support of f is contained in good cubes I, and we may
also assume that the children of these cubes I are good. As a consequence we
may always assume that our A-admissible collections P are reduced in the sense
of Definition 15. Thus we will use as our ‘size testing collection’ of cubes for P the
collection

ΠgoodbelowP ≡ {K ′ ∈ D : K ′ is good and K ′ ⊂ K for some K ∈ ΠP} ,

which consists of all the good subcubes of any cube in ΠP. Note that the maximal
cubes in ΠP = ΠPred are already good themselves, and so we have the important
property that

(11.11) (I, J) ∈ P = Pred implies I ⊂ K for some cube K ∈ ΠgoodbelowP.

Now define the ‘size functional’ Sα,Asize (P) of P as follows. Recall that a projection
PωH on x satisfies

‖PωHx‖2L2(ω) =
∑
J∈H
‖4ωJx‖2L2(ω) .

Definition 16. If P is A-admissible, define

(11.12) Sα,Asize (P)
2 ≡ sup

K∈ΠgoodbelowP

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2 ∥∥∥Pω
ΠK,τ−deep

2 Px
∥∥∥2

L2(ω)
.

We should remark that that the cubes K in ΠgoodbelowP that fail to contain
any τ -parents of cubes from Π2P will not contribute to the size functional since
ΠK,τ−deep

2 P is empty in this case. We note three essential properties of this defi-
nition of size functional:

1. Monotonicity of size: Sα,Asize (P) ≤ Sα,Asize (Q) if P ⊂ Q,

2. Goodness of testing cubes: ΠgoodbelowP ⊂ Dgood,

3. Control by deep energy condition: Sα,Asize (P) . Edeep
α +

√
Aα2 .
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The monotonicity property follows from ΠgoodbelowP ⊂ ΠgoodbelowQ and ΠK,τ−deep
2 P ⊂

ΠK,τ−deep
2 Q, and the goodness property follows from the definition of ΠgoodbelowP.

The control property is contained in the next lemma, which uses the stopping en-
ergy control for the form BAstop (f, g) associated with A.

Lemma 14. If PA is as in (11.2) and P ⊂ PA, then

Sα,Asize (P) ≤ Xα (CA) . Edeep
α +

√
Aα2 .

Proof. Suppose that K ∈ ΠgoodbelowP. To prove the first inequality in the state-
ment we note that

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2 ∥∥∥∥Pω(ΠK,τ−deep
2 P)

∗x

∥∥∥∥2

L2(ω)

≤ 1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2 ∑
J∈Mr−deep(K)

∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

.
1

|K|σ

∑
J∈Mr−deep(K)

(
Pα
(
J,1A\Kσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)

.
1

|K|σ

∑
J∈Mr−deep(K)

(
Pα
(
J,1A\γJσ

)
|J |

1
n

)2 ∥∥∥Psubgood,ω
J x

∥∥∥2

L2(ω)
≤ Xα (CA) ,

where the first inequality above follows since every J ′ ∈ ΠK,τ−deep
2 P is contained in

some J ∈Mr−deep (I), the second inequality follows from (11.10) with J ⊂ K ⊂ A,
and then the third inequality follows since J br I implies γJ ⊂ I by (2.4), and

finally since ΠK,τ−deep
2 P = ∅ if K ⊂ A and K /∈ CA by (11.13) below. The second

inequality in the statement of the lemma follows from (8.5). 2

The following useful fact is needed above and will be used later as well:

(11.13) K ⊂ A and K /∈ CA =⇒ ΠK,τ−deep
2 P = ∅ .

To see this, suppose that K ∈ Cτ−shift
A \ CA. Then K ⊂ A′ for some A′ ∈ CA (A),

and so if there is J ∈ ΠK,τ−deep
2 P, then |J |

1
n ≤ 2−τ |K|

1
n ≤ 2−τ |A′|

1
n , which

implies that J /∈ Cτ−shift
A , which contradicts ΠK,τ−deep

2 P ⊂ Cτ−shift
A .

Now define an atomic measure ωP in the upper half space Rn+1
+ by

ωP ≡
∑

J∈Π2P
‖4ωJx‖2L2(ω) δ

(
cJ ,|J|

1
n

).

Define the tent T (K) over a cube K to be the convex hull of the n-cube K × {0}
and the point

(
cK , |K|

1
n

)
∈ Rn+1

+ . Define the τ -deep tent Tτ−deep (K) over a cube
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K to be the restriction of the tent T (K) to those points at depth τ or more below
K:

Tτ−deep (K) ≡
{

(y, t) ∈ T (K) : t ≤ 2−τ |K|
1
n

}
.

Thus using that ΠK,τ−deep
2 P ⊂ ΠgoodbelowP we can rewrite the size functional

(11.12) of P as

(11.14) Sα,Asize (P)
2 ≡ sup

K∈ΠgoodbelowP

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
.

It will be convenient to write

Ψα (K;P)
2 ≡

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
,

so that we have simply

Sα,Asize (P)
2

= sup
K∈ΠgoodbelowP

Ψα (K;P)
2

|K|σ
.

Remark 11. The functional ωP
(
Tτ−deep (K)

)
is increasing in K, while the func-

tional
Pα(K,1A\Kσ)

|K|
1
n

is ‘almost decreasing’ in K: if K0 ⊂ K then

Pα
(
K,1A\Kσ

)
|K|

1
n

=

∫
A\K

dσ (y)(
|K|

1
n + |y − cK |

)n+1−α

.
∫
A\K

(
√
n)
n+1−α

dσ (y)(
|K0|

1
n + |y − cK0 |

)n+1−α

≤ Cn,α

∫
A\K0

dσ (y)(
|K0|

1
n + |y − cK0

|
)n+1−α = Cn,α

Pα
(
K0,1A\K0

σ
)

|K0|
1
n

,

since |K0|
1
n + |y − cK0

| ≤ |K|
1
n + |y − cK |+ 1

2diam (K) for y ∈ A \K.

11.4. The recursion

Recall that if P is an admissible collection for a dyadic cube A, the corresponding
sublinear form in (11.7) is given in (11.6) by

|B|A,Pstop,1,4ω (f, g) ≡
∑

J∈Π2P

Pα
(
J,
∣∣ϕPJ ∣∣1A\IP(J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω) ;

where ϕPJ ≡
∑

I∈CA: (I,J)∈P

EσI (4σπIf) 1A\I .
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In the notation for |B|A,Pstop,1,4ω , we are omitting dependence on the parameter α,
and to avoid clutter, we will often do so from now on when the dependence on α
is inconsequential. Following Lacey [Lac], we now claim the following proposition,
from which we obtain (11.7) as a corollary below. Motivated by the conclusion

of Proposition 3, we define the restricted norm NA,P
stop,1,4 of the sublinear form

|B|A,Pstop,1,4ω to be the best constant NA,P
stop,1,4 in the inequality

|B|A,Pstop,1,4ω (f, g) ≤ NA,P
stop,1,4

(
αA (A)

√
|A|σ + ‖f‖L2(σ)

)
‖g‖L2(ω) ,

where f ∈ L2 (σ) satisfies EσI |f | ≤ αA (A) for all I ∈ Cgood
A .

Proposition 4. (This is a variant for sublinear forms of the Size Lemma in Lacey
[Lac]) Suppose ε > 0. Let P be an admissible collection of pairs for a dyadic cube
A. Then we can decompose P into two disjoint collections P = Pbig∪̇Psmall, and
further decompose Psmall into pairwise disjoint collections Psmall1 ,Psmall2 ...Psmall` ...
i.e.

P = Pbig∪̇

( ·⋃∞
`=1
Psmall`

)
,

such that the collections Pbig and Psmall` are admissible and satisfy

(11.15) sup
`≥1
Sα,Asize

(
Psmall`

)2 ≤ εSα,Asize (P)
2
,

and

(11.16) NA,P
stop,1,4 ≤ CεS

α,A
size (P) +

√
nτ sup

`≥1
N
A,Psmall`

stop,1,4 .

Corollary 1. The sublinear stopping form inequality (11.7) holds.

Proof of the Corollary. Set Q0 = PA. Apply Proposition 4 to obtain a subdecom-
position

{
Q1
`

}∞
`=1

of Q0 such that

NA,Q0

stop,1,4 ≤ CεS
α,A
size

(
Q0
)

+
√
nτ sup

`≥1
N
A,Q1

`

stop,1,4 ,

sup
`≥1
Sα,Asize

(
Q1
`

)
≤ εSα,Asize

(
Q0
)
.

Now apply Proposition 4 to each Q1
` to obtain a subdecomposition

{
Q2
`,k

}∞
k=1

of

Q1
` such that

N
A,Q1

`

stop,1,4 ≤ CεSα,Asize

(
Q1
`

)
+
√
nτ sup

k≥1
N
A,Q2

`,k

stop,1,4 ,

sup
k≥1
Sα,Asize

(
Q2
`,k

)
≤ εSα,Asize

(
Q1
`

)
.
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Altogether we have

NA,Q0

stop,1,4 ≤ CεSα,Asize

(
Q0
)

+
√
nτ sup

`≥1

{
CεSα,Asize

(
Q1
`

)
+
√
nτ sup

k≥1
N
A,Q2

`,k

stop,1,4

}
= Cε

{
Sα,Asize

(
Q0
)

+
√
nτεSα,Asize

(
Q0
)}

+ (nτ) sup
`,k≥1

N
A,Q2

`,k

stop,1,4 .

Then with ζ ≡
√
nτ , we obtain by induction for every N ∈ N,

NA,Q0

stop,1,4 ≤ Cε

{
Sα,Asize

(
Q0
)

+ ζεSα,Asize

(
Q0
)

+ ...ζNεNSα,Asize

(
Q0
)}

+ζN+1 sup
m∈NN+1

N
A,QN+1

m

stop,1,4 .

Now we may assume the collection Q0 = PA of pairs is finite (simply trun-
cate the corona CA and obtain bounds independent of the truncation) and so

supm∈NN+1 N
A,QN+1

m

stop,1,4 = 0 for N large enough. Then we obtain (11.7) if we choose

0 < ε < 1
1+ζ and apply Lemma 14. 2

Proof of Proposition 4. Recall that the ‘size testing collection’ of cubes ΠgoodbelowP
is the collection of all good subcubes of a cube in ΠP. We may assume that P is
a finite collection. Begin by defining the collection L0 to consist of the minimal
dyadic cubes K in ΠgoodbelowP such that

Ψα (K;P)
2

|K|σ
≥ εSα,Asize (P)

2
.

where we recall that

Ψα (K;P)
2 ≡

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
.

Note that such minimal cubes exist when 0 < ε < 1 because Sα,Asize (P)
2

is the

supremum overK ∈ ΠgoodbelowP of Ψα(K;P)2

|K|σ
. A key property of the the minimality

requirement is that

(11.17)
Ψα (K ′;P)

2

|K ′|σ
< εSα,Asize (P)

2
,

for all K ′ ∈ ΠgoodbelowP with K ′ & K and K ∈ L0.
We now perform a stopping time argument ‘from the bottom up’ with respect

to the atomic measure ωP in the upper half space. This construction of a stopping
time ‘from the bottom up’ is one of two key innovations in Lacey’s argument [Lac],
the other being the recursion described in Proposition 4.

We refer to L0 as the initial or level 0 generation of stopping times. Choose
ρ = 1+ε. We then recursively define a sequence of generations {Lm}∞m=0 by letting
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Lm consist of the minimal dyadic cubes L in ΠgoodbelowP that contain a cube from
some previous level L`, ` < m, such that

(11.18) ωP
(
Tτ−deep (L)

)
≥ ρωP


⋃

L′∈

m−1⋃
`=0

L` : L′ ⊂ L

Tτ−deep (L′)


.

Since P is finite this recursion stops at some level M . We then let LM+1 consist
of all the maximal cubes in ΠgoodbelowP that are not already in some Lm. Thus
LM+1 will contain either none, some, or all of the maximal cubes in ΠgoodbelowP.
We do not of course have (11.18) for A′ ∈ LM+1 in this case, but we do have that
(11.18) fails for subcubes K of A′ ∈ LM+1 that are not contained in any other
L ∈ Lm, and this is sufficient for the arguments below.

We now define the collections Psmall and Pbig. The collection Pbig will consist
of those pairs (I, J) ∈ P for which there is L ∈ L with J bτ L ⊂ I, and Psmall
will consist of the remaining pairs. But a considerable amount of further analysis

is required to prove the conclusion of the proposition. First, let L ≡
M⋃
m=0

Lm be

the tree of stopping energy cubes defined above. By our construction above, the
maximal elements in L are the maximal cubes in ΠgoodbelowP. For L ∈ L, denote
by CL the corona associated with L in the tree L,

CL ≡ {K ∈ D : K ⊂ L and there is no L′ ∈ L with K ⊂ L′ $ L} ,

and define the shifted corona by

Cτ−shift
L ≡ {K ∈ CL : K bτ L}∪

⋃
L′∈CL(L)

{K ∈ D : K bτ L and K is τ -nearby in L′} .

Now the parameter m in Lm refers to the level at which the stopping construction
was performed, but for L ∈ Lm, the corona children L′ of L are not all necessarily
in Lm−1, but may be in Lm−t for t large. Thus we need to introduce the notion
of geometric depth d in the tree L by defining

G0 ≡ {L ∈ L : L is maximal} ,
G1 ≡ {L ∈ L : L is maximal wrt L $ L0 for some L0 ∈ G0} ,

...

Gd+1 ≡ {L ∈ L : L is maximal wrt L $ Ld for some Ld ∈ Gd} ,
...

We refer to Gd as the dth generation of cubes in the tree L, and say that the cubes
in Gd are at depth d in the tree L. Thus the cubes in Gd are the stopping cubes in
L that are d levels in the geometric sense below the top level.
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Then for L ∈ Gd and t ≥ 0 define

PL,t ≡
{

(I, J) ∈ P : I ∈ CL and J ∈ Cτ−shift
L′ for some L′ ∈ Gd+t with L′ ⊂ L

}
.

In particular, (I, J) ∈ PL,t implies that I is in the corona CL, and that J is in a
shifted corona Cτ−shift

L′ that is t levels of generation below CL. We emphasize the
distinction ‘generation’ as this refers to the depth rather than the level of stopping
construction. For t = 0 we further decompose PL,0 as

PL,0 = PsmallL,0 ∪̇PbigL,0;

PsmallL,0 ≡ {(I, J) ∈ PL,0 : I 6= L} ,

PbigL,0 ≡ {(I, J) ∈ PL,0 : I = L} ,

with one exeption: if L ∈ LM+1 we set PsmallL,0 ≡ PL,0 since in this case L fails to
satisfy (11.18) as pointed out above. Then we set

Pbig ≡

{⋃
L∈L
PbigL,0

}⋃⋃
t≥1

⋃
L∈L
PL,t

 ;

{
Psmall`

}∞
`=0

≡
{
PsmallL,0

}
L∈L , after relabelling.

It is important to note that by (11.11), every pair (I, J) ∈ P will be included in
either Psmall or Pbig. Now we turn to proving the inequalities (11.15) and (11.16).

To prove the inequality (11.15), it suffices with the above relabelling to prove
the following claim:

(11.19) Sα,Asize

(
PsmallL,0

)2 ≤ (ρ− 1)Sα,Asize (P)
2
, L ∈ L.

To see (11.19), suppose first that L /∈ LM+1. In the case that L ∈ L0 is an initial
generation cube, then from (11.17) we obtain that

Sα,Asize

(
PsmallL,0

)2
≤ sup

K′∈ΠgoodbelowP: K′&L

1

|K ′|σ

(
Pα
(
K ′,1A\K′σ

)
|K ′|

1
n

)2

ωP
(
Tτ−deep (K ′)

)
≤ εSα,Asize (P)

2
.

Now suppose that L 6∈ L0 and also that L /∈ LM+1. Pick a pair (I, J) ∈ PsmallL,0 .

Then I is in the strict corona C′L and J is in the τ -shifted corona Cτ−shift
L . Since

PsmallL,0 is a finite collection, the definition of Sα,Asize

(
PsmallL,0

)
shows that there is a

cube K ∈ ΠgoodbelowPsmallL,0 so that

Sα,Asize

(
PsmallL,0

)2
=

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
.

Now define

t′ = t′ (K) ≡ max {s : there is L′ ∈ Ls with L′ ⊂ K} .
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First, suppose that t′ = 0 so that K does not contain any L′ ∈ L. Then it follows
from our construction at level ` = 0 that

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
< εSα,Asize (P)

2
,

and hence from ρ = 1 + ε we obtain

Sα,Asize

(
PsmallL,0

)2
< εSα,Asize (P)

2
= (ρ− 1)Sα,Asize (P)

2
.

Now suppose that t′ ≥ 1. Then K fails the stopping condition (11.18) with m =
t′ + 1, and so

ωP
(
Tτ−deep (K)

)
< ρωP


⋃

L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)


.

Now we use the crucial fact that ωP is additive and finite to obtain from this that

ωP


Tτ−deep (K) \

⋃
L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)


(11.20)

= ωP
(
Tτ−deep (K)

)
− ωP


⋃

L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)



≤ (ρ− 1)ωP


⋃

L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)


.
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Thus using

ωPsmallL,0

(
Tτ−deep (K)

)
≤ ωP


Tτ−deep (K) \

⋃
L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)


,

and (11.20) we have

Sα,Asize

(
PsmallL,0

)2

≤ sup
K∈ΠgoodbelowPsmallL,0

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP


Tτ−deep (K) \

⋃
L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)



≤ (ρ− 1) sup
K∈ΠgoodbelowPsmallL,0

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP


⋃

L′∈

t′⋃
`=0

L` : L′ ⊂ K

Tτ−deep (L′)


.

and we can continue with

Sα,Asize

(
PsmallL,0

)
≤ (ρ− 1) sup

K∈ΠgoodbelowP

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
≤ (ρ− 1)Sα,Asize (P)

2
.

In the remaining case where L ∈ LM+1 we can include L as a testing cube K
and the same reasoning applies. This completes the proof of (11.19).

To prove the other inequality (11.16), we need a lemma to bound the norm of

certain ‘straddled’ stopping forms by the size functional Sα,Asize , and another lemma
to bound sums of ‘mutually orthogonal’ stopping forms. We interrupt the proof to
turn to these matters. 2

11.4.1. The Straddling Lemma. Given an admissible collection of pairs Q for
A, and a subpartition S ⊂ ΠgoodbelowQ of pairwise disjoint cubes in A, we say
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that Q τ -straddles S if for every pair (I, J) ∈ Q there is S ∈ S ∩ [J, I] where [J, I]
denotes the geodesic in the dyadic tree D that connects J to I, and moreover that
J bτ S. Denote by N good

ρ−τ (S) the finite collection of cubes that are both good
and (ρ− τ)-nearby in S. For any good dyadic cube S ∈ Dgood, we will also need
the collection Wgood (S) of maximal good subcubes I of S whose triples 3I are
contained in S.

Lemma 15. Let S be a subpartition of A, and suppose that Q is an admissible
collection of pairs for A such that S ⊂ ΠgoodbelowQ, and such that Q τ -straddles
S. Then we have the sublinear form bound

NA,Q
stop,1,4 ≤ Cr,τ,ρ sup

S∈S
Sα,A;S

size (Q) ≤ Cr,τ,ρSα,Asize (Q) ,

where Sα,A;S
size is an S-localized version of Sα,Asize with an S-hole given by

(11.21)

Sα,A;S
size (Q)

2 ≡ sup
K∈N good

ρ−τ (S)∪Wgood(S)

1

|K|σ

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2

ωQ
(
Tτ−deep (K)

)
.

Proof. For S ∈ S let QS ≡ {(I, J) ∈ Q : J bτ S ⊂ I}. We begin by using that Q
τ -straddles S, together with the sublinearity property (11.5) of ϕQJ , to write

|B|A,Qstop,1,4 (f, g) =
∑

J∈Π2P

Pα
(
J,
∣∣ϕQJ ∣∣1A\IQ(J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

≤
∑
S∈S

∑
J∈ΠS,τ−deep

2 Q

Pα
(
J,
∣∣∣ϕQSJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω) ;

where ϕQ
S

J ≡
∑

I∈Π1QS : (I,J)∈QS
EσI (4σπIf) 1A\I .

At this point, with S fixed for the moment, we consider separately the finitely

many cases |J |
1
n = 2−s |S|

1
n where s ≥ ρ and where τ ≤ s < ρ. More precisely, we

pigeonhole the side length of J ∈ Π2QS = ΠS,τ−deep
2 Q by

QS∗ ≡
{

(I, J) ∈ QS : J ∈ Π2QS and |J |
1
n ≤ 2−ρ |S|

1
n

}
,

QSs ≡
{

(I, J) ∈ QS : J ∈ Π2QS and |J |
1
n = 2−s |S|

1
n

}
, τ ≤ s < ρ.

Then we have

Π2QS∗ ≡
{
J ∈ Π2QS : |J |

1
n ≤ 2−ρ |S|

1
n

}
,

Π2QSs ≡
{
J ∈ Π2QS : |J |

1
n = 2−s |S|

1
n

}
, τ ≤ s < ρ,
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and we make the corresponding decomposition for the sublinear form

|B|A,Qstop,1,4 (f, g) = |B|A,Q∗stop,1,4 (f, g) +
∑
τ≤s<ρ

|B|A,Qsstop,1,4 (f, g)

≡
∑
S∈S

∑
J∈Π2QS∗

Pα
(
J,
∣∣∣ϕQS∗J ∣∣∣1A\IQ∗ (J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω)

+
∑
τ≤s<ρ

∑
S∈S

∑
J∈Π2QSs

Pα
(
J,
∣∣∣ϕQSsJ ∣∣∣1A\IQS (J)σ

)
|J |

1
n

‖4ωJx‖L2(ω) ‖4
ω
Jg‖L2(ω) .

By the tree-connected property of Q, and the telescoping property of martingale
differences, together with the bound αA (A) on the averages of f in the corona CA,
we have

(11.22)
∣∣∣ϕQS∗J ∣∣∣ , ∣∣∣ϕQSsJ ∣∣∣ . αA (A) 1A\IQS (J),

where IQS (J) ≡
⋂{

I : (I, J) ∈ QS
}

is the smallest cube I for which (I, J) ∈ QS .

Case for |B|A,Q
S
s

stop,1,4 (f, g) when τ ≤ s ≤ ρ: Now is a crucial definition that
permits us to bound the form by the size functional with a large hole. Let

CSs ≡ πτ
(
Π2QSs

)
be the collection of τ -parents of cubes in Π2QSs , and denote by MS

s the set of
maximal cubes in the collection CSs . We have that the cubes in MS

s are good by
our assumption that the Haar support of g is contained in the τ -good grid grid
Dτ(r,ε)−good, and so MS

s ⊂ Nρ−τ (S). Here is the first of two key inclusions:

(11.23) J bτ K ⊂ S if K ∈MS
s is the unique cube containing J.

Let Is ≡ πρ−sS so that for each J in Π2QSs we have the second key inclusion

(11.24) πρJ = Is ⊂ IQS (J) .

Now each K ∈ MS
s is also (ρ− τ)-deeply embedded in Is if ρ ≥ r + τ , so that

in particular, 3K ⊂ Is. This and (11.24) have the consequence that the following
Poisson inequalities hold:

Pα
(
J,1A\IQS (J)σ

)
|J |

m
n

.
Pα
(
J,1A\Isσ

)
|J |

m
n

.
Pα
(
K,1A\Isσ

)
|K|

m
n

.
Pα
(
K,1A\Sσ

)
|K|

m
n

.

Let Π2QSs (K) ≡
{
J ∈ Π2QSs : J ⊂ K

}
. Let[

Π2QSs
]
`
≡

{
J ∈ Π2QSs : |J ′|

1
n = 2−` |K|

1
n

}
,[

Π2QSs
]∗
`
≡

{
J ′ : J ′ ⊂ J ∈ Π2QSs : |J ′|

1
n = 2−` |K|

1
n

}
.
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Now set Qs ≡
⋃
S∈S
QSs . We apply (11.22) and Cauchy-Schwarz in J to bound

|B|A,Qsstop,1,4 (f, g) by

αA (A)
∑
S∈S

∑
K∈MS

s

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)∥∥∥Pω
ΠS,τ−deep

2 Qs;K
x
∥∥∥
L2(ω)

∥∥∥Pω
ΠS,τ−deep

2 Qs;K
g
∥∥∥
L2(ω)

,

where the localized projections Pω
ΠS,τ−deep

2 Qs;K
are defined in (9.1) above.

Thus using Cauchy-Schwarz in K we have that
∣∣∣BA,Qsstop,1,4 (f, g)

∣∣∣ is bounded by

αA (A)
∑
S∈S

∑
K∈MS

s

√
|K|σ

× 1√
|K|σ

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)∥∥∥PωΠ2QSs (K)x
∥∥∥
L2(ω)

∥∥∥PωΠ2QSs (K)g
∥∥∥
L2(ω)

≤ αA (A) sup
S∈S
Sα,A;S

size (Q)

∑
S∈S

∑
K∈Nρ−τ (S)

|K|σ

 1
2

‖g‖L2(ω)

≤ sup
S∈S
Sα,A;S

size (Q)αA (A)
√
|A|σ ‖g‖L2(ω) ,

since J bτ M ⊂ K by (11.23), since MS
s ⊂ Nρ−τ (S), and since the collection of

cubes
⋃
S∈S
MS

s is pairwise disjoint in A.

Case for |B|A,Q∗stop,1,4 (f, g): This time we let CS∗ ≡ πτ
(
Π2QS∗

)
and denote by

MS
∗ the set of maximal cubes in the collection CS∗ . We have the two key inclusions,

J bτ M bρ−τ S if M ∈MS
∗ is the unique cube containing J,

and

πρJ ⊂ S ⊂ IQ (J) .

Moreover there is K ∈ Wgood (S) that contains M . Thus 3K ⊂ S and we have

Pα
(
J,1A\Sσ

)
|J |

1
n

.
Pα
(
K,1A\Sσ

)
|K|

1
n

,

and |ϕJ | . αA (A) 1A\S . Now set Q∗ ≡
⋃
S∈S
QS∗ . Arguing as above, but with

Wgood (S) in place ofNρ−τ (S), and using J bρ IQ (J), we can bound |B|A,Q∗stop,1,4 (f, g)
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by

αA (A)
∑
S∈S

∑
K∈Wgood(S)

√
|K|σ

× 1√
|K|σ

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)∥∥∥PωΠ2QSs (K)x
∥∥∥
L2(ω)

∥∥∥PωΠ2QS∗ (K)g
∥∥∥
L2(ω)

≤ αA (A) sup
S∈S
Sα,A;S

size (Q)

∑
S∈S

∑
K∈Wgood(S)

|K|σ

 1
2

‖g‖L2(ω)

≤ sup
S∈S
Sα,A;S

size (Q)αA (A)
√
|A|σ ‖g‖L2(ω) .

We now sum these bounds in s and ∗ and use supS∈S S
α,A;S
size (Q) ≤ Sα,Asize (Q) to

complete the proof of Lemma 15. 2

11.4.2. The Orthogonality Lemma. Given a set {Qm}∞m=0 of admissible col-
lections for A, we say that the collections Qm are mutually orthogonal, if each
collection Qm satisfies

Qm ⊂
∞⋃
j=0

{Am,j × Bm,j} ,

where the sets {Am,j}m,j and {Bm,j}m,j each have bounded overlap on the dyadic
grid D:

∞∑
m,j=0

1Am,j ≤ A1D and

∞∑
m,j=0

1Bm,j ≤ B1D.

Lemma 16. Suppose that {Qm}∞m=0 is a set of admissible collections for A that

are mutually orthogonal. Then if Q ≡
∞⋃
m=0

Qm, the sublinear stopping form

|B|A,Qstop,1,4 (f, g) has its restricted norm NA,Q
stop,1,4 controlled by the supremum of

the restricted norms NA,Qm
stop,1,4:

NA,Q
stop,1,4 ≤

√
nAB sup

m≥0
NA,Qm

stop,1,4.

Proof. If Pσm =
∑
j≥0

∑
I∈Am,j

4σπI (note the parent πI in the projection 4σπI because

of our ‘change of dummy variable’ in (11.1)) and Pωm =
∑
j≥0

∑
J∈Bm,j

4ωJ , then we

have

BA,Qmstop (f, g) = BA,Qmstop (Pσmf,P
ω
mg) ,
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and ∑
m≥0

‖Pσmf‖
2
L2(σ) ≤

∑
m≥0

∑
j≥0

∥∥∥PσAm,jf∥∥∥2

L2(σ)
≤ An ‖f‖2L2(σ) ,

∑
m≥0

‖Pωmg‖
2
L2(σ) ≤

∑
m≥0

∑
j≥0

∥∥∥PωBm,jg∥∥∥2

L2(ω)
≤ B ‖g‖2L2(ω) .

The sublinear inequality (11.5) and Cauchy-Schwarz now give

|B|A,Qstop,1,4 (f, g) ≤
∑
m≥0

|B|A,Qmstop,1,4 (f, g) ≤
∑
m≥0

NA,Qm
stop ‖Pσmf‖L2(σ) ‖P

ω
mg‖L2(σ)

≤
(

sup
m≥0

NA,Qm
stop,1,4

)√∑
m≥0

‖Pσmf‖
2
L2(σ)

√∑
m≥0

‖Pωmg‖
2
L2(σ)

≤
(

sup
m≥0

NA,Qm
stop,1,4

)√
nAB

√
n ‖f‖L2(σ) ‖g‖L2(ω) .

2

11.4.3. Completion of the proof. Now we return to the proof of inequality
(11.16) in Proposition 4.

Proof of (11.16). Recall that

Pbig =

{⋃
L∈L
PbigL,0

}⋃⋃
t≥1

⋃
L∈L
PL,t

 ≡ Qbig0

⋃
Qbig1 ;

Qbig0 ≡
⋃
L∈L
PbigL,0 , Qbig1 ≡

⋃
t≥1

Pbigt , Pbigt ≡
⋃
L∈L
PL,t.

We first consider the collection Qbig0 =
⋃
L∈L
PbigL,0, and claim that

(11.25) N
A,PbigL,0
stop,1,4 ≤ CS

α,A
size

(
PbigL,0

)
≤ CSα,Asize (P) , L ∈ L.

To see this we note that PbigL,0 τ -straddles the trivial collection {L} consisting of a

single cube, since the pairs (I, J) that arise in PbigL,0 have I = L and J in the shifted

corona Cτ−shift
I . Thus we can apply Lemma 15 with Q = PbigL,0 and S = {L} to

obtain (11.25).

Next, we observe that the collections PbigL,0 are mutually orthogonal, namely

PbigL,0 ⊂ CL × Cτ−shift
L ,∑

L∈L
1CL ≤ 1 and

∑
L∈L

1Cτ−shift
L

≤ τ.
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Thus the Orthogonality Lemma 16 shows that

N
A,Qbig0

stop,1,4 ≤
√
nτ sup

L∈L
N
A,PbigL,0
stop,1,4 ≤

√
nτCSα,Asize (P) .

Now we turn to the collection

Qbig1 =
⋃
t≥1

⋃
L∈L
PL,t =

⋃
t≥1

Pbigt ;

Pbigt ≡
⋃
L∈L
PL,t , t ≥ 0.

We claim that

(11.26) N
A,Pbigt
stop,1,4 ≤ Cρ

− t2Sα,Asize (P) , t ≥ 1.

Note that with this claim established, we have

NA,Pbig
stop,1,4 ≤ N

A,Qbig0

stop,1,4 + N
A,Qbig1

stop,1,4 ≤ N
A,Qbig0

stop,1,4 +

∞∑
t=1

N
A,Pbigt
stop,1,4 ≤ CρS

α,A
size (P) ,

which proves (11.16) if we apply the Orthogonal Lemma 16 to the set of collections{
PsmallL,0

}
L∈L, which is mutually orthogonal since PsmallL,0 ⊂ C′L × C

τ−shift
L . With

this the proof of Proposition 4 is now complete since ρ = 1 + ε. Thus it remains
only to show that (11.26) holds.

The cases 1 ≤ t ≤ r + 1 can be handled with relative ease since decay in t is
not needed there. Indeed, PL,t τ -straddles the collection CL (L) of L-children of
L, and so the Straddling Lemma applies to give

N
A,PL,t
stop,1,4 ≤ CS

α,A
size (PL,t) ≤ CSα,Asize (P) ,

and then the Orthogonality Lemma 16 applies to give

N
A,Pbigt
stop,1,4 ≤

√
nτ sup

L∈L
N
A,PL,t
stop,1,4 ≤ C

√
nτSα,Asize (P) ,

since {PL,t}L∈L is mutually orthogonal as PL,t ⊂ CL × Cτ−shift
L′ with L ∈ Gd and

L′ ∈ Gd+t for depth d = d (L).
Now we consider the case t ≥ r + 2, where it is essential to obtain decay in t.

We again apply Lemma 15 to PL,t with S = CL (L), but this time we must use the

stronger localized bounds Sα,A;S
size with an S-hole, that give

(11.27) N
A,PL,t
stop,1,4 ≤ C sup

S∈CL(L)

Sα,A;S
size (PL,t) , t ≥ 0.

Fix L ∈ Gd. Now we note that if J ∈ ΠL,τ−deep
2 PL,t then J belongs to the τ -shifted

corona Cτ−shift
Ld+t

for some cube Ld+t ∈ Gd+t. Then πτJ is τ levels above J , hence in

the corona CLd+t . This cube Ld+t lies in some child S ∈ S = CL (L). So fix S ∈ S
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and a cube Ld+t ∈ Gd+t that is contained in S with t ≥ r + 2. Now the cubes
K that arise in the supremum defining Sα,A;S

size (PL,t) in (11.21) belong to either
Nρ−τ (S) or Wgood (S). We will consider these two cases separately.

So first suppose that K ∈ Nρ−τ (S). A simple induction on levels yields

ωPL,t
(
Tτ−deep (K)

)
=

∑
J∈ΠS,τ−deep

2 PL,t
J⊂K

‖4ωJx‖2L2(ω)

≤ ωP

 ⋃
Ld+t∈Gd+t: Ld+t⊂K

Tτ−deep
(
Ld+t

)
≤ 1

ρ
ωP

 ⋃
Ld+t−1∈Gd+t−1: Ld+t−1⊂K

Tτ−deep
(
Ld+t−1

)
...

. ρ−(t−ρ−τ)ωP
(
Tτ−deep (K)

)
, t ≥ ρ− τ+2.

Thus we have

1

|K|σ

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2

ωPL,t
(
Tτ−deep (K)

)
. ρ−t

1

|K|σ

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
. ρ−tSα,Asize (P)

2
.

Now suppose that K ∈ Wgood (S) and that J ∈ ΠS,τ−deep
2 PL,t and J ⊂ K.

There is a unique cube Ld+r+1 ∈ Gd+r+1 such that J ⊂ Ld+r+1 ⊂ S. Now Ld+r+1

is good so Ld+r+1 br S. Thus in particular 3Ld+r+1 ⊂ S so that Ld+r+1 ⊂ K.
The above simple induction applies here to give

∑
J∈ΠS,τ−deep

2 PL,t
J⊂Ld+r+1

‖4ωJx‖2L2(ω) ≤ ωP

 ⋃
Ld+t∈Gd+t: Lm−t⊂Ld+r+1

Tτ−deep
(
Ld+t

)
. ρ−(t−1−r)ωP

(
Tτ−deep

(
Ld+r+1

))
, t ≥ r + 2.
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Thus we have,(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2 ∑
J∈ΠK,τ−deep

2 PL,t
J⊂K

‖4ωJx‖2L2(ω)

≤ C

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2

ρ−(t−1−r)
∑

Ld+r+1∈Gd+r+1

Ld+r+1⊂K

ωP
(
Tτ−deep

(
Ld+r+1

))

≤ Cρ−(t−1−r)

(
Pα
(
K,1A\Sσ

)
|K|

1
n

)2

ωP
(
Tτ−deep (K)

)
≤ Cρ−(t−1−r)Sα,Asize (P)

2
.

So altogether we conclude that

sup
S∈CL(L)

Sα,A;S
size (PL,t)2

= sup
S∈CL(L)

sup
K∈Nρ−τ (S)∪Wgood(S)

1

|K|σ

(
Pα
(
K,1A\Kσ

)
|K|

1
n

)2 ∑
J∈ΠK,τ−deep

2 PL,t
J⊂K

‖PωJx‖2L2(ω)

≤ Cr,τ,ρρ
−tSα,Asize (P)

2
,

and combined with (11.27) this gives (11.26). As we pointed out above, this
completes the proof of Proposition 4, hence of Proposition 3, and finally of Theorem
1. 2
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