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For 0 < o < n, we demonstrate the failure of energy reversal for the vector of «-fractional
Riesz transforms, and more generally for the vector of all «-fractional convolution sin-
gular integrals having a kernel with vanishing integral on every great circle of the

sphere.

1 Introduction

In the recent two-part solution to the Nazarov-Treil-Volberg conjecture for the two
weight Hilbert transform inequality (Lacey et al. Part I [2], Lacey Part II [1]), crucial
use was made of the following point-wise equivalence for the difference quotients of the

Hilbert transform Hp associated with x, ¥ in an interval J and a positive measure u
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supported outside the double 2J:

Hu(x) — Hu(x) 1 J L Ve
xX—x Cx—X Jposly-x y-x Hiy
1 | J]
-~ — Y 4
1] JR\ZJ = —x) W

~ B Imagit) (1.1)
IJ]

Here, Hu(x) = fR y%x du(y) is the Hilbert transform of the measure y on J, and P(J, v) =
Ir m dv(y) is the Poisson integral of v associated with the interval J, and where
cy is the center of J. The important consequence of this point-wise equivalence is that
a difference quotient of the singular integral Hu is comparable with a positive quan-
tity W, that is in turn monotone increasing in the measure u. A striking difference
between the one and higher dimensional settings for singular integrals is that this
equivalence fails in both directions < and > for singular integrals in R" with n> 1.
In fact, the forward direction < requires an additional energy term derived by Lacey
and Wick [3], and with this addition the forward inequality provides a suitable substi-
tute for use in higher dimensions. However, there is a particularly spectacular failure of
the reverse inequality =, which we refer to as energy reversal, a terminology explained
below. In fact, this failure of energy reversal in higher dimensions underlies the restric-
tive nature of higher dimensional analogs of the two weight theorem for the Hilbert
transform in both [3, 5], where in earlier versions of each of these papers, errors were
made in assuming some version of energy reversal.

To set direction for this paper, we first recall a special case of Theorem 1 from
our paper [5], using notation from that paper, which we now review here, albeit very
briefly. Let 0 <« < n. Consider a kernel function K%(x, y) defined on R" x R" satisfying

the following fractional size and smoothness conditions of order 1 + § for some § > 0,

|K*(x, )| < Cezlx— yI* ™",

IVK®(x, p)| < Cezlx — y1* ™™,

o v Ix— x|\’ v lx—x| 1 (1.2)
IVK*(x,y) — VKX, y)| <Ccz X — ¥l 7 L
|x — I x—yl ~ 2
8
- - 1
|VK“(X’ y)_VKO((X’ )/)|§CCZ<|Y Y|) |X_Y|a_n_l, |Y S/| <
Ix — ¥l Ix—yl ~ 2
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We define a standard «-fractional Calderé6n-Zygmund operator associated with

such a kernel as follows.

Definition 1. We say that T* is a standard «-fractional integral operator with kernel
K* if T* is a bounded linear operator from some LP(R") to some L?(R"™) for some fixed

1< p<qg<oo,thatis
1T fllzawny < Cll fllLewny, f e LPR™),
if K*(x, y) is defined on R" x R™ and satisfies (1.2), and if T* and K¢ are related by
1100 = | K0e p f(p 7. aex¢ supp f

whenever fe LP(R" has compact support in R™ We say K%(x,y) is a standard

a-fractional kernel if it satisfies (1.2). O

In higher dimensions, there are the two «-fractional Poisson integrals of « on a

cube Q are given by

. [olk
P (a,u)zj -
B (|Q]7 4 |x — x|y~

erl n—oa
P“(O,M)EJ ( _lal ) du(x).
e\ (1Q1F + [x— xal)?

We refer to P* as the standard Poisson integral and to P“ as the reproducing Pois-

du(x),
(1.3)

son integral. We refer the reader to [5] for the more technical definitions of elliptic and
strongly elliptic operators T¢, and various notions of energy.

Finally, we define the a-energy condition constant to be

00 2
1 Pa(']vl 0) su ooq,w
(E)?= sup ooy (—10 ) |PSPEet g2,

—ua, I
aaaue%" | |0’ r=1 JEMr—deep(Or)
»Ur

1
J€M€ |J|n

r-deep

2
PY(J, 1q0) bgood,w
) <— 1P Kl .
Q)

where the supremum is taken over all dyadic grids D" and all dyadic cubes in D", and
where the goodness parameters r and ¢ implicit in the definition of M;_geep(K) and
Mf,_deep(K) are fixed sufficiently large and small, respectively, depending on n and «.
Here the collection M;_geep (K) consists of the maximal r-deeply embedded dyadic sub-

cubes J of a cube K (a subcube J of K is a dyadic subcube of K if J €D when D is a
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14
r-deep

J € My _geep(m“K) (where nK denotes the ¢-fold dyadic parent of K) that are r-deeply
embedded in K, that is,

dyadic grid containing K), and for each ¢ > 0, the collection M (K) consists of those

M _goep (K) = {J € Mr_doep(m K) : J C Lfor some L € Mr_geep (K)}.

Of course Mg_deep(K) = Mr_geep(K), but /\/lf_deep(K) is in general a finer subdecomposi-
tion of K the larger ¢ is, and may in fact be empty. There is a similar definition of the
dual «-energy condition constant £’. We refer the reader to [5], or almost any other paper

on the subject, for the detailed definition and properties of good dyadic cubes.

Theorem 1. Suppose that o and w are locally finite positive Borel measures in R" with
no common point masses, and assume the finiteness of the a-energy condition constant
&, and its dual constant £;. Let T* be a standard strongly elliptic a-fractional Calderén-
Zygmund operator in Euclidean space R Then T¢ is bounded from L?(0) to L%(w) if and
only if the Aj condition

Ql,
A$ = sup P“(O,a)%<oo (1.4)
QeQn Q" n

and its dual hold, the cube testing conditions

I(T*)* (1 q0) %0 < sg,aj do. (1.5)

J|Ta(100)|2w§‘3§aj do and J
Q Q a

Q

hold for all cubes Q in R”, and the weak boundedness property for T* holds:

=< WBPT"‘\/ |O|w|a/|av

1
af»

T =
|aQ’|»

J Ta(lafO') do
Q

1
for all cubes Q, Q" with ol <

’

and either QC3Q'\ Q' or Q' C3Q\ Q. O

In [7], we used Theorem 1 to prove the T'1 theorem for the vector of Riesz trans-
forms in R” in the special case when one of the measures o, w is supported on a line
in R™ The key to that proof was proving control of the above energy constants &, and
&} in terms of the constants in the hypotheses (1.4) and (1.5), and this in turn used an
energy reversal that exploited the 1D support of one of the measures. As mentioned
above, a number of attempts have been made to prove such control of various different
energy conditions by invoking an energy reversal for the Riesz transforms and similar

operators—see (2.4)—but all of these attempts have been met with failure. The purpose

STOZ ‘ST JequanoN uo 158nb Aq /6.0's [euno [pJo Jxouiw//:dny wouy papeo|umoq


http://imrn.oxfordjournals.org/

9892 E. T. Sawyer et al.

of this paper is to show first that energy reversal is false, not only for the vector of
a-fractional Riesz transforms in the plane when 0 <« < 2, but also for the vectors of

classical a-fractional singular integrals in the plane,

Ty =1{Tg : 2 € Pu}.

Pu = {cos nf, sin nh} ¥

n=1-

2G) _ 20
|X\2 a |X\2 a

where T§ has convolution kernel

and 0 <a < 2. The linear space L;; of
trigonometric polynomials with vanishing mean and degree at most M is spanned by the
monomials Py, and so we also obtain the failure of energy reversal for the infinite vec-
tor T}, ={T : 2 € Ly} A standard limiting argument applied to the proof below extends
this failure to all sufficiently smooth £2(6) with vanishing mean on the circle. Finally, we
embed an analog of the planar measure constructed below into Euclidean space R" to
obtain the failure of energy reversal for any vector of classical convolution Calderén—

Zygmund operators with odd kernel in R"—and more generally for kernels ) where

|Yl0t

£2 has vanishing integral on every great circle in the sphere S*!. A key to our proof is

r?*
I(z—[i=jDI (z+]i—jD)

gamma function. See also [3] for related results regarding fractional Riesz transforms in

the positivity of the determinants det[ I#;-, forall n>1, where I'(2) is the

higher dimensions.

2 Failure of Reversal of Energy

Recall the energy E(J, w) of a measure » on a cube J,

2

do (%) dw(2) = Zﬁj

2

i do (x).

Mk

[
x—E9x
1

|J|n

1 1
)
) o [Tl

Define its associated coordinate energies E/(J, w) by

. .12
x) — 7

o do®) do(z), j=1,2,...,n

EJ'(J’Q)ZZLLJ J
|J|a)|J|w J

and the rotations E{Q(J, ) of the coordinate energies by a rotation R € SO(n), which we

refer to as partial energies,

2
do(x)dw(z), j=1,2,...,n,

Xk = 7k

1
|J]

1 1
choer=gi |
R( ) |J|w|J|w J
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where for ReS0(n), xg=(xp)"_, =R =Rx. Set Ex(J.w)?=EL(J.w)?+ - +

E% (J, w)*. We have the following elementary computations.

Lemma 1. For R € SO(n) we have

Er(J, w)?=EL(J,w)? + -+ EL(J, w)? =E(J, w)°.

(2.1)

More generally, if R={R;}7_; CSO(n) is a collection of rotations such that the matrix

R1el
My = |: : :| with rows R,e! is nonsingular, then
R,.lel

1 n
E(J.w)? < — ) Ek (J. )
S
where e is the least eigenvalue of M, M.

Proof. We have

X — 2R 2 + - + 3 — Z|? = IR(x — 2)|?

=lx—zf=|x' =2+ 4 |x"— 2",

so that
Er(J.0)? =EL(J.0)? + - + E}(J, w)?
=E'J, 0%+ -+ EJ, 0)? =E(J, w)?.
More generally, if Mf;q denotes the £th row of the matrix My, we have

en|x — 2” < (x — 2)" My Min(x — 2)
n
=) [Ree' - (x—2),
=1

so that

1

2
—) J J ex|x — z? do(x) do(2)
[Tl ) Jals

enE(J, w)? = (

2 n
1 JJ 1 2
<|——— IRce" - (x— 2)|* t dw(x) dw(2)
(uww) u{; ' }

n

=Y Ek (J.0).
(=1

(2.2)
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The point of the estimate (2.2) is that it could hopefully be used to help obtain
a reversal of energy for a vector transform T™ = {T,;"*}"_;, where the convolution kernel
K;*“(w) of the operator T,"* has the form

2 (%)
na [w]
Ky (w) = o (2.3)
and where Q] is smooth on the sphere S™'. We refer to the operator T,"* as an
a-fractional convolution Calderén-Zygmund operator. If in addition we require that 2}
has vanishing integral on the sphere S"™!, we refer to T,** as a classical a-fractional
Calderon-Zygmund operator.

However, we now dash this hope, at least for the most familiar singular operators

in the plane, in a spectacular way. Here is the key definition we work with.

Definition 2. A vector T* = {T?}}_, of a-fractional transforms in Euclidean space R" sat-
isfies a strong reversal of w-energy on a cube J if there is a positive constant Cy such
that for all y > 2 sufficiently large and for all positive measures n supported outside y J,

we have the inequality

E(J, 0)?P*(J, 10)* = CEEXPEL @1 (x) — T'u(2) " (2.4
O

Note that in dimension n=1, (2.4) is an immediate consequence of (1.1)—simply
square Hu(x) — Hu(x') &~ X‘J’fP(J wu) and take w-expectations over J in both x and x’. We
show that (2.4) is false in higher dimensions by stating and proving a variant of Lemma

9 in an earlier paper [6] that has since been withdrawn.

Lemma 2 (Failure of Reverse Energy). Suppose that J is a square in the plane R?, 0 <a <
2, y > 2 and that R = {R¥}2_, is the vector of a-fractional Riesz transforms in the plane

2 with kernels Ky (w) = e(‘z‘“,‘l) and £2,( \wl) = 2L, Finally, suppose that Cy > 0 is given. For
y sufﬁmently large, there exists a posmve measure u on R? supported outside yJ and
depending only on « and y, such that the strong reversal of w-energy inequality (2.4) fails
for a certain class of measures w. Moreover, we can choose u as above so that in addition,

for any M > 1, the strong reversal of w-energy inequality (2.4) fails for the vector T¢,. O

As a corollary of the proof of this lemma we easily obtain an extension to
higher dimensions by simply embedding an appropriate planar measure into Euclidean

space R™
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Corollary 1 (of the proof of Lemma 2). Suppose that Jis acubeinR?, 0<a<n, y>2
and suppose that Cy > 0 is given. For y sufficiently large, there exists a positive mea-
sure u on R™ supported outside yJ and depending only on n, «, and y, such that for a
certain class of measures w the strong reversal of w-energy inequality (2.4) fails for any
vector T* = {T7}) | of a-fractional smooth Calderén-Zygmund operators in R" with ker-
nels Ky (w) = %,

S™!—in particular this holds if each K¢ is odd. O

where §2, has vanishing integral on every great circle in the sphere

2.1 Failure of weak reversal of energy

The right-hand side of (2.4) is clearly dominated by Co]Ef,i’”lT“mz, and so we say that
T* = {T/}2_, satisfies a weak reversal of w-energy on a cube J if for y and ;1 as above, we

have the weaker inequality
E(J, 0)2P*(J, 0)® < CoEQ T, (2.5)

Now we show that even this weaker form of energy reversal fails, although not as spec-
tacularly as the strong energy reversal. We content ourselves with the following special

case for the Riesz transform vector R®.

Lemma 3 (Failure of Weak Reverse Energy). Suppose that J is a square in the plane R?,
0<a <2, y>2and that R* = {R%}2_, is the vector of a-fractional Riesz transforms with
kernels K%(w) = ZeCu)

wp?
there is a positive measure u =y, 7« on R? supported outside y J and depending only

. Finally suppose that Cy > 0 is given. For y > 2 sufficiently large,

on«, y, and R%, such that for a certain class of measures o the weak reversal of w-energy

inequality (2.5) fails. ]

3 The Proofs

. 2o .
Proof of Lemma 2 for the Riesz transform vector. Let ¢ > 0. We let % be an arbi-

trary standard kernel for the moment with smoothness index § in (1.2). With K} (x, y) =

Ky (x—y) and x, ze J, there is a point & , on the line joining x and z such that
T — T = | (K (- )~ K22 = p) ducy

_ J{(X —2) - VK (bxs — p)) di(p)
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= J{(X —2)-VK{(c; — p}du(y)

+ J (x—2) - IVK%(Exs — ¥) — VES(Cs — P} du(p)

=Aj + EZX’Z.
If y > 2 is sufficiently large, (1.2) gives

|E{ x2l < J |x — z||VK{ (§x.2 — y) — VK (c; — p)| du(y)

|€x,z — Csl ’ «—3
< |x—2zCcz | —— ) lc; —yI* " du(y)
(yJ)° lcy — vyl

)
x,z — C, o—
<Ccz|x— 2| J (u> ley — yI* 72 du(y),

lcr — ¥

and so from (1.3) with n= 2, we obtain

1 PY(J, ) P*(J, )
———|lx—zl<e————

Ef .l <C
Ty FE

|x — z|. (3.1)

The point of this inequality (3.1) is that it permits the replacement of the dif-
ference Tu(x) — T, u(2) in (2.4) by the linear part A} of the Taylor expansion of the
kernel K.

Now we make the choice

2¢(w) = 20 (w));

=D w?

0 (w) =tan 7 , 1<t<2,
w

where w! denotes the coordinate variable other than w¢, that is, £ + ¢ = 3. Thus, 6, is the

usual angular coordinate on the circle and 6, =6, + 7. We now use
a—2 0 1,2 242y %2 0 1,2 212y %2
Viw* = —(w) + wH) 7z, —{(w)" + w)")
ow! ow?

= “-=z ; 2((wl)2 + (wz)z)"z;z*lZw

=(a — 2)|w|* *w.
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and
dw! wh 142 2 jwf?
itan_l w_[ — ;i — w_g
ow? w1 4 (%’)2 wt  |w|?

to calculate that the gradient of the convolution kernel

Qw) _ 20,w))  L(tan 2y

K (w) =

|w|2—a - |w|2—rx - |w|2—a ’
is given by,
o _ Q@(U)) _ a—2 a—2 e/
VK (w)=V [ = RO W) VIw|* ™ + [w]* 77270, (w)) VO,

_ (= 2)Q20@w)w + 2'(Ge(w))wt

|w|4701

Thus, the linear part A¢ in the Taylor expansion of T/ u is given by

Aj=x—2)- JVK?(CJ =y du(y) = x—2) - Zg (C5; 1),

where

v [ @=2)206(cs = y)(es = p) + 2'Gulcs = PPt
ZQg (CJ’ /JL) -

R? ley — yl* ()

=J {(a = 2)2O;(w)w' — 2' O (w))w?}e' AW, (w)
weS!

- J (@ — 2)2 O (w)w? + 2'O(w)w'}e* d¥, (w),
weS!

and e’ is the coordinate vector with a 1 in the ¢th position. Here the measure ¥, is an

arbitrary positive finite measure on the circle S! given formally by

dv, (w) =d¥/ (w) = ro

r* 3 dud(r) =J r*2du(cs +rw), weS.
0

0

Note that conversely, if we are given a positive finite measure ¥ on the circle,
we can simply translate and dilate ¥, preserving its mass, to be supported in a circle
centered at ¢; with radius R. Then, the resulting measure p will satisfy dtIIMJ =d¥. Below
we will typically apply this converse observation with R chosen to be y|J|? to obtain our

counterexamples.
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We use,
(=D w"
tan 0 (w) = ———,
w
¢ 5 v w2 |w]
cschp(w) = (=1)"V1+cot bp(w) = (=1 [1+ | — | =———7—,
wt (—D)fw!
. (_l)l/wf/ w[
sinfy(w)=———— and cosO(w)=—,
[w] |w

for w # 0, to obtain
Zg, (crp) = JSI{(W — 2)2(61(w)) cos b1 (w) — £2/(61(w)) sin by (w)}e' dv,
+ J {( — 2)2(61 (w)) sin b1 (w) + L2 (61(w)) cos b1 (w)}e? dy,
Sl

EJ {4, (6:(w))e' + B, (61 (w))e?} dv,,
St

and
25, (05 1) = | (e = 2)2(62(w) sinba(w) — 2'(6a(w)) o3 aw)le’ 4,
+ | @ = 220000 c0s620) — 2 @) sinezwle? av,
= JSI{A?x(ez(w))el + B2 (6y(w))e?) AW,
with

AL(t) = (@ — 2)2(t) cos t — 2'(¢) sint = B2(¢),

Bl(t) = (@ — 2)2(t) sint + £2/(t) cos t = — A(2).

Now we show below in (3.7) that a necessary condition for reversal of energy on

J is that the span of the pair of vectors {Z, (c;; n)}7_, is all of R?:

Span{Z$, (cs: Wi, =R2.

(3.2)

(3.3)

So it suffices to show the failure of (3.3), that is, that Z, (c;; n) and Z§, (cs; ) are parallel,

or at least one of them is the zero vector.
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At this point, we take £ =1 and set 6 = 0;(w) so that we obtain

A, (0) = AL (61 (w)) = (a — 2)22(9) cos 6 — £2'(H) sinb,
(3.4)
B,(0) = BL(01(w)) = (¢ — 2)2(0) sinf + 2'(6) cos b.

In the case o = 1, these coefficients are perfect derivatives:
A1(0)=—52(0)cosh — £2'(#) sinf = —[£2(0) sin ],
B1(0) =—£2(9)sinf + £2'(9) cos§ = —[£2(H) cos o],
and so have vanishing integral on the circle. Thus with the choice d¥, () = d9 we have
Zo(crip) = L {A1(6)e' + B1(9)e’} do =0

the zero vector, for every choice of differentiable §2 on the circle.

In the case 0 <o <2 with o # 1, it is no longer possible to find a nontrivial mea-
sure u so that Z$ (c;; n) vanishes for all differentiable §2, but we will see that we can
always find a positive measure p such that the vectors Zg, (¢y; 1) and Zg, (¢y; 1) are par-
allel for the choice £2(0) = cos 6 that corresponds to the vector of Riesz transforms.

Indeed, in the special case that £2(t) = cos t, and recalling that 6, (w) =61 (w) + 5 =

6 + %, we have
AL (61 (w)) = AL(0) = (@ — 2) cos? 6 + sin® 0;
Bl (61 (w)) = Bl(9) = (@ — 3) cos O sin¥;

A2(0y(w)) = —B] (9 + %) = —(a —3)cos (9 + %) sin (9 n %)

= (o — 3)cosOsind;

B2(05(w)) = AL (9 " %) — (a — 2) cos? (9 n %) + sin? (9 + %)

= (¢ — 2) sin 6 + cos?6.
Thus we also have

Z5 (crip) = Sl{A‘lé(Ql(w))e1 + B, (61(w))e?} d¥,

J

=| {[(@ —2)cos?6 + sin*@le' + [(« — 3) cos # sinfle?} d¥,
Sl

- J [(e — 2) cos? 6 + sin? 0] leN} el + ” [(@ — 3)cosb sin@]dqfﬂ} e?
St St
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and

23, (i) = | {AL(B2(w))e' + BZ(62(w))e?} d¥,

Jst

=| {l(e — 3)cosOsindle! + [(« — 2) sin? 6 + cos? 6]e?} dy,
Jst

- J [(@ — 3) cos 6 sin 6] dq/u} el + ” [(@ — 2) sin? 6 + cos? 6] dqfﬂ} e?.
St St
Using

(@ —2)cos? 6 + sin® 0 = (« — 3) cos?6 + 1,

(¢ —2)sin?6 + cos?0 = (« — 3) sin®6 + 1, (3.5)
. 1 . 9 1 + cos 20 2 1 —cos20
sinfdcosf =—-sin20, cos“d=———, SINO=——""—,
2 2 2
we see that
. 1 + cos 26 -3 -1
(a—2)00829+sm20=(a—3)T+1=O{2 cosze+“7,
. 2 2 1 —cos26 a—3 a—1
(¢ —2)sin“f +cos“O=(o—3)——— +1=— cos 20 + ——,
2 2 2
. o — .
(¢ —3)cosfsinf = sin 26.

Plugging these formulas into those for Z, (¢;; 1) and Z, (cs; 1), we obtain
Z¢, (cy;
ot Ql( 73 M)
Z5,(cry )
a—3 a—1 o —
cos 20 + —— | d¥,
ol 2 2 -
J’ [a 7
Sl

= a_SJ 00520 AW, + 2= 2w, | “_BJ cos 20 dw, + 2 Lju|
= 2 o )2 2 2 2 g1 1 2 1
_3 2
—<a J sin 26 dwﬂ)
2 Ja
-1 2 _3 2 _3 2
=(Z—w.1) - “—J cos 20 dw, | + “—J sin20dw, ) }.
2 2 Sl 2 Sl

3
sin 29} dy,
=det

3 . a—3 a—1
sin 20 | d¥, - cos 20 + —— [ d¥,
- 2 2
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Z5, (i)
Z%, (crim)

Thus det [ ] =0 if and only if the length of the vector

J cos 26 dy,
St

J sin 20 dy,
S1

equals “";” [@,l, that is,

o — 1]
= 1Pl
=3

(3.6)

J cos 20 d¥,
Sl
sin 26 d¥,,

To construct a positive probability measure d¥, on the circle that satisfies (3.6),

we first observe that if d¥, = §(; o) is the unit point mass at (1, 0), then

J cos 20 d¥, H
St

H =¥l
J sin 20 d¥,
St

and since |¢ — 1| < |@ — 3| for all 0 <« < 2, we have

J cos 20 d¥,
st | |

;e I

J sin 20 d¥,
Sl

in this case. On the other hand, if d¥,(0) = % dé is normalized Lebesgue measure on the

()

It is now easy to see that there is a convex combination d¥, = (1 — A)§(1.0) + A5 d6 such

circle, we have

‘ oo — 1]
= <

cos 20 dy,
1
.
‘ | 3||| /1”

sin 20 dy,,
St

that (3.6) holds. Thus (3.3) fails, and we now show that energy reversal fails.
In fact, we may assume that both Z{ (c;; n) and Z§, (c;; n) are parallel to the
coordinate vector e,, and in this case we will see that we can reverse at most the coor-

dinate energy E2(J, w), defined above by

2

X do(x) dw(2),

1 1 —
e |57
Tl 1710 0o ) | 1
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and not the full energy E(J, w). More precisely, we claim that there is a measure o such
that for y so large that ¢ « Cq, the strong reversal of w-energy inequality (2.4) fails.
Indeed, using that Z5, (¢ ) is parallel to €2, we have that

L L IR (x) — R (2)|* do(x) do(2)

2
S| [ 1-2 25w + 1B~ B do doa
=177

=],

(=1

+c2”

<E%(J, w)?P*(J, n)% + Ce%E(J, w)?P*(J, pn)*

C( . 2
C 'u) — (x—2- Za (0. (Cr: 10 dw(x) dw(2)
|J|2 1Z5, (cr: )]

P”(J M)

2
———|x— 27| dox) dw(2)

1
< Ec:oE(J, )2 PY(J, n)?, (3.7)

provided we choose y so large that 052511—000 and provided we choose w so
that E?(J, w)=0 but E(J,w)> 0. This completes the proof of the first assertion in

Lemma 2. [ |

Remark 1. The above proof shows that for each t € R, the convolution kernel

xcost+ ysint
Gy i(X, V)= ———— >
(x2+y%)z

in the plane with coordinates (x, y), x, y€ R, and the probability measure du, supported

on the circle S! =[0, 27) given by

=1l )+|a—3|—|oe—1|d9
lo —3]° lo — 3| 2r’

due (@) =

satisfy the somewhat surprising property that V (&, ; * i,)(0, 0) points in the same direc-

tion for all ¢t. A direct calculation, which we leave for the interested reader, shows that

[cost,0] forO<u<1
V(@1 * 1e)(0,0) = (¢ — 1) .
[0,sint] forl<a <2 O
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Proof of Lemma 2 for the vector of trig polynomials. Recall that with 6 =6;(w) we

obtain
Ay (6) = (a — 2)2(0) cos 6 — 2'(6) sin 6
By (0) = (a — 2)2(0) sinf + 2'(0) cos 6.
Thus, we have
Ay (0) = {(a — 2)2() +12'(0)}{cos 6 +isin b} — i{(x — 2)2(6) sinb + 2'(6) cos 6}
={(@ —2)2(8) +12'(®)}{cos 6 +isinb} —iB,(H),

and so
{(@ —2)R2(0) +i2'(0)}{cosd +isinbd} = A, () +iB,(H).

This shows that in complex notation,

Z§(cy ) = JSI{AQ(G) +1B,(9)} d¥,
_( {(@ —2)2(9) +12'(0)}{cos 6 +isinh} d¥,
JSt

=| 2,06)edy,,
Jst

where
2,0)= (0 —2)2(0) +12'(0).

Recall the product formulas
2cos Acos B=cos(A— B) + cos(A+ B);
2sin Asin B =cos(A — B) — cos(A+ B);
2sin Acos B =sin(A — B) + sin(A + B).

In the special case that .Q{C(t) = cos kt we thus have
Ay(0) = (o — 2) cos kB cos 6 + ksin kO sin 6
1 1
=(a — 2)§[cos(k— 1)0 + cos(k+ 1)0] + kE[Cos(k— 1)0 — cos(k + 1)0]

a—k

z{“+k— l}cos(k— 16 + {T—I}COSUHDQ:

2
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B,(0) = (a — 2) coskf sin0 — ksin kf cos 0

= (0 — 2)%[— sin(k — 1)0 + sin(k + 1)0] — k%[sin(k — 1)8 + sin(k + 1)0]

=_{°‘erk—1}sin(k— 16 + {%— l}sin(k+ 1o,
and so

Zoi(cr ) = JSI{A“(Q) + 1B, (0)} d¥,

=J [{a;—k—l}cos(k— 1)6 + {%c— I}COS(k+1)9] ¥y,
Sl

2

N —k—2\ .
ZJ {((x +72€ ) e-itk-10 (01 726 > el(k+1)9} dw,
St

-2\ ————— —k—2\ ~
- <i> G k— 1)+ (%) G (k+ 1),

—i—iJ' [—{a+k— l}sin(k— 16 + {%—l}sin(k—i— 1)91| dv,
Sl

2
Next we take .{25(9) =sin k# so that

A, (0)=(x — 2)sinkfd cos® — kcos kO sin 0

= (0 — 2)%[sin(k— 1)0 + sin(k+ 1)0] — k%[— sin(k — 1)0 + sin(k + 1)6]

:{a;—k— l}sin(k— 1)6 + {#— l}sin(k~|—1)9;

B,(0) = (x — 2)sinkd sinf + kcos kd cos O

= (0 — 2)%[cos(k— 1)0 — cos(k+ 1)0] + k%[cos(k— 1)0 + cos(k + 1)0]

={°‘“2Lk— 1}cos(k— 1)6 — {%c— 1}cos(k~|— 1)6.

Thus with £25(0) = sin k9 we obtain

Z:f);c(CJ; IDES Ll {A,(0) + 1B, ()} d¥,
:J [{a—zi—k_ l}sin(k— 1)0 + {a;k— l}sin(k—i— 1)9] dy,
Sl

+iJ [{a;—k— l}cos(k— 1)6 — {%c_ l}cos(k—i— 1)91| dy,
Sl
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ZJ {(04 +k— 2) I (Of — k- 2) iei(k+1)9} dw,
o 2 2

k—2 —k—2\ ~
=i<%) Tok—1) —1i (“T> T, (k+ 1).

Altogether we have

Zor(Cr ) = (%) v, (k—1)+ (%) v, (k+1);

(3.8)
. +k—2\=—— —k—2\ ~
Z?zg(c,]; w) =i [(aT) v, (k—1)— (aT) v, (k+ 1)] .
2 (crin) -
Thus det [Zal(cﬁm] is the imaginary part of Z%, (crs WZE(Cry 1), which is —1 times the
real part of ’
k—2\=—— —k—-2\ ~
{(%) O, (k— 1)+ <“T) T, (k+ 1)}
k—2\ ~ —k-2\=—7—
x {<L> U, (k—1) — (a—> v, (k+ 1)}
2 2
+k-2\* —k—2\* —
=(°‘T) 15, (k— D2 — (“T) 1@, (k+ 1))
k-2 —k—-2\ ~ — = ==
+ Re [(“ +2 ) (“ . ) @ (k+ DTk —1) — ¥ (k— 1) &, (k+ 1))}
+k—2\* ~ —k—2\* ~
=(°‘T> 1@, (k— D — (“T) 1@, (k+ DI,
since lf/;(k—i- l)ﬂ(k— 1) — @;(k— 1)@(16—!— 1) is pure imaginary. We conclude that
Zv.(cy; - — -
et o€ 1) =0 < ¥, (k+1)|= atk-2 2‘|t1/ﬂ(k—1)|, all k. (3.9)
Z8,1(c 1) omk-2

‘(o
GCHD

Z‘;)l (Crip)
1

We also have that det |: i| is the imaginary part of Z%, (crs WZE, (Cri 1), that
1 1

is, the imaginary part of

{(—HI;_Z)er(—a_];_Z)@(kH)}

atl—2)\ ~ o= —2\ =
x {(T) WH(€—1)+<T> wﬂ(£+1)}.
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If we now suppose that lf/;(n) is real for all n, then Z:,(crs ) is real for all k, and it
follows that

Z4,(cs )

det = Jm(Z‘;;f(CJ; w) 2%, (cy; 1)) =0, all k, ¢. (3.10)

Z‘;f (cr3 1)
We are now ready to construct the measure p with an appropriate density ¥,,. In the case
1 <« < 2 there is a choice of density that is easy to prove positive, and we give that first.
Then we give a density for all cases 0 <« < 2, but that is much harder to prove positive.
Finally, we give a particularly simple proof for the case « = 0.

Construction of a density in the case 1 <« < 2:
Define a density ¥ (0) by

W(O)=1+2) bycos(2nd) =1+ Y by{e?” +e 2"},
n=1 n=1

where

a+(2n—3)a+ (2n—5H) a+3a+la—-1

b,= .
"la—@2n+Da-2n—-1 a—7a—5a-3

‘=anan_1~-aza1, n>1,;

with

ifx=2-—a.

a+@n-3)| [2n—1-x
a—2n+1)| [2n—1+x

Then, we have

V2n) =b,=¥(-2n), n>1,

U(k)=0 if kis odd,

and in particular that ¥ (k+ 1) = |%||(I7(k— 1)| for all k> 1. Now choose a measure

u giving rise to the density ¥. In the case 1 <o <2 we have |%| = —% for k>1,
and so from (3.8) we actually obtain that Z‘;ﬁz{c(cJ; n) =0 for all k> 1, and that Z"(‘zg(cj; In)
is imaginary for all k> 1. Thus, all of the vectors {Z‘;Zf(cj; nw, Z‘j,‘zg(cj; W)}y, are multiples
of the unit vector (0, 1) in the plane (it is the failure of such a conclusion for the case
0 <« < 1 that forces a different construction below).

We must now show that the density ¥ (6) is nonnegative. We have ¥ (6) = & (26)

where @(0) =1 and

d(M) =D (—M) =by=anay 1---Ga;, n>1.
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We claim that the nonnegative sequence {1, by, by, ...} is convex for 0 < x <2, and has
limit 0 as n— oco. With this established, the density @ is a positive sum of Féjer
kernels, and hence @(0) > 0. Since @, = 2"~ =1 — 72— and ) *, 72— =00, we see

2n—1+x
that limy, o by =[], (1 —

m) = 0. To see the convexity we note that

but1 + b1 — 2bp=anniaulan-1 - - ;arl + lap-1 - - a1l — 2a4lan-: - - @ai]
=lapan+ 1 - 2a)llan- - a1l

is positive if and only if a,.1a, + 1 — 2a, is positive. But for n> 2 and 0 < x <2, we have

2n—1—x
an = 2n—1+x

and so

Anp1Gn+ 1 — 20, = (Gpy1 — 2)an + 1

. 2n+1—x 9 2n—1—x
T \2n+1+x 2n—1+x

+1

_ 2n+1+4+3x\ 2n—1—x
a 2n+1+4+x ) 2n—1+x
_@n+1+x@2n—-1+% —(2n+1+3x(2n—1—Xx)
- en+1+x2n—1+x)
4x% 4+ 4x
= >0
2n+1+x02n—1+x)

This calculation is valid also when n=1 and 0 < x < 1, so it remains to consider only the

case n=1 and 1 < x < 2. But then we have q; = ’1%( and so

ama +1—2a =@ —2)a; +1

3—Xx x—1 6 —2x
3+x 1+x 3+x

Construction of a density in the general case 0 <« < 2:

This time we modify the definition of our density to be

W(O)=1+2) bycos(2nd) =1+ by{e?™ +e 2"},

n=1 n=1
where

a+2n—3)a+ (2n—-5H) a+3a+1la—1
b, = =1 @@, nxl;
a—(2n+1)a—02n—-1) a—7a—5a—3

where
«+(2n—-3) 2n—-1-x

oa—(2n+1) 2n—-1+x
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Then, we have

<o

(ky=0 if kis odd,

and in particular, if /i is chosen to give rise to the density ¥, then from (3.8) we obtain
that Z%(crim) =0 for all k> 1, and that Z%,(Cyi 1) is real for all k> 1. Thus all of the
2 1
vectors {Z%.(cs; ), Z2.(cr; i)}, are multiples of the unit vector (1, 0) in the plane.
1 2

Finally, we must show that the density ¥ (6) is positive. Now
W (2N) = by = Ann-1 - - G1,

and so by Bochner's theorem (more precisely Herglotz's theorem in this application—see,
e.g., Rudin [4] for an extension to locally compact abelian groups), it suffices to check

that the following matrices are positive semidefinite for n> 2:

[ & (0) ¥ (2) W (4) J(2n) |
¥ (2) ¥ (0) ¥ (2) J(2n—2)
B,=| ¥(4) U (2) & (0) U (2n—4)
J(2n) Y(2n-2) ¥@2n—4) --- v(0) |
1 a QA an- -
a 1 a e Q1
=| @a a 1 R R
_a,n...al p1-" A Qpo- A - 1 )
Since a, = — %Z:}:; the matrix B,, is
r 1—-x 3—-x1-—x 2n—-3)—x 3—x1—x7
1 - - - -- = (-1 2 =~ =... =~ - =
1+x 3+x1+x (2n—3)+x 3+x1+x
1—x 1 1—x
T l+x Tl+x
3—-x1—-x 1—-x 1
Bn(x) = 3+ x1+x T l4x
1-x
. 1 -~
1+x
(cpym@n=3-x 3-xl-x _l-x .
L (2n—-3)+x 3+x1+x 1+x

(3.11)
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and a standard reduction in matrix theory shows that it is enough to show that
det B,(x) >0 for all n> 2.

In Appendix, we prove that these determinants satisfy the recursion formula

detBy i (X) o, nn—1+xnN—-2+%) (%)
det B,(x) =2 [(2n—1+x2n—-3+x)---(1+x]%’ nx1l. (3.12)

From this recursion we immediately obtain that for x > 0, the determinants det B,,(x) and

det B, (x) have the same sign. Then since detB; (x) = 1, induction shows that
detB,(x) >0 forall x>0, n>1. (3.13)

This completes the proof that the matrices B, are positive definite for all n>1 and x>
0, and hence that the density ¥ is positive. We note that this completes the proof of
Lemma 2 forall0 <o < 2.

Construction of the density in the case « = 0:

The case o =0 corresponds to the usual singular integrals in the plane, and for
this case there is an especially simple proof of the nonnegativity of the density ¥. We

simply note that the density ¥ is nonnegative by taking absolute values inside the sum,

J@O)=1+ 2ancos(2n,9) >1-— 22 1By,

n=1 n=1

and then calculating that

|bal = |anGn—1 - - - G2 |
_(2n-3)(2n—5) 311

T @2n+1)@2n—-1) 753

B 1 1 1 1
 @2n+1)@2n-1) 2\2n—-1 2n+1)’

hence

— =1 1 1 1
bo=> = - =_.
21 Z2(2n—1 2n+1> 2 u
n=1 n=1
Now we show how to adapt the above proof to prove Corollary 1.
Proof of Corollary 1. First we note that if £ is sufficiently smooth with vanishing

integral on the circle, then it is an absolutely convergent sum of the trigonometric

functions cosnf and sinnf for n> 1. Thus a standard limiting argument extends the
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above failure of energy reversal to any finite vector of such £2. Now embed the mea-
sure ;i with density ¥ constructed above into Euclidean space R” via the embedding
R? > (x1, X2) — (X1, X2, X3, ..., X;) € R? x R"2, Here we are letting the parameter x=n—«a
lie in the interval (0, n]. Then the above proof shows that for cubes J with center
¢y € R? x {0}, the gradients Z¢{,(cy; i) of the kernels §2 have their planar projections paral-
lel to (1, 0), and hence all the gradients Z$, (c;; i) are perpendicular to the fixed direction
(0,1,0,...,0) in R™ As a consequence, reversal of energy fails in J for the measure f,
and it remains only to show that the density ¥ is positive. But this is implied by the
positivity of detB,(x) for x € (0, n], which follows from the recursion (3.12) and the fact
that detB;(x) =1 > 0. [ ]

Before turning to the proof of the recursion (3.12) in Appendix, we give a proof

of the failure of weak reverse energy in Lemma 3.

Proof of Lemma 3. To show the failure of the weak reversal of energy inequality (2.5)
for the fractional Riesz transform vector R, we exploit the assumption that fsl £2,0)=0
together with the following observation. Given any fractional singular integral T* we
note that

o[ |1 [ 20—
T ’”‘_JRZ { 71 L y— X2 dw(x)} W

1 do (0 du(y)
2 — ,—————— ¢ db
J, 2 |J|wj<xg>egzk g

T ly-xl

= J £2(0) do,(9),
Sl

where
d%(é)_ 1 J do(x) du(y)
do "7l JOPDE y — X2

T ly-x

, &=(cos#,sinb)eS!.

We will now apply a transformation to u that moves its mass along rays away

from c;, but leaves the density %Z“ invariant. Given a measurable function ¢:S' —

[1, 00), define the measure f in the plane by

3—a
- y—~¢C y—=cC
d“(Y)E‘”<|y—cJ|> dule+——25 |-
/ w(ly—w\)
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so that for £ € S!,

dlI/~ * a—3 3~ JOO a—3 3—a < r$ )
d = du
L r a(rs) . @) ©

00 dw
=J [s@@)]* (€)™ du(sé) = deﬂ
0

Now we compute

J 2(0)dd,(6) :J
Sl

2(0)dad,(6) +J 2(0) dd, ()
(2(0)>0}

{£2(6)<0}

and if this integral does not already vanish, then we may assume without loss of gener-
ality that it is negative. To prepare for a vanishing integral in our transformation below,
we pick an arc K with y K contained in the set Ps={0:(#) > §} for some § > 0. We then
apply a transformation of the above type to u with

1 if6¢ P
p(0) = :
M if9€P5

and where M > 1 will be chosen below. From the definition of %, and the change of

variable
—cC
V=c;+ %,
¢ <|Y_CJ|)
we have
y—Cs
y —cy _ aG=a) _ Y=o
ly — ¢yl y—cs ‘ ly—csl’
“’(\ﬁjw)
and so
de,L ey o do(x) dii(y)
|J|w JoEDSIE y — X2
T ly—x
_ 1 o(X=C 7 do(x) du(y)
[J]w J(XE”EYJ_XRZ ly — ¢l ly — x|2—«
“ly—x
1 2 Y —cr \*° do (x) du(y)
- de (x,y)eJxR _c Yo 2—a "
| | (\5 ?\)U/C)X |y J| ‘(p<|y 2§‘>(YI_CJ)_X

5_7
‘ <u/ cﬂ)”/ - "|
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It is clear from this formula that for 6 € K, only the values of (ﬁlg‘ on yK are modified

by the transformation, and since y K C P; with § > 0, we conclude that for 6§ € K, we have
limy o %(9) = oo. Thus, there is a choice of M such that the integral of §2(0) d®,(0)
over {£2(0) > 0} equals — j[ ) £2(0) d&,(0). Then for the resulting measure /i, the den-

sity dv; _ dw, remains unchanged, and the density do, satisfies
6 de ds

2(0)<0

E4T* i = J 2(0)d®;(0) =0.
Sl
Now we construct a measure 1 as above, but where
EYRi = J. 1 £24(0)de;(0) =0,
S

for both £ =1 and ¢ =2, and where now R} are the components of the fractional Riesz
vector R*. This can be achieved by choosing an appropriate pair of disjoint arcs K; and
K, and using some simple algebra, and the details are left to the interested reader.
Then, we start with u as in the proof above for the Riesz transform vector R?,
and we have that both Zf, (c;; 1) and Zg, (cs; ) are parallel to the coordinate vector e;.
We thus conclude that R* and the transformed measure j fail the strong reversal of
energy inequality (2.4), and also that EYRy i =0 for £ =1, 2. Combining these two facts
and taking y sufficiently large gives the failure of the weak reversal of energy inequality

(2.5) for fi. Indeed, we have
J J |R“/1<x>|2dw(x>dw(z>=J J IR*fi(x) — E9R*{1)? dw(x) dw(2)
JJJ JJJ
1
=5J J R*/(%) — R*(2) 2 do(x) do(2),
JJIJ

where we have used the simple fact that ﬁ fJ(IE‘jR"‘[L — R¥1(x)) dw(x) =0 in the last
equality. We can now apply inequality (3.7) with & in place of p. This completes the

proof of Lemma 3. u

Appendix
We can rewrite the recursion (3.12) above as

detBpi1(x) £2(x—1)
= , n=
detB,(x)  [2p(5H)]2
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where for any positive integer n and real number a we define the combinatorial

coefficient
n+an—-1+a)---(1+a

mmn—-1---(1)

We now prove the recursion formula (A.1) using the well-known block determinant

.Q,'ll(a) =

formula

B
det [ C} — adetB — rlcoBl"c = det B{a — rB'c}. (A.2)
r a

where B is an n x n matrix and r and ¢ are n-dimensional row and column vectors,
respectively. Here [coB]" denotes the transposed cofactor matrix of B and the inverse

of B is given by B! = 2-[coB]". If we apply this with B=By(x) and [2¢]=B,1(x) we

get

det B, 1(x) = det [B"(X) ¢ (X)]

rp(x) 1
=detB(x){1 — rp(x)Bn(x) " 1c(x)}, (A.3)

where r,(x) denotes the n-dimensional row vector consisting of the first n entries of
the bottom row of B,;;(x), and similarly ¢*(x) denotes the n-dimensional column vector
consisting of the first n entries of the rightmost column of B,;(x). Note also that r,(x)
and c¢"(x) are transposes of each other.

Motivated by computer algebra calculations, we define the column vector

n—1

Vi) = (-1 [(—1)" (") y (X;l)} : (A.4)
k 2
k=0
where
o« Tk+a+1)I'(n—k+a (k+a)---(a)
L@ =——1 = .
n+a+1I'(a) n+a)---(n—k+a
Lemma A.1. For n> 1, we have
B, (x) " 1c(x) = V(x). O

Proof. It suffices to show the vector identity
B,(x)v"(x) =c"(x), n>1,

and to prove this we will use the well known fact that an nth order difference of a

polynomial of degree less than n vanishes. More specifically, the polynomial in question
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will be
Pn_l(s)zwﬂn—1+s>---(1+s)s.
Indeed,
r n—1
o=, 1 ) ()
L n—1-—k o
—_(—1)’6 n\Fn—k+5)r(1+k+ 517"
L k+1)  T+i+50r (5 |
_—(_1)k_1 n\ Fn—k+2rk—1+2]
| k| Totar-i+z |
where
2 )
Now we use
(x—1D(x-3)(x—5) - (x—(2n-1) (3F)(F-1)(*F -2)---F —(n-1)
(x+ 1 (x+3)(x+5) - (x+(2n—1)) CRA+1) (5 +2) 32 +3)-- (52 +n)
_ r+1rEt+1)
(G -m-D)r (5 +n+1)
I'(2)?

T Tz-—nl(z+tn

to obtain that

[ )
T r@— 1 - il =i ]

Thus, the first row of B, (x) is

(1 x—1 x-3x—-1 (X—1)(X—3)(X—5)---(X—(2n—1)))
x+1 x+3x+1 E+DE+3)H(x+5---(x+(2n—-1)
_< I'(2)? I'(2)* I'(2)* I'(2)*
" \I'@r(z rz-1)rz+l) rz-2rz+2  I'z-0-1))Tz+ (n-1)

_[ I (2)2 }
Tlrz— (k-1 Ez+k-1) ],

)
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Thus, we get
I'(2)? R
[nz— (k=) (z+ (k— 1))]k:1 v
_—Xn:(—l)k n\ 'm—k+zt)'(k—1+ 2 I'(2)?
= k rn+2r (142 I'(z—(k-1)Iz+k-1)

_—Xn:(—l)k n I (2)? rz—k+n
- e k]l Tz+nmliz—-1)T(z-k+1)

_ I(2)? - L[
T r@+ml(z-1) ;(—1) <k>{(z—k+n—1)---(z—k+1)}

o I'(2) S e
T T'(z+mIl(z-1) k;( D <k> P, k)

where P (w)=(z—w+n—1)---(z—w+ 1) is a polynomial of degree n— 1. Now recall
that if A f= f(1) — f(0) is the unit difference operator at 0, then

AnF=3 (-1 (Z) £k
k=0
Thus we have

Z(—l)k (n> PXk)=A"P'=0
k=0 k

since P}’ has degree less than n, and so

I'(2)? S I'(2)?
[ ] V() z+n—1)---(z+1)
k=1

IFz—(k—1)I'(z+ (k—1)) T TG@+nml(z-1)

B I'(2)?
T I'(z+DI'(z—-1)

which is the first component of ¢"(x) as required. A similar argument proves the equality

of the remaining components, and this completes the proof of Lemma A.1. |

Lemma A.2. For n>1, we have

2M(x—1)

1 —1p(X) - Vp(x) = m
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Proof. Again, this is an application of the fact that an nth order difference of a polyno-

mial of degree less than n vanishes, but a bit more complicated. Recall that

n+an—-14+a)---1+a I'(n+1+a

@)= Wn—1)---(1) T rdton
so that we have

Qr(x—1) (n+x-—Dm-1+x-1--(1+x-1)

[2n ()P '(n+“) (14231 (14 23]

_Fn+ DI+ (1+ %1)2
B rxr (n+1+X;21)2 .

— n—1
n—1-—k 2
L k=0

_'(_1)k< n )F(n—k+"71)r(1+k+"71) "
=| o

We also have

k+1 r(n+1+54)r (5

and from (3.11), we have

r(x) ( 1)n(2n—1)—x 3—x1—x 3—x1—x 1—x
" 2n—-1)+x 3+x1+x 3+x1+x 1+x
B ‘( )k+1(2k+ H—-x 3—-x1-—x]""
1 Ck+1)+x 34+x1+x]_

[ x—(2k+1) x—3 x—1 1!
| (2k+2)+x—1 4+x—-12+x—1,,

[ —2k+x-1 —2+x-1 x-1 7"
| (2k+2)+x—1 44+4x—-1 2+x—-1];,

and hence dividing all factors top and bottom by 2, we get

- —1
k4 x1 14l ox=l "
In(X) = 2 2 2

k+1+51 0 24l pypxl

e )TI
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Thus, our identity to be proved is

"i(_l)k n r(i+ 5t LTk ) 1 (k1453
= k+1) I (-k+*2)T (k+2+ %51 r(n+1+54) 1 (532
x—1 2
1 rn+1HI(n+x)70 (1+%54) ' As

rer(n+1+ 542

If wesetz=1+ ’%1, then this identity becomes

ni(—l)k n I (2) rn—k—1+2Ik+2)
=0 k+1

I'—k—-1+2I'k+1+2 TI'(n+2I(-1+2)

_ I(n+ HI'(n—1+ 221 (2)?

=1
I'(—1+ 22T (n+ z)?

and if we replace k by k— 1 we get

an(—n’“—l " rey rn—k+2rk=-1+2)
k=1 k] I(~k+2I'(k+2 I'n+20(-1+2)

_ I'(n+ DHI'(n—1+22)1(2)?

=1 I'(—1+ 22 (n+ 2?2

Note that the term k=0 in the sum on the left would be —1, so that we can subtract 1

from both sides, and then multiply by —1 to get

Xn:(—l)k n I'(2)? I'n—k+2lk—-1+2
= k)] T'(~k+2I'(k+2 TI'(n+2I'(-1+2)

_I'(n+1DI'(n—1+ 227 (2)*
T I'(=1422)I(n+ 2)?

which is equivalent to

" w[(n\ Fz+n—Krz+k-1) I'm+DI(z— DI (2z+n—-1)

> (=1 = (A.6)

pr k I'z—kI(z+k) rz+mnl2z—1)
We now use

M:(s+m)(s+m_ ---(s+1)s
I'(s)
to rewrite (A.6) as
(A.7)

Xn:(—l)k n (Z—i—TL—k—l)...(z—k)_n'(22+n_2)...(22)(22_1)
k=0 k (z+k-1) T 24n-1)---@@2z-1)
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Denote the left- and right-hand sides of (A.7) by LHS,(2) and RHS,(2), respec-
tively. Then the left hand side LHS,(2) of (A.7) is

LHSn(z):Z(_l)k (”) z+n—-k—-1---(z+1-k(z+k—1]1-[2k— 1]
k=0

k z+k—1

ZZ(_l)k (”) (z+n—k—1)---(z+1—k)
k=0 k

+ 3 <n) ek,
k=0

k (z+k—1)

where the first sum on the right-hand side above vanishes since it is an nth order differ-

ence of the polynomial
Pw=zz+n—w-—-1)---(z+1—w)

of degree n— 1. Thus, we have

LHS(2) = ) _(~1)*"!

k=0

(n) z+n—k—-1)---z+2—-k(z+k—1]— [2k—2])(2k_ D

k (z+k—1)

:Z(—l)k+1 (n) (z+n—-k—-1)---(z+2—-k(2k-1)
k=0 k

n k2 [T (z+n—-k—-1)---(z+2—-k) - )
+;( K <k> (z+k—1) (2k - 2)(2k - 1),

where the first sum on the right-hand side above vanishes since it is an nth order differ-
ence of the polynomial

Pwy=z+n—w-1---(2+2—-—w)2w-1)

of degree n— 1. Continuing in this way we get

_n_k+n”;_..._ _
LHsn(z)_k;( 1) (k> (z+k—1)(2k n)---(2k—2)(2k — 1).

Now the right-hand side RHS,,(2) of (A.7) is a quotient of a polynomial of degree n

by a polynomial of degree n+ 1, and so has a partial fraction decomposition of the form

__(2z+n-2)---(22(2z—1) Ay
RESW (@) == D @@z =1) _kX(:)z—i-k—l’
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for uniquely determined coefficients Ay, ..., A,. So the proof of (A.7) has been reduced to
proving the identity,

A= (—1)km (Z) 2k—n)---(2k—2)(2k—1). (A.8)

Now Ay is the residue of the meromorphic function RHS,(z) at z= —(k — 1), hence using
the notation (z+ k — 1) to indicate that the factor (z+ k — 1) is missing, we get

A =res(RHS,(2); —(k—1))

(2z+n—2)---(22)(2z—1)

=nl —

z+n—1)-E+hEtk-1)E+k—2) - @Ez—1)|,__¢
_ 21 —kl4+n—2)---(2[1 —kD(2[1 — kIl — 1)

M —KH+n-1) (1 -K+b-K+k- D1 -K+k-2)--- (1 - k{1 - K1)
- (-D™"2k—mn)--- (2k—2)(2k—1)

=k (DO (=DFD) - (k— 1) (k)
—_— — n_kin! —_— .- —_— —_—
=(-1) bk 2k—n)---(2k—2)(2k—1),

which proves (A.8). This completes the proof of Lemma A.2. |

The proof of our claimed recursion (A.1) is now completed by combining Lem-
mas A.1 and A.2 with (A.3).
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