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Abstract. Let (V, 0) = {(z1, · · · , zn) ∈ Cn : f(z1, · · · , zn) = 0} be an isolated
hypersurface singularity with mult(f) = m. Let Jk(f) be the ideal generated by all k-th
order partial derivative of f . For 1 ≤ k ≤ m − 1, the new object Lk(V ) is defined to
be the Lie algebra of derivations of the new k-th local algebra Mk(V ), where Mk(V ) :=
On/(f + J1(f) + · · · + Jk(f)). Its dimension is denoted as δk(V ). This number δk(V )
is a new numerical analytic invariant. In this article we compute L3(V ) for fewnomial
isolated singularities (binomial, trinomial) and obtain the formulas of δ3(V ). We also
formulate a sharp upper estimate conjecture for the δk(V ) of weighted homogeneous
isolated hypersurface singularities and verify this conjecture for large class of singularities.
Furthermore, we formulate another inequality conjecture: δ(k+1)(V ) < δk(V ), k ≥ 1 and
verify it for low-dimensional fewnomial singularities.
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1. Introduction

Finite dimensional Lie algebras are semi-direct product of the semi-simple Lie algebras
and solvable Lie algebras. Simple Lie algebras have been well understood, but not the
solvable (nilpotent) Lie algebras. Brieskorn [Br] gave a beautiful connection between
simple Lie algebras and simple singularities([EK]). Thus it is extremely important to
establish connection between singularities and solvable (nilpotent) Lie algebras.

The algebra of germs of holomorphic functions at the origin of Cn is denoted as
On. Clearly, On can be naturally identified with the algebra of convergent power se-
ries in n indeterminates with complex coefficients. As a ring On has a unique maxi-
mal ideal m, the set of germs of holomorphic functions which vanish at the origin. For
any isolated hypersurface singularity (V, 0) ⊂ (Cn, 0) where V = {f = 0} Yau consid-
ers the Lie algebra of derivations of moduli algebra A(V ) := On/(f,

∂f
∂x1
, · · · , ∂f

∂xn
), i.e.,

L(V ) = Der(A(V ), A(V )). It is known that L(V ) is a finite dimensional solvable Lie
algebra ([Ya2], [Ya3]). L(V ) is called the Yau algebra of V in [Yu] and [Khi] in order to
distinguish from Lie algebras of other types appearing in singularity theory ([AVZ], [AM]).
The Yau algebra plays an important role in singularities [SY]. Yau and his collabrators
have been systematically studying various derivation Lie algebras of isolated hypersurface
singularities begin from eighties (see, e.g., [Ya1], [Ch1, Ch2, CXY] [BY], [XY], [YZ1, YZ2],
[CYZ], [CCYZ], [HYZ1]-[HYZ8], [CHYZ], [MYZ1, MYZ2], [HYZ]).
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11771231. Yau is supported by Tsinghua University start-up fund and Tsinghua University Education
Foundation fund (042202008). Naveed is supported by innovation team project of Humanities and Social
Sciences in Colleges and universities of Guangdong Province (No.: 2020wcxtd008).
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In the theory of isolated singularities, one always wants to find invariants associated
to the isolated singularities. Hopefully with enough invariants found, one can distinguish
between isolated singularities. However, not many invariants are known. Recently, in
[CHYZ, HYZ2, HYZ3, HYZ8, MYZ2], Yau, Zuo, Hussain, and their collaborators gave
many new natural connections between the set of complex analytic isolated hypersurface
singularities and the set of finite dimensional solvable (nilpotent) Lie algebras. They intro-
duced three different ways to associate Lie algebras to isolated hypersurface singularities.
These constructions are helpful to understand the solvable (nilpotent) Lie algebras from
the geometric point of view ([CHYZ]).

Firstly, a new series of derivation Lie algebras Lk(V ), 0 ≤ k ≤ n associated to the
isolated hypersurface singularity (V, 0) defined by the holomorphic function f(x1, · · · , xn)
are introduced in [HYZ8]. Let Hess(f) be the Hessian matrix (fij) of the second order
partial derivatives of f and h(f), the Hessian of f , be the determinant of the matrix
Hess(f). More generally, for each k satisfying 0 ≤ k ≤ n we denote by hk(f) the ideal
in On generated by all k× k-minors in the matrix Hess(f). In particular, h0(f) = 0, the
ideal hn(f) = (h(f)) is a principal ideal. For each k as above, the graded k-th Hessian
algebra of the polynomial f is defined by

Hk(f) = On/(f + J(f) + hk(f)).

It is known that the isomorphism class of the local k-th Hessian algebra Hk(f) is contact
invariant of f , i.e. depends only on the isomorphism class of the germ (V, 0) ([DS], Lemma
2.1). In [HYZ8], we investigated the new Lie algebra Lk(V ) which is the Lie algebra of
derivations of k-th Hessian algebra Hk(f). The dimension of Lk(V ), denoted by λk(V ),
is a new numerical analytic invariant of an isolated hypersurface singularity.

In particular, when k = 0, those are exactly the previous Yau algebra and Yau number,
i.e., L0(V ) = L(V ), λ0(V ) = λ(V ). Thus, the Lk(V ) is a generalization of Yau algebra
L(V ). Moreover, Ln(V ) has been investigated intensively and many interesting results
were obtained. In [CHYZ], it was shown that Ln(V ) completely distinguish ADE singular-
ities. Furthermore, the authors have proven Torelli-type theorems for some simple elliptic
singularities. Therefore, this new Lie algebra Ln(V ) is a subtle invariant of isolated hy-
persurface singularities. It is a natural question whether we can distinguish singularities
by only using part of information of Ln(V ). In [HYZ4], we studied generalized Cartan
matrices of the new Lie algebra Ln(V ) for simple hypersurface singularities and simple
elliptic singularities. We introduced many other numerical invariants, namely, dimension
of the maximal nilpotent subalgebras (i.e., nilradical of nilpotent Lie algebra) g(V ) of
Ln(V ); dimension of maximal torus of g(V ), etc. We have proven that the generalized
Cartan matrix of Ln(V ) can be used to characterize the ADE singularities except the pair
of A6 and D5 singularities [HYZ4].

Secondly, recall that the Mather-Yau theorem was slightly generalized in ([GLS], The-
orem 2.26):

Theorem 1.1. Let f, g ∈ m ⊂ On. The following are equivalent:
1) (V (f), 0) ∼= (V (g), 0);
2) For all k ≥ 0, On/(f,m

kJ(f)) ∼= On/(g,m
kJ(g)) as C-algebra;

3) There is some k ≥ 0 such that On/(f,m
kJ(f)) ∼= On/(g,m

kJ(g)) as C-algebra,
where J(f) = ( ∂f

∂x1
, · · · , ∂f

∂xn
).
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In particular, if k = 0 and k = 1 above, then the claim of the equivalence of 1) and 3)
is exactly the Mather-Yau theorem [MY].

Motivated from Theorem 1.1, in [HYZ2, HYZ3], we introduced the new series of k-th
Yau algebras Lk(V ) (or Lk((V, 0))) which are defined to be the Lie algebra of derivations
of the moduli algebra Ak(V ) = On/(f,m

kJ(f)), k ≥ 0, where m is the maximal ideal, i.e.,
Lk(V ) := Der(Ak(V ), Ak(V )). Its dimension is denoted as λk(V ) (or λk((V, 0))). This
series of integers λk(V ) are new numerical analytic invariants of singularities. It is natural
to call it k-th Yau number. In particular, when k = 0, those are exactly the previous
Yau algebra and Yau number, i.e., L0(V ) = L(V ), λ0(V ) = λ(V ). In [Ya1], Yau observed
that the Yau algebra for the one-parameter family of simple elliptic singularities Ẽ6 is
constant. It turns out that the 1-st Yau algebra L1(V ) is also constant for the family of
simple elliptic singularities Ẽ6. However, Torelli-type theorem for Lk(V ) for all k > 1 do
hold on Ẽ6 ([HYZ]). In general, the invariant Lk(V ), k ≥ 1 are more subtle than the Yau
algebra L(V ).

Finally, in [MYZ2], the authors introduce a new series of invariants to singularities.
Let (V, 0) be an isolated hypersurface singularity defined by a holomorphic function f :
(Cn, 0) → (C, 0). The multiplicity mult(f) of the singularity (V, 0) is defined to be the
order of the lowest nonvanishing term in the power series expansion of f at 0.

Definition 1.1. Let (V, 0) = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0} be an isolated
hypersurface singularity with mult(f) = m. Let Jk(f) be the ideal generated by all the

k-th order partial derivative of f , i.e., Jk(f) =< ∂kf
∂xi1

···∂xik
| 1 ≤ i1, · · · , ik ≤ n >. For

1 ≤ k ≤ m, we define the new k-th local algebra, Mk(V ) := On/(f + J1(f) + · · ·+ Jk(f)).
In particular, Mm(V ) = 0, M1(V ) = A(V ), and M2(V ) = H1(V ).

Remark 1.1. If f defines a weighted homogeneous isolated singularity at the origin, then
f ∈ J1(f) ⊂ J2(f) ⊂ · · · ⊂ Jk(f), thus Mk(V ) = On/(f + J1(f) + · · · + Jk(f)) =
On/(Jk(f)).

The isomorphism class of the k-th local algebra Mk(V ) is a contact invariant of (V, 0),
i.e. depends only on the isomorphism class of the germ (V, 0). The dimension of Mk(V )
is denoted by dk(V ) which is new numerical analytic invariant of an isolated hypersurface
singularity.

Theorem 1.2. [MYZ2] Suppose (V, 0) = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0} and
(W, 0) = {(x1, · · · , xn) ∈ Cn : g(x1, · · · , xn) = 0} are isolated hypersurface singularities.
If (V, 0) is biholomorphically equivalent to (W, 0), then Mk(V ) is isomorphic to Mk(W )
as a C-algebra for all 1 ≤ k ≤ m, where m = mult(f) = mult(g).

Based on Theorem 1.2, it is natural to introduce the new series of k-th derivation
Lie algebras Lk(V ) which are defined to be the Lie algebra of derivations of the k-th
local algebra Mk(V ), i.e., Lk(V ) = Der(Mk(V ),Mk(V )). Its dimension is denoted as
δk(V ). This number δk(V ) is also a new numerical analytic invariant. In particular,
L1(V ) = L0(V ) = L(V ),L2(V ) = L1(V ). In [MYZ2], the authors have proven that
the Lk(V ) are non-negatively graded for weighted homogeneous isolated hypersurface
singularities in low dimension.

We have seen that these Lk(V ), Lk(V ),Lk(V ) are generalization of the Yau algebra
L(V ). These are subtle invariants of singularities. We have reasons to believe that these
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three new series of derivation Lie algebras will also play an important role in the study of
singularities.

A natural interesting question is: can we bound sharply the analytic invariant δk(V )
by only using the topological invariant ([Sa]) weight types of the weighted homogeneous
isolated hypersurface singularities? We propose the following sharp upper estimate con-
jecture.

Conjecture 1.1. For each 0 ≤ k ≤ n, assume that δk({xa11 + · · · + xann = 0}) =
hk(a1, · · · , an). Let (V, 0) = {(x1, x2, · · · , xn) ∈ Cn : f(x1, x2, · · · , xn) = 0}, (n ≥ 2) be an
isolated singularity defined by the weighted homogeneous polynomial f(x1, x2, · · · , xn) of
weight type (w1, w2, · · · , wn; 1). Then δk(V ) ≤ hk(1/w1, · · · , 1/wn).

Moreover, we also propose the following inequality conjecture.

Conjecture 1.2. With the above notations, let (V, 0) be an isolated hypersurface singu-
larity defined by f ∈ On, n ≥ 2. Then

δ(k+1)(V ) < δk(V ), k ≥ 1.

Similar conjectures are investigated for λk(V ) and λk(V ) (cf. [HYZ1], [HYZ5], [YZ2],
[HYZ8]). Note that L1(V ) = L0(V ) = L(V ),L2(V ) = L1(V ), thus δ1 = λ0 = λ0, δ2 = λ1.
The Conjecture 1.1 is true for the following cases:

1) binomial singularities (see Definition 2.4) when k = 1 [YZ2],
2) trinomial singularities (see Definition 2.4) when k = 1 [HYZ1],
3) binomial and trinomial singularities when k = 2 [HYZ8].
The Conjecture 1.2 is true for binomial and trinomial singularities when k = 1 [HYZ8].
The main purpose of this paper is to verify the Conjecture 1.1 and Conjecture 1.2

for binomial and trinomial singularities when k is small. We obtain the following main
results.

Theorem A. Let (V, 0) = {(x1, x2, · · · , xn) ∈ Cn : xa11 + · · · + xann = 0}, (n ≥ 2; ai ≥
5, 1 ≤ i ≤ n). Then

δ3(V ) = h3(a1, · · · , an) =
n∑

j=1

aj − 4

aj − 3

n∏
i=1

(ai − 3).

Theorem B. Let (V, 0) be a binomial singularity defined by the weighted homogeneous
polynomial f(x1, x2) (see corollary 2.1 ) with weight type (w1, w2; 1) and mult(f) ≥ 5.
Then

δ3(V ) ≤ h3(
1

w1

,
1

w2

) =
2∑

j=1

1
wj
− 4

1
wj
− 3

2∏
i=1

(
1

wi

− 3).

Theorem C. Let (V, 0) be a fewnomial singularity defined by the weighted homoge-
neous polynomial f(x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1) and
mult(f) ≥ 5. Then

δ3(V ) ≤ h3(
1

w1

,
1

w2

,
1

w3

) =
3∑

j=1

1
wj
− 4

1
wj
− 3

3∏
i=1

(
1

wi

− 3).
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Theorem D. Let (V, 0) be a binomial singularity defined by the weighted homogeneous
polynomial f(x1, x2) (see corollary 2.1) with weight type (w1, w2; 1) and mult(f) ≥ 5.
Then

δ(k+1)(V ) < δk(V ), k = 1, 2.

Theorem E. Let (V, 0) be a trinomial singularity defined by the weighted homogeneous
polynomial f(x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1) and mult(f) ≥
5. Then

δ(k+1)(V ) < δk(V ), k = 1, 2.

2. Generalities on Derivation Lie algebras of isolated Singularities

In this section we shall briefly defined the basic definitions and important results which
are helpful to solve the problem. The following basic concepts and results will be used to
compute the derivation Lie algebras of isolated hypersurface singularities.

Let A,B be associative algebras over C. The subalgebra of endomorphisms of A gener-
ated by the identity element and left and right multiplications by elements of A is called
multiplication algebra M(A) of A. The centroid C(A) is defined as the set of endomor-
phisms of A which commute with all elements of M(A). Obviously, C(A) is a unital
subalgebra of End(A). The following statement is a particular case of a general result
from Proposition 1.2 of [Bl]. Let S = A ⊗ B be a tensor product of finite dimensional
associative algebras with units. Then

DerS ∼= (DerA)⊗ C(B) + C(A)⊗ (DerB).

We will only use this result for commutative associative algebras with unit, in which case
the centroid coincides with the algebra itself and one has following result for commutative
associative algebras A,B:

Theorem 2.1. ([Bl]) For commutative associative algebras A,B,

DerS ∼= (DerA)⊗B + A⊗ (DerB). (2.1)

We shall use this formula in the sequel.

Definition 2.1. Let J be an ideal in an analytic algebra S. Then DerJS ⊆ DerCS is Lie
subalgebra of all σ ∈ DerCS for which σ(J) ⊂ J .

We shall use the following well-known result to compute the derivations.

Theorem 2.2. ([YZ2]) Let J be an ideal in R = C{x1, · · · , xn}. Then there is a natural
isomorphism of Lie algebras

(DerJR)/(J · DerCR) ∼= DerC(R/J).

Recall that a derivation of commutative associative algebra A is defined as a linear
endomorphism D of A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b). Thus for
such an algebra A one can consider the Lie algebra of its derivations Der(A,A) with the
bracket defined by the commutator of linear endomorphisms.

Definition 2.2. Let (V, 0) be an isolated hypersurface singularity. The new series of k-
th derivation Lie algebras Lk(V ) (or Lk((V, 0))) which are defined to be the Lie algebra
of derivations of the k-th local algebra Mk(V ), i.e.,Lk(V ) = Der(Mk(V ),Mk(V )). Its
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dimension is denoted as δk(V ) (or δk((V, 0))). This number δk(V ) is also a new numerical
analytic invariant

Definition 2.3. A polynomial f ∈ C[x1, x2, · · · , xn] is called quasi-homogeneous (or
weighted homogeneous) if there exist positive rational numbers w1, . . . , wn (called weights

of indeterminates xj) and d such that, for each monomial
∏
x
kj
j appearing in f with

non-zero coefficient, one has
∑
wjkj = d. The number d is called the quasi-homogeneous

degree (w-degree) of f with respect to weights wj and is denoted deg f . The collection
(w; d) = (w1, · · · , wn; d) is called the quasi-homogeneity type (qh-type) of f .

Definition 2.4. [Kh] An isolated hypersurface singularity in Cn is fewnomial if it can
be defined by a n-nomial in n variables and it is a weighted homogeneous fewnomial
isolated singularity if it can be defined by a weighted homogeneous fewnomial. The 2-
nomial (resp. 3-nomial) isolated hypersurface singularity is also called binomial (resp.
trinomial) singularity.

Proposition 2.1. Let f be a weighted homogeneous fewnomial isolated singularity with
mult(f) ≥ 3. Then f analytically equivalent to a linear combination of the following three
series:

Type A. xa11 + xa22 + · · ·+ x
an−1

n−1 + xann , n ≥ 1,
Type B. xa11 x2 + xa22 x3 + · · ·+ x

an−1

n−1 xn + xann , n ≥ 2,
Type C. xa11 x2 + xa22 x3 + · · ·+ x

an−1

n−1 xn + xann x1, n ≥ 2.

Proposition 2.1 has an immediate corollary.

Corollary 2.1. Each binomial isolated singularity is analytically equivalent to one from
the three series: A) xa11 + xa22 , B) xa11 x2 + xa22 , C) xa11 x2 + xa22 x1.

Wolfgang and Atsushi [ET] give the following classification of weighted homogeneous
fewnomial singularities in case of three variables.

Proposition 2.2. ([ET]) Let f(x1, x2, x3) be a weighted homogeneous fewnomial isolated
singularity with mult(f) ≥ 3. Then f is analytically equivalent to following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x1,
Type 5. xa11 x2 + xa22 x1 + xa33 .

3. Proof of theorems

In order to prove the main theorems, we need to prove following propositions.

Proposition 3.1. Let (V, 0) be a weighted homogeneous fewnomial isolated singularity
which is defined by f = xa11 + xa22 + · · · + xann (ai ≥ 5, i = 1, 2, · · · , n) with weight type
( 1
a1
, 1
a2
, · · · , 1

an
; 1). Then

δ3(V ) =
n∑

j=1

aj − 4

aj − 3

n∏
i=1

(ai − 3).
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Proof. The generalized moduli algebra M3(V ) has dimension
∏n

i=1(ai − 3) and has a
monomial basis of the form

{xi11 xi22 · · ·xinn , 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, · · · , 0 ≤ in ≤ an − 4},
with following relations:

xa1−3
1 = 0, xa2−3

2 = 0, xa3−3
3 = 0, · · · , xan−3

n = 0. (3.1)

In order to compute a derivation D of M3(V ) it suffices to indicate its values on the
generators x1, x2, · · · , xn which can be written in terms of the monomial basis. Without
loss of generality, we write

Dxj =

a1−4∑
i1=0

a2−4∑
i2=0

· · ·
an−4∑
in=0

cji1,i2,··· ,inx
i1
1 x

i2
2 · · ·xinn , j = 1, 2, · · · , n.

Using the above relations (3.1) one easily finds the necessary and sufficient conditions
defining a derivation of M3(V ) as follows:

c10,i2,i3,,··· ,in = 0; 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4, · · · , 0 ≤ in ≤ an − 4;

c2i1,0,i3,,··· ,in = 0; 0 ≤ i1 ≤ a1 − 4, 0 ≤ i3 ≤ a3 − 4, · · · , 0 ≤ in ≤ an − 4;

c3i1,i2,0,··· ,in = 0; 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, · · · , 0 ≤ in ≤ an − 4;

...

cni1,i2,i3,··· ,in−1,0
= 0; 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, · · · , 0 ≤ in−1 ≤ an−1 − 4.

Therefore we obtain the following description of Lie algebras in question:

xi11 x
i2
2 · · ·xinn ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4, · · · , 0 ≤ in ≤ an − 4;

xi11 x
i2
2 · · ·xinn ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4, · · · , 0 ≤ in ≤ an − 4;

xi11 x
i2
2 · · ·xinn ∂3, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4, 0 ≤ i4 ≤ a4 − 4,

0 ≤ i5 ≤ a5 − 4, 0 ≤ i6 ≤ a6 − 4, · · · , 0 ≤ in ≤ an − 4;

...

xi11 x
i2
2 · · ·xinn ∂n, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4, · · · , 1 ≤ in ≤ an − 4.

Therefore we have the following formula

δ3(V ) =
n∑

j=1

aj − 4

aj − 3

n∏
i=1

(ai − 3).

Q.E.D.

Remark 3.1. Let (V, 0) be a weighted homogeneous fewnomial isolated singularity of type
A which is defined by f = xa11 + xa22 (a1 ≥ 5, a2 ≥ 5) with weight type ( 1

a1
, 1
a2

; 1). Then it
follows from Proposition 3.1 that

δ3(V ) = 2a1a2 − 7(a1 + a2) + 24.
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Proposition 3.2. Let (V, 0) be a binomial isolated singularity of type B which is defined
by f = xa11 x2 + xa22 (a1 ≥ 4, a2 ≥ 5) with weight type (a2−1

a1a2
, 1
a2

; 1). Then

δ3(V ) = 2a1a2 − 7(a1 + a2) + 27.

Furthermore, assuming that mult(f) ≥ 5, we have

2a1a2 − 7(a1 + a2) + 27 ≤ 2a1a
2
2

a2 − 1
− 7(

a1a2
a2 − 1

+ a2) + 24.

Proof. It follows that the generalized moduli algebra

M3(V ) = C{x1, x2}/(fx1x1x1 , fx2x2x2 , fx1x2x2 , fx1x1x2)

has dimension a1a2 − 3(a1 + a2) + 10 and has a monomial basis of the form

{xi11 xi22 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4;xa1−3
1 }. (3.2)

Similar as the computation in Proposition 3.1, we obtain the following derivations which
form a basis of DerM3(V ):

xi11 x
i2
2 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4;xi11 x

i2
2 ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4;

xa2−4
2 ∂1;x

a3−1
1 ∂1;x

a1−3
1 ∂2.

Therefore we have the following formula

δ3(V ) = 2a1a2 − 7(a1 + a2) + 27.

It follows from Proposition 3.1 that we have

h3(a1, a2) = 2a1a2 − 7(a1 + a2) + 24.

After putting the weight type (a2−1
a1a2

, 1
a2

; 1) of binomial isolated singularity of type B we
have

h3(
1

w1

,
1

w2

) =
2a1a

2
2

a2 − 1
− 7(

a1a2
a2 − 1

+ a2) + 24.

Finally we need to show that

2a1a2 − 7(a1 + a2) + 27 ≤ 2a1a
2
2

a2 − 1
− 7(

a1a2
a2 − 1

+ a2) + 24. (3.3)

After solving 3.3 we have a1(a2 − 7) + a2(a1 − 3) + 3 ≥ 0. Q.E.D.

Proposition 3.3. Let (V, 0) be a binomial isolated singularity of type C which is defined
by f = xa11 x2 + xa22 x1 (a1 ≥ 4, a2 ≥ 4) with weight type ( a2−1

a1a2−1
, a1−1
a1a2−1

; 1).

δ3(V ) =

{
2a1a2 − 7(a1 + a2) + 30; a1 ≥ 5, a2 ≥ 5
a2; a1 = 4, a2 ≥ 4.

Furthermore, assuming that mult(f) ≥ 6, we have

2a1a2 − 7(a1 + a2) + 30 ≤ 2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 7(a1a2 − 1)(

a1 + a2 − 2

(a1 − 1)(a2 − 1)
) + 24.



DERIVATION LIE ALGEBRAS OF SINGULARITIES 9

Proof. The generalized moduli algebra M3(V ) has dimension a1a2 − 3(a1 + a2) + 11 and
has a monomial basis of the form

{xi11 xi22 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4;xa1−3
1 ;xa2−3

2 }. (3.4)

Similarly, we obtain the following derivations which form a basis of DerM3(V ):

xi11 x
i2
2 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4;xi11 x

i2
2 ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4;

xa2−4
2 ∂1;x

a2−3
2 ∂1;x

a1−3
1 ∂1;x

a2−3
2 ∂2;x

a1−4
1 ∂2;x

a1−3
1 ∂2.

Therefore we have the following formula

δ3(V ) = 2a1a2 − 7(a1 + a2) + 30.

In case of a1 = 4, a2 ≥ 4, we have following bases of Lie algebra:

xi22 ∂2, 1 ≤ i2 ≤ a2 − 3;xa2−3
2 ∂1;x1∂1;x1∂2.

It follows from Proposition 3.1 and binomial isolated singularity of type C, we have

h3(
1

w1

,
1

w2

) =
2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 7(

a1a2 − 1

a2 − 1
+
a1a2 − 1

a1 − 1
) + 24.

Finally we need to show that

2a1a2 − 7(a1 + a2) + 30 ≤ 2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 7(a1a2 − 1)(

a1 + a2 − 2

(a1 − 1)(a2 − 1)
) + 24. (3.5)

After solving (3.5), we have
a1a

2
2[(a2 − 2)(a1 − 2)− a1(a2 − 5)] + a32 + 4a21a2 + 10a22(a1 − 3) + 6a1a2(a1 − 3)

+3a21(a2 − 3) + a1a2(a1 − 3) + 15a1 + 2(a2 − 3) ≥ 0.
In case of a1 = 4, a2 ≥ 4, we need to show that

a2 ≤
2(4a2 − 1)2

3(a2 − 1)
− 7(4a2 − 1)(

a2 + 2

3(a2 − 1)
) + 24.

After simplification we get
a2(a2 + 10)− 56.

Q.E.D.

Remark 3.2. Let (V, 0) be a fewnomial surface isolated singularity of type 1 (see Propo-
sition 2.2) which is defined by f = xa11 + xa22 + xa33 (a1 ≥ 5, a2 ≥ 5, a3 ≥ 5) with weight
type ( 1

a1
, 1
a2
, 1
a3

; 1). Then it follows from Proposition 3.1 that

δ3(V ) = 3a1a2a3 + 33(a1 + a2 + a3)− 10(a1a2 + a1a3 + a2a3)− 108.

Proposition 3.4. Let (V, 0) be a fewnomial surface isolated singularity of type 2 which is
defined by f = xa11 x2+x

a2
2 x3+x

a3
3 (a1 ≥ 4, a2 ≥ 4, a3 ≥ 5) with weight type (1−a3+a2a3

a1a2a3
, a3−1
a2a3

, 1
a3

; 1).
Then

δ3(V ) =

 3a1a2a3 − 10(a1a2 + a1a3 + a2a3) + 37(a1 + a3)
+33a2 − 135; a1 ≥ 4, a2 ≥ 5, a3 ≥ 5
2a1a3 − 3a1 − 5a2 + 5; a1 ≥ 4, a2 = 4, a3 ≥ 5.
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Furthermore, assuming that a1 ≥ 4, a2 ≥ 5, a3 ≥ 5, we have

3a1a2a3 − 10(a1a2 + a1a3 + a2a3) + 37(a1 + a3) + 33a2 − 135 ≤ 3a1a
2
2a

3
3

(1− a3 + a2a3)(a3 − 1)

− 10(
a1a

2
2a

2
3

(1− a3 + a2a3)(a3 − 1)
+

a1a2a
2
3

1− a3 + a2a3
+

a2a
2
3

a3 − 1
) + 33(

a1a2a3
1− a3 + a2a3

+
a2a3
a3 − 1

+ a3)− 108.

Proof. The moduli algebra M3(V ) has dimension (a1a2a3−3(a1a2 +a1a3 +a2a3)+10(a1 +
a3) + 9a2 − 33) and has a monomial basis of the form:

{xi11 xi22 xi33 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4; 0 ≤ i3 ≤ a3 − 4;xa1−3
1 xi33 , 0 ≤ i3 ≤ a3 − 4;

xi11 x
a3−3
3 , 0 ≤ i1 ≤ a1 − 4}.

The following derivations form a basis in DerM3(V ):

xi11 x
i2
2 x

i3
3 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4,

xa2−4
2 xi33 ∂1, 1 ≤ i3 ≤ a3 − 4;xi11 x

a2−3
2 ∂1, 0 ≤ i1 ≤ a1 − 4,

xi11 x
i2
2 x

i3
3 ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4,

xi11 x
a2−3
2 ∂2, 0 ≤ i1 ≤ a1 − 4;xi11 x

a3−4
3 ∂2, 1 ≤ i1 ≤ a1 − 4,

xi11 x
i2
2 x

i3
3 ∂3, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4, xi11 x

a2−3
2 ∂3, 0 ≤ i1 ≤ a1 − 4,

xa1−3
1 xi33 ∂3, 1 ≤ i3 ≤ a3 − 4.

Therefore we have

δ3(V ) = 3a1a2a3 − 10(a1a2 + a1a3 + a2a3) + 37(a1 + a3) + 33a2 − 135.

In case of a1 ≥ 4, a2 = 4, a3 ≥ 5, we obtain the following basis:

xi11 x
i3
3 ∂1, 1 ≤ i1 ≤ a1 − 3, 0 ≤ i3 ≤ a3 − 4;xi11 x2∂1, 0 ≤ i1 ≤ a1 − 4,

xi11 x2∂2, 0 ≤ i1 ≤ a1 − 4;xi11 x
a3−4
3 ∂2, 1 ≤ i1 ≤ a1 − 3,

xi11 x
i3
3 ∂3, 0 ≤ i1 ≤ a1 − 3, 1 ≤ i3 ≤ a3 − 4;xi11 x2∂3, 0 ≤ i1 ≤ a1 − 4.

We have

δ3(V ) = 2a1a3 − 3a1 − 5a3 + 5.

Next, we need to show that when a1 ≥ 4, a2 ≥ 5, a3 ≥ 5, then

3a1a2a3 − 10(a1a2 + a1a3 + a2a3) + 37(a1 + a3) + 33a2 − 135 ≤ 3a1a
2
2a

3
3

(1− a3 + a2a3)(a3 − 1)

− 10(
a1a

2
2a

2
3

(1− a3 + a2a3)(a3 − 1)
+

a1a2a
2
3

1− a3 + a2a3
+

a2a
2
3

a3 − 1
) + 33(

a1a2a3
1− a3 + a2a3

+
a2a3
a3 − 1

+ a3)− 108.

After simplification we get
(a1 − 2)3(a2 − 4)a3 + (a2 − 3)a1a3((a3 − 2)(a1 − 4) + (a2 − 2)(a3 − 2)) + a2(3a3 − 3)(a1 −
2) + a2(a1 − 1) + 6 ≥ 0.
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We also need to show that when a1 ≥ 4, a3 ≥ 5, then

2a1a3 − a1 − 3a3 − 1 ≤ 48a1a
3
3

(1 + 3a3)(a3 − 1)
+ 33(

4a1a3
1 + 3a3

+
4a3
a3 − 1

+ a3)

− 10(
16a1a

2
3

(1 + 3a3)(a3 − 1)
+

4a1a
2
3

1 + 3a3
+

4a23
a3 − 1

)− 108.

After simplification we get

4a1a33
(1+3a3)(a3−3)

+
a23(a1a3−4)+4a33(a1−3)

(1+3a3)(a3−2)
+

15a1a23(a3−3)

(1+3a3)(a3−2)
+

4a1a23
(1+3a3)(a3−2)

+
35a1a23

(1+a3)(a3−3)

+ 16(a3 − 4) + 48a3
(a3−3)

+ 8 ≥ 0.

Q.E.D.

Proposition 3.5. Let (V, 0) be a fewnomial surface isolated singularity of type 3 which
is defined by f = xa11 x2 + xa22 x3 + xa33 x1 (a1 ≥ 4, a2 ≥ 4, a3 ≥ 4) with weight type

(
1− a3 + a2a3

1 + a1a2a3
,
1− a1 + a1a3

1 + a1a2a3
,
1− a2 + a1a2

1 + a1a2a3
; 1).

Then

δ3(V ) =


3a1a2a3 + 37(a1 + a2 + a3)− 10(a1a2 + a1a3 + a2a3)
−147; a1 ≥ 5, a2 ≥ 5, a3 ≥ 5
2a2a3 − 5a2 − 3a3 + 9; a1 = 4, a2 ≥ 5, a3 ≥ 4
2a1a3 − 3a1 − 5a3 + 9; a1 ≥ 4, a2 = 4, a3 ≥ 4
2a1a2 − 5a1 − 3a2 + 9; a1 ≥ 5, a2 ≥ 5, a3 = 4.

Furthermore, assuming that a1 ≥ 5, a2 ≥ 5, a3 ≥ 5, we have

3a1a2a3 + 37(a1 +a2 +a3)− 10(a1a2 +a1a3 +a2a3)− 147 ≤ 3(1+a1a2a3)3

(1−a3+a2a3)(1−a1+a1a3)(1−a2+a1a2)

+ 33( 1+a1a2a3
1−a3+a2a3

+ 1+a1a2a3
1−a1+a1a3

+ 1+a1a2a3
1−a2+a1a2

)− 10( (1+a1a2a3)2

(1−a3+a2a3)(1−a1+a1a3)
+ (1+a1a2a3)2

(1−a1+a1a3)(1−a2+a1a2)

+ (1+a1a2a3)2

(1−a3+a2a3)(1−a2+a1a2)
)− 108.

Proof. The moduli algebra M3(V ) has dimension (a1a2a3−3(a1a2 +a1a3 +a2a3)+10(a1 +
a2 + a3)− 36) and has a monomial basis of the form

{xi11 xi22 xi33 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4; 0 ≤ i3 ≤ a3 − 4;xa1−3
1 xi33 , 0 ≤ i3 ≤ a3 − 4;

xi22 x
a3−3
3 , 0 ≤ i2 ≤ a2 − 4;xi11 x

a2−3
2 , 0 ≤ i1 ≤ a1 − 4}.

We obtain the following description of Lie algebras in question:

xi11 x
i2
2 x

i3
3 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xi22 x

a3−3
3 ∂1, 0 ≤ i2 ≤ a2 − 5,

xa2−4
2 xi33 ∂1, 1 ≤ i3 ≤ a3 − 3;xi11 x

a2−3
2 ∂1, 0 ≤ i1 ≤ a1 − 4;xa1−3

1 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4,

xi11 x
i2
2 x

i3
3 ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4,

xi11 x
a2−3
2 ∂2, 0 ≤ i1 ≤ a1 − 4;xi11 x

a3−4
3 ∂2, 1 ≤ i1 ≤ a1 − 4;xi22 x

a3−3
3 ∂2, 0 ≤ i2 ≤ a2 − 4,

xi11 x
i2
2 x

i3
3 ∂3, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4;xi11 x

a2−3
2 ∂3, 0 ≤ i1 ≤ a1 − 4,

xa1−4
1 xi22 ∂3, 1 ≤ i2 ≤ a2 − 4;xi22 x

a3−3
3 ∂3, 0 ≤ i2 ≤ a2 − 4;xa1−3

1 xi33 ∂3, 0 ≤ i3 ≤ a3 − 4.
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Therefore we have

δ3(V ) = 3a1a2a3 + 37(a1 + a2 + a3)− 10(a1a2 + a1a3 + a2a3)− 147.

In case of a1 = 4, a2 ≥ 5, a3 ≥ 4, we obtain the following basis:

xa2−4
2 xi33 ∂1, 1 ≤ i3 ≤ a3 − 3;x1x

i3
3 ∂1, 0 ≤ i3 ≤ a3 − 4;xa2−3

2 ∂1;x
a3−3
3 ∂2,

x1x
i3
3 ∂2, 0 ≤ i3 ≤ a3 − 4;xa2−3

2 ∂2;x
i2
2 x

i3
3 ∂2, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 3,

xi22 x
i3
3 ∂3, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 3, x1x

i3
3 ∂3, 0 ≤ i3 ≤ a3 − 4;xa2−3

2 ∂3.

Therefore we have
δ3(V ) = 2a2a3 − 5a2 − 3a3 + 9.

Similarly, we obtain the basis of Lie algebra for a1 ≥ 4, a2 = 4, a3 ≥ 4 and a1 ≥ 5, a2 ≥
5, a3 = 4.
Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, a3 ≥ 5, then the inequality in
Proposition 3.5 holds. After simplification we get
5(a1a2 + a2a3 + a1a3) + a1(a2 − 4) + a2(a3 − 4) + a3(a1 − 4) + 4a21[a2(a3 − 4) + a3(a2 − 4)]
+4a22[a1(a3−4)+a3(a1−4)]+6a23[a1(a2−4)+a2(a1−4)]+3(a21 +a22 +a23)+4(a31a2 +a32a3
+a33a1) + 2a21a

2
2a

2
3 + 6(a1a

2
2a3 +a1a2a

2
3) + 2a21a2a3 +a1a2a3[2a1−8] +a31a2a

2
3(a3−4)(a2−4)

+ a21a
2
3(a3 − 4)(a1a2 − 4) + a21a2a

2
3(a3 + a2 − 5) + 4a1a2a

3
3(a1 − 4) + a21a

3
2a3(a3 − 4)(a1 − 4)

+ a21a
2
2(a1 − 4)(a2a3 − 3) + a31a2a3(a2 − 4) + a21a

2
2a3(a1 − 4 + (a3 − 4)) + a1a

2
2a

3
3(a2 − 4)(a1

− 4) + a22a
2
3(a2 − 4)(a1a3 − 4) + 8 ≥ 0.

Similarly we can prove Conjecture 1.1 for a1 ≥ 4, a2 = 4, a3 ≥ 4; a1 ≥ 5, a2 ≥ 5, a3 = 4
and a1 = 4, a2 ≥ 5, a3 ≥ 4. Q.E.D.

Proposition 3.6. Let (V, 0) be a fewnomial surface isolated singularity of type 4 which is
defined by f = xa11 + xa22 + xa33 x2 (a1 ≥ 5, a2 ≥ 5, a3 ≥ 4) with weight type ( 1

a1
, 1
a2
, a2−1
a2a3

; 1).
Then

δ3(V ) = 3a1a2a3 + 37a1 + 33(a2 + a3)− 10(a1a2 + a1a3 + a2a3)− 121.

Furthermore, assuming that mult(f) ≥ 5, we have

3a1a2a3 + 37a1 + 33(a2 + a3)− 10(a1a2 + a1a3 + a2a3)− 121 ≤ 3a22a1a3
a2−1

+ 33(a1 + a2 + a2a3
a2−1

)

− 10(a1a2 + a1a2a3
a2−1

+
a22a3
a2−1

)− 108.

Proof. The moduli algebra M3(V ) has dimension (a1a2a3− 3(a1a2 + a1a3 + a2a3) + 9(a2 +
a3) + 10a1 − 30) and has a monomial basis of the form

{xi11 xi22 xi33 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4; 0 ≤ i3 ≤ a3 − 4;xi11 x
a3−3
3 , 0 ≤ i2 ≤ a2 − 4}.

We obtain the following description of the Lie algebra in question:

xi11 x
i2
2 x

i3
3 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xi11 x

a3−3
3 ∂1, 1 ≤ i1 ≤ a1 − 4,

xi11 x
i2
2 x

i3
3 ∂2, 1 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xi11 x

a3−3
3 ∂2, 0 ≤ i1 ≤ a1 − 4,

xi22 x
i3
3 ∂2, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4, xi11 x

a2−4
2 ∂3, 0 ≤ i1 ≤ a1 − 4

xi11 x
i2
2 x

i3
3 ∂3, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4, xi11 x

a3−3
3 ∂3, 0 ≤ i1 ≤ a1 − 4.

Therefore we have

δ3(V ) = 3a1a2a3 + 37a1 + 33(a2 + a3)− 10(a1a2 + a1a3 + a2a3)− 121.
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Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, a3 ≥ 4, then the inequality in
Proposition 3.6 holds. After simplifying the inequality, we get

a1a3(2a2 − 8)

a2 − 4
+ 2a2a3 + a3(a2 − 2) +

8a3
a2 − 3

+
a1[a2(a3 − 3) + 5]

a2 − 3
≥ 0.

Q.E.D.

Proposition 3.7. Let (V, 0) be a fewnomial surface isolated singularity of type 5 which is
defined by f = xa11 x2+x

a2
2 x1+x

a3
3 (a1 ≥ 4, a2 ≥ 4, a3 ≥ 5) with weight type ( a2−1

a1a2−1
, a1−1
a1a2−1

, 1
a3

; 1).
Then

δ3(V ) =

 3a1a2a3 + 33(a1 + a2) + 41a3 − 10(a1a2 + a1a3 + a2a3)
−134; a1 ≥ 5, a2 ≥ 5, a3 ≥ 5
2a2a3 − 7a2 − a3 + 4; a1 = 4, a2 ≥ 4, a3 ≥ 5

Furthermore, assuming that a1 ≥ 5, a2 ≥ 5, a3 ≥ 5, we have

3a1a2a3+33(a1+a2)+41a3−10(a1a2+a1a3+a2a3)−134 ≤ 3a3(a1a2−1)2

(a2−1)(a1−1)
+33(a1a2−1

a2−1
+ a1a2−1

a1−1

+ a3)− 10( (a1a2−1)2

(a2−1)(a1−1)
+ a3(a1a2−1)

a1−1
+ a3(a1a2−1)

a2−1
)− 108.

Proof. It is easy to see that the moduli algebra M3(V ) has dimension a1a2a3 − 3(a1a2 +
a1a3 + a2a3) + 9(a1 + a2) + 11a3 − 33 and has a monomial basis of the form

{xi11 xi22 xi33 , 0 ≤ i1 ≤ a1 − 4; 0 ≤ i2 ≤ a2 − 4; 0 ≤ i3 ≤ a3 − 4;xa1−3
1 xi33 , 0 ≤ i3 ≤ a3 − 4;

xa2−3
2 xi33 , 0 ≤ i3 ≤ a3 − 4}.

We obtain the following description of the Lie algebra in question:

xi11 x
i2
2 x

i3
3 ∂1, 1 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4,

xa2−3
2 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4;xa2−4

2 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4,

xi11 x
i2
2 x

i3
3 ∂2, 0 ≤ i1 ≤ a1 − 4, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4,

xa2−3
2 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4;xa1−4

1 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4,

xi11 x
i2
2 x

i3
3 ∂3, 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4;xa1−3

1 xi33 ∂3, 1 ≤ i3 ≤ a3 − 4,

xa2−3
2 xi33 ∂3, 1 ≤ i3 ≤ a3 − 4.

Therefore we have

δ3(V ) = 3a1a2a3 + 33(a1 + a2) + 41a3 − 10(a1a2 + a1a3 + a2a3)− 134.

In case of a1 = 4, a2 ≥ 4, a3 ≥ 5, we obtain the following basis:

xi22 x
i3
3 ∂2, 1 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 4;xa2−3

2 xi33 ∂1, 0 ≤ i3 ≤ a3 − 4,

x1x
i3
3 ∂1, 0 ≤ i3 ≤ a3 − 4;xa2−3

2 xi33 ∂2, 0 ≤ i3 ≤ a3 − 4,

xi22 x
i3
3 ∂3, 0 ≤ i2 ≤ a2 − 4, 1 ≤ i3 ≤ a3 − 4;x1x

i3
3 ∂2, 0 ≤ i3 ≤ a3 − 4,

x1x
i3
3 ∂3, 1 ≤ i3 ≤ a3 − 4.

We have

δ3(V ) = 2a2a3 − 7a2 − a3 + 4.



14 NAVEED HUSSAIN, STEPHEN S.-T. YAU, AND HUAIQING ZUO

Next, we need to show that when a1 ≥ 5, a2 ≥ 5, a3 ≥ 5, then the inequality in Proposition
3.7 holds. After simplification, we get

a1(a1 − 5)(a2 − 3)(a3 + (a1 − 2)a2(a2 − 4)a3) + a21(a3 − 3)(a2 − 4) + a22a1 + 6a1(a2 − 5)

+ 6a2(a1 − 5) + 6a3(a1 − 4) + 16a1a2 + 15a1a3 + 4a2a3 + 30 + 35a2 + a1a2(a1 − 5)

+ (a1 − 2)a2(a2 − 5)(a3 − 4) + (a1 − 3)(a3 − 4) ≥ 0.

similarly, we can prove that the Conjecture 1.1 also true for a1 = 4, a2 ≥ 4, a3 ≥ 5,
Q.E.D.

Proof of Theorem A.

Proof. It follows from Proposition 3.1 that Theorem A is true. Q.E.D.

Proof of Theorem B.

Proof. Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated singularity. Then
f can be divided into the following three types:

Type A. xa11 + xa22 ,
Type B. xa11 x2 + xa22 ,
Type C. xa11 x2 + xa22 x1.
The Theorem B is an immediate corollary of Remark 3.1, Proposition 3.2, and Propo-

sition 3.3. Q.E.D.

Proof of Theorem C.

Proof. Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated surface sin-
gularity. Then f can be divided into the following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x1,
Type 5. xa11 x2 + xa22 x1 + xa33 .
The Theorem C is an immediate corollary of Remark 3.2, Propositions 3.4, 3.5, 3.6,

and 3.7. Q.E.D.

Proof of Theorem D.

Proof. It is easy to see, from Remark 3.1, Propositions 3.2-3.3, Propositions 4.1-4.3
in [YZ2] and Remark 3.1, Propositions 3.2-3.3 in [HYZ8], the inequality δ(k+1)(V ) <
δk(V ), k = 1, 2 holds true. Q.E.D.

Proof of Theorem E.

Proof. It is easy to see, from Remark 3.2, Propositions 3.4-3.7, Proposition 4.1 in [YZ2],
Propositions 3.1, 3.2 in [HYZ1], Propositions 3.4, 3.5 in [HYZ3] and Remark 3.4, Propo-
sitions 3.4-3.7 in [HYZ8], the inequality δ(k+1)(V ) < δk(V ), k = 1, 2 holds true. Q.E.D.
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