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The estimate of integral points in right-angled simplices has many applications in number theory, complex
geometry, toric variety and tropical geometry. In [24], [25], [27], the second author and other coworkers gave a
sharp upper estimate that counts the number of positive integral points in # dimensional (n > 3) real right-angled
simplices with vertices whose distance to the origin are at least n — 1. A natural problem is how to form a new
sharp estimate without the minimal distance assumption. In this paper, we formulate the Number Theoretic
Conjecture which is a direct correspondence of the Yau Geometry conjecture. We have proved this conjecture
for n = 4. This paper gives hope to prove the new conjecture in general. As an application, we give a sharp
estimate of the Dickman-de Bruijn function ¥ (x, y) for y < 11.
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1 Introduction

Let A(ay, az, - . ., a,) be an n-dimensional simplex described by
X1 X2 Xn
— 4+ =+ —=<1, x,x,...,x%, >0, (1.1
aj a ay

where a; > ap > --- > a, > 1 are positive real numbers. Let P, = P(ay, as, ..., a,) and Q, = Q(ay, az, - . .,

a,) be defined as the number of positive and nonnegative integral solutions of (1.1) respectively. They are related
by the following formula

Olai,az,...,ay) = Pla(1 +a),ax(1+a),...,a,(1+a)), (1.2)

where a = % + i 4+ 4 ai The estimate of integral points has many applications in number theory, complex
geometry, toric variety and tropical geometry.

One of the central topics in computational number theory is the estimate of ¥ (x, y), the Dickman-de Bruijn
function (see [4], [5], [6], [10]). Let S(x, y) be the set of positive integers < x, composed only of prime factors
< y. The Dickman-de Bruijn function v (x, y) is the cardinality of this set. It turns out that the computation of
¥ (x, y) is equivalent to compute the number of integral points in an n-dimensional tetrahedron A(ay, az, - . ., a,)
with real vertices (ay, 0, ...,0),...,(0,...,0,a,).Let p; < p» < --- < p, denotes the primes up to y. Itis clear
that pll‘ plz2 e pf;' < x ifand only if/; log p; + b log p» + - - - + 1, log p, < log x. Therefore, 1/fl(x, y) is precisely
og x

the number Q,, of (integer) lattice points inside the n-dimensional tetrahedron (1.1) with a; = Tog pr 1 <i<n.
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The general problem of counting the number Q,, has been a challenging problem for many years. Tremendous
researches have been putting to develop an exact formula when ay, .. ., a, are positive integers (see [1], [2], [7],
[14]). Mordell gave a formula for O3, expressed in terms of three Dedekind sums, in the case that a;, a,, and a3 are
pairwise relatively prime [20]; Pommersheim extended the formula for Q3 to arbitrary ay, a,, and a3 using toric
varieties [21] and so forth. Meanwhile, the problem of counting the number of integral points in an n-dimensional
tetrahedron with real vertices is a classical subject which has attracted a lot of famous mathematicians. Also from
the view of estimating the Dickman-de Bruijn function, the g;’s, 1 <i < n, are not always integers. Hardy and
Littlewood wrote several papers that have been applied on Diophantine approximation ([11], [12], [13]). A more
general approximation of 0, was obtained by D. C. Spencer [22], [23] via complex function-theoretic methods.

According to Granville [9], an upper polynomial estimate of P, is a key topic in number theory. Such an
estimate could be applied to finding large gaps between primes, to Waring’s problem, to primality testing and
factoring algorithms, and to bounds for the least prime k-th power residues and non-residues (mod n). Granville
([9]) obtained the following estimate

1
P, < —aja;...ay,. (1.3)
!

This estimate of Py, 4,,....q,) given by (1.3) is interesting, but not strong enough to be useful, particularly when
many of the a;’s are small [9]. In geometry and singularity theory, estimating P, for real right-angled simplices
is related to the Durfee Conjecture [26]. Let f : (C",0) — (C, 0) be a germ of a complex analytic function with
an isolated critical point at the origin. Let V = {(zy,...,z,) € C": f(z1, ..., 2,) = 0}. The Milnor number of
the singularity (V, 0) is defined as

IJ’ = dlmC{Zl, MR Zl’l}/(fll’ cec on)
the geometric genus p, of (V, 0) is defined as
pe =dimH" (M, Q"")

where M is a resolution of V and Q" is the sheaf of germs of holomorphic n — 1 forms on M. In 1978, Durfee
[8] made the following conjecture:

Durfee Conjecture. n!p, < p with equality only when u = 0.

If f(z1,...,2,) is a weighted homogeneous polynomial of type (ay, @z, . . ., a,) with an isolated singularity
at the origin, Milnor and Orlik [19] proved that = (a; — 1)(a — 1) ... (a, — 1). On the other hand, Merle
and Teissier [18] showed that p, = P,. Finding a sharp estimate of P, will lead to a resolution of the Durfee
Conjecture.

Starting from early 1990’s, the authors of [16], [25] and [27] tried to get sharp upper estimates of P, where the
a;’s are positive real numbers. They were successful for n = 3, 4, and 5:

31P3 < f3 = aimas — (a1ax + ar1a3 + axaz) + a1 + az,

3
4Py < fi = aymazay — 5(013203 + a1aras + ayazas + arazay)

11
—+ ?(alaz +a1a3 +aza3) — 2((11 +612 +Cl3),

S5'Ps < fs = ayjapazaqas — 2((1161203614 + aiarazas + ajaryagsas + ajazagzas + 612613(14615)

+ Z(a1a2a3 + ajazas + ajazas + arazay)

- g(alag +ajaz + ayaq + araz + aras + a2a5) + 6(611 +ar +az + a4).

They then proposed a general conjecture:

Conjecture 1.1 (Granville-Lin-Yau (GLY) Conjecture) Let P, = number of element of set
{(e1,x2, .00 x) €ZLN 42 4.+ < 1}. Letn > 3,
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(1) Sharp Estimate: ifa; > a, > --- > a, > n — 1, then

'P<f A11+s(n’n_I)An+§s(n’n_]_l>An71 1.4
n:. = _ P —— .
n = Jn 0 1 1 (n—l) i ) ( )
I=1 !
where s(n, k) is the Stirling number of the first kind defined by generating function:
x(x=1)---(x=—n+1)= Zs(n,k)xk,
k=0

and A} is defined as

n __ . . 1
Al = (Eaz) Z —ilaiz L s

1<ij<ip<--<ip<n

fork =1,2,...,n — 1. Equality holds if and only if a; = a, = - - - = @, = integer.
(2) Weak Estimate: If ay >a, > --->a, > 1

n

n'P, <gq, = 1_[(61,‘ — 1) (1.5)

i=1

These estimates are all polynomials of a;. They are sharp because the equality holds true if and only if all
a; take the same integer. The weak estimate in (1.5) has recently been proven true by the authors of [28].
Before that, [15], [16], [25], [27] showed that (1.5) holds for 3 < n < 5. The sharp estimate conjecture was first
formulated in [17]. In private communication to the second author, Granville formulated this sharp estimated
conjecture independently after reading [15]. Again, the sharp GLY Conjecture has been proven individually for
n = 3,4, 5 by [16], [26], and [27] respectively. It has also been proven generally for n < 6 in [24]. However, for
n =7, a counterexample to the conjecture has been given. The YZZ conjecture, an improved version of GLY
conjecture, has been studied in [29].

Counterexample to the GLY Conjecture. Take n = 7. Leta; = a» = a3 = a4 = as = a¢ = 2000 and a7 =
6.09. Consider the following 7-dimensional tetrahedron: x; > 0,1 <i <7,
X1 X2 X3 X4 X5 X6 X7
— < 1.
2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 6.09 —
P; has been computed to be 3.9656226290532420 x 10'6. Meanwhile, f7 = 1.99840413 x 10?° whena, = a» =
-+« = ag = 2000, a; = 6.09. Thus,

fr —71P; = —2.69675 x 10,

This implies that the sharp estimate of GLY Conjecture fails in the case n = 7.
In order to characterize the homogeneous polynomial with isolated singularity, the second author made the
following conjecture in 1995.

Conjecture 1.2 (Yau Geometric Conjecture) Let f : (C"*!,0) — (C, 0) be a germ of a weighted homoge-
neous polynomial with isolated critical points at the origin. Let u, P, and v be the Milnor number, geometric
genus and multiplicity of the singularity V = {z : f(z) = 0}. Then

w—hv) = (n+1)1P, (1.6)
where h(v) = (v —1)"*! —v(v — 1)--- (v — n), and equality holds if and only if f is a homogeneous polyno-
mial.

The Yau Geometric Conjecture was answered affirmatively for n = 3, 4, 5 by [3], [16] and [26] respectively.

In order to overcome the difficulty that the GLY sharp estimate conjecture is only true if a, is larger than y(n),
a positive integer depending on n, the second author propose to prove a new sharp polynomial estimate conjecture
which is motivated from the Yau Geometric Conjecture. The importance of this conjecture is that we only need
a, > 1 and hence the conjecture will give a sharp upper estimate of the Dickman-de Bruijn function ¥ (x, y).
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Conjecture 1.3 Assume that a; >a, > --->a, > 1, n >3 and let P, = number of element of set
{(xl,xz,...,xn) eZi;%+;‘;—Z+-~-+ZJ < 1}. If P, > 0, then
n'P, <(ag—(aa—1)---(an—1) — (@, — )" +ay(a, — 1)---(a, — (n — 1)) (1.7)
and equality holds if and only if a; = a, = - - - = a,, = integer.

Obviously, there is an intimate relation between the Yau Geometric Conjecture (1.6) and the number theoretic
conjecture (1.7). Recall that if f : (C",0) — (C, 0) is a weighted homogeneous polynomial with isolated sin-
gularity at the origin, then the multiplicity v of f at the origin is given by inf{n € Z; : n > inf{w,, ..., w,}},
where w; is the weight of x;. Notice that in general, w; is only a rational number. In case the minimal weight is
an integer, then the Yau Geometric Conjecture (1.6) and the number theoretic conjecture (1.7) are the same. In
general, these two conjectures do not imply each other, although they are intimately related.

The number theoretic conjecture (1.7) is much sharper than the weak GLY conjecture (1.5). The estimate in
(1.7) is optimal in the sense that the equality occurs precisely when a; = a, = - - - = a,, = integer. Moreover, the
sharp GLY conjecture (1.4) does not hold for n = 7 as the counterexample shows. However, the number theoretic
conjecture (1.7) does hold for this example.

In this paper, two different kinds of unexpected important results are given, i.e., Theorem 1.4 and Theorem 1.5.
We show the number theoretic conjecture is true for n = 4 in Theorem 1.4. By the previous works of Xu and Yau
[25], [27], it was shown that the number theoretic conjecture is true for n = 3. However, the method used in [25],
[27] cannot be generalized in higher dimension. The estimates there are totally different from the current one.
The main difficulties are the cases when a4 are lying between 1 and 3. In our previous papers [25] and [27], the
estimate cannot cover these cases. This is the reason why all our previous results cannot be used to give estimate
the Dickman-de Bruijn function. The major breakthrough of this paper is that we discover some inequalities which
can be used to simplify our calculation of estimations. Then we are able to prove Theorem 1.4 for n = 4. Our
method is new, complete, and it shed a light for the number theory conjecture in higher dimension. Furthermore, in
Theorem 1.5, we give an explicit formula for the estimate of Dickman-de Bruijn function ¥ (x, y), when y < 11.
Mathematica 4.0 is adopted to do some involved computations. The following are our main theorems.

Theorem 1.4 (Number theoretic conjecture for n = 4) Let a; > ay > az > a4 > 1 be real numbers. Let Py

SR ; X vy s ;
be the number of positive integral solutions OfZ +o+otos 1, ie.

P4=ﬁ{(x1,x2,x3,x4) eZt : ;C—:+;C—i+z—j+z—if 1},
where 7 is the set of positive integers. If P, > 0, then

24P, < (a; — 1)(ay — 1) (a3 — 1)(ag — 1) — (ag — )* + asg(as — 1)(as — 2)(as — 3)
and the equality holds if and only if a; = a» = a3 = a4 = integer. This can also be expressed as

3
24P, < ajmrazas — (a1axaz + a1a2a4 + arazas + arazas) — 2a;

+(ara; + ara3 + a1as + azas + aras + azas) + Saf — (a1 + a2 + a3) — 3a4. (1.8)

Theorem 1.5 (Estimate of the Dickman-de Bruijn function) Let ¥ (x, y) be the Dickman-de Bruijn function.
We have the following upper estimate for 5 <y < 11:

(i) when5 <y < 7and x > 5, we have

log 900 )

————log"x
log2log3log5

1 1
Y(x,y) < -1 —————log’x
6| log2log3log5

1
(log 1510og 10 + In 101og 6 + log 1510g 6) — —:| log x

1
+ |:log210g310g5 log 5

>

log 6(log 151og 10 — log 21og 3)
log2log3log5
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(i) when7 <y < 11l and x > 11, we have

1 1 log 105 4 1log 70 + log 42 + log 30 2
Y(x.y) < 5 log? x 4 |22 T8 DF 08B F 08 2 |log'x
24 |log2log3log5log7 log2log3log5log7 log~7
1
log 42 1og 30 4 log 7010og 30 + log 105 1og 30
+|:log2log310g510g7(Og 0g 30+ log /Ulog 30 + log °8

+ log421og 70 + log 42 1og 105 + log 70 log 105)

1 2
— 1—3(log 7+ 61og30) |log” x
og’ 7

1
log 701og421og 30 4 log 105 log 42 1og 30
* [10g210g3 log5 log7( og /0log42log 50 + log og42log

+ log 1051og 701og 30 + log 105 log 701og 42)

2 (—log* 7 + log 710g 30 + 3log” 30) | log x
log® 7

log 1051og 701log 42 log 30 1
log2log3log5log7 log® 7

(—21log” 7log 30 + log 71og” 30 + 2log’ 30]) t.

2 Proof of theorems

2.1 Proof of Theorem 1.1

Our strategy is to divide our proof of the main theorem into three cases:

(1) a4 > 3;
) 3=>a4 > 2;
3) 2>a4 > 1.

To prove case (1), we only need to notice the main theorem in [27].

Theorem 2.1 ([27]) Let a; > ar > asz > a4 > 2 be real numbers. Let Py be the number of positive integral
points satisfying

SN S SOy
aq ay as ay
Then
3

24Py < ayarazay — 5(01@03 + a\aras + arazas + arazas)

11
+?(a1a2+a1a3 +a2a3) —2(611 + ar +a3), 2.1
and the equality is attained if and only if a, = a, = a3 = a4 = integer.
Case (1) is solved by showing that our sharp upper bound is larger than or equal to theirs, and the equality
holds if and only if a; = a; = a3 = aa4.
Lemma 2.2 When ay > 3, R.H.S. of (1.8) > R.H.S. of (2.1).

Proof. We first subtract R.H.S. of (1.8) by R.H.S. of (2.1):
R.H.S. of (1.8) -R.H.S. of (2.1)

8
= (a1 +a> + a3 — 3a4) + (a1 + a> + az)ay + 5a; — g(alaz + ayaz + aza;3)
aiaras a\ar + ajaz + aras

> > as — 2a;
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3
ajara a, a
=a +a2+a3—3a4+1723_?4+74(a1a2+a1a3 +a2a3—3af)

5
2
+ (a1a4 + ara4 + azas — a1az — a1az — araz) + §(3a4 —aa; —ajaz — a2a3)

a 5
= <?4 - 5) (alaz + ayaz + araz — 3aZ) + (a1 + ax + a3 — 3ay)
1
+ §[a1a2a3 — aZ + 2a1a4 + 2ara4 + 2aza4 — 2a1a; — 2a1a3 — 2a2a3]. 2.2)

Now we consider aja,as in the following form:

ajayaz = (ay — ag + as)(az — as + aq)(az — as + as)
= (a1 — as)(a2 — as)(az — as)
+ (a1 —ag)(ar — aq)as + (a1 — ayg) (a3 — ag)as + (ap — aq) (a3 — ag)ay
+ (a1 — as)ag + (a2 — as)ai + (a3 — as)aj + a;

> (a1 —as)(ax — as)(as — as)

+ zl(a1 —as)(a2 — as) + (a1 — as)(as — as) + (a2 — as)(as — as)]

_|_
Wl Wl

[((11 — a4)a4 + ((12 — a4)a4 + ((13 — a4)a4] + ai

= (a1 - a4)(a2 - (14)(‘13 - a4)

7 14 ,
+ §(a1a2 +aja; + azaz) — ?(a1a4 + axas + azas) + Ta;
8 2.3
+ §(a1a4 + aras + azas) — 8ay + aj
= (a1 —as4)(az — as)(as — as)
7
+ §(a1a2 + ajaz + ara3) — 2(araq + aray + azay) — a; + aj, (2.3)

since a; > a, > a3 > as > 3. Substitute (2.3) back to (2.2):

R.H.S. of (1.8) —R.H.S. of (2.1)

3 5
= <§ - 5) (alaz +ajaz + axaz — 3612) + (Cll +ar +az — 3a4)
1 1 ,
+ E[(al —ay)(ay —aq)(as — ag) + g(d]dz + a1as + araz) — a4]

1
= —(a1 —as)(ar — as)(az — as) + (a1 + ar + a3 — 3as) > 0,
2

since a; > ap > a3 > ag > 3.

Itis easy to see that the equalities can be attained if and only if a; = a, = a3 = a4. So R.H.S. of (1.8) = R.H.S.
of (2.1). By Theorem 2.1, the equality in (2.1) holds if and only if a; = a, = a3 = a4 = integer. Therefore, the
equality in (1.8) is achieved if and only if a; = a, = a3 = a4 = integer. d
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For case (2) and (3), we adopt the similar strategy: basically, we partition the 4" tetrahedron into 3" tetrahedra
[24]. We have:

a) ar as as

X1 X2 X3
— + +—— =<1 24)
a(-5) el -5) " al-1)
for k =1, ..., [a4], where [a4] is the largest integer less than a4. Let P;(k) be the number of positive integral
solutions of (2.4). Then
[as]
Py = Z Ps(k). (2.5)

k=1
According to Theorem 2.1 in [27], if P3(k) > 0, then we have

<o (-5) ) o () Do) ) w2+

By (2.5), we have

as]

24P, =24 " Ps(k)
k=1

o R B R B e

if P3(k) >0, for k =1,...,[as4]. Otherwise, add nothing in the corresponding level, when P;(k) = 0, for
some k. In order to prove (1.8), it is sufficient to show that R.H.S. of (1.8) > R.H.S. of (2.6). For both case
(2) and (3), the equality in (1.8) can’t be attained by any chance. On the one hand, P, > 0 won’t be satisfied if
a; = a; = a3 = a4 < 3. On the other hand, we could show that R.H.S. of (1.8) is strictly larger than R.H.S. of
(2.6) in these two cases. Therefore, no such a; > a; > a3 > a4 and a4 € (1, 3] could make the equality in (1.8)
happen.

Now, for case (3), there are two levels k = 1 and k = 2. But it is easy to see that P;(2) = 0. And from the
condition P; > 0, we know that the level kK = 1 can’t have no positive integral solution, i.e. P3(1) = P4 > 0.

It is also implied that the smallest integral solution (1, 1, 1, 1) must be its solution, which gives that % + i +

a—t <1- i This condition is very useful in our following proof. For convenience of computation below, let

e i € (0, %], since a4 € (1, 2]. (2.6) can be rewritten as
24P, =24P; < 4[(a1B — 1)(aB — 1)(azB — 1) —a3B + 1]. 2.7)
To prove (1.8) in this case, it is sufficient to show that R.H.S. of (1.8) > R.H.S. of (2.7).
Lemma 2.3 Whenl <ay <2(ie. 0 < B < %), RHS. of (1.8) > RH.S. of 2.7).

Proof. Substitute ay; = ﬁ in R.H.S of (1.8), subtract that by R.H.S. of (2.7) and multiply %, we get:

F(p)

ajaraz (4° — 128* + 1287 — 38> — 28 + 1)
+ (a1a2 + aras + araz) (—4p* + 1287 — 138° + 68 — 1)
+ (a1 +a) (487 — 11> + 108 —3) +a3 (B> =28+ 1) =38+ 1
= <a1a2a3 - %(alaz +ajas + azag)) (4p° —128* + 1287 — 3> =28 + 1)

1
+ (a1a2 + araz + ara3) <—52 +38-3+ E)

www.mn-journal.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



68 X. Luo, S. S.-T. Yau, and H. Zuo: Estimate of integral points

+ (a1 +a) (48> =112+ 108 —=3) +a3 (B> -2+ 1) =3B + 1
> (a1ar + a1a3 + araz) <—/32 +38-3+ %)

+ (a1 +a) (487 — 117+ 108 —3) +a3 (B — 2B+ 1) =38 + 1, (2.8)

since ; + -+ = B, ie. ajaraz > %(alaz +ajas + axa3) and 48° — 128% +128% =382 - 28 +1 > 0, if

B e ( , 2]. In fact,

P(B) =4p° —128* +118° =382 —28 + 1
=(28-1)(28" =58> +3p>—1).
Let f(B) = 2B* —58° +3B% — 1. We claim that £(B) is an 1ncreasmg function in (0, 4]. Consider f'(B) =
883 — 158>+ 68 = ,3[ (B - 16)2 — ] Thus, T) > f(l 2) _ 5 > 0, which implies that f'(8) > 0, for 8 €
(0, 1] Moreover, f(B) < f(4) = —3 < 0,for B € (0, 1]. Therefore, P(B) > 0, for B € (0, 1]. Back to F(B):

2 5 1
F(B) = (ala2+0103 + araz — E(al +az+a3)> (—,3 +3/3—3+B)
6 2
+(a1+az+a3)(—2l3+6—g+ﬁ2)
+ (a1 +a) (487 — 11> +108 = 3) + a3 (B> =28+ 1) =38 + 1

; ) 6 2
z(a1+a2)<4,3 ~ 118 +8/3+3——+—2)
BB
6 2
+a3<,3 —4p+7- 7 ﬂ2> 3+1,

since a;a; > 1(cz,%—clj) i, j:l 2, 3,i7éjand—/32+3,3—3+%=%(1—,3)3 > 0 for B € (0, 5]. Indeed,
+ 4+ + 2~ < pBimplies that - + & < B, fori, j =1,2,3,i # j. That is, aja; > %(a,- +a;), i, j=1,2,3,

i # j.Back to F(B) again:

F(B) = 6(a1 + @)p* + (a1 + a2) (—Zﬂ 1187 + 86 +3 — g + ﬁzz)

6 2
+a3<,8 —4[3+7—E+,32)—3,3+1

>6(a1+az)ﬂ3+a3<ﬁ2—4ﬂ+7—§+ 2)—3/3+1

B2
since a; > ap > a4 > 1 and —2,33 — 11/32 +86+3— % + % > 0, for B € (0, %].Infact, let

6 2
P(ﬂ):—2ﬂ3—11ﬂ2+8,3+3—g+p
=%(2/3—1)(—;34—6/33—#/32—%25—2)>O,

since 28 —1<0 and —/34—6ﬂ3+,62+2,6—2§—ﬁ4—|—/32—1=—(,32—%)2—§<O, for B € (0, 1].
Come back to F(8):

F(,B) > 6(611 +a2),33 — 3,3 +1,
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since a3 > a4 > 1 and 52—4ﬂ+7—%+§=§(ﬂ—1)2(ﬂ —28+2) —%(,8—1)2[(;3—1)24—1] > 0,
for B € (0, 3] Our last step is

F(B) > 128> =38+4+1 >0,

sincea; > a; > ay > 1.Indeed, let f(B) = 128> — 38 + 1, thus f/(B) = 368> — 3. 1tis easy to see that 8 = %
is the minimum point in (0, 1], since f”(@) = 124/3 > 0. Therefore, f(8) > f(T) =1- 4 > 0.
Last, we treat case (2). In this case, there are three levels k = 1,2 and k = 3. Itis also easy to see that P3(3) = 0.

From P, > 0, we could only say that P3(1) > 0, but the positivity of P3(2) is unknown. Thus, we split this case
into two subcases:

(i) P3(2) =0;

(i) P3(2) > 0.

For subcase (i), P4 = P;(1), we still have (2. 7) where BE1— n € (3, 3]. since a4 € (2, 3]. Moreover,
(1, 1,1, 1) must be the solution, which gives that -~ + -+ L < B. To show (1.8), it is sufficient to show the
following lemma, which is similar to Lemma 2.3.

Lemma 2.4 RH.S. of (1.8) > RH.S. of (2.6), for as € (2,3] (i.e. B € (3, §] ).

O

1 2

Proof. Again substitute a4 ﬂ in R.H.S. of (1.8), subtract that by R.H.S. of (2.7) and multiply u , We

can get:
F(B) £ ajamas (48° — 128* +128° —38% — 28 + 1)
+ (a1a2 + aras + araz) (4" + 1287 — 138° + 68 — 1)
+ (a1 +a) (4B — 11> + 108 —3) +a3; (B> =28+ 1) =38+ 1

= <a1aza3 - % (a1a + ayaz + a2a3)> (4p° —128* + 1287 — 3> =28 + 1)

+ (q1ar + aja3 + azxaz) <—ﬁ2 +38-3+ %)
+ (a1 +a) (4B — 11> + 108 —3) +a3 (B> =28+ 1) =38+ 1
2 1
> (a1ay + aja3 + azaz) (-ﬂ +38-3+ E)

+ (a1 + @)@ — 1187 + 108 —3) + a3 (B> =28+ 1) =38 + 1,
since - + - + - < Band 48° — 128* + 12° — 3 — 26 4+ 1 > 0, for B € (3, 5]. In fact, let
P(ﬁ) =4p° — 128"+ 1287 —=3B* =28+ 1= (B—1)* (4B’ — 4B +1).

Claim that f(B) = 48> — 4p8% + 1 > 0, for B € ( %] f(B) is decreasing in (; %] since f'(B8) = 48(38 —
2) < 0. Therefore, f(B) = f(3) = & > 0. Thus, P(8) > 0, for B € (3, 3]. Back to F(B):

2 , 1
F(B) = (alaz +aiaz + aras — E(al +a +a3)> (—,3 +38-3+ E)

6 2
+(a1+a2+a3)< 28 +6— /3 /32)
+ (a1 +a) (48> — 112+ 108 —=3) +a3 (B> — 2B+ 1) =3B + 1

6 2
Z(al-i-dz)(ﬁ - 11p° -+-8,3—+-3—/3 ,32)

6 2
+a3(ﬁ 4ﬂ+7—3+ﬁ2)—3ﬁ+1,
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since aja; > g(a; +a;), fori, j=1,2,3andi # jand —B> + 38 =3+ 5 = (1 - )’ > 0, for B € (35, 3]
Back to F(8) again:

6 2 6 2
F(,B)2(a]+a2—4)<4ﬂ3—11,32+8,3+3—E-I-ﬁ)—'—((h )(,3 —4/34-7—’3 ﬂz)

+4(4ﬂ 118° +8ﬂ+3—9+2>+2<ﬂ2—4ﬂ+7—9+3)—3ﬁ+1
BB B B

o, 2>+16,3 — 4287 + 218 +27 36+12

BB B B

: 3 2 6, 2 _ 1 2(483 2

sincea; > a» > az > as >2and4p° — 118 +8;6+3—E+—2_—(ﬂ—1) (4,3 -3 —2,3+2)>0.In-
—(B+

52
deed,let f(B) =48° — 38> —2+2> —p> -2 +2 = 1)2 4 3,for B € (5, 3]- Thus, f(B) > —(3 +
12 +3= % > 0. Moreover,

> (a3 — )(,3 —4B+7—

36

12
F(B) > 168> — 428 + 218 +27 — r + =

ﬁ2>0,

since asz > ag > 2, /32—4/3+7—9+/%=/%(,3—1)2(/32 2842) = %(ﬂ—l)z[(ﬁ—l)z“‘l] >0 and
168 — 4287 + 218 +27 — 3 + 2 > 0, for B € (3, 3]. In fact, let
f(B) =168 — 428" +218° +278% — 368 + 12,

then f'(B) = 80B* — 168B° + 637 + 548 — 36. Claim that f'(B) is increasing in (3, 3]. Consider f”(ﬂ) =
3208° — S046° + 1268 + 54 = 2(4 — 3) (40> — 336 — 9). Let g(B) = 40p> — 336 — 9 =40(f — 2)* —

B2 Thus, g(B) < g(3) =—42 <0, for B € (3,3]. With 48 —3 <0, f"(B) > 0, for B € (3. %], which im-

plies f'(p) is increasing in (3, 3]. Moreover F(B) < f'(3) = =2 <0, which implies that () is decreasing
in (4, ] Therefore, f(8) > f(%) = m > 0. O

We come to our last step, subcase (ii). P3(2) > O implies that (1, 1, 1, 2) must be the solution, which gives
+ -+ o L <1 - 2y, where y € (0, 1] since a4 € (2, 3]. By (2.6), we have

24P4 - 24[133( )+ P3(2)]

S CESSRIAEESRICEOR

1—
— a3 (1 — Ty> + 14 (ary — )(aay — D(azy — 1) —azy + 1:|. (2.9)

Therefore, if we could show that R.H.S. of (1.8) is strictly larger than R.H.S. of (2.9), we’ve done.
Lemma 2.5 When?2 < ay <3 (i.e.y € (0, 1]), RH.S. of (1.8) > RH.S. of (2.9).
Proof. Substitute ay = ﬁ in R.H.S. of (1.8), subtract by R.H.S. of (2.9) and multiply (1 — y)?, we get

9 21 1 1
A 6 5 4 3 2
G £ Z —12 - -3 _ — _
(J/) ayaas <2)/ Y+ 3 Y Yo+ 2)/ Yy + 2)

+ (a1a> + araz + ajas) (—5y° + 13y* — 11y° +3y?)
+(ar +a) (6y* =15y + 11y —y =) +a3 (v’ —y* —y + 1) + (—=6y*> = 8y —2)

1 9 21 1 1
= |aima; — —(@ar +a1as +aa3) | [ 2y =127 + =y =3y  + =y —y + =
Y 2 2 2 2

1 s 4 15 1 1
+ (@102 + axa3 + a,a3) —Ey' +y —Ey +§y_1+§
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+(ar+a) (6 =15y + 11y* —y = D) +as(y’ —y* —y + 1) + (—6y* — 8y —2)

s, 15 1 1
z (@@ +aas +ara) | =5y +y =5y + gy — 1+ 5

+(ar +a) (6y* =15y + 11y —y — ) +a3 (v’ —y* —y + 1) + (=6y* = 8y — 2),
since - + -+ o <yand 3y° — 12y° + 5y =3y  + Jy> —y + 1 > 0, fory € (0, 5]. Indeed, let

9 21 1 1o
Plr) =5y =12+ 2y =3+ 0¥ =y + 5 =Sy =1 (07 —6r° +1).

wl(ler)e 9yt — 6y  +1>9p* =292 +1=9(y - é)z + g > 0. Therefore, P(y) > 0, for y € (0, %] Back to
G(y):

2 I B 1
Gly) = |(@aam+aias+aaz) — —(a1+ar+a) || =y +y ' — =y’ + vy — 1+ —
y 2 2 2 2y

1, 5 1, 1 1 1
+2(a1 + ax + a3) v tr -3y +§_;+ﬁ

+ (a1 +a) (6y* = 15y  + 11y* —y = D+as (¥’ —y> —y +1) + (—6y* — 8y —2)

2 1
> (a1 +a2) (57/4— 13y° +10y* —y — " + ﬁ)

2 1
+a3(—y4+3y3—2y2—y+2—;+P)+(—6y2—8y—2),

since a;a; > %(a,- +aj),i, j=1,2,3,i ;zréjand—%y5 +y4 = %)/3 + %y -1+ % > 0,fory € (0, %].Infact,
let

1 1,1 1
P(V)=—§V5+V4—§V3+§)/—1+§>;|:——y6——y3+—:|.

Andlet f(y)=—1y* = LyP+ L = =107 + 1>+ B, thus, f(y) > f(3) = Z& > 0. Therefore, P(y) > 0,
for y € (0, 1]. Back to G(y) again:

2 1
G(y) = (a1 + a) <5y4 — 13y +4y? —y — ; + P) + 6(ay +a2)y2

4 3 2 2 1
tas|\ -y +3y -2y -y ——+ = |+ 23
Yy v
+ (—6y* — 8y —2)
> 6(ar +ax)y* + 2as + (—6y* — 8y —2),

sincear > ar > as = as > 2,57 = 13y +4y> —y — 2+ 5 > 0and —y* +3y° —2y7 —y — 2 4+ 5 >0,

fory € (O, %] Indeed, on one hand, let

P(y)=5/"—13y" +4y* —y’ =2y + L.
Claim that P(y) is decreasing in (0, 1]. Consider P'(y) = 30y° — 65y* + 16y — 3y —2 < —55y* +

Iy?—2=-55(y* - %)’ - ?Z% < 0. Therefore, P(y) > P(3) = % > 0. On the other hand, let

2 1
O)=—r"+3y’ -2~y -~ +
v oy
1
=?(—y6+3y5—24—y3—2y+1)
1 6 5 3
> | — — —
—y2<y 3y+3)
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Let f(y) =—y* =3y’ + 1 =—=(¥*+ 2)*+ 3L.Thus, f(y) > f(3) = 25 > 0. Therefore, Q(y) > 0, fory €
(0 l].Last
9 3 £

G(y) > 18y? —8y +2> 0,

sincea; > a, > a3 > as > 2and 18y? — 8y +2 > 0,fory € (0, 1]. Infact, 18y> — 8y +2 > 6y> — 8y +2 =
2(y = 1)3y — 1) > 0, fory € (0, 1]. O

2.2 Proof of Theorem 1.2

As we state in introduction, the estimate of Dickman-de Bruijn function ¥ (x, y) is equivalent to a sharp estimate

of O, (or P, by (1 .2)). We’ve already got the estimate of P,, n < 4, thus, apply this to our estimate of ¥ (x, y).

In detail, Let p; < p» < --- < p, be four prime numbers up to y. It is clear that pll1 péz .- pff < x if and only

log x

if lolg‘x ljg e lolgx < 1. Therefore, ¥ (x, y) is precisely the number Q,, of (1.1) with a; = Tog o7 1<i<n.
log py log py log pn !

Moreover, by (1.2), ¥(x, y) is also precisely the number P(a;(1 +a),a(1+a),...,a,(1+a)), where a =

L1 1

Lylg 4L

aj a a,

According to the number of prime numbers up to y, we split the proof of Theorem 1.2 into four cases:
Case(i): S5<y<T;
Case (ii)): 7<y < 1l.

For Case (i), we have three prime numbers p; = 2, p, = 3 and p3 = 5, thusa = %. Therefore,
V(x,y) = 03
_p log x 1_|_10g(2x3x5) ’logx 1_|_10g(2x3x5) ’
log?2 log x log3 log x

log x log(2 x 3 x 5)
1+
log5 log x
- i log x n log 15 log x n log 10 [logx n log 6
3! log2 log2 log3 log3 log5 log5s

lo log6\® (1o log 6 lo log6\ (1o log 6
_ gx I g _ [ logx I g 1 gXx i g gx i g%
log5 log5 log5 log5 log5 log5 log5 log5s

1 1
=] —=(1 log 15)(1 log 10)(1 log 6
6{log2]0g3log5(ogx+og )(log x + log 10)(log x + log 6)
1
o5 |:(logx +1og6)® — (logx + log 6 + log 5)(log x + log 6)(log x + log 6 — log 5):”
og’
1 1 log 6 + log 10 4 log 15
_ . —log3x—|—0g +log 19 + log log? x
6| log2log3log5s log2log3log5
+ ! (log 1510g 10 + log 15 1og 6 + log 101og 6) — —— |1
——(lo 0 0 0 0 0g6) — —— | logx
log2log3log5 g & g g & g log5 &

+log 6(log 151og 10 — log2log 3)
log2log3log5 '

log 2+log 3+log 5+log 7

For Case (ii), we have four prime numbers p; =2, p» =3, p3 =5 and py =7, thus a = oz

Therefore,

V(x,y) = Q4
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_P(logx (1 10g(2><3><5><7)) log x <1 10g(2x3x5x7))

log2 log x log3 log x
log x log(2 x3x5x7)\ logx log(2 x3x5x%x7)
1+ ) 1+
log5 log x log7 log x

IA

1 logx+3x5x7 10gx+2x5x7 10gx+2x3x7
4! log?2 log?2 log3 log3 log 5 log5
logx 2x3x5
X +
log7 log7
log x 2x3x5\" logx 2x3x5 logx 2x3x5
- + - + +1 +
log7 log7 log7 log7 log7 log7
logx 2x3x5 logx 2x3x5
+ -1 + -2
log7 log7 log7 log7

1 1
= { (logx +1log(3 x 5 x 7))(logx +1log(2 x 5 x 7))

24 log2log3log5log7
(logx +1log(2 x 3 x 7))(logx + log(2 x 3 x 5))
1
——— | (logx +1log(2 x 3 x 5)*
log™ 7
—(logx +1log(2 x 3 x 5) +1log7)(log x +log(2 x 3 x 5))
(logx +1log(2 x 3 x 5) —log7)(logx +log(2 x 3 x 5) — 210g7):|}

1 1
~ 24 1 log 105)(1 log 70
24{10g210g310g510g7(0gx+ 0g 105)(log x + log 70)

(log x + log42)(log x + log 30)

— 4 J—
g7 |:(log x 4+ log30)" — (logx + log 30 + log 7) (log x + log 30)

(logx + log 30 — log 7)(log x + log 30 — 2 log 7):| }

1 1 4 log 105 4+ log 70 4 log 42 + log 30 2 3
= — log™ x + — log” x
24 | log2log3logSlog7 log2log3logSlog7 log>7
1
log421og 30 4 log 70 1log 30 + log 105 log 30
+|:10g210g310g510g7( oga2log 30+ log /0 og 50 log 08

+log421log70 + log421og 105 + log 70 log 105)

1
————(log7 +6log 30):| log® x
log”7

1
log 701og 42 1og 30 + log 105 log 42 1og 30
+|:10g210g3 log5 log7( 0g /D 0g a2 0g 30 + log 8o o8
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(+log 105 1og 70 log 30 + log 105 log 70 log 42)
——= (— log? 7 + log 7 log 30 + 3 log? 30) log x
log” 7

log 105 1log 70log 42 log 30 1
log2log3log5log7 log® 7

(—21log” 710g 30 + log 7log” 30 4 2log” 30) ¢.
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