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1 Introduction

CR manifolds are abstract models of real hypersurfaces in complex spaces. The
abstract definition of the boundary as a CR structure on a complex manifold is
essentially in Cartan [7]. For more detail, see [24, 25]. Strongly pseudoconvex
CR manifolds have rich geometric and analytic structures. Namely, there is an
intrinsic pseudo conformed geometry for which complete local invariants have
been obtained, see for example [8, 14, 41], as well as a deep analysis of the @b

complex, see for example [12, 22, 23, 46]. The harmonic theory for the @b complex
on compact strongly pseudoconvex CR manifolds was developed by Kohn [21].
Using this theory, Boutet de Monvel [4] proved that if X is a compact strongly
pseudoconvex CR manifold of dimension 2n � 1, n � 3, then there exist C1
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functions f1; : : : ; fN on X such that each @bfj D 0 and f D .f1; : : : ; fN/ defines an
embedding of X in C

N . Thus, any compact strongly pseudoconvex CR manifold
of dimension � 5 can be CR embedded in some complex Euclidean space. On the
other hand, 3-dimensional strongly pseudoconvex compact orientable CR-manifolds
are not necessarily embeddable. The first example is due to Andreotti according to
[37]. This example also appeared in the list of homogeneous structures of Cartan
although the embeddability question was not addressed. Nirenberg [35] first proved
that 3-dimensional CR manifolds might not be locally embeddable. Jacobowitz and
Treves [19, 20] showed that in fact non-embeddable CR structures are, in some
sense, dense in the space of CR-structures over a 3-dimensional manifold. The
theory of harmonic integrals on strongly pseudoconvex CR structures over small
balls was due to Kuranishi [23]. Using this theory, Kuranishi [23] proved that any
strongly pseudoconvex CR manifold of dimension 2n� 1 with n � 5 can be locally
CR embedded as a real hypersurface in C

n. For n D 4, Akahori [1] proved that
Kuranishi’s local embedding theorem is also true. However, the 5-dimensional case
of local embeddability of CR manifolds remains open.

Throughout this paper, our CR manifolds are always assumed to be compact
orientable and embeddable in some C

N . By a beautiful theorem of Harvey and
Lawson [16, 17], these CR manifolds are the boundaries of subvarieties in C

N .
This allowed the first author [46] to relate CR geometry and algebraic geometry of
singularities for the first time. The purpose of this paper is to discuss the interplay
between CR geometry and algebraic geometry. Our paper is organized as follows.
In Sect. 2, we shall recall the basic notion of CR geometry. In Sect. 3, we show how
to use the Bergman function of the first author to give canonical construction of
moduli space for complete Reinhardt domains. In Sect. 4, we use algebraic geometry
to study the complex Plateau problem. In Sect. 5, we study the minimal embedding
dimension of compact CR manifolds in complex Euclidean space. Finally in Sect. 6,
we study invariants of compact strongly pseudoconvex CR manifolds arising from
geometry of singularities.

2 Preliminary

Definition 2.1 Let X be a connected orientable manifold of real dimension 2n � 1.
A CR structure on X is an .n � 1/-dimensional subbundle S of the complexified
tangent bundle CTX such that

(1) S \ S D f0g
(2) If L;L0 are local sections of S, then so is ŒL;L0�.

A manifold with a CR structure is called a CR manifold. There is a unique subbundle
H of the tangent bundle T.X/ such that CH D S˚S. Furthermore, there is a unique
homomorphism J W H �! H such that J2 D �1 and S D fv � iJv W v 2 Hg. The
pair .H; J/ is called the real expression of the CR structure.
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Definition 2.2 Let L1; : : : ;Ln�1 be a local frame of S. Then L1; : : : ;Ln�1 is a local
frame of S and one may choose a local section N of TX such that L1; : : : ;Ln�1,
L1; : : : ;Ln�1;N is a local frame of CTX. The matrix .cij/ defined by

ŒLi;Lj� D †ak
ijLk C†bk

ijLk C
p�1cijN

is Hermitian and is called the Levi form of X.

Proposition 2.1 The number of non-zero eigenvalues and the absolute value of
the signature of the Levi form .cij/ at each point are independent of the choice of
L1; : : : ;Ln�1;N.

Definition 2.3 The CR manifold X is called strongly pseudoconvex if the Levi form
is definite at each point of X.

Theorem 2.2 (Boutet de Monvel [4]) If X is a compact strongly pseudoconvex CR
manifold of dimension .2n � 1/ and n � 3, then X is CR embeddable in C

N.

Although there are non-embeddable compact 3-dimensionable CR manifolds, in
this paper all CR manifolds are assumed to be embeddable in complex Euclidean
space. The following theorem links CR geometry and algebraic geometry together.

Theorem 2.3 (Harvey-Lawson [16, 17]) For any compact connected embeddable
CR manifold X, there is a unique complex variety V in CN for some N such that the
boundary of V is X and V has only normal isolated singularities.

3 Bergman Function and Moduli Space of Complete
Reinhardt Domains

Recall that a complex manifold M is called strictly pseudoconvex if there is a
compact set B in M, and a continuous real valued function � on M, which is strictly
plurisubharmonic outside B and such that for each c 2 R, the set Mc D fx 2
MW�.x/ < cg is relatively compact in M. Note that a strictly pseudoconvex complex
manifold is a modification of a Stein space at a finite many points.

Let V be a Stein variety of dimension n > 2 in CN with only irreducible isolated
singularities. We assume that @V is a smooth CR manifold. Let �WM ! V be a
resolution of singularity with E as an exceptional set. We shall define the k-th order
Bergman function B.k/M .z/ on M which is a biholomorphic invariant of M.

Definition 3.1 Let F (respectively, Fk) be the set of all L2 integrable holomorphic
n-forms ‰ on M (respectively, vanishing at least the k-th order on the exception
set E of M). Let fwjg (respectively, fw.k/j g) be a complete orthonormal basis of
F (respectively, Fk). The Bergman kernel (respectively Bergman kernel vanishing
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on the exceptional set of k-th order) is defined to be K.z/ D P
wj.z/ ^ wj.z/

(respectively, K.k/.z/ DPw.k/j .z/ ^ w.k/j .z/).

Lemma 3.1 F=Fk is a finite dimensional vector space.

Lemma 3.2 Bergman kernel vanishing on the exceptional set of k-th order K.k/.z/
is independent of the choice of the complete orthonormal basis of Fk and K.k/.z/ is
invariant under biholomorphic maps.

Definition 3.2 Let M be a resolution of a Stein variety V of dimension n > 2 in
CN with only irreducible isolated singularity at the origin. The k-th order Bergman
function B.k/M on M is defined to be K.k/

M =KM .

Theorem 3.1 B.k/M is a global function defined on M which is invariant under

biholomorphic maps. Moreover, B.k/M is nowhere vanishing outside the exceptional
set of M. If the canonical bundle is generated by its global sections in a neighbor-
hood of the exceptional set, then the zero set of the k-th order Bergman function B.k/M
is precisely the exceptional set of M.

Theorem 3.2 Let M be a strictly pseudoconvex complex manifold of dimension
n > 2 with exceptional set E. Let A be a compact submanifold contained in E.
Let �WM1 ! M be the blow up of M along A. Then we have K.k/

M1
.z/ D ��K.k/

M .z/

and KM1 .z/ D ��KM.z/. Consequently B.k/M1
.z/ D ��B.k/M .z/.

Let �iWMi ! V , i D 1; 2, be two resolutions of singularities of V . By Hironaka’s
theorem [18], there exists a resolution Q�W QM ! V of singularities of V such that QM
can be obtained from Mi, i D 1; 2, by successive blowing up along submanifolds
in exceptional set. In view of Theorems 3.1 and 3.2, the following definition is well
defined if the canonical bundle is generated by its global sections in a neighborhood
of the exceptional set.

Definition 3.3 Let V be a Stein variety in C
N with only irreducible isolated

singularities. Let �WM ! V be a resolution of singularities of V such that the
canonical bundle is generated by its global sections in a neighborhood of the
exceptional set. Define the k-th order Bergman function B.k/V on V to be the push

forward of the k-th order Bergman function B.k/M by the map � .

Theorem 3.3 Let V be a Stein variety in CN with only irreducible isolated
singularities. Assume that there exists a resolution M of singularities of V such that
the canonical bundle is generated by its global sections in a neighborhood of the
exceptional set. Then the k-th order Bergman function B.k/V on V is invariant under

biholomorphic maps and B.k/V vanishes precisely on the singular set of V.

For the convenience of the readers, we recall the following two important
theorems.
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Theorem 3.4 ([13]) A biholomorphic mapping between two strictly pseudoconvex
domains is smooth up to boundary and the induced boundary mapping gives a CR-
equivalence between the boundaries.

Theorem 3.5 ([40]) Two n-dimensional bounded Reinhardt domains D1 and D2

are mutually equivalent if and only if there exists a transformation � W Cn ! Cn

given by zi 7! riz�.i/.ri > 0; i D 1; � � � ; n and � being a permutation of the indices i)
such that �.D1/ D D2.

The following Proposition 3.1 tells us how to use singularity structures to
distinguish CR structures.

Proposition 3.1 ([50]) Let X1, X2 be two strictly pseudoconvex CR manifolds of
dimension 2n�1which bound varieties V1, V2 respectively in CN with only isolated
normal singularities. If ˆWX1 ! X2 is a CR-isomorphism, then ˆ can be extended
to a biholomorphic map from V1 to V2.

In view of the above Proposition 3.1, if X1 and X2 are two strictly pseudoconvex
CR manifolds which bound varieties V1 and V2 respectively with non-isomorphic
singularities, then X1 and X2 are not CR equivalent. Therefore to study the CR
equivalence of two strictly pseudoconvex CR manifolds X1 and X2, it remains to
consider the case when X1 and X2 are lying on the same variety V . It is known
that the global invariant Bergman function of k-th order can be used to study the
CR equivalence problem of smooth CR manifolds lying on the same variety. As
an example, we shall show explicitly how CR manifolds varies in the An-variety
QVn D f.x; y; z/ 2 C3W f .x; y; z/ D xy�znC1 D 0g. An explicit resolution Q�W QMn ! QVn

can be given in terms of coordinate charts and transition functions as follows:

Coordinate charts: QWk D C
2 D f.uk; vk/g; k D 0; 1; � � � ; n:

Transition functions:

8
<

:

ukC1 D 1

vk

vkC1 D ukvk
2

or

8
<

:

uk D ukC12vkC1
vk D 1

ukC1

Resolution map: Q�.uk; vk/ D
�
ukC1

k vk
k ; u

n�k
k vnC1�k

k ; ukvk
	

or

.x; y; z/ D .u0; un
0v

nC1
0 ; u0v0/ D � � � D .un

nC1vn
n ; vn; unvn/

Exceptional set: E D Q��1.0/ D Ck D fuk�1 D 0g [ fvk D 0g;
k D 1; � � � ; n:

From now on, we suppose V to be a bounded complete Reinhardt domain
in QVn (cf. Definition 3.5). Then let M D Q��1.V/ D [n

kD0Wk, where Wk D
Q��1.V/ \ QWk; k D 0; 1; � � � ; n: Observe that under � WD Q� jMWM ! V , W0nC1
is mapped biholomorphically onto Vny-axis. In particular MnW0 is of measure zero
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in the obvious sense. Hence, we may compute integrals on M using the .u0; v0/
coordinate on the chart W0 alone.

The following proposition is a general consequence of the proof of Proposi-
tion 3.2 of [50].

Proposition 3.2 ([10]) In the above notations, let �˛ˇ D u˛0v
ˇ
0 du0 ^ dv0, ˛; ˇ D

0; 1; 2; : : : . Then
n

�˛ˇ
k�˛ˇkM

: ˛ > n
nC1ˇ

o
is a complete orthonormal base of F and

n
�˛ˇ

k�˛ˇkM
W˛ > n

nC1ˇ and ˛ > k
o

is a complete orthonormal base of Fk. Therefore the

Bergman kernel vanishing on the exceptional set of k-th order K.k/
M and the Bergman

kernel KM are given respectively by:

K.k/
M .u0; v0/ D ‚.k/

M du0 ^ dv0 ^ du0 ^ dv0

where

‚
.k/
M D

X

˛> n
nC1 ˇ

˛>k

ju0j2˛jv0j2ˇ
k�˛ˇk2M

;

and

KM.u0; v0/ D

0

B
B
@

1

k�00k2M
C

X

˛> n
nC1 ˇ

16˛6k�1

ju0j2˛jv0j2ˇ
k�˛ˇk2M

C‚.k/
M

1

C
C
A du0 ^ dv0 ^ du0 ^ dv0:

The following results generalize Theorem 3.3 in [50].

Theorem 3.6 ([10]) In the above notations, the k-th order Bergman function for
the strongly pseudoconvex complex manifold M is given by

B.k/M .u0; v0/ D
‚
.k/
M0

B
B
@

1

k�00k2M
C

X

˛> n
nC1 ˇ

˛>1

ju0j2˛jv0j2ˇ
k�˛ˇk2M

1

C
C
A

The k-th order Bergman function for the variety is given by

B.k/V .x; y/ D
‚
.k/
V�

1

k�00k2M
C‚.1/

V

� ;
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where

‚
.k/
V D

X

˛> n
nC1 ˇ

˛>k

jxj2˛� 2nˇ
nC1 jyj 2ˇnC1

k�˛ˇk2M

Definition 3.4 An open subset D � Cn is a complete Reinhardt domain if,
whenever .z1; � � � ; zn/ 2 D then .�1z1; � � � ; �nzn/ 2 D for all complex numbers �j

with j�jj 6 1.

It is well known that QVn D f.x; y; z/ 2 C3 W xy D znC1g is the quotient of C2

by a cyclic group of order nC 1, i.e. ı:.z1; z2/ D .ız1; ınz2/, where ı is a primitive
.n C 1/-th root of unit. The quotient map � W C2 ! QV is given by �.z1; z2/ D
.znC1
1 ; znC1

2 ; z1z2/.

Definition 3.5 An open set V in the An-variety QVn D f.x; y; z/ 2 C3 W xy D znC1g
is called a complete Reinhardt domain if ��1.V/ is a complete Reinhardt domain
in C2.

Theorem 3.7 ([10]) Let Vi, i D 1; 2, be two bounded complete Reinhardt domains
in An-variety QVn D f.x; y; z/ 2 C3 W xy D znC1g. Let

g.˛; ˇ/ D k�10k
˛� n

nC1 ˇk�n;nC1k
ˇ

nC1

k�˛ˇkk�00k˛� n�1
nC1 ˇ�1 :

If V1 is biholomorphic to V2, then

�.˛; ˇ/ WD g.˛; ˇ/ � g.n˛�.n�1/ˇ;.nC1/˛�nˇ/ ;

�.˛; ˇ/ WD g.˛; ˇ/ C g.n˛�.n�1/ˇ;.nC1/˛�nˇ/ ;

�.˛; p; q/ WD .g.˛; p/ � g.n˛�.n�1/p;.nC1/˛�np// � .g.˛; q/ � g.n˛�.n�1/q;.nC1/˛�nq//

and

!.˛1; ˛2; p1; p2/ WD .g.˛1; p1/ � g.n˛1�.n�1/p1;.nC1/˛1�np1// �
.g.˛2; p2/ � g.n˛2�.n�1/p2;.nC1/˛2�np2//;

where

˛ > 1; ˛ > n

nC 1ˇ; 0 6 p; q 6
�

nC 1
n

˛

�

; p ¤ q;

0 6 pi 6
�

nC 1
n

˛i

�

; ˛i > 1; ˛1 ¤ ˛2; i D 1; 2;
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are all invariants, i.e.

�
.˛;ˇ/
V1
D �.˛;ˇ/V2

; �
.˛;ˇ/
V1
D �.˛;ˇ/V2

; �
.˛;p;q/
V1

D �.˛;p;q/V2
;

!
.˛1; ˛2; p1; p2/
V1

D !.˛1; ˛2; p1; p2/V2
:

The following Theorem says that these invariants in Theorem 3.7 determine
completely the Bergman function up to automorphisms of An-variety.

Theorem 3.8 ([10]) Let Vi, i D 1; 2, be two bounded complete Reinhardt strictly
pseudoconvex (respectively C!-smooth pseudoconvex) domains in QVn D f.x; y; z/ 2
C3: xy D znC1 }. If

�
.˛;ˇ/
V1
D �.˛;ˇ/V2

; �
.˛;ˇ/
V1
D �.˛;ˇ/V2

; �
.˛;p;q/
V1

D �.˛;p;q/V2
;

!
.˛1; ˛2; p1; p2/
V1

D !.˛1; ˛2; p1; p2/V2
;

where

˛ > 1; ˛ > n

nC 1ˇ; 0 6 p; q 6
�

nC 1
n

˛

�

; p ¤ q;

0 6 pi 6
�

nC 1
n

˛i

�

; ˛i > 1; ˛1 ¤ ˛2; i D 1; 2;

then there exists an automorphism‰ D . 1;  2;  3/ of An-variety QVn D f.x; y; z/ 2
C3 W xy D znC1g given by either

. 1;  2;  3/ D
�k�10kM2

k�00kM2

k�00kM1

k�10kM1

x;
k�n;nC1kM2

k�00kM2

k�00kM1

k�n;nC1kM1

y;
k�11kM2

k�00kM2

k�00kM1

k�11kM1

z

�

;

or

. 1;  2;  3/ D
�k�10kM2

k�00kM2

k�00kM1

k�n;nC1kM1

y;
k�n;nC1kM2

k�00kM2

k�00kM1

k�10kM1

x;
k�11kM2

k�00kM2

k�00kM1

k�11kM1

z

�

:

such that‰ sends V1 to V2.

As an immediate corollary of Theorem 3.8 above, we have the following
theorem.
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Theorem 3.9 ([10]) The moduli space of bounded complete Reinhardt strictly
pseudoconvex (respectively C!-smooth pseudoconvex) domains in An-variety QVn D
f.x; y; z/ 2 C3 W xy D znC1g is given by the image of the map ˆ W fV W V a bounded
complete Reinhardt strictly pseudoconvex (respectively C!-smooth pseudoconvex)
domain in QVng ! R1, where the component function of ˆ are the invariant
functions

�.˛;ˇ/; �.˛;ˇ/; �.˛;p;q/; !.˛1; ˛2; p1; p2/;

˛ > 1; ˛ > n

nC 1ˇ; 0 6 p; q 6
�

nC 1
n

˛

�

; p ¤ q;

0 6 pi 6
�

nC 1
n

˛i

�

; ˛i > 1; ˛1 ¤ ˛2; i D 1; 2:

defined in Theorem 3.7.

The following theorem says that the biholomorphic equivalence problem for
bounded complete Reinhardt domains in An-variety QVn is the same as the biholo-
morphic equivalence problem for the corresponding bounded complete Reinhardt
domains in C2.

Theorem 3.10 ([10]) Let � W C2 ! QVn D f.x; y; z/ 2 C3 W xy D znC1g be the
quotient map given by �.z1; z2/ D .znC1

1 ; znC1
2 ; z1z2/. Let Vi, i D 1; 2, be bounded

complete Reinhardt domains in QVn such that Wi WD ��1.Vi/; i D 1; 2; are bounded
complete Reinhardt domain in C2. Then V1 is biholomorphic to V2 if and only if W1

is biholomorphic to W2. In particular, V1 is biholomorphic to V2 if and only if there
exists a biholomorphism ˆ W V1 ! V2 given by ˆ.x; y; z/ D .anC1x; bnC1y; abz/ or
ˆ.x; y; z/ D .anC1y; bnC1x; abz/ where a; b > 0.

As a corollary of Theorems 3.10 and 3.9, we have the following theorem.

Theorem 3.11 ([10])

(1) Let W D fW W W D ��1.V/ where V is a bounded complete Reinhardt domain
in An-variety} be the space of bounded complete Reinhardt domains in C2 which
are invariant under the action of the cyclic group of order nC 1 on C2. Then

�.˛;ˇ/; �.˛;ˇ/; �.˛;p;q/; !.˛1; ˛2; p1; p2/;

˛ > 1; ˛ > n

nC 1ˇ; 0 6 p; q 6
�

nC 1
n

˛

�

; p ¤ q;

0 6 pi 6
�

nC 1
n

˛i

�

; ˛i > 1; ˛1 ¤ ˛2; i D 1; 2;

defined in Theorem 3.7 are invariants of W .
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(2) Let WP D fW W W D ��1.V/ where V is a complete Reinhardt pseudoconvex
C!-smooth domain in An-variety} and WSP D fW W W D ��1.V/ where V
is a complete Reinhardt strictly pseudoconvex domain in An-variety}. Then the
moduli space of WP (respectively WSP) is given by the image of the map Q̂ P W
WP ! R1 (respectively Q̂ SP W WSP ! R1), where the component functions
of Q̂ P (respectively Q̂ SP) are the invariant functions

�.˛;ˇ/; �.˛;ˇ/; �.˛;p;q/; !.˛1; ˛2; p1; p2/;

˛ > 1; ˛ > n

nC 1ˇ; 0 6 p; q 6
�

nC 1
n

˛

�

; p ¤ q;

0 6 pi 6
�

nC 1
n

˛i

�

; ˛i > 1; ˛1 ¤ ˛2; i D 1; 2;

defined in Theorem 3.7. In particular, the moduli space of WP (respectively
WSP) is the same as the moduli space of bounded complete Reinhardt pseudo-
convex C!-smooth domains (respectively bounded complete Reinhardt strictly
pseudoconvex domains) in An-variety QVn D f.x; y; z/ 2 C3 W xy D znC1g.

It is an interesting question to study the geometry of the moduli space of bounded
complete Reinhardt domains in An-variety. As an example, we look at two families
of domains in An-variety and construct the moduli space of these families explicitly.
More specifically, consider

V.d/
.a;b;c/ D f.x; y; z/W xy D z2; ajxj2d C bjyj2d C cjzj2d < "0g:

Here we assume that a; b; c are strictly greater than zero, and d is a fixed integer
greater than or equal to one. This is a 3 parameters family of pseudoconvex domains
in A1-variety QV1 D f.x; y; z/ 2 C3 W xy D z2g. Using our Bergman function theory,
we can write down the explicit moduli space of this family as shown in the following
theorem by means of the invariant

�.˛;ˇ/ D .�.˛;ˇ//
1
2 � .�.n˛�.n�1/ˇ;.nC1/˛�nˇ//

1
2

.�.˛;˛//
1
2

; for n D 1:

Theorem 3.12 ([10]) Let

V.d/
.a;b;c/ D f.x; y; z/ 2 C

3W xy D z2; ajxj2d C bjyj2d C cjzj2d < "0g:

Let 	 denote the biholomorphic equivalence. Then the map

'W fV.d/
.a;b;c/g ! RC; V.d/

.a;b;c/ 7! �.2d�1;d�1/
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is injective up to a biholomorphism equivalence. More precisely, the induced map

Q'W fV.d/
.a;b;c/g=	! RC

is one-to-one map from fV.d/
.a;b;c/g=	 onto

�

0;
2

�

�

. So the moduli space of fV.d/
.a;b;c/g

is an open interval

�

0;
2

�

�

.

The biholomorphically equivalent problem of domains in A1-variety is not only
interesting in its own right, but also has application to the classical biholomorphi-
cally equivalent problem of domains in C

2. In fact, let

W.d/
.a;b;c/ D f.x; y/W ajxj2d C bjyj2d C cjxyjd < "0g

Corollary 3.1 ([10]) The moduli space of W.d/
.a;b;c/ is the same as the moduli space

of V.d/
.a;b;c/, which is .0; 2

�
/.

As an application to the above theory, it is easy to compute explicitly the invariant
�.3;1/ for two domains V.1/

.1;1;1/ and V.2/

.1;1;1/ in A1-variety. As a consequence, we see

that V.1/

.1;1;1/ is not biholomorphic to V.2/

.1;1;1/ and the domain W.1/

.1;1;1/ in C
2 is not

biholomorphic to the domain W.2/

.1;1;1/ in C2.
One of the basic problems in complex geometry is to find a reasonable object

which parametrizes all non-isomorphic complex manifolds. This is the well known
moduli problem. Let D1 and D2 be two domains in Cn. One of the most fundamental
problems in complex geometry is to find necessary and sufficient conditions which
will imply that D1 and D2 are biholomorphically equivalent. For n D 1, the
celebrated Riemann mapping theorem states that any simply connected domains
in C are biholomorphically equivalent. For n � 2, there are many domains which
are topologically equivalent to the ball but not biholomorphically equivalent to the
ball [36]. Poincaré studied the invariance properties of the CR manifolds, which
are real hypersurfaces in Cn, with respect to biholomorphic transformations. The
systematic study of such properties for real hypersurface was made by Cartan [7]
and later by Chern and Moser [8]. A main result of the theory is the existence
of a complete system of local differential invariants for CR-structures on real
hypersurface. In 1974, Fefferman [13] proved that a biholomorphic mapping
between two strongly pseudoconvex domains is smooth up to the boundaries and
the induced boundary mapping is a CR-equivalence on the boundary. Thus, one can
use Chern-Moser invariants to study the biholomorphically equivalent problem of
two strongly pseudoconvex domains. Using the Chern-Moser theory, Webster [44]
gave a complete characterization when two ellipsoids in Cn are biholomorphically
equivalent. In 1978, Burns Shnider and Wells [6] showed that the number of
moduli of a moduli space of a strongly pseudoconvex bounded domain has to be
infinite. Thus the moduli problem of open manifolds is really a very difficult one.
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Lempert [27] made significant progress in the subject. He was able to construct the
moduli space of bounded strictly convex domains of Cn with marking at the origin.
Although the theory established by Lempert is beautiful, the computation of his
invariants is a hard problem.

In [10], Du and Yau studied the moduli problem of complete Reinhardt domains
in C2. The main tool to solve this moduli problem with geometry information is the
new biholomorphic invariant Bergman function defined by Yau [50]. In fact Yau’s
Bergman function theory can also solve the biholomorphic equivalence problem
or moduli problem for complete Reinhardt pseudoconvex domains in Cn for all
n � 2. In order to describe the complete biholomorphic invariants of bounded
complete Reinhardt domains in Cn, we introduce the following notations. Let Sn

be the symmetric group of degree n. Recall that group ring RŒSn� is a ring of the
form RŒ	1; 	2; : : : ; 	nŠ� with 	i 2 Sn for 1 6 i 6 nŠ. Let

P

i
xi	i and

P

j
yj	j, where

xi; yj are in R, be two elements in RŒSn�. Then

.
X

i

xi	i/.
X

j

yj	j/ WD
X

i;j

xiyj.	i � 	j/;

where 	i � 	j is the product in the group Sn. We shall consider RŒSn� � � � � � RŒSn�

the product of the group ring with itself. Such a product has a natural Sn-module
structure in the following manner. Let � 2 Sn and .

P

i
xi	i; � � � ;P

i
yi	i/ 2 .RŒSn� �

� � � � RŒSn�/. Then

�.
X

i

xi	i; � � � ;
X

i

yi	i/ D .
X

i

xi.	i�/; � � � ;
X

i

yi.	i�//:

Definition 3.6 Two elements f ; g in RŒSn� � � � � � RŒSn� are said to be equivalent
and denoted by f 	 g if there exists a � 2 Sn such that �.f / D g.

Let Ę D .˛1; : : : ; ˛n/ be an n-tuple of nonnegative integers. Denote � Ę D�Qn
ĘD1 z˛i

i

	
dz1 ^ dz2 ^ � � � ^ dzn: For a domain D in Cn, we shall use notation

k� Ęk2D WD
R

D � Ę ^ � Ę: In [9], the authors showed that all biholomorphic invariants
of a bounded complete Reinhardt domains are contained in .RŒSn��� � ��RŒSn�/= 	
where there are nŠ copies of RŒSn� and 	 is the equivalence relation defined in
Definition 3.6.

Theorem 3.13 ([9]) Let D be a bounded complete Reinhardt domain in Cn. Let
Ę D .˛1; : : : ; ˛n/ be a n-tuple of nonnegative integers and 	 2 Sn. Denote

g	D. Ę/ D
k�E0k†˛i�1

D k�
	. Ę/kD

nQ

iD1
k�Eei
k˛	.i/D
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where 	. Ę/ D .˛	.1/; : : : ; ˛	.n// and Eei D .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 in the ith
component. Then for all n-tuple of nonnegative integers

Ě
1; � � � ; ĚnŠ; �. Ě

1;��� ; ĚnŠ/
D D .

X

	2Sn

g	D. Ě1/	; � � � ;
X

	2Sn

g	D. ĚnŠ/	/

as an element in .RŒSn��� � ��RŒSn�/= 	 is a biholomorphic invariant. In fact, if D1

and D2 are two such domains which are biholomorphically equivalent, then there
exists a � 2 Sn such that

g	D. Ę/ D g	 ��
D2 . Ę/ 8	 2 Snand 8 Ę n-tuple of nonnegative integers.

The invariants in Theorem 3.13 are complete invariants for bounded complete
Reinhardt pseudoconvex domains with C1 boundaries.

Theorem 3.14 ([9]) Let Di, i D 1; 2, be two bounded complete Reinhardt pseu-
doconvex domains in Cn with C1 boundaries. If for all Ę1; � � � ; ĘnŠ n-tuples of

non-negative integers, �. Ę1;��� ; ĘnŠ/
D1

D �. Ę1;��� ; ĘnŠ/
D2

in .RŒSn� � � � � � RŒSn�/= 	; where

�
. Ę1;��� ; ĘnŠ/
D D .

X

	2Sn

g	D. Ę1/	; � � � ;
X

	2Sn

g	D. ĘnŠ/	/;

then there exists � 2 Sn and a biholomorphic map

‰�.z1; : : : ; zn/ D .a1z�.1/; : : : ; anz�.n//;

where ai D k�
E0
kD1k�

Eei
kD2

k�
Ee�.i/

kD1k�
E0
kD2

, such that ‰� sends D1 onto D2.

Theorems 3.13 and 3.14 above give a complete characterization of two bounded
complete Reinhardt domains with real analytic boundaries in Cn to be biholomor-
phically equivalent in terms of the group ring .RŒSn� � � � � � RŒSn�/= 	. In case
n D 2, we can actually write down the complete numerical invariants for two
bounded complete Reinhardt domains with real analytic boundaries in C2 to be
biholomorphically equivalent.

Theorem 3.15 ([9]) Let D1;D2 be two bounded complete Reinhardt pseudoconvex
domains in C2 with C1 boundaries. Then D1 is biholomorphic to D2 if and only if

.1/ gD1 .˛1; ˛2/C gD1.˛2; ˛1/ D gD2 .˛1; ˛2/C gD2 .˛2; ˛1/

.2/ gD1 .˛1; ˛2/gD1 .˛2; ˛1/ D gD2.˛1; ˛2/gD2 .˛2; ˛1/

.3/ .gD1 .˛1; ˛2/ � gD1 .˛2; ˛1//.gD1 .ˇ1; ˇ2/ � gD1 .ˇ2; ˇ1//

D .gD2.˛1; ˛2/� gD2.˛2; ˛1//.gD2.ˇ1; ˇ2/� gD2.ˇ2; ˇ1//
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for all non-negative integers ˛i; ˇi, where

gDi.˛1; ˛2/ D
k�E0k˛1C˛2�1Di

k�.˛1;˛2/kDi

2Q

jD1
k�Eej
k˛j

Di

Corollary 3.2 ([9]) The moduli space of bounded complete Reinhardt domains
with C1 boundaries in C2 can be constructed explicitly as the image of the complete
family of numerical invariants: gD.˛1; ˛2/C gD.˛2; ˛1/, gD.˛1; ˛2/gD.˛2; ˛1/ and

.gD.˛1; ˛2/ � gD.˛2; ˛1//.gD.ˇ1; ˇ2/� gD.ˇ2; ˇ1//

8 ˛i; ˇi non-negative integers.

In order to find the complete numerical biholomorphic invariants of bounded
complete Reinhardt domain in Cn for n > 3, we need to consider the finite
symmetric group Sn D f�1; �2; : : : ; �nŠg of degree n acting on the affine space
CnŠnŠ D CnŠ � � � � � CnŠ; which is the product of nŠ copies of CnŠ, in the following
manner. Let 	 2 Sn and

.x�1 ; : : : ; x�nŠ I � � � I y�1 ; : : : ; y�nŠ / 2 C
nŠ � � � � �C

nŠ D C
nŠnŠ:

Then

	 � .x�1 ; : : : ; x�nŠ I � � � I y�1 ; : : : ; y�nŠ / D .x�1	 ; : : : ; x�nŠ	 I � � � I y�1	 ; : : : ; y�nŠ	 /:

Since Sn is linearly reductive, by Hilbert Theorem, the ring of invariants

CŒx�1 ; : : : ; x�nŠ I � � � I y�1 ; : : : ; y�nŠ �
Sn

is finitely generated. Moreover, the generators can be listed explicitly by Göbel’s
theorem [15]. Before we give the statement of Göbel’s theorem, we shall introduce
some definitions first.

Definition 3.7 Suppose that a finite group G acts as permutations on a finite set X.
We then refer to X together with the G-action as a finite G-set. A subset B � X is
called an orbit if G permutes the elements of B among themselves and the induced
permutation action of G on B is transitive.

Definition 3.8 If K D .k1; � � � ; kn/ is an n-tuple of non-negative integers, then K
is called an exponent sequence. The associated partition of K is the ordered set
consisting of the n numbers k1; � � � ; kn rearranged in weakly decreasing order. We
denote by �.K/ the partition associated to K, so

�.K/ D .�1.K/ � �2.K/ � � � � � �n.K//
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and the n-tuple .�1.K/; �2.K/; � � � ; �n.K// is a permutation of k1; � � � ; kn. The
monomial xK is called special if the associated partition �.K/ of the exponent
sequence K satisfies

.1/ �i.K/� �iC1.K/ � 1 for all i D 1; � � � ; n � 1 and

.2/ �n.K/ D 0:

Notice that if two exponent sequences A and B are permutations of each other,
then �.A/ D �.B/.
Theorem 3.16 Let G be a finite group, X a finite G-set, and R a commutative ring.
Then the ring of invariants RŒX�G is generated as an algebra by ejXj D

Q

x2X
x, the top

degree elementary symmetric polynomial in the elements of X, and the orbit sums of
special monomials.

Theorem 3.17 ([9]) Let f1; : : : ; fN 2 CŒx�1 ; : : : ; x�nŠ I : : : I y�1 ; : : : ; y�nŠ �
Sn be the

generators of the ring of invariant polynomials computed by Theorem 3.16. Let D
be a bounded complete Reinhardt domain in Cn. Then, for Ę1; Ę2; : : : ; ĘnŠ n-tuples
of non-negative integers,

f1.g
�
D. Ę1/; : : : ; g�D. ĘnŠ//�2Sn ; : : : ; fN.g

�
D. Ę1/; : : : ; g�D. ĘnŠ//�2Sn

are biholomorphic invariants, where

g�D. Ě/ D
k�E0k

P
ˇi�1

D k�
�. Ě/kD

Qn
iD1 k�Eei

k�.i/D

; Ě D .ˇ1; ˇ2; : : : ; ˇn/

The following theorem says that the above invariants are actually complete in
case the domain D is pseudoconvex.

Theorem 3.18 ([9]) Let Di, i D 1; 2, be two bounded complete Rein-
hardt pseudoconvex domains in Cn with C1 boundaries. Let f1; : : : ; fN 2
CŒx�1 ; : : : ; x�nŠ I : : : I y�i ; : : : ; y�nŠ �

Sn be the generators of the ring of invariant
polynomials computed by Theorem 3.16. If for all Ę1; : : : ; ĘnŠ n-tuples of non-
negative integers

fi.g
�
D1
. Ę1/; : : : ; g�D1. ĘnŠ//�2Sn D fi.g

�
D2
. Ę1/; : : : ; g�D2 . ĘnŠ//�2Sn ;

i D 1; 2; : : : ;N;

then there exists 	 2 Sn and a biholomorphic map

‰	 WCn ! C
n; ‰	 .z1; : : : ; zn/ D .a1z	.1/; : : : ; anz	.n/ /;
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where

ai D k�EokD1k�Eei
kD2

k�e�.i/kD1k�EokD2

;

such that‰	 sends D1 onto D2.

Corollary 3.3 ([9]) The moduli space of bounded complete Reinhardt pseudocon-
vex domains with C1 boundaries in Cn can be constructed explicitly as the image of
the complete family of numerical invariants fi.g�D. Ę1/; : : : ; g�D. ĘnŠ//�2Sn , 1 6 i 6 N,
where Ę1; : : : ; ĘnŠ are all possible n-tuples of nonnegative integers.

Remark 3.1 One can compute explicitly the relation of the generators

f1; : : : ; fN 2 CŒx�1 ; : : : ; x�nŠ I : : : I y�i ; : : : ; y�nŠ �
Sn :

These relations define an algebraic variety in R1 where the moduli space lies.

For complete Reinhardt pseudoconvex domains with real analytic boundaries, we
can use fewer numerical invariants to characterize these domains. More precisely,
we have the following theorems.

Theorem 3.19 ([9]) Let Di, i D 1; 2, be two bounded complete Reinhardt pseudo-
convex domains in Cn with real analytic boundaries. Then D1 is biholomorphically
equivalent to D2 If and only if for all Ę n-tuple of non-negative integers, � Ę

D1
D � Ę

D2

in RŒSn�= 	 where � Ę
Di
D P

	2Sn

g	Di
. Ę/	 . In this case, there exists � 2 Sn and a

biholomorphic map

‰�.z1; : : : ; zn/ D .a1z�.1/; : : : ; anz�.n//;

where ai D k�
E0
kD1k�

Eei
kD2

k�
Ee�.i/

kD1k�
E0
kD2

, such that ‰� sends D1 onto D2.

Theorem 3.20 ([9]) Let D1;D2 be two bounded complete Reinhardt pseudoconvex
domains in C2 with real analytic boundaries. Then D1 is biholomorphic to D2 if and
only if

gD1 .˛1; ˛2/C gD1 .˛2; ˛1/ D gD2 .˛1; ˛2/C gD2.˛2; ˛1/

gD1 .˛1; ˛2/gD1 .˛2; ˛1/ D gD2 .˛1; ˛2/gD2 .˛2; ˛1/

for all non-negative integers ˛1; ˛2, where

gDi.˛1; ˛2/ D
k�E0k˛1C˛2�1Di

k�.˛1;˛2/kDi

2Q

jD1
k�Eej
k˛j

Di
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Theorem 3.21 ([9]) Let Di, i D 1; 2, be two bounded complete Reinhardt pseudo-
convex domains in Cn with real analytic boundaries. Let

f1; : : : ; fN 2 CŒx�1 ; : : : ; x�nŠ �
Sn

be the generators of the ring of invariant polynomials computed by Theorem 3.16.
Then D1 is biholomorphically equivalent to D2 if and only if for all Ę n-tuples of
nonnegative integers

fi.g
�
D1. Ę//�2Sn D fi.g

�
D2. Ę//�2Sn ; i D 1; : : : ;N:

In this case, there exists 	 2 Sn and a biholomorphic map ‰	 WCn ! C
n,

‰	.z1; : : : ; zn/ D .a1z	.1/; : : : ; anz	.n//, where

ai D
k�E0kD1k�Eei

kD2

k�e�.i/kD1k�E0kD2

such that‰	 sends D1 onto D2.

4 Complex Plateau Problem

Let X be a compact connected CR manifold of dimension 2n� 1 in CN . The famous
complex Plateau problem asks under what conditions on X, X will be a boundary
of a complex submanifold in CN . By a theorem of Harvey and Lawson [16], X is a
boundary of a unique complex variety V in CN . Therefore we need to understand
under what conditions on X, V will be a complex submanifold.

In 1963, J.J. Kohn solved the famous @-Neumann problem. Based on this work,
Kohn and Rossi [22] in 1965 introduced the fundamental CR invariants, the Kohn-
Rossi cohomology groups Hp;q

KR.X/. They proved the finite dimensionality of their
cohomology groups for 1 � q � n � 2 if X is strongly pseudoconvex. Following
Tanaka [42], we shall recall the definition of Kohn-Rossi cohomology groups as
follows.

Let fAk.X/; dg be the De-Rham complex of X with complex coefficients, and let
Hk.X/ be the De-Rham cohomology groups. There is a natural filtration of the De-
Rham complex as follows. For any integer p and k, put Ak.X/ D ƒk.CT.X/�/ and
denoted by Fp.Ak.X// the subbundle of Ak.X/ consisting of all � 2 Ak.X/ which
satisfy the equality

�.Y1; : : : ;Yp�1;Z1; : : : ;Zk�pC1/ D 0
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for all Y1; : : : ;Yp�1 2 CT.X/x and Z1; : : : ;Zk�pC1 2 Sx; x being the origin of �.
Then

Ak.X/ D F0.Ak.X// � F1.Ak.X// � � � � � Fk.Ak.X// � FkC1.Ak.X// D 0

setting Fp.Ak.X// D 
.Fp.Ak.X///, we have

Ak.X/ D F0.Ak.X// � F1.Ak.X// � � � � � Fk.Ak.X// � FkC1.Ak.X// D 0:

Since clearly dFp.Ak.X// � Fp.AkC1.X//, the collection fFp.Ak.X//g gives a
filtration of the De-Rham complex.

Definition 4.1 Hp;q
KR.X/, the Kohn-Rossi cohomology group of type .p; q/, is

defined to be the group Ep;q
1 .X/ of the spectral sequence fEp;q

r .X/g associated
with the filtration fFp.Ak.X//g.

More explicitly, let

Ap;q.X/ D Fp.ApCq.X//; Ap;q.X/ D 
.Ap;q.X//

Cp;q.X/ D Ap;q.X/
ı

ApC1;q�1.X/; Cp;q.X/ D 
.Cp;q.X//:

Since d W Ap;q.X/ ! Ap;qC1.x/ maps ApC1;q�1.X/ into ApC1;q.X/, it induces an
operator @b W Cp;q.X/! Cp;qC1.X/. Hp;q

KR.X/ are then the cohomology groups of the
complex fCp;q.X/; @bg.
Definition 4.2 Hk

h.X/, the holomorphic De-Rham cohomology group of degree k,
is defined to be the group Ek;0

2 .X/ of the spectral sequence fEp;q
r .X/g associated with

the filtration fFp.Ak.X//g.
More explicitly, recall Ep;q

0 .X/ D Cp;q.X/ and d0 W Cp;q.X/ �! Cp;qC1.X/ is the
map @b above. Note that Ek;0

0 .X/ D Ck;0.X/ D Ak;0.X/ � Ak.X/. Next,

Ep;q
1 .X/ D

Ker.d0 W Cp;q.X/ �! Cp;qC1.X//
Im.d0 W Cp;q�1.X/ �! Cp;q.X//

and d1 W Ep;q
1 .X/ �! EpC1;q

1 .X/ is the naturally induced map. In particular,

Ek;0
1 .X/ D ker.d0 W Ck;0.X/ �! Ck;1.X//

D f� 2 Ak;0.X/ W d� 2 AkC1;0.X/g

and d1 is just d on Ek;0
1 .X/ � Ak.X/. Ek;0

1 .X/ is called the space of holomorphic
k-forms on X. Denoting Ek;0

1 .X/ by Sk.X/, we have the holomorphic De Rham
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complex fSk.X/; dg. Then

Ek;0
2 .X/ D

Ker.d W Sk.X/ �! SkC1.X//
Im.d W Sk�1.X/ �! Sk.x//

D fclosed holomorphic k-forms on Xg
fexact holomorphic k-forms on Xg ;

is the holomorphic De Rham cohomology Hk
h.X/.

A strongly pseudoconvex complex manifold M is a modification of a Stein space
V with isolated singularities. In 1965, Kohn and Rossi [22] conjectured that in
general, either there is no boundary cohomology of the boundary X D @V in degree
.p; q/ for q ¤ 0, n�1, or it must result from the interior singularities of V . Yau [46]
solved the Kohn-Rossi conjecture affirmatively in 1981.

Theorem 4.1 (Yau [46]) Let X be a compact strongly pseudoconvex CR manifold
of dimension 2n � 1, n � 3, which is the boundary of a Stein space V with isolated
singularities x1; : : : ; xm. Then for 1 � q � n � 2,

Hp;q
KR.X/ '

mM

iD1
HqC1

fxig .V; �
p
V/;

where �p
V is the sheaf of germs of holomorphic p-forms on V. If x1; : : : ; xm are

hypersurface singularities, then

dim Hp;q
KR.X/ D

8
<

:

0 pC q � n � 2; 1 � q � n � 2
	1 C � � � C 	m pC q D n � 1; n; 1 � q � n � 2

0 pC q D nC 1; 1 � q � n � 2

where 	i is the number of moduli of V at xi.

Remark 4.1 Let f W .CnC1; 0/ �! .C; 0/ be a holomorphic function. Suppose
that V D fz 2 C

nC1 W f .z/ D 0g has isolated singularity of the origin. Then the
local moduli of V is the dimension of the parameter space of the semi universal
deformation space of .V; 0/. This number is 	 D dimCfz0; : : : ; zng

ı
.f ; fz0 ; : : : ; fzn/.

As a result of the above theorem, Yau answers the classical complex Plateau
problem for real codimension 3 CR in CnC1 satisfactory.

Theorem 4.2 (Yau [46]) Let X be a compact connected strongly pseudoconvex CR-
manifold of real dimension 2n � 1; n � 3, in the boundary of a bounded strongly
pseudoconvex domain D in CnC1. Then X is a boundary of the complex submanifold
V � D � X if and only if Kohn-Rossi cohomology groups Hp;q

KR.X/ are zero for
1 � q � n � 2.

For n D 2 in Theorem 4.2, X is a 3-dimensional CR manifold. The classical
complex Plateau problem remains unsolved for over a quarter of a century. The main
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difficulty is that the Kohn-Rossi cohomology groups are infinite dimensional in this
case. Let V be the complex variety with X as its boundary. Then the singularities of
V are surface singularities. In order to solve the classical complex Plateau problem
for n D 2, one would like to ask under what kind of condition on X, V will
have only very mild singularities. Our basic observation is the following. Although
Kohn-Rossi cohomology groups are infinite dimensional, we can derive from them
the holomorphic De Rham cohomology. Let M be a complex manifold. The k-
th holomorphic De Rham cohomology Hk

h.M/ of M is defined to be the d-closed
holomorphic k-forms quotient by the d-exact holomorphic k-forms. It is well known
that if M is a Stein manifold, then the holomorphic De Rham cohomology coincides
with the ordinary De Rham cohomology.

Definition 4.3 Let .V; x/ be an isolated singularity of dimension n. Let � W
.M;A/ �! .V; x/ be a resolution of singularity with A as exceptional set. Let

s D dim
.M � A; �n/
ı
Œd
.M � A; �n�1/C 
.M; �n/�:

s is an invariant of the singularity .V; x/. It turns out that the s-invariant plays an
important role in the relationship between Hn

h.M � A/ and Hn
h.M/.

Theorem 4.3 (Luk-Yau [31]) Let X be a compact connected .2n�1/-dimensional
.n � 2/ strongly pseudoconvex CR manifold. Suppose that X is the boundary of a n-
dimensional strongly pseudoconvex complex manifold M which is a modification of
a Stein space V with only isolated singularities fx1; : : : ; xmg. Let A be the maximal
compact analytic set in M which can be blown down to fx1; : : : ; xmg. Then

(1) Hq
h.X/ Š Hq

h.M � A/ Š Hq
h.M/ for 1 � q � n � 1.

(2) Hn
h.X/ Š Hn

h.M � A/; dim Hn
h.M � A/ D dim Hn

h.M/C s

where s D s1 C � � � C sm and si is the s-invariant of the singularity .V; xi/.

Remark 4.2 The above theorem in particular asserts that up to degree n � 1,
the holomorphic De Rham cohomology can extend across the maximal compact
analytic set.

Definition 4.4 A normal surface singularity .V; 0/ is Gorenstein if these exists a
nowhere vanishing holomorphic 2-form on V � f0g.

Recall that isolated hypersurface or complete intersection singularities are
Gorenstein. It is a natural question to ask for a characterization of Gorenstein surface
singularities with vanishing s-invariant.

Theorem 4.4 (Luk-Yau [31]) Let .V; 0/ be a Gorenstein surface singularity. Let
� W M �! V be a good resolution with A D ��1.0/ as exceptional set.
Assume that M is contractible to A. If s D 0, then .V; 0/ is a quasi-homogeneous
singularity, H1.A;C/ D 0, dim H1.M; �1/ D dim H2.A;C/ C dim H1.M;O/,
and H1

h.M/ D H2
h.M/ D 0. Conversely, if .V; 0/ is a two dimensional quasi-

homogeneous Gorenstein singularity and H1.A;C/ D 0, then the s-invariant
vanishes.
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Let X be a compact CR manifold with CR-structure S. For any C1 functions u,
there is a section @bu 2 
.S�

/ defined by .@bu/.L/ D Lu for any L 2 
.S/. This can
be generalized as follows:

Definition 4.5 A complex vector bundle E over X is said to be holomorphic if there
is a differential operator @E W 
.E/ �! 
.E˝ S

�
/ such that if Lu denotes .@Eu/.L/

for u 2 
.E/ and L 2 
.S/, then for any L1;L2 2 
.S/ and any C1 function f on
X:

(1) L.fu/ D .Lf /uC f .Lu/
(2) ŒL1;L2�u D L1L2u � L2L1u.

A solution u of the equation @Eu D 0 is called a holomorphic section.

The vector bundle OT.X/ D CT.X/
ı

S is holomorphic with respect to the

following @ D @ OT.X/. Let ! be the projection from CT.X/ to OT.X/. Take any

u 2 
. OT.X// and express it as u D !.Z/, Z 2 
.CT.X//. For any L 2 
.S/,
define .@u/.L/ D !.ŒL;Z�/. The section .@u/.L/ of OT.X/ does not depend on the
choice of Z and @u gives a section of OT.X/˝ S

�
. Further the operator @ satisfies the

conditions in Definition 4.5. The resulting holomorphic vector bundle OT.X/ is called
the holomorphic tangent bundle of X.

Lemma 4.1 If X is a real hypersurface in a complex manifold M, then the
holomorphic tangent bundle OT.X/ is naturally isomorphic to the restriction of X
of the bundle T1;0.M/ of all .1; 0/ tangent vectors to M.

Definition 4.6 Let X be a compact CR manifold of real dimension 2n� 1. X is said
to be a Calabi-Yau CR manifold if there exists a nowhere vanishing holomorphic
section in 
.ƒn OT.X/�/ where OT.X/ D CT.X/

ı
S is the holomorphic tangent bundle

of X.

Remark 4.3 (a) Let X be a compact CR manifold of real dimension 2n � 1 in Cn.
Then X is a Calabi-Yau CR manifold. (b) let X be a strongly pseudoconvex CR
manifold of real dimension 2n� 1 contained in the boundary of a bounded strongly
pseudoconvex domain in CnC1. Then X is a Calabi-Yau manifold.

The following theorem is a fundamental theorem toward the complete solution
of the classical complex Plateau problem for 3-dimensional strongly pseudoconvex
Calabi-Yau CR manifold in Cn. The theorem is interesting in its own right.

Theorem 4.5 (Luk-Yau [31]) Let X be a strongly pseudoconvex compact Calabi-
Yau CR manifold of dimension 3. Suppose that X is contained in the boundary of
a strongly pseudoconvex bounded domain D in Cn. If the holomorphic De Rham
cohomology H2

h.X/ D 0, then X is a boundary of a complex variety V in D
with boundary regularity and V has only isolated singularities in the interior and
the normalizations of these singularities are Gorenstein surface singularities with
vanishing s-invariant.
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Corollary 4.1 (Luk-Yau [31]) Let X be a strongly pseudoconvex compact CR
manifold of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domain D in C3. If the holomorphic De Rham cohomology
H2

h.X/ D 0, then X is a boundary of a complex variety V in D with boundary
regularity and V has only isolated quasi-homogeneous singularities such that the
dual graphs of the exceptional sets in the resolution are star shaped and all the
curves are rational.

Before we proceed further, we need to introduce some invariants of singularities
as well as CR-invariants.

Let V be a n-dimensional complex analytic subvariety in CN with only isolated
singularities. In [47], Yau considered four kinds of sheaves of germs of holomorphic
p-forms

1. N�p
V WD ���p

M , where � W M �! V is a resolution of singularities of V .

2. NN�p
V WD ���p

VnVsing
where � W VnVsing �! V is the inclusion map and Vsing is the

singular set of V .
3. �p

V WD �p
CN=K

p, where K p D ff˛ C dg ^ ˇ W ˛ 2 �p
CN Iˇ 2 �p�1

CN I f ; g 2 I g
and I is the ideal sheaf of V in CN .

4. Q�p
V WD �p

CN=H
p, where H p D f! 2 �p

CN W !jVnVsing D 0g.
Clearly �p

V , Q�p
V are coherent. N�p

V is a coherent sheaf because � is a proper map.
NN�p

V is also a coherent sheaf by a theorem of Siu (cf. Theorem A of [38]). If V is a

normal variety, the dualizing sheaf !V of Grothendieck is actually the sheaf NN�n
V .

Definition 4.7 The Siu complex is a complex of coherent sheaves J� supported on
the singular points of V which is defined by the following exact sequence

0 �! N�� �! NN�� �! J� �! 0: (1)

Definition 4.8 Let V be a n-dimensional Stein space with 0 as its only singular
point. Let � W .M;A/ ! .V; 0/ be a resolution of the singularity with A as
exceptional set. The geometric genus pg, the irregularity q and g.p/ invariant of the
singularity are defined as follows (cf. [39, 47]):

pg WD dim
.MnA; �n/=
.M; �n/; (2)

q WD dim
.MnA; �n�1/=
.M; �n�1/; (3)

g.p/ WD dim
.M; �p
M/=�

�
.V; �p
V/: (4)

And recall that the s-invariant of the singularity is defined (cf. Definition 4.3) as
follows

s WD dim
.MnA; �n/=Œ
.M; �n/C d
.MnA; �n�1/�: (5)
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Lemma 4.2 ([31]) Let V be a n-dimensional Stein space with 0 as its only singular
point. Let � W .M;A/ ! .V; 0/ be a resolution of the singularity with A as
exceptional set. Let J� be the Siu complex of coherent sheaves supported on 0.
Then:

1. dimJn D pg;

2. dimJn�1 D q;
3. dimJi D 0, for 1 � i � n � 2:
Proposition 4.1 ([31]) Let V be a n-dimensional Stein space with 0 as its only
singular point. Let � W .M;A/ ! .V; 0/ be a resolution of the singularity with
A as exceptional set. Let J� be the Siu complex of coherent sheaves supported on 0.
Then the s-invariant is given by

s D dimHn.J�/ D pg � q (6)

and

dimHn�1.J�/ D 0 (7)

Let X be a compact connected strongly pseudoconvex CR manifold of real
dimension 3, in the boundary of a bounded strongly pseudoconvex domain D in CN .
By Harvey and Lawson [16], there is a unique complex variety V in CN such that
the boundary of V is X. Let � W .M;A1; � � � ;Ak/ ! .V; 01; � � � ; 0k/ be a resolution
of the singularities with Ai D ��1.0i/; 1 � i � k, as exceptional sets. Then the
s-invariant defined in Definition 4.8 is CR invariant, which is also called s.X/.

In order to solve the classical complex Plateau problem, we need to find
some CR-invariant which can be calculated directly from the boundary X and the
vanishing of this invariant will give the regularity of Harvey-Lawson solution to the

complex Plateau problem. For this purpose, we define a new sheaf NN�1;1
V .

Definition 4.9 Let .V; 0/ be a Stein germ of a 2-dimensional analytic space with an

isolated singularity at 0. Define a sheaf of germs NN�1;1
V by the sheaf associated to the

presheaf

U 7!< 
.U; NN�1
V/ ^ 
.U; NN�1

V/ >;

where U is an open set of V .

Lemma 4.3 ([11]) Let V be a 2-dimensional Stein space with 0 as its only singular
point in C

N. Let � W .M;A/ ! .V; 0/ be a resolution of the singularity with A as

exceptional set. Then NN�1;1
V is coherent and there is a short exact sequence

0 �! NN�1;1
V �! NN�2

V �! G .1;1/ �! 0 (8)
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where G .1;1/ is a sheaf supported on the singular point of V. Let

G.1;1/.MnA/ WD 
.MnA; �2
M/= < 
.MnA; �1

M/ ^ 
.MnA; �1
M/ >; (9)

then dimG
.1;1/
0 D dimG.1;1/.MnA/.

Thus, from Lemma 4.3, we can define a local invariant of a singularity which is
independent of resolution.

Definition 4.10 Let V be a 2-dimensional Stein space with 0 as its only singular
point. Let � W .M;A/ ! .V; 0/ be a resolution of the singularity with A as
exceptional set. Let

g.1;1/.0/ WD dimG
.1;1/
0 D dimG.1;1/.MnA/: (10)

We will omit 0 in g.1;1/.0/ if there is no confusion from the context.
Let � W .M;A1; � � � ;Ak/ ! .V; 01; � � � ; 0k/ be a resolution of the singularities

with Ai D ��1.0i/; 1 � i � k, as exceptional sets, and A D [iAi. In this case, we
still let

G.1;1/.MnA/ WD 
.MnA; �2
M/= < 
.MnA; �1

M/ ^ 
.MnA; �1
M/ > :

Definition 4.11 If X is a compact connected strongly pseudoconvex CR manifold of
real dimension 3which is the boundary of a bounded strongly pseudoconvex domain
D in DN . Suppose V in CN such that the boundary of V is X. Let � W .M;A D
[iAi; / ! .V; 01; � � � ; 0k/ be a resolution of the singularities with Ai D ��1.0i/,
1 � i � k, as exceptional sets. Let

G.1;1/.MnA/ WD 
.MnA; �2
M/= < 
.MnA; �1

M/ ^ 
.MnA; �1
M/ > (11)

and

G.1;1/.X/ WD S 2.X/= < S 1.X/ ^S 1.X/ > (12)

where S p are holomorphic cross sections of ^p. OT.X/�/. Then we set

g.1;1/.M n A/ WD dimG.1;1/.M n A/ (13)

g.1;1/.X/ WD dimG.1;1/.X/: (14)

Lemma 4.4 ([11]) Let X be a compact connected strongly pseudoconvex CR man-
ifold of real dimension 3 which bounds a bounded strongly pseudoconvex variety
V with only isolated singularities f01; � � � ; 0kg in CN. Let � W .M;A1; � � � ;Ak/ !
.V; 01; � � � ; 0k/ be a resolution of the singularities with Ai D ��1.0i/, 1 � i � k, as
exceptional sets. Then g.1;1/.X/ D g.1;1/.MnA/, where A D [Ai, 1 � i � k.
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By Lemma 4.4 and the proof of Lemma 4.3, we can get the following lemma
easily.

Lemma 4.5 Let X be a compact connected strongly pseudoconvex CR manifold of
real dimension 3, which bounds a bounded strongly pseudoconvex variety V with
only isolated singularities f01; � � � ; 0kg in CN. Then g.1;1/.X/ D P

i g.1;1/.0i/ D
P

i dimG
.1;1/
0i

.

The following proposition is to show that g.1;1/ is bounded above.

Proposition 4.2 ([11]) Let V be a 2-dimensional Stein space with 0 as its only
singular point. Then g.1;1/ � pg C g.2/.

The following theorem is the crucial part for the classical complex Plateau
problem.

Theorem 4.6 ([11]) Let V be a 2-dimensional Stein space with 0 as its only normal
singular point with C

�-action. Let � W .M;A/ ! .V; 0/ be a minimal good
resolution of the singularity with A as exceptional set, then g.1;1/ � 1.

In the paper [31], Luk and Yau gave a sufficient condition H2
h.X/ D 0 to

determine when X can bound some special singularities. However, even if both
H2

h.X/ and H1
h.X/ vanish, V still can be singular.

The CR invariants in Definition 4.11 (formula 14) can be used to give sufficient
and necessary conditions for the variety bounded by X being smooth after normal-
ization.

Theorem 4.7 ([11]) Let X be a strongly pseudoconvex compact Calabi-Yau CR
manifold of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domain D in CN. Then X is a boundary of the complex
variety V � D � X with boundary regularity and the variety is smooth after
normalization if and only if s-invariant and g.1;1/.X/ vanish.

Corollary 4.2 ([11]) Let X be a strongly pseudoconvex compact CR manifold
of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domain D in C3. Then X is a boundary of the complex sub-
manifold V � D � X if and only if s-invariant and g.1;1/.X/ vanish.

Corollary 4.3 ([11]) Let X be a strongly pseudoconvex compact Calabi-Yau CR
manifold of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domain D in CN with H2

h.X/ D 0. Then X is a boundary of
the complex sub-manifold up to normalization V � D�X with boundary regularity
if and only if g.1;1/.X/ D 0.

Corollary 4.4 ([11]) Let X be a strongly pseudoconvex compact CR manifold
of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domain D in C

3 with H2
h.X/ D 0. Then X is a boundary

of the complex sub-manifold V � D � X if and only if g.1;1/.X/ D 0.
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5 Minimal Embedding Dimension of Compact CR Manifold

Let us first consider a compact strongly pseudoconvex manifold X of dimension
2n� 1 where n � 3. As mentioned above, X can be CR embedded in some CN . It is
therefore of interest to study the minimal dimensional complex Euclidean space in
which X CR embeds. Our starting point is the Theorem 4.1 which provides us with
obstruction to CR embedding:

Theorem 5.1 Let X be a compact strongly pseudoconvex CR manifold of dimension
2n � 1; n � 3. Then X cannot be CR embedded in Cn unless all Hp;q

KR.X/ D 0,
1 � q � n � 2. Further, X cannot be CR embedded in CnC1 if one of the following
does not hold:

(1) Hp;q
KR.X/ D 0 for pC q � n � 2 and 1 � q � n � 2

(2) dim Hp;q
KR.X/ D dim Hp0;q0

KR .X/ for
pC q

p0 C q0
�

D n � 1; n and 1 � q; q0 � n � 2
(3) Hp;q

KR.X/ D 0 for pC q � nC 1 and 1 � q � n � 2.

We next consider an interesting class of CR manifolds.

Definition 5.1 Let X be a CR manifold with structure bundle S. Let ˛ be a smooth
S1-action on X and V be its generating vector field. The S1-action ˛ is called
holomorphic of LV
.S/ � 
.S/ where LV denotes the Lie derivative. It is called
transversal if V is transversal to S˚ S in CTX at every point of X.

For a CR manifold X which admits a transversal holomorphic S1-action, the
invariant Kohn-Rossi cohomology is defined as follows.

Definition 5.2 With the notation in Definition 5.1, consider first the differential
operator on k forms N W Ak.X/! Ak.X/ defined by N� D p�1LV�, � 2 Ak.X/.
Observe that N leaves invariant the spaces Ap;q.X/ and Cp;q.X/, and commutes with
the operators d and @b. Hence N acts on the cohomology groups Hp;q

KR.X/. Now define
the invariant Kohn-Rossi cohomology by QHp;q

KR.X/ D fc 2 Hp;q
KR.X/ W Nc D 0g.

For a compact strongly pseudoconvex CR manifold X of dimension 2n � 1; n �
3, which admits a transversal holomorphic S1-action, the invariant Kohn-Rossi
cohomology QHp;q

KR.X/, for 1 � pCq � 2n�N�1, are obstructions to CR embedding
in CN . This is implied by the following theorem.

Theorem 5.2 (Luk-Yau [33]) Let X be a compact strongly pseudoconvex CR
manifold of dimension 2n � 1; n � 3, which admits a transversal holomorphic
S1-action. Suppose that X is CR embeddable in C

N. Then QHp;q
KR.X/ D 0 for all

1 � pC q � 2n � N � 1.

The proof of Theorem 5.2 contains two main parts. The first part depends heavily
on the work of Lawson-Yau [26], which provides us with topological restrictions on
X. In particular it can be shown that the De Rham cohomology groups Hk.X/ D 0

for 1 � k � 2n � N � 1. The second part follows Tanaka’s differential geometric
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study on the @b cohomology groups [42]. The existence of the vector field V
with ŒV; 
.S/� � 
.S/ entails a formalism analogous to Kähler geometry linking
the various cohomology groups via harmonic forms. The details of the proof of
Theorem 5.2 are contained in [33].

For 3 dimensional compact strongly pseudoconvex CR manifolds, global CR
embedding in complex Euclidean space may fail and much work has been done on
this phenomenon. See for example [3, 5, 28]. We only remark that as a consequence
of the global invariants to be discussed in the next section, we find obstructions to
CR embedding in C

3, assuming that the 3-dimensional strongly pseudoconvex CR
manifold is CR embeddable in someCN to begin with. These obstructions provide us
with numerous examples of such 3-dimensional CR manifolds not CR embeddable
in C

3.

Remark 5.1 It is interesting to note that there are compact strongly pseudoconvex
3 dimensional CR manifolds with arbitrarily large minimal embedding dimensions.
For any positive integer N, take any 2-dimensional strongly pseudoconvex complex
manifold with maximal compact analytic set A which is a smooth rational curve
having self intersection number �N. The corresponding weighted dual graph is
hence

��N :

On blowing down A, one gets a 2-dimensional rational singularity .V; x/. The
minimal embedding dimension of .V; x/ is �A � A C 1 D N C 1. Let X be the
intersection of V with a small sphere centered at x. Then the minimal embedding
dimension of X is N C 1.

6 Global Invariants of Compact Strongly Pseudoconvex CR
Manifolds

As a first step towards the difficult classification problem of compact strongly
pseudoconvex CR manifolds [43], it would be useful to understand the following
notion of equivalence which is weaker than CR equivalence.

Definition 6.1 Assume that X1, X2 are compact strongly pseudoconvex embeddable
CR manifolds of dimension 2n � 1, n � 2. By [16, 17], there are unique complex
varieties V1 � CN1 and V2 � CN2 such that @V1 D X1, @V2 D X2, V1 and V2 have
only isolated normal singularities. X1;X2 are called algebraically equivalent if V1
and V2 have isomorphic singularities Y1;Y2, i.e. .V1;Y1/ Š .V2;Y1/ as germs of
varieties.
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Remark 6.1 It is not difficult to show that CR equivalence implies algebraic
equivalence. Hence all algebro-geometric invariants of the singularities of V are
CR invariants of X.

In case a compact strongly pseudoconvex CR manifold X of dimension 2n � 1
embeds in CnC1, n � 2, it is the boundary of a complex hypersurface V with isolated
singularities x1; : : : ; xm. In this case, an Artinian algebra can be associated to X as
follows.

Definition 6.2 With the above notation, let fi be a defining function of the germ
.V; xi/, 1 � i � m. Then the C-algebra Ai D OnC1

ı
.fi;

@fi
@z0
; : : : ;

@fi
@zn
/ is a

commutative local Artinian algebra called the moduli algebra of .V; xi/. The moduli
algebra is independent of the choice of defining function. We associate to the CR

manifold X the Artinian algebra A.X/ D
mL

iD1
Ai.

By the work of Mather-Yau [34] on isolated hypersurface singularities, it can be
shown that the associated Artinian algebras are complete algebraic CR invariants in
the following sense.

Theorem 6.1 (Luk-Yau [30]) Two compact strongly pseudoconvex real codimen-
sion 3 CR manifolds X1;X2 are algebraically equivalent if and only if the associated
Artinian algebras A.X1/, A.X2/ are isomorphic C-algebras.

Definition 6.3 With the above notation, let L.X/ be the algebra of derivations of
A.X/. Since A.X/ is finite dimensional as C-vector space and L.X/ is contained in
the endomorphism algebra of A.X/, consequently L.X/ is a finite dimensional Lie
algebra with the obvious Lie algebra structure.

Theorem 6.2 (Yau [48, 49]) With the above notation, L.X/ is a finite dimensional
solvable Lie algebra.

We remark that there are Torelli type examples in which the Lie algebras L.Xt/

associated to a family of compact strongly pseudoconvex real codimension 3 CR
manifolds Xt suffice to distinguish CR equivalence. For example, in the family Xt D
f.x; y; z/ 2 C3 W x6C y3C z2C tx4y D 0 and jxj2C jyj2C jzj2 D �2g where � > 0 is
a small fixed number and t 2 C with 4t2 C 27 ¤ 0, Xt1 ;Xt2 are CR equivalent if and
only if L.Xt1 /;L.Xt2 / are isomorphic Lie algebras.

Question 6.1 How can one compute A.X/ and L.X/ directly from X without going
through V?

For the rest of this section we consider embeddable 3 dimensional compact
strongly pseudoconvex CR manifolds. By taking resolutions of the singularities of
the subvariety V bounded by such a CR manifold X in complex Euclidean space,
numerical invariants under algebraic equivalence may be defined as follows.

Definition 6.4 Let � W M ! V be a resolution of the singularities Y of V such
that the exceptional set A D ��1.Y/ has normal crossing, i.e., the irreducible
components Ai of A are nonsingular, they intersect transversally and no three meet
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at a point. According to Artin [2], there exists a unique minimal positive divisor
Z, called the fundamental cycle, with support on A, such that Z � Ai � 0 for all
Ai. For any positive divisor D D †diAi, let OM.�D/ be the sheaf of germs of
holomorphic functions on M vanishing to order di on Ai, let OD D OM=OM.�D/

and let �.OD/ D
2P

iD0
.�1/i dim Hi.M;OD/. It can be proved that pf .X/ WD 1��.OZ/,

pa.X/ WD sup.1 � �.OD// where D ranges over all positive divisors with support
on A and pg.X/ WD dim H1.M;O/ are defined independent of the resolution � and
are invariants of X under algebraic equivalence. The detailed proofs are contained in
[32]. We refer to pf .X/; pa.X/ and pg.X/ as the fundamental genus, arithmetic genus
and geometric genus of X respectively.

The following facts are known:

• 0 � pf .X/ � pa.X/ � pg.X/
• pf .X/ D 0, pa.X/ D 0, pg.X/ D 0.

Further numerical invariants under algebraic equivalence are given by mZ.X/ WD
Z �Z, q.X/ WD dim H0.M�A; �1/

ı
H0.M; �1/, �.X/ WD K �KC�T .A/ and !.X/ WD

K � K C dim H1.M; �1/, where �1 is the sheaf of germs of holomorphic 1-form on
M, �T .A/ is the topological Euler characteristic of A and K is the canonical divisor
on M. These invariants are defined independent of the choice of the resolution � .
Since K is a divisor with rational coefficient, �.X/ and !.X/ are in general rational
numbers.

Using the above invariants, one may attempt a rough algebraic classification of
embeddable 3 dimensional compact strongly pseudoconvex CR manifolds.

Definition 6.5 An embeddable 3 dimensional compact strongly pseudoconvex CR
manifold X is called a rational (respectively elliptic) CR manifold if pa.X/ D 0

(respectively pa.X/ D 1).

If X is a rational or an elliptic CR manifold embeddable in C3 and M0 is the
minimal good resolution of the subvariety V bounded by X in C3, then the weighted
dual graph for the exceptional set of M0 is completely classified. The same also
holds for those X embeddable in C3 and has pg.X/ D 1. With the weighted dual
graphs classified, the topology of the embedding of the exceptional set in M0 is well
understood.

As an application, one obtains obstructions to embedding in C3 for the above
three classes of CR manifolds when their weighted dual graphs fail to have the
required forms. For example, a rational CR manifolds whose weighted dual graph is
not a direct sum of the graphs Ak, Dk, E6, E7, E8 is not embeddable in C3.

Similarly in view of the following theorem, one obtains numerical obstructions
to embedding in C3 for those CR manifolds failing the conditions in the theorem.
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Theorem 6.3 ([29, 32]) Let X be a compact strongly pseudoconvex 3-dimensional
CR manifold embeddable in C3. Then

(1) �.X/ and !.X/ are integers.
(2) 10pg.X/C !.X/ � 0
(3) If pa.X/ D 1, then �.X/ � �3
(4) If X admits a transversal holomorphic S1-action, then 6pg.X/C �.X/ > 0.

We remark that (4) depends on the Durfee conjecture which is solved by Xu and
Yau [45].
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