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Abstract Inspired by Durfee Conjecture in singularity theory, Yau formulated the Yau number theoretic

conjecture (see Conjecture 1.3) which gives a sharp polynomial upper bound of the number of positive integral

points in an n-dimensional (n > 3) polyhedron. It is well known that getting the estimate of integral points in

the polyhedron is equivalent to getting the estimate of the de Bruijn function ψ(x, y), which is important and

has a number of applications to analytic number theory and cryptography. We prove the Yau number theoretic

conjecture for n = 6. As an application, we give a sharper estimate of function ψ(x, y) for 5 6 y < 17, compared

with the result obtained by Ennola.
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1 Introduction

Let a1 > a2 > · · · > an > 1 be positive real numbers. An n-dimensional polyhedron ∆(a1, a2, . . . , an) is

defined by
x1
a1

+
x2
a2

+ · · ·+ xn
an

6 1, x1, x2, . . . , xn > 0. (1.1)

Let

Qn = Q(a1, a2, . . . , an) := ♯

{

(x1, . . . , xn) ∈ Z
n
>0 :

n
∑

i=1

xi
ai

6 1

}

,

Pn = P (a1, a2, . . . , an) := ♯

{

(x1, . . . , xn) ∈ Z
n
+ :

n
∑

i=1

xi
ai

6 1

}

.

Then they are related by the following formula:

Q(a1, a2, . . . , an) = P (a1(1 + a), a2(1 + a), . . . , an(1 + a)),
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where

a =
1

a1
+

1

a2
+ · · ·+ 1

an
.

So the study of Pn and Qn is equivalent. In this paper, for the sake of applications in number theory and

geometry, we are interested in the problem of estimating the number Pn = P (a1, a2, . . . , an) of positive

integral points satisfying (1.1), where a1, a2, . . . , an are positive real numbers.

The estimate of integral points has many applications in number theory. According to Granville1),

finding an upper polynomial estimate of P (a1, a2, . . . , an) is an extremely important subject in number

theory. It could be applied to finding large gaps between primes, to Waring’s problem, to primality testing

and factoring algorithms, and to bounds for the least prime k-th power residues and non-residues (mod

n). For more information about applications of P (a1, a2, . . . , an) and Q(a1, a2, . . . , an), see Pomerance’s

ICM 1994 lecture at Zurich [29] and his lecture notes [28].

In analytic number theory, a smooth number is a number with only small prime factors. In particular,

a positive integer is y-smooth if it has no prime factor exceeding y. According to Pomerance [29], smooth

numbers are a useful tool in number theory because they not only have a simple multiplicative structure,

but are also fairly numerous. These properties of smooth numbers are the main reason they play a key

role in almost every modern integer factorization algorithm. Smooth numbers play a similar essential

role in discrete logarithm algorithms (methods to represent some group element as a power of another),

and a lesser, but still important, role in primality tests. Recall that the Dickman-de Bruijn function ρ(u)

is a special continuous function that satisfies the delay differential equation uρ′(u) + ρ(u − 1) = 0 with

initial conditions ρ(u) = 1 for 0 6 u 6 1 and is used to estimate the proportion of smooth numbers up

to a given bound. It was first studied by the actuary Dickman, who defined it in his only mathematical

publication [7] and later studied by the Dutch mathematician de Bruijn [4, 5]. Dickman [7] showed

heuristically that ψ(x, x
1
a ) ∼ xρ(a), where ψ(x, y) is the number of y-smooth integers below x.

One of the central topics in computational number theory is the estimate of ψ(x, y) (see [4, 5, 7, 10]).

It turns out that the computation of ψ(x, y) is equivalent to computing the number of integral points

in a k-dimensional tetrahedron ∆(a1, a2, . . . , ak) with real vertices (a1, 0, . . . , 0), . . . , (0, . . . , 0, ak). Let

p1 < p2 < · · · < pk denote the primes up to y. It is clear that pl11 p
l2
2 · · · plkk 6 x which is also equivalent

to counting the number of (l1, l2, . . . , lk) ∈ Zn
>0 such that

l1
a1

+
l2
a2

+ · · ·+ lk
ak

6 1, where ai =
logx

logpi
.

Therefore, ψ(x, y) is precisely the number Qk of (integer) lattice points inside the n-dimensional tetra-

hedron (1.1) with ai =
log x
log pi

, n = k, and 1 6 i 6 k. In [9], Ennola gave both lower and upper bounds for

the ψ(x, y),

(logx)k

k!
∏k

i=1 logpi
< ψ(x, y) 6

(logx+
∑k

i=1 logpi)
k

k!
∏k

i=1 logpi
, (1.2)

which yields the following result.

Theorem 1.1 (See [9]). Uniformly for 2 6 y 6
√

logxlog2x, we have

ψ(x, y) =
1

k!

∏

p6y

(

logx

logp

)[

1 +O

(

y2

logxlogy

)]

.

In fact, there are some other results about the asymptotic formula for ψ(x, y). The interested reader

may also refer to the theorems by Saias [31], Hildebrand [14–16], and Hildebrand and Tenenbaum [17,18].

All these can be found in an excellent book by Tenenbaum [34, Theorem 9 on p. 380, Corollary 9.3 on

p. 381, Theorem 10 on p. 385 and Theorem 11 on p. 386].

The general problem of counting the number Qn has been a challenging problem for many years. In

1951, Mordell [27] gave a formula forQ3, expressed in terms of three Dedekind sums, in the case that a1, a2

1) Granville A. A letter to Y.-J. Xu. 1992.
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and a3 are pairwise relatively prime. In 1993, Pommersheim [30], using toric varieties, gave a formula

for Q3 for arbitrary positive integers a1, a2, a3 and so forth. Meanwhile, the problem of counting the

number of integral points in an n-dimensional tetrahedron with real vertices is a classical subject which has

attracted a lot of famous mathematicians. Also from the view of estimating the de Bruijn function ψ(x, y),

ai, 1 6 i 6 n, are not always integers. For n = 2, Hardy and Littlewood [12,13] wrote two famous papers

on the lattice points of a right-angled triangle because of its relations to their International Congress

of Mathematics lecture in 1912 on Diophantine approximation [11]. A more general approximation of

Qn was obtained by Spencer [32, 33] via complex function-theoretic methods. In recent years, there are

tremendous activities in finding the exact formula for P (a1, . . . , an) or Q(a1, . . . , an) for positive integers

a1, . . . , an, see [1, 2, 6, 19]. The exact formula is complicated. It involves the generalized Dedekind sum.

It is difficult to tell how large P (a1, . . . , an) is from the exact formula. Therefore one would like to

get a sharp upper polynomial estimate of P (a1, . . . , an) in terms of a polynomial in a1, . . . , an. Such a

sharp upper polynomial estimate of P (a1, . . . , an) is important because it would have application in the

following Durfee Conjecture which is one of the long-standing open problems in singularity theory.

Granville2) obtained the following estimate:

Pn 6
1

n!
a1a2 · · · an. (1.3)

This estimate of Pn given by (1.3) is interesting, but not strong enough to be useful, particularly when

many of the ai’s are small. In geometry and singularity theory, estimating Pn for real right-angled

simplices is related to [37, Durfee Conjecture]. Let f : (Cn+1, 0) → (C, 0) be a germ of a complex analytic

function with an isolated critical point at the origin. Let

V = {(z0, z1, . . . , zn) ∈ C
n+1 : f(z0, z1, . . . , zn) = 0}.

The Milnor number of the singularity (V, 0) is defined as

µ = dimC{z0, z1, . . . , zn}/(fz0, fz1 , . . . , fzn).

The geometric genus pg of (V, 0) is defined as pg = dimHn−1(M,O), where M is a resolution of V and

O is the structure sheaf on M . In 1978, Durfee [8] made the following conjecture:

Durfee Conjecture. Let (V, 0) be an isolated hypersurface singularity defined by a holomorphic

function f : (Cn+1, 0) → (C, 0). Let µ and pg be the Milnor number and geometric genus of (V, 0),

respectively. Then n!pg 6 µ with equality only when µ = 0.

We say that f(z1, . . . , zn) is weighted homogeneous of type (w1, . . . , wn), where w1, . . . , wn are fixed

positive rational numbers, if f can be expressed as a linear combination of monomials zi11 · · · zinn for which

i1/w1+· · ·+in/wn = 1. If f(z1, . . . , zn) is a weighted homogeneous polynomial of type (a1, a2, . . . , an) with

an isolated singularity at the origin, Milnor and Orlik [26] proved that µ = (a1−1)(a2−1) · · · (an−1). On

the other hand, Merle and Teissier [25] showed that pg = Pn = P (a1, . . . , an). Finding a sharp estimate

of Pn will lead to a resolution to Durfee Conjecture.

Starting from early 1990’s, the authors of [22, 36, 38] tried to get sharp upper estimates of Pn where

ai’s are positive real numbers. They were successful for n = 3, 4 and 5. They then proposed a general

conjecture:

Conjecture 1.1 (Granville-Lin-Yau (GLY) conjecture). Let

Pn = ♯

{

(x1, x2, . . . , xn) ∈ Z
n
+;
x1
a1

+
x2
a2

+ · · ·+ xn
an

6 1

}

and n > 3.

(1) Sharp estimate: If a1 > a2 > · · · > an > n− 1, then

n!Pn 6 fn := An
0 +

s(n, n− 1)

n
An

1 +
n−2
∑

l=1

s(n, n− 1− l)
(

n−1
l

) An−1
l , (1.4)

2) Granville A. A letter to Y.-J. Xu. 1992.
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where s(n, k) is the Stirling number of the first kind defined by the generating function:

x(x− 1) · · · (x− n+ 1) =

n
∑

k=0

s(n, k)xk,

and An
k is defined as

An
k =

( n
∏

i=1

ai

)(

∑

16i1<i2<···<ik6n

1

ai1ai2 · · · aik

)

,

for k = 1, 2, . . . , n− 1. Equality holds if and only if a1 = a2 = · · · = an = integer.

(2) Weak estimate: If a1 > a2 > · · · > an > 1, then

n!Pn < qn :=

n
∏

i=1

(ai − 1). (1.5)

These estimates are all polynomials of ai. They are sharp because the equality holds true if and only

if all ai’s take the same integer. In [21,22,36,38], the authors showed that (1.5) holds for 3 6 n 6 5. The

sharp estimate conjecture was first formulated in [23]. In private communication to the second author,

Granville formulated this sharp estimated conjecture independently after reading [21]. Again, the sharp

GLY conjecture has been proven individually for n = 3, 4, 5 by [22, 37, 38], respectively. It has also been

proven generally for n 6 6. However, for n = 7, a counterexample to the conjecture has been given

in [35]. In [40], a revised verision of GLY conjecture, i.e., Yau-Zhao-Zuo (YZZ) conjecture was proposed

and proved to be ture in low dimensions.

The breakthrough in the subject is the following theorem by Yau and Zhang [39] which states that the

weak GLY conjecture holds for all n > 3.

Theorem 1.2 (See [39]). For n > 3, let a1 > a2 > · · · > an > 1 be real numbers. Let Pn be the

number of positive integral solutions to x1

a1
+ x2

a2
+ · · ·+ xn

an
6 1, i.e.,

Pn = ♯

{

(x1, x2, . . . , xn) ∈ Z
n
+ :

x1
a1

+
x2
a2

+ · · ·+ xn
an

6 1

}

,

where Z+ is the set of positive integers. Then n!Pn 6 (a1 − 1)(a2 − 1) · · · (an − 1) and the equality holds

if and only if an = 1.

Theorem 1.2 above implies that Durfee Conjecture holds true for weighted homogeneous singularities.

However, the Yau-Zhang estimate is not sharp. It is not good enough to characterize the homogeneous

polynomial with an isolated singularity. In order to do that, the second author made the following

conjecture in 1995.

Conjecture 1.2 (Yau geometric conjecture). Let f : (Cn+1, 0) → (C, 0) be a germ of a weighted

homogeneous polynomial with isolated critical points at the origin. Let µ, Pg and ν be the Milnor

number, geometric genus and multiplicity of the singularity V = {z : f(z) = 0}. Then

µ− h(ν) > (n+ 1)!Pg, (1.6)

where h(ν) = (ν − 1)n+1 − ν(ν − 1) · · · (ν − n), and equality holds if and only if f is a homogeneous

polynomial.

The Yau geometric conjecture was answered affirmatively for n = 3, 4, 5 by [3, 22, 37], respectively.

In order to overcome the difficulty that the GLY sharp estimate conjecture is only true if an is larger

than y(n), a positive integer depending on n, Yau proposes to prove a new sharp polynomial estimate

conjecture which is motivated from the Yau geometric conjecture. The importance of this conjecture is

that we only need an > 1 and hence the conjecture will give a sharp upper estimate of the de Bruijn

function ψ(x, y).
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Conjecture 1.3 (Yau number theoretic conjecture). Assume that a1 > a2 > · · · > an > 1, n > 3 and

let Pn be the number of elements of the set

{

(x1, x2, . . . , xn) ∈ Z
n
+;
x1
a1

+
x2
a2

+ · · ·+ xn
an

6 1

}

.

If Pn > 0, then

n!Pn 6 (a1 − 1)(a2 − 1) · · · (an − 1)− (an − 1)n + an(an − 1) · · · (an − (n− 1)) (1.7)

and equality holds if and only if a1 = a2 = · · · = an = integer.

Obviously, there is an intimate relation between the Yau geometric conjecture (1.6) and the number

theoretic conjecture (1.7). Recall that if f : (Cn, 0) → (C, 0) is a weighted homogeneous polynomial with

isolated singularity at the origin, then the multiplicity ν of f at the origin is given by inf{n ∈ Z+ : n

> inf{w1, . . . , wn}}, where wi is the weight of xi. Notice that in general, wi is only a rational number. In

the case that the minimal weight is an integer, the Yau geometric conjecture (1.6) and the Yau number

theoretic conjecture (1.7) are the same. In general, these two conjectures do not imply each other,

although they are intimately related.

The number theoretic conjecture (1.7) is much sharper than the weak GLY conjecture (1.5). The

estimate in (1.7) is optimal in the sense that the equality occurs precisely when a1 = a2 = · · · = an
= integer. Moreover, the sharp GLY conjecture (1.4) does not hold for n = 7 as the counterexample

shows. However, the number theoretic conjecture (1.7) does hold for this example.

By the previous works of Xu and Yau [36, 38], it was shown that the number theoretic conjecture is

true for n = 3. For n = 4, 5, the conjecture has been shown in our previous work [20, 24]. The purpose

of this paper is to prove that the number theoretic conjecture is true for n = 6. The strategy of this

paper is different from our previous papers [20,24]. Here for the case n = 6 the techniques used are more

complicated than those in the case n 6 5 and the feasibility of the strategy has been challenged, even if

the dimension has only been increased by 1. As we will see in our proof, the number of subcases has been

increased from 5 (when n = 5) to 21 (when n = 6). Showing subcases one by one will absolutely cause

tremendous involved computations, and it is tedious to our readers. In this paper, based on the intrinsic

observation, we simplify 21 subcases into 6 major classes (k = 1, 2, 3, 4, 5 and a6 > 5), and modify the

former 5 classes with delicate analysis of Ai’s domain, where Ai = ai(1− k
a6
), i = 1, 2, 3, 4, 5 to deal with

the subcases one by one. This paper may shed a new light on the conjecture for the case of arbitrary

dimension number theoretic conjecture.

Furthermore, the de Bruijn function ψ(x, y) is important and has a number of applications to analytic

number theory and cryptography. For example, to optimize the complexity of steps in several crypto-

graphic algorithms, one often needs more precise information about ψ(x, y) than current estimates and

asymptotic formulae can provide. In this paper, we give an explicit formula for the estimate of ψ(x, y),

when 5 6 y < 13, and our upper bound of ψ(x, y) is better than the one obtained by Ennola (see (1.2)).

Mathematica 4.0 is adopted to do some involved computations. The following are our main theorems.

Theorem 1.3 (Number theoretic conjecture for n = 6). Let a1 > a2 > a3 > a4 > a5 > a6 > 1 be real

numbers. Let P6 be the number of positive integral solutions of x1

a1
+ x2

a2
+ x3

a3
+ x4

a4
+ x5

a5
+ x6

a6
6 1, i.e.,

P6 = ♯

{

(x1, x2, x3, x4, x5, x6) ∈ Z
6
+ :

x1
a1

+
x2
a2

+
x3
a3

+
x4
a4

+
x5
a5

+
x6
a6

6 1

}

,

where Z+ is the set of positive integers. If P6 > 0, then

720P6 6 NTC6 := (a1 − 1)(a2 − 1)(a3 − 1)(a4 − 1)(a5 − 1)(a6 − 1)− (a6 − 1)6

+ a6(a6 − 1)(a6 − 2)(a6 − 3)(a6 − 4)(a6 − 5)

and the equality holds if and only if a1 = a2 = a3 = a4 = a5 = a6 = integer.
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Theorem 1.4 (Estimate of ψ(x, y)). Let ψ(x, y) be the function as before. We have the following

upper estimates for 5 6 y < 17.

(I) When 5 6 y < 7 and x > 5, we have

ψ(x, y) 6
1

6

{

1

log 2 log 3 log 5
(log x+ log 15)(log x+ log 10)(log x+ log 6)

− 1

log3 5
[(log x+ log 6)3 − (log x+ log 6 + log 5)(log x+ log 6)(log x+ log 6− log 5)]

}

.

(II) When 7 6 y < 11 and x > 7, we have

ψ(x, y) 6
1

24

{

1

log 2 log 3 log 5 log 7
(log x+ log 105)(logx+ log 70)(log x+ log 42)(logx+ log 30)

− 1

log4 7
[(log x+ log 30)4 − (log x+ log 7 + log 30)(log x+ log 30)

× (log x+ log 30− log 7)(log x+ log 30− 2 log 7)]

}

.

(III) When 11 6 y < 13 and x > 11, we have

ψ(x, y) 6
1

120

{

1

log 2 log 3 log 5 log 7 log 11
(log x+ log 1155)(logx+ log 770)(logx+ log 462)

× (log x+ log 330)(log x+ log 210)− 1

log5 11
[(log x+ log 210)5

− (log x+ log 11 + log 210)(logx+ log 210)(logx+ log 210− log 11)

× (log x+ log 210− 2 log 11)(log x+ log 210− 3 log 11)]

}

.

(IV) When 13 6 y < 17 and x > 13, we have

ψ(x, y) 6
1

720

{

1

log 2 log 3 log 5 log 7 log 11 log 13
(log x+ log 15015)

× (log x+ log 10010)(logx+ log 6006)(logx+ log 4290)(logx+ log 2730)

× (log x+ log 2310)− 1

log6 13
[(log x+ log 2310)6

− (log x+ log 13 + log 2310)(logx+ log 2310)(logx+ log 2310− log 13)

× (log x+ log 2310− 2 log 13)(logx+ log 2310− 3 log 13)(log x+ log 2310− 4 log 13)]

}

.

Remark 1.1. For comparison, we list the Ennola’s upper bounds (see (1.2)) for 5 6 y < 17 as

follows:

(1) 5 6 y < 7 and x > 5,

ψ(x, y) 6
(logx+ log30)3

6log2log3log5
.

(2) 7 6 y < 11 and x > 7,

ψ(x, y) 6
(logx+ log210)4

24log2log3log5log7
.

(3) 11 6 y < 13 and x > 11,

ψ(x, y) 6
(logx+ log2310)5

120log2log3log5log7log11
.
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(4) 13 6 y < 17 and x > 13,

ψ(x, y) 6
(logx+ log30030)6

720log2log3log5log7log11log13
.

It is easy to see that our upper bound of ψ(x, y) is substantially better than the one obtained by

Ennola. For example, in the case that 13 6 y < 17 and x > 13, though the coefficient of (logx)6 in our

estimate is same as Ennola’s, but our coefficient of (logx)5 is

1

720

(

log15015 + log10010 + log6006 + log4290 + log2730 + log2310

log2log3log5log7log11log13
− 9

log513

)

,

which is smaller than Ennola’s
1

720

6log30030

log2log3log5log7log11log13
.

2 Proofs of the theorems

2.1 Proof of Theorem 1.3

The proof is divided into six cases:

(1) a6 ∈ (1, 2];

(2) a6 ∈ (2, 3];

(3) a6 ∈ (3, 4];

(4) a6 ∈ (4, 5];

(5) a6 ∈ (5, 6);

(6) a6 ∈ [6,∞).

The proof will begin with Case (1) and solve the rest of the cases in numerical order. For conciseness,

we shall give the detailed proofs of Cases (1), (2) and (6). Since the proofs of Cases (3)–(5) are akin to

that of Case (2), we shall only list the subcases in each cases.

For Cases (1)–(6), the plan is to partition the 6-dimensional polyhedron into 5-dimensional polyhedra

of several levels. For each level, we can use the estimate for 5-dimensional polyhedra. Then we only need

to show our estimate in Theorem 1.3 is greater than the sum of the estimates of all levels. Basically, for

some level k, we have

x1
a1

+
x2
a2

+
x3
a3

+
x4
a4

+
x5
a5

+
k

a6
6 1,

x1

a1(1− k
a6
)
+

x2

a2(1 − k
a6
)
+

x3

a3(1− k
a6
)
+

x4

a4(1− k
a6
)
+

x5

a5(1− k
a6
)
6 1, (2.1)

for k = 1, 2, . . . , [a6], where [a6] + β = a6, 0 6 β < 1. For this proof, let k = 1, 2, . . . , [a6], and P5(k)

be the number of positive integral solutions to (2.1). Then P6 =
∑[a6]

k=1 P5(k). Assume that P5(k) > 0.

Then incorporating the 5-dimensional version of Theorem 1.3, we have

6!P5(k) 6 6

((

a1

(

1− k

a6

)

− 1

)(

a2

(

1− k

a6

)

− 1

)(

a3

(

1− k

a6

)

− 1

)

×
(

a4

(

1− k

a6

)

− 1

)(

a5

(

1− k

a6

)

− 1

)

−
(

a5

(

1− k

a6

)

− 1

)5

+ a5

(

1− k

a6

)(

a5

(

1− k

a6

)

− 1

)(

a5

(

1− k

a6

)

− 2

)(

a5

(

1− k

a6

)

− 3

)

×
(

a5

(

1− k

a6

)

− 4

))

.
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Let k0 ∈ Z such that 1 6 k0 6 [a6] and k0 is the largest integer so that P5(k0) > 0 and P5(k) = 0 for all

k0 < k 6 a6. By combining the above two equations, we have

6!P6 = 6!

k0
∑

k=1

P5(k)

6 6

k0
∑

k=1

[(

a1

(

1− k

a6

)

− 1

)(

a2

(

1− k

a6

)

− 1

)(

a3

(

1− k

a6

)

− 1

)

×
(

a4

(

1− k

a6

)

− 1

)(

a5

(

1− k

a6

)

− 1

)

−
(

a5

(

1− k

a6

)

− 1

)5

+ a5

(

1− k

a6

)(

a5

(

1− k

a6

)

− 1

)(

a5

(

1− k

a6

)

− 2

)(

a5

(

1− k

a6

)

− 3

)

×
(

a5

(

1− k

a6

)

− 4

)]

.

In order to prove Theorem 1.3 for Subcases (1)–(6), it is sufficient to show that NTC6 > 6!
∑

P5(k).

Case (1) a6 ∈ (1, 2]. In this case, we know there are two levels: k = 1 and k = 2. It is easy

to see that P5(2) = 0. From the condition P6 > 0, we also know that the level k = 1 must have a

positive integral solution, i.e., P5(1) > 0. This implies that (1, 1, 1, 1, 1, 1) is the smallest positive integral

solution to the level k = 1. Hence, we have 1
a1

+ 1
a2

+ 1
a3

+ 1
a4

+ 1
a5

6 1 − 1
a6

= β1, β1 ∈ (0, 12 ], since

a6 ∈ (1, 2]. Let Ai = aiβ1, i = 1, 2, 3, 4, 5. Also notice that A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 > 1,

since 1
A5

6 1, 2
A4

6
1
A4

+ 1
A5

6 1, 3
A3

6
1
A3

+ 1
A4

+ 1
A5

6 1, 4
A2

6
1
A2

+ 1
A3

+ 1
A4

+ 1
A5

6 1, and
5
A1

6 1
A1

+ 1
A2

+ 1
A3

+ 1
A4

+ 1
A5

6 1. 6!P6 can now be rewritten as follows,

6!P6 = 6!(P5(1))

6 6((A1 − 1)(A2 − 1)(A3 − 1)(A4 − 1)(A5 − 1)− (A5 − 1)5

+A5(A5 − 1)(A5 − 2)(A5 − 3)(A5 − 4)).

It is sufficient to prove that NTC6 > the right-hand side (R.H.S.) of the above inequality. We will first

subtract the R.H.S. from NTC6, then substitute ai = Ai

β1
, i = 1, 2, 3, 4, 5, a6 = 1

1−β1
, and multiply the

difference by β5
1(1 − β1)

5,

Φ1 := (A1 +A2 +A3 +A4)(−5β5
1 + 26β6

1 − 54β7
1 + 56β8

1 − 29β9
1 + 6β10

1 )

+ (A1A2 +A1A3 +A2A3 +A1A4 +A2A4 +A3A4 +A1A5 +A2A5 +A3A5 +A4A5)

× (−β4
1 + 10β5

1 − 36β6
1 + 64β7

1 − 61β8
1 + 30β9

1 − 6β10
1 )

+ (A1A2A3 +A1A2A4 +A1A3A4 +A2A3A4 +A1A2A5 +A1A3A5 +A2A3A5

+A1A4A5 +A2A4A5 +A3A4A5)(β
3
1 − 4β4

1 + 26β6
1 − 59β7

1 + 60β8
1 − 30β9

1 + 6β9
1 − 6β10

1 )

+ (A1A2A3A4 +A1A2A3A5 +A1A2A4A5 +A1A3A4A5 +A2A3A4A5)

× (−β2
1 + 4β3

1 − 6β4
1 + 10β5

1 − 31β6
1 + 60β7

1 − 60β8
1 + 30β9

1 − 6β10
1 )

+A1A2A3A4A5(β1 − 4β2
1 + 6β3

1 − 4β4
1 − 5β5

1 + 30β6
1 − 60β7

1 + 60β8
1 − 30β9

1 + 6β10
1 )

+A5(−119β5
1 + 596β6

1 − 1194β7
1 + 1196β8

1 − 599β9
1 + 120β10

1 )

+A2
5(240β

5
1 − 1200β6

1 + 2400β7
1 − 2400β8

1 + 1200β9
1 − 240β10

1 )

+A3
5(−150β5

1 + 750β6
1 − 1500β7

1 + 1500β8
1 − 750β9

1 + 150β10
1 )

+A4
5(30β

5
1 − 150β6

1 + 300β7
1 − 300β8

1 + 150β9
1 − 30β10

1 ) + (23β6
1 − 118β7

1 + 201β8
1 − 115β9

1).

The idea is to show that for all β1 ∈ (0, 12 ], the minimum of Φ1 for A1 > 5, A2 > 4, A3 > 3, A4 > 2 and

A5 > 1 occurs at A1 = 5, A2 = 4, A3 = 3, A4 = 2, A5 = 1, and Φ1

∣

∣

A1=5,A2=4,A3=3,A4=2,A5=1
> 0,

∂5Φ1

∂A1∂A2∂A3∂A4∂A5
= (−1 + β1)

4β1(1− 6β4
1 + 6β5

1) > 0,
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for β1 ∈ (0, 1). It follows that ∂4Φ1

∂A1∂A2∂A3∂A4
is an increasing function with respect to A5 for A5 > 1 and

β1 ∈ (0, 1). Hence the minimum of ∂4Φ1

∂A1∂A2∂A3∂A4
occurs at A5 = 1,

∂4Φ1

∂A1∂A2∂A3∂A4

∣

∣

∣

∣

A5=1

= [(−1 + β1)
4β1{−β1 + 6β4

1 − 6β5
1 +A5(1− 6β4

1 + 6β5
1)}]|A5=1

= −(−1 + β1)
5β1 > 0,

for β1 ∈ (0, 1). It follows that ∂4Φ1

∂A1∂A2∂A3∂A4
> 0 for A5 > 1 and β1 ∈ (0, 1). Note that ∂3Φ1

∂A1∂A2∂A3
is

symmetric with respect to A4 and A5. Therefore, ∂4Φ1

∂A1∂A2∂A3∂A5
> 0 for A4 > 1 and β1 ∈ (0, 1) and

∂3Φ1

∂A1∂A2∂A3
is an increasing function with respect to A4 and A5 for A4 > A5 > 1 and β1 ∈ (0, 1). The

minimum of ∂3Φ1

∂A1∂A2∂A3
occurs at A4 = A5 = 1,

∂3Φ1

∂A1∂A2∂A3

∣

∣

∣

∣

A4=A5=1

= [(−1 + β1)
4β1{β1(β1 − 6β3

1 + 6β4
1 +A5(−1 + 6β3

1 − 6β4
1))

+A4(−β1 + 6β4
1 − 6β5

1 +A5(1− 6β4
1 + 6β5

1))}]|A4=A5=1

= −(−1 + β1)
6β1 > 0,

for β1 ∈ (0, 1). It follows that ∂3Φ1

∂A1∂A2∂A3
> 0 for A4 > A5 > 1 and β1 ∈ (0, 1). Since ∂2Φ1

∂A1∂A2
is symmetric

with respect to A3, A4 and A5,
∂3Φ1

∂A1∂A2∂A4
> 0 for A3 > A5 > 1 and β1 ∈ (0, 1), ∂3Φ1

∂A1∂A2∂A5
> 0 for

A3 > A4 > 1 and β1 ∈ (0, 1), and ∂2Φ1

∂A1∂A2
is an increasing function with respect to A3, A4 and A5 for

A3 > A4 > A5 > 1 and β1 ∈ (0, 1). Thus the minimum of ∂2Φ1

∂A1∂A2
occurs at A3 = A4 = A5 = 1 and

we have

∂2Φ1

∂A1∂A2

∣

∣

∣

∣

A3=A4=A5=1

= [(−1 + β1)
4β1{−β3

1(1− 6β1 + 6β2
1) +A5β

2
1(1− 6β2

1 + 6β3
1)

+A4β1(β1 − 6β3
1 + 6β4

1) +A4A5β1(−1 + 6β3
1 − 6β4

1)

+A3β1(β1 − 6β3
1 + 6β4

1) +A3A5β1(−1 + 6β3
1 − 6β4

1)

+A3A4(−β1 + 6β4
1 − 6β5

1) +A3A4A5(1− 6β4
1 + 6β5

1)}]|A3=A4=A5=1

= −(−1 + β1)
7β1 > 0,

for β1 ∈ (0, 1). It follows that ∂2Φ1

∂A1∂A2
> 0 for A3 > A4 > A5 and β1 ∈ (0, 1). Note that ∂Φ1

∂A1
is symmetric

with respect to A2, A3, A4 and A5. Therefore,
∂2Φ1

∂A1∂A3
> 0 for A2 > A4 > A5 and β1 ∈ (0, 1), ∂2Φ1

∂A1∂A4
> 0

for A2 > A3 > A5 and β1 ∈ (0, 1), ∂2Φ
∂A1∂A5

> 0 for A2 > A3 > A4 and β ∈ (0, 1), and ∂Φ1

∂A1
is an increasing

function with respect to A2, A3, A4 and A5 for A2 > A3 > A4 > A5 > 1 and β1 ∈ (0, 1). Thus the

minimum of ∂Φ1

∂A1
occurs at A2 = A3 = A4 = A5 = 1 and we have

∂Φ1

∂A1

∣

∣

∣

∣

A2=A3=A4=A5=1

= [(−1 + β1)
4β1{−β3

1(5 − 6β1)−A5β
2
1(1 − 6β1 + 6β2

1)

−A4β
2
1(1 − 6β1 + 6β2

1)−A4A5β1(−1 + 6β2
1 − 6β3

1)

+A3β
2
1(1 − 6β1 + 6β2

1) +A3A5β1(−1 + 6β2
1 − 6β3

1)

+A3A4(−β1 + 6β3
1 − 6β4

1) +A3A4A5(1− 6β3
1 + 6β4

1)

+A2β
3
1(−1 + 6β1 − 6β2

1) +A2A5β
2
1(1− 6β2 + 6β3

1)

+A2A4β1(β1 − 6β3
1 + 6β4

1) +A2A4A5β1(−1 + 6β3
1 − 6β4

1)

+A2A3β1(β1 − 6β3
1 + 6β4

1) +A2A3A5β1(−1 + 6β3 − 6β4
1)

+A2A3A4(−β1 + 6β4
1 − 6β5

1)
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+A2A3A4A5(1 − 6β4
1 + 6β5

1)}]|A2=A3=A4=A5=1

= (−1 + β1)
8β1 > 0,

for β1 ∈ (0, 1). It follows that ∂Φ1

∂A1
> 0 for A2 > A3 > A4 > A5 > 1 and β1 ∈ (0, 1). Since Φ1 is

symmetric with respect to A2, A3 and A4,
∂Φ1

∂A2
> 0 for A1 > A3 > A4 > A5 > 1 and β1 ∈ (0, 1), so

∂Φ1

∂A3
> 0 for A1 > A2 > A4 > A5 > 1 and β1 ∈ (0, 1), and ∂Φ1

∂A4
> 0 for A1 > A2 > A3 > A5 > 1 and

β1 ∈ (0, 1).

Meanwhile,

∂4Φ1

∂A4
5

= −720(−1 + β1)
5β5

1 > 0,

for β1 ∈ (0, 1). It follows that ∂4Φ1

∂A4
5

> 0 for A5 > 1 and β1 ∈ (0, 1); therefore, ∂3Φ1

∂A3
5

is an increasing

function with respect to A5 for A5 > 1 and β1 ∈ (0, 1). The minimum of ∂3Φ1

∂A3
5

occurs at A5 = 1 and we

have

∂3Φ1

∂A3
5

∣

∣

∣

∣

A5=1

= [−180(−5 + 4A5)(−1 + β1)
5β5

1 ]A5=1 = 180(−1 + β1)
5β5

1 < 0,

for β1 ∈ (0, 1). This presents a problem in the proof; however, we know that the possible roots of ∂3Φ1

∂A3
5

are

A5 = 5
4 and β1 = 0, 1. Since neither of the roots for β1 is within the domain, A5 = 5

4 is the only option.

We also still know that ∂3Φ1

∂A3
5

is an increasing function with respect to A5 for A5 > 1 and β1 ∈ (0, 1).

Therefore, ∂2Φ1

∂A2
5

is an increasing function (i.e., ∂3Φ1

∂A3
5

> 0) with respect to A5 for A5 >
5
4 and β1 ∈ (0, 1),

and ∂2Φ1

∂A2
5

is a decreasing function (i.e., ∂3Φ1

∂A3
5

< 0) with respect to A5 for 1 > A5 <
5
4 and β1 ∈ (0, 1). In

addition, because ∂3Φ1

∂A3
5

= 0 when A5 = 5
4 , the minimum of ∂2Φ1

∂A2
5

occurs at A5 = 5
4 and we have

∂2Φ1

∂A2
5

∣

∣

∣

∣

A5=
5
4

= [−60(8− 15A5 + 6A2
5)(−1 + β1)

5β5
1 ]|A5=

5
4
=

165

2
(−1 + β1)

5β5
1 < 0,

for β1 ∈ (0, 1). The possible roots for ∂2Φ1

∂A2
5

are A5 = 1
12 (15−

√
33) ≈ 0.771286, 1

12 (15 +
√
33) ≈ 1.72871

and β1 = 0, 1. Due to the fact that A5 = 1
12 (15 −

√
33) and β1 = 0, 1 is not within the domain,

A5 = 1
12 (15 +

√
33) is our only option. Note that ∂2Φ1

∂A2
5

is increasing for A5 > 5
4 and decreasing for

A5 <
5
4 . Because of these properties, we know that ∂Φ1

∂A5
is an increasing function (i.e., ∂2Φ1

∂A2
5

> 0) with

respect to A5 for 1 6 A5 <
1
12 (15 +

√
33) and β1 ∈ (0, 1). Notice that ∂Φ1

∂A5
is increasing with respect

to A1, A2, A3 and A4 (due to the symmetric properties of ∂Φ1

∂A1
and Φ1) for A1 > A2 > A3 > A4 > 1

and β1 ∈ (0, 1), and ∂2Φ1

∂A2
5

= 0 when A5 = 1
12 (15 +

√
33). Since Φ1 will eventually be evaluated for

A1 > 5, A2 > 4, A3 > 3, A4 > 2 and A5 > 1, we can take the minimum of ∂Φ1

∂A5
at A1 = A2 = A3

= A4 = A5 = 1
12 (15+

√
33); A5 can be evaluated at 1

12 (15+
√
33) since it is the minimum of ∂Φ1

∂A1
, and if

∂Φ1

∂A1
> 0 at 1

12 (15 +
√
33), then ∂Φ1

∂A1
> 0 for A5 > 1 and we have

∂Φ1

∂A5

∣

∣

∣

∣

A1=A2=A3=A4=A5=
1
12

(15+
√
33)

= [(−1 + β1)
4β1{−β1[β1(β1(β1(119 + 480A5(−1 + β1)− 450A2

5(−1 + β1)

+ 120A3
5(−1 + β1)− 120β1) +A4(1 − 6β1 + 6β2

1)) +A3(β1(1− 6β1 + 6β2
1)

+A4(−1 + 6β2
1 − 6β3

1))) +A2(β1(β1(1 − 6β1 + 6β2
1) +A4(−1 + 6β2

1 − 6β3
1))

+A3(−β1 + 6β3
1 − 6β4

1 +A4(1− 6β3
1 + 6β4

1)))]

+A1[β1(β1(β1(−1 + 6β1 − 6β2
1) +A4(1− 6β2

1 + 6β3
1))

+A3(β1 − 6β3
1 + 6β4

1 +A4(−1 + 6β3
1 − 6β4

1)))
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+A2(β1(β1 − 6β3
1 + 6β4

1 +A4(−1 + 6β3
1 − 6β4

1)) +A3(−β1 + 6β4
1 − 6β5

1

+A4(1− 6β4
1 + 6β5

1)))]}]|A1=A2=A3=A4=A5=
1
12

(15+
√
33)

=
1

288
(−1 + β1)

4β1(1337 + 215
√
33− 8(405 + 59

√
33)β1 + 72(43 + 5

√
33)β2

1

− 96(15 + 33
√
33)β3

1 − 6(−835 + 227
√
33)β4

1 + 6(−787 + 227)β5
1)

> 0,

for β1 ∈ (0, 0.76402). It follows that ∂Φ1

∂A5
> 0 for A1 > A2 > A3 > A4 >

1
12 (15 +

√
33), A5 > 1

and β1 ∈ (0, 0.76402). Therefore, Φ1 is an increasing function with respect to A1, A2, A3, A4 and A5,

A1 > A2 > A3 > A4 >
1
12 (15 +

√
33), A5 > 1 and β1 ∈ (0, 0.76402). The minimum of Φ1 occurs at

A1 = A2 = A3 = A4 = A5 = 1
12 (15 +

√
33). In addition, we take the parameters for A1, A2, A3, A4 and

A5 into consideration, then

∂Φ1

∂A5

∣

∣

∣

∣

A1=5,A2=4,A3=3,A4=2,A5=1

= β1(120− 754β1 + 2041β2
1 − 3109β3

1 + 2921β4
1 − 1721β6

1 + 56β7
1 − 100β8

1)

> 0,

for β1 ∈ (0, 12 ]. It follows that Φ1 > 0 for A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 > 1 and β1 ∈ (0, 12 ].

Case (2) a6 ∈ (2, 3]. Case (2) contains three levels: k = 1, k = 2, and k = 3. Obviously, P5(3) = 0.

We know that P5(1) must contain solutions due to the fact that P6 > 0, but it is unknown whether

P5(2) > 0 or P5(2) = 0. Therefore, we split the proof into the following cases.

(a) P5(2) = 0. In this case only level k = 1 has positive integral solutions.

(b) P5(2) > 0. In this case levels k = 1, 2 have positive integral solutions.

Case (2a) For this case, the proof is almost the same as the one in Case (1), and only P5(1) > 0.

This implies that (1, 1, 1, 1, 1, 1) is the smallest positive integral solution to level k = 1. Thus we have
1
a1

+ 1
a2

+ 1
a3

+ 1
a4

+ 1
a5

6 1− 1
a6

= β1, β1 ∈ (12 ,
2
3 ] since a6 ∈ (2, 3]. We can also improve the parameters

for A1, A2, A3, A4 and A5 to the following:

A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 >
β1

1− β1
,

since A5 = a5β1 > a6β1 = β1

1−β1
. Because β1 ∈ (12 ,

2
3 ], it is easy to see that β1

1−β1
∈ (1, 2]. Therefore, it is

sufficient to prove that Φ1 > 0 for A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 >
β1

1−β1
and β1 ∈ (12 ,

2
3 ],

Φ1|A1=5,A2=4,A3=3,A4=2,A5=
β1

1−β1

= β3
1(120− 514β1 + 1031β2

1 − 1733β3
1 + 2940β4

1 − 3707β5
1 + 2670β6

1 − 816β7
1) > 0,

for β1 ∈ (12 ,
2
3 ]. It follows that Φ1 > 0 for A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 >

β1

1−β1
and β1 ∈ (12 ,

2
3 ].

Case (2b) In this case, P5(3) = 0 and P5(2) > 0. This implies that (1, 1, 1, 1, 1, 2) is the smallest

positive integral solution to the level k = 2. Hence, we have 1
a1
+ 1

a2
+ 1

a3
+ 1

a4
+ 1

a5
6 1− 2

a6
= β2, β2 ∈ (0, 13 ]

since a6 ∈ (2, 3]. Let Ai = aiβ2, i = 1, 2, 3, 4, 5. Also notice that

A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 > 1,

because 1
A5

6 1, 2
A4

6 1
A4

+ 1
A5

6 1, 3
A3

6 1
A3

+ 1
A4

+ 1
A5

6 1, 4
A2

6 1
A2

+ 1
A3

+ 1
A4

+ 1
A5

6 1, and
5
A1

6
1
A1

+ 1
A2

+ 1
A3

+ 1
A4

+ 1
A5

6 1. 6!P6 can now be rewritten as follows,

6!P6 = 6!(P5(1) + P5(2))

6 6

((

A1
1 + β2
2β2

− 1

)(

A2
1 + β2
2β2

− 1

)(

A3
1 + β2
2β2

− 1

)
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×
(

A4
1 + β2
2β2

− 1

)(

A5
1 + β2
2β2

− 1

)

−
(

A5
1 + β2
2β2

− 1

)5

+A5
1 + β2
2β2

(

A5
1 + β2
2β2

− 1

)(

A5
1 + β2
2β2

− 2

)(

A5
1 + β2
2β2

− 3

)

×
(

A5
1 + β2
2β2

− 4

)

+ (A1 − 1)(A2 − 1)(A3 − 1)(A4 − 1)(A5 − 1)

− (A5 − 1)5 +A5(A5 − 1)(A5 − 2)(A5 − 3)(A5 − 4)

)

.

It is sufficient to prove that NTC6 > the R.H.S. of the above inequality. We will first subtract the

R.H.S. from NTC6, then substitute ai =
Ai

β2
, i = 1, 2, 3, 4, 5, a6 = 2

1−β2
, and multiply the difference by

β5
2(1− β2)

5,

Φ2 := (A1 +A2 + A3 + A4)(−2β4
2 + 3β5

2 + 17β6
2 − 58β7

2 + 72β8
2 − 41β9

2 + 9β10
2 )

+ (A1A2 +A1A3 +A2A3 +A1A4 +A2A4 +A3A4 +A1A5 +A2A5 +A3A5 +A4A5)

×
(

1

2
β3
2 − 3

2
β4
2 +

11

2
β5
2 − 49

2
β6
2 +

111

2
β7
2 − 125

2
β8
2 +

69

2
β9
2 − 15

2
β10
2

)

+ (A1A2A3 +A1A2A4 +A1A3A4 +A2A3A4 +A1A2A5

+A1A3A5 +A1A4A5 +A2A3A5 +A2A4A5 +A3A4A5)

×
(

1

4
β2
2 − 3

2
β3
2 +

7

2
β4
2 − 17

2
β5
2 + 27β6

2 −
109

2
β7
2 +

117

2
β8
2 − 63

2
β9
2 +

27

4
β10
2

)

+ (A1A2A3A4 +A1A2A3A5 +A1A2A4A5 + A1A3A4A5 +A2A3A4A5)

×
(

− 5

8
β2 +

21

8
β2
2 − 7

2
β3
2 − 1

2
β4
2 +

45

4
β5
2 − 133

4
β6
2 +

117

2
β7
2 − 117

2
β8
2 +

243

8
β9
2 − 51

8
β10
2

)

+A1A2A3A4A5

(

13

16
− 3β2 +

47

16
β2
2 + 2β3

2 − 39

8
β4
2 − 5β5

2 +
255

8
β6
2

− 60β7
2 +

945

16
β8
2 − 30β9

2 +
99

16
β10
2

)

+A5(−59β4
2 + 117β5

2 + 302β6
2 − 1198β7

2 + 1497β8
2 − 839β9

2 + 180β10
2 )

+A2
5(60β

3
2 − 180β4

2 + 300β5
2 − 900β6

2 + 2100β7
2 − 2460β8

2 + 1380β9
2 − 300β10

2 )

+A3
5

(

− 75

4
β2
2 +

75

2
β3
2 +

75

2
β4
2 − 525

2
β5
2 + 750β6

2 −
2775

2
β7
2 +

2925

2
β8
2 − 1575

2
β9
2 +

675

4
β10
2

)

+A4
5

(

15

8
β2 −

15

8
β2
2 − 15

2
β3
2 +

15

2
β4
2 +

165

4
β5
2 − 645

4
β6
2 +

585

2
β7
2 − 585

2
β8
2

+
1215

8
β9
2 − 255

8
β10
2

)

− (2β5
2 + 28β6

2 − 88β7
2 + 116β8

2 + 230β9
2).

The idea is to show that for all β2 ∈ (0, 13 ], the minimum of Φ2 for A1 > 5, A2 > 4, A3 > 3, A4 > 2 and

A5 > 1 occurs at A1 = 5, A2 = 4, A3 = 3, A4 = 2, A5 = 1, and Φ2|A1=5,A2=4,A3=3,A4=2,A5=1 > 0,

∂5Φ2

∂A1∂A2∂A3∂A4∂A5
=

1

16
(−1 + β2)

4(13 + 4β2 − 15β2
2 + 15β4

2 − 84β5
2 + 99β6

2) > 0,

for β2 ∈ (0, 1). It follows that ∂4Φ2

∂A1∂A2∂A3∂A4
is an increasing function with respect to A5 > 1 and

β2 ∈ (0, 1). The minimum of ∂4Φ2

∂A1∂A2∂A3∂A4
occurs at A5 = 1 and we have

∂4Φ2

∂A1∂A2∂A3∂A4

∣

∣

∣

∣

A5=1

=

[

1

16
(−1 + β2)

4(−2β2(5− β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2)

+A5(13 + 4β2 − 15β2
2 + 15β4

2 − 84β5
2 + 99β6

2))

]∣

∣

∣

∣

A5=1
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=
1

16
(−1 + β2)

4(−13 + 6β2 + 13β2
2 − 12β3

2 − 3β4
2 + 6β5

2 + 3β6
2)

> 0,

for β2 ∈ (0, 1). It follows that ∂4Φ2

∂A1∂A2∂A3∂A4
> 0 for A5 > 1 and β2 ∈ (0, 1). Since ∂3Φ2

∂A1∂A2∂A3
is

symmetric with respect to A4 and A5,
∂4Φ2

∂A1∂A2∂A3∂A5
> 0 for A4 > 1 and β2 ∈ (0, 1) and ∂3Φ2

∂A1∂A2∂A3
is an

increasing function with respect to A4 and A5 for A4 > A5 > 1 and β2 ∈ (0, 1). Hence the minimum of
∂3Φ2

∂A1∂A2∂A3
occurs at A4 = A5 = 1 and we have

∂3Φ2

∂A1∂A2∂A3

∣

∣

∣

∣

A4=A5=1

=

[

1

16
(−1 + β2)

4{−2β2(2β2(−1 + 2β2 + 18β3
2 − 27β4

2)

+A5(5− β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2))

+A4(−2β2(5− β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2)

+A5(13 + 4β2 − 15β2
2 + 15β4

2 − 84β5
2 + 99β6

2))}
]∣

∣

∣

∣

A4=A5=1

=
1

16
(−1 + β2)

6(13 + 10β2 + 6β3
2 + 3β4

2) > 0,

for β2 ∈ (0, 1). It follows that ∂3Φ2

∂A1∂A2∂A3
> 0 for A4 > A5 > 1 and β2 ∈ (0, 1). Note that ∂2Φ2

∂A1∂A2
is

symmetric with respect to A3, A4 and A5. Therefore, ∂3Φ2

∂A1∂A2∂A4
> 0 for A3 > A5 > 1 and β2 ∈ (0, 1),

∂3Φ2

∂A1∂A2∂A5
> 0 for A3 > A4 > 1 and β2 ∈ (0, 1), and ∂2Φ2

∂A1∂A2
is an increasing function with respect to

A3, A4 and A5 for A3 > A4 > A5 > 1 and β2 ∈ (0, 1). The minimum of ∂2Φ2

∂A1∂A2
occurs at A3 = A4

= A5 = 1.

∂2Φ2

∂A1∂A2

∣

∣

∣

∣

A3=A4=A5=1

=

[

1

16
(−1 + β2)

4{−2β2(−2β2(2β2(1 + β2 + 9β2
2 − 15β3

2) +A5(1− 2β2 − 18β3
2 + 27β4

2)

+A4(2β2(−1 + 2β2 + 18β3
2 − 27β4

2) +A5(5− β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2))))

+A3(−2β2(2β2(−1 + 2β2 + 18β3
2 − 27β4

2) +A5(5 − β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2)

+A4(−2β2(5 − β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2)

+A5(13 + 4β2 − 15β2
2 + 15β4

2 − 84β5
2 + 99β6

2))))}
]∣

∣

∣

∣

A3=A4=A5=1

= − 1

16
(−1 + β2)

7(13 + 13β2 + 3β2
2 + 3β3

2) > 0,

for β2 ∈ (0, 1). It follows that ∂2Φ2

∂A1∂A2
> 0 for A3 > A4 > A5 > 1 and β2 ∈ (0, 1). Since ∂Φ2

∂A1
is symmetric

with respect to A2, A3, A4 and A5,
∂2Φ2

∂A1∂A3
> 0 for A2 > A4 > A5 > 1 and β2 ∈ (0, 1), ∂2Φ2

∂A1∂A4
> 0 for

A2 > A3 > A5 > 1 and β2 ∈ (0, 1), ∂2Φ2

∂A1∂A5
> 0 for A2 > A3 > A4 > 1 and β2 ∈ (0, 1), and ∂Φ2

∂A1
is an

increasing function with respect to A2, A3, A4 and A5 for A2 > A3 > A4 > A5 > 1 and β2 ∈ (0, 1). Thus

the minimum of ∂Φ2

∂A1
occurs at A2 = A3 = A4 = A5 = 1 and we have

∂Φ2

∂A1

∣

∣

∣

∣

A2=A3=A4=A5=1

=

[

1

16
(−1 + β2)

8(13 + 16β2 + 3β2
2)

]∣

∣

∣

∣

A2=A3=A4=A5=1

=
1

16
(−1 + β2)

8(13 + 16β2 + 3β2
2) > 0,

for β2 ∈ (0, 1). It follows that ∂Φ2

∂A1
> 0 for A2 > A3 > A4 > A5 > 1 and β2 ∈ (0, 1). Since Φ2 is

symmetric with respect to A1, A2, A3 and A4,
∂Φ2

∂A2
> 0 for A1 > A3 > A4 > A5 > 1 and β2 ∈ (0, 1),

∂Φ2

∂A3
> 0 for A1 > A2 > A4 > A5 > 1 and β2 ∈ (0, 1), and ∂Φ2

∂A4
> 0 for A1 > A2 > A3 > A5 > 1 and

β2 ∈ (0, 1).
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Meanwhile,

∂4Φ2

∂A4
5

= −45(−1 + β2)
5β2(1 + 4β2 + 6β2

2 + 4β3
2 + 17β4

2) > 0,

for β2 ∈ (0, 1). It follows that ∂3Φ2

∂A3
5

is an increasing function with respect to A5 for A5 > 1 and β2 ∈ (0, 1).

Also, the minimum of ∂3Φ2

∂A3
5

occurs at A5 = 1 and we have

∂3Φ2

∂A3
5

∣

∣

∣

∣

A5=1

= [−45(−1 + β2)
5β2(−5β2(1 + 3β2 + 3β2

2 + 9β3
2)

+ 2A5(1 + 4β2 + 6β2
2 + 4β3

2 + 17β4
2))]|A5=1

=
45

2
(−1 + β2)

5β2(−2− 3β2 + 3β2
2 + 7β3

2 + 11β4
2) > 0,

for β2 ∈ (0, 0.587327). It follows that ∂3Φ2

∂A3
5

> 0 for A5 > 1 and β2 ∈ (0, 0.587327). Also, ∂2Φ2

∂A2
2

is an

increasing function with respect to A5 > 1 and β2 ∈ (0, 0.587327). The minimum of ∂2Φ2

∂A2
2

occurs at

A5 = 1 and we have

∂2Φ2

∂A2
5

∣

∣

∣

∣

A5=1

=

[

− 15

2
(−1 + β2)

5β2(16β
2
2(1 + 2β2 + 5β2

2)

− 15A5β2(1 + 3β2 + 3β2
2 + 9β3

2) + 3A2
5(1 + 4β2 + 6β2

2 + 4β3
2 + 17β4

2))

]
∣

∣

∣

∣

A5=1

=
15

2
(−1 + β2)

5β2(−3 + 3β2 + 11β2
2 + β3

2 + 4β4
2) > 0,

for β2 ∈ (0, 0.390388). It follows that ∂2Φ2

∂A2
5

> 0 for A5 > 1 and β2 ∈ (0, 0.390388). In addition, ∂Φ2

∂A5
is

an increasing function with respect to A1, A2, A3, A4 (due to the symmetric properties of Φ2 and ∂Φ2

∂A1
)

and A5 for A1 > A2 > A3 > A4 > A5 > 1 and β2 ∈ (0, 0.390388). The minimum of ∂Φ2

∂A5
occurs at

A1 = A2 = A3 = A4 = A5 = 1 and we have

∂Φ2

∂A5

∣

∣

∣

∣

A1=A2=A3=A4=A5=1

=

[

1

16
(−1 + β2)

4{8A1β
3
2(1 + β2 + 9β2

2 − 15β3
2) + 4A1A4β

2
2(1− 2β2 − 18β3

2 + 27β4
2)

−A1A3β
2
2(−1 + 2β2 + 18β3

2 − 27β4
2)− 2A1A3A4β2(5 − β2 − 6β2

2 + 6β3
2 − 39β4

2 + 51β5
2)

− 4A1A2β
2
2(−1 + 2β2 + 18β3

2 − 27β4
2)− 2A1A2A4β2(5− β2 − 6β2

2 + 6β3
2 − 39β4

2 + 51β5
2)

− 2A1A2A3β2(5 − β2 − 6β2
2 + 6β3

2 − 39β4
2 + 51β5

2)

+A1A2A3A4(13 + 4β2 − 15β2
2 + 15β4

2 − 84β5
2 + 99β6

2)

− 2β2(−4A2β
2
2(1 + β2 + 9β2

2 − 15β3
2)− 2A2A4β2(1− 2β2 − 18β3

2 + 27β4
2)

+ 2A2A3β2(−1 + 2β2 + 18β3
2 − 27β4

2) +A2A3A4(5− β2 − 6β2 + 6β3
2 − 39β4

2 + 51β5
2)

− 960A5β
2
2(−1− β2 − 3β2

2 + 5β3
2) + 450A2

5β2(−1− 2β2 − 6β3
2 + 9β4

2)

− 60A3
5(−1− 3β2 − 2β2

2 + 2β3
2 − 13β4

2 + 17β5
2)

+ 8β3
2(−59− 119β2 + 180β2

2) + 4A4β
2
2(1 + β2 + 9β2

2 − 15β3
2)

+ 4A3β
2
2(1 + β2 + 9β2

2 − 15β3
2) + 2β2A3A4(1− 2β2 − 18β3

2 + 27β4
2))}

]
∣

∣

∣

∣

A1=A2=A3=A4=A5=1

= − 1

16
(−1 + β2)

4(−13− 84β2 + 523β2
2 − 392β3

2 − 735β4
2 − 100β5

2 + 801β6
2) > 0,

for β2 ∈ (0, 0.390388). It follows that ∂Φ2

∂A5
> 0 for A1 > A2 > A3 > A4 > A5 > 1 and β2 ∈ (0, 0.390388).

Therefore, Φ2 is an increasing function with respect to A1, A2, A3, A4 and A5 for A1 > A2 > A3 > A4
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> A5 > 1 and β2 ∈ (0, 0.390388). The minimum of Φ2 occurs at A1 = A2 = A3 = A4 = A5 = 1. In

addition, we take the parameters for A1, A2, A3, A4 and A5 into consideration, then

Φ2|A1=A2=A3=A4=A5=1 =
1

8
(780− 4235β2 + 8859β2

2 − 7392β3
2 − 2272β4

2 + 10186β5
2

− 8738β6
2 + 2936β7

2 + 60β8
2 − 2647β9

2 + 159β10
2 ) > 0,

for β2 ∈ (0, 13 ). It follows that Φ2 > 0 for A1 > 5, A2 > 4, A3 > 3, A4 > 2, A5 > 1 and β2 ∈ (0, 13 ].

Case (3) a6 ∈ (3, 4]. The four levels of Case (3) are k = 1, k = 2, k = 3 and k = 4. Notice that

P5(4) = 0. Because positivity for levels above 1 is unknown, the proof for the above case is split into the

following cases:

(a) P5(2) = 0. In this case only level k = 1 has positive integral solutions.

(b) P5(3) = 0, P5(2) > 0. In this case levels k = 1, 2 have positive integral solutions.

(c) P5(3) > 0. In this case levels k = 1, 2, 3 have positive integral solutions.

Case (4) a6 ∈ (4, 5]. The 5 levels of Case (4) are k = 1, k = 2, k = 3, k = 4 and k = 5. It is easy to

see that P5(5) = 0. Since the positivity of levels above 1 is unknown, the proof is split into the following

cases:

(a) P5(2) = 0. In this case only level k = 1 has positive integral solutions.

(b) P5(3) = 0, P5(2) > 0. In this case levels k = 1, 2 have positive integral solutions.

(c) P5(4) = 0, P5(3) > 0. In this case levels k = 1, 2, 3 have positive integral solutions.

(d) P5(4) > 0. In this case levels k = 1, 2, 3, 4 have positive integral solutions.

Case (5) a6 ∈ (5, 6). The 5 levels of Case (5) are k = 1, k = 2, k = 3, k = 4 and k = 5. Since the

positivity of levels above 1 is unknown, the proof is split into the following cases:

(a) P5(2) = 0. In this case only level k = 1 has positive integral solutions.

(b) P5(3) = 0, P5(2) > 0. In this case levels k = 1, 2 have positive integral solutions.

(c) P5(4) = 0, P5(3) > 0. In this case levels k = 1, 2, 3 have positive integral solutions.

(d) P5(5) = 0, P5(4) > 0. In this case levels k = 1, 2, 3, 4 have positive integral solutions.

(e) P5(5) > 0. In this case levels k = 1, 2, 3, 4, 5 have positive integral solutions.

Case (6) a6 ∈ [6,∞). The proof of Case (6) is a little bit different from the previous cases, due to the

unclarity of the positivity of some newly appeared expressions using the similar method as before. The

positivity depends on which interval a6 resides in. For this reason, we have to split Case (6) into two

cases: (6a), 1
9 (31 +

√
574) > a6 > 6, and (6b), a6 >

1
9 (31 +

√
574) ≈ 6.10648.

Case (6a) 1
9 (31 +

√
574) ≈ 6.10648 > a6 > 6. In this case, there are six subcases to consider:

(i) P5(6) = 0, P5(5) = 0, P5(4) = 0, P5(3) = 0, P5(2) = 0, P5(1) > 0. In this case levels k = 6, 5, 4, 3, 2

have no positive integral solutions.

(ii) P5(6) = 0, P5(5) = 0, P5(4) = 0, P5(3) = 0, P5(2) > 0. In this case levels k = 6, 5, 4, 3 have no

positive integral solutions.

(iii) P5(6) = 0, P5(5) = 0, P5(4) = 0, P5(3) > 0. In this case levels k = 6, 5, 4 have no positive integral

solutions.

(iv) P5(6) = 0, P5(5) = 0, P5(4) > 0. In this case levels k = 6, 5 have no positive integral solutions.

(v) P5(6) = 0, P5(5) > 0. In this case only level k = 6 has no positive integral solutions.

(vi) P5(6) > 0. In this case the level k = 6 has positive integral solutions.

Since the proofs of Subcases (i)–(vi) are analogous, we only provide the detailed proof of Subcase (i).

Subcase (i) We will use the proof of (1) for this case. In this case only P5(1) > 0. This implies that

(1, 1, 1, 1, 1, 1) is the smallest positive integral solution to level k = 1. It follows that

1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5
6 1− 1

a6
= β1, β1 ∈

[

5

6
, 0.836239

)

,

since a6 ∈ [6, 6.10648). In addition, the parameters for A1, A2, A3, A4 and A5 can be improved to the

following:

A1 > A2 > A3 > A4 > A5 >
β1

1− β1
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since A5 = a5β1 > a6β1 = β1

1−β1
. Because β1 ∈ [ 56 , 0.836239),

β1

1−β1
∈ [5, 5.10648). Therefore, it is sufficient

to prove that Φ1 > 0 for A1 > A2 > A3 > A4 > A5 >
β1

1−β1
and β1 ∈ [ 56 , 0.836239),

Φ1|A1=A2=A3=A4=A5=
β1

1−β1

=
β6
1(120− 847β1 + 2521β2

1 − 3604β3
1 + 2556β4

1 − 720β5
1)

−1 + β1
> 0,

for β1 ∈ [ 56 , 0.836239), because the roots of the numerator are β1 = 0, 12 ,
2
3 ,

3
4 ,

4
5 ,

5
6 . It follows that Φ1 > 0

for A1 > A2 > A3 > A4 > A5 >
β1

1−β1
and β1 ∈ [ 56 , 0.836239).

Case (6b) a6 >
1
9 (31 +

√
574) ≈ 6.10648. In order to solve ths case we will need to use the sharp

estimate of the GLY conjecture for n = 6, which has already been proven by Wang and Yau [35].

GLY Conjecture (Sharp Estimate), n = 6 (GLY6). Let a1 > a2 > a3 > a4 > a5 > a6 > 5 be

real numbers and P6 be the number of positive integral points satisfying

x1
a1

+
x2
a2

+
x3
a3

+
x4
a4

+
x5
a5

+
x6
a6

6 1.

Then

720P6 6 a1a2a3a4a5a6 −
5

2
(a1a2a3a4a5 + a1a2a3a4a6

+ a1a2a3a5a6 + a1a2a4a5a6 + a1a3a4a5a6 + a2a3a4a5a6)

+ 17(a1a2a3a4 + a1a2a3a5 + a1a2a4a5 + a1a3a4a5 + a2a3a4a5)

− 45

2
(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4 + a1a2a5

+ a1a3a5 + a2a3a5 + a1a4a5 + a2a4a5 + a3a4a5)

+
137

5
(a1a2 + a1a3 + a2a3 + a1a4 + a2a4 + a3a4 + a1a5 + a2a5 + a3a5 + a4a5)

− 24(a1 + a2 + a3 + a4 + a5),

and the equality is attained if and only if a1 = a2 = a3 = a4 = a5 = a6 = Z. Since GLY6 has already

been shown to be true, it is sufficient to prove that NTC6 > GLY6, and that equality holds if and only

if a1 = a2 = a3 = a4 = a5 = a6 = Z. To prove this, we will first subtract GLY6 from NTC6 and let

Ai =
ai

a6
, i = 1, . . . , 5. Then, we will show that the difference is greater than or equal to 0:

Φ7 :=
3

2
a56(A1A2A3A4A5 +A2A3A4A5 +A1A3A4A5 +A1A2A4A5 +A1A2A3A5 +A1A2A3A4)

− 16a46(A2A3A4A5 +A1A3A4A5 +A1A2A4A5 +A1A2A3A5 +A1A2A3A4)

+ a46(A3A4A5 +A2A4A5 +A1A4A5 +A2A3A5 +A1A3A5)

+ (A1A2A5 +A2A3A4 +A1A3A4 +A1A2A4 +A1A2A3)

+
43

2
a36(A3A4A5 +A2A4A5 +A1A4A5 +A2A3A5 +A1A3A5 +A1A2A5

+A2A3A4 +A1A3A4 +A1A2A4 +A1A2A3)

− a36(A4A5 +A3A5 +A2A5 +A1A5 +A3A4 + A2A4 +A1A4 + A2A3 +A1A3 +A1A2)

− 132

5
a26(A4A5 +A3A5 +A2A5 +A1A5 +A3A4 +A2A4 +A1A4 +A2A3 +A1A3 +A1A2)

+ a26(A5 +A4 +A3 +A2 +A1) + 23β6(A5 +A4 +A3 +A2 +A1)

− (115a6 − 259a26 + 205a36 − 70a46 + 9a56).

We will show that for all a6 > 6, the minimum of Φ7 for A1 > A2 > A3 > A4 > A5 > 1 occurs at

A1 = A2 = A3 = A4 = A5 = 1 and Φ7|A1=A2=A3=A4=A5=1 = 0. Notice that Φ7 is symmetric with respect

to A1, A2, A3, A4 and A5, then we have

∂5Φ7

∂A1∂A2∂A3∂A4∂A5
=

3a56
2

> 0,
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for a6 > 0. It follows that ∂4Φ7

∂A1∂A2∂A3∂A4
is an increasing function of A5 for A5 > 1 and a6 > 0. Therefore,

the minimum of ∂4Φ7

∂A1∂A2∂A3∂A4
occurs at A5 = 1 and we have

∂4Φ7

∂A1∂A2∂A3∂A4

∣

∣

∣

∣

A5=1

=

[

− 16a46 +
3a56
2

+
3

2
a56A5

]
∣

∣

∣

∣

A5=1

= −16a46 + 3a56 > 0,

for a6 >
16
3 . Hence

∂4Φ7

∂A1∂A2∂A3∂A4
> 0 for A5 > 1 and a6 >

16
3 . Since

∂3Φ7

∂A1∂A2∂A3
is symmetric with respect

to A4 and A5,
∂4Φ7

∂A1∂A2∂A3∂A5
> 0 for A4 > 1 and a6 >

16
3 and ∂3Φ7

∂A1∂A2∂A3
is an increasing function with

respect to A4 and A5 for A4 > A5 > 1 and a6 >
16
3 . The minimum of ∂3Φ7

∂A1∂A2∂A3
occurs at A4 = A5 = 1

and we have

∂3Φ7

∂A1∂A2∂A3

∣

∣

∣

∣

A4=A5=1

=

[

43a36
2

+ a46 − 16a46(A4 +A5) +
3

2
a56(A4 +A5 +A4A5)

]∣

∣

∣

∣

A4=A5=1

=
43a36
2

− 31a46 +
9a56
2

> 0,

for a6 > 1
9 (31 +

√
574) ≈ 6.10648. It follows that ∂3Φ7

∂A1∂A2∂A3
> 0 for A4 > A5 > 1 and a6 > 6.10648.

Because ∂2Φ7

∂A1∂A2
is symmetric with respect to A3, A4 and A5,

∂3Φ7

∂A1∂A2∂A4
> 0 for A3 > A5 > 1 and

a6 > 6.10648, ∂3Φ7

∂A1∂A2∂A5
> 0 for A3 > A4 > 1 and a6 > 6.10648, and ∂2Φ7

∂A1∂A2
is an increasing function

with respect to A3, A4, A5 for A3 > A4 > A5 > 1 and a6 > 6.10648. Therefore, the minimum of ∂2Φ7

∂A1∂A2

occurs at A3 = A4 = A5 = 1 and we have

∂2Φ7

∂A1∂A2

∣

∣

∣

∣

A3=A4=A5=1

=

[

− 132a26
5

− a36 +
43

2
a36A3 + a46A3 +

43

2
a36A4 + a46A4 − 16a46A3A4

+
3

2
a56A3A4 +

43

2
a36A5 + a46A5 − 16a46A3A5 +

3

2
a56A3A5 − 16a46A4A5

+
3

2
a56A4A5 +

3

2
a56A3A4A5

]∣

∣

∣

∣

A3=A4=A5=1

= −132a26
5

+
127a36
2

− 45a46 + 6a56 > 0,

for a6 > 6.10648. It follows that ∂2Φ7

∂A1∂A2
> 0 for A3 > A4 > A5 > 1 and a6 > 6.10648. Since ∂Φ7

∂A1
is

symmetric with respect toA2, A3, A4 and A5,
∂2Φ7

∂A1∂A3
> 0 forA2 > A4 > A5 > 1 and a6 > 6.10648, ∂2Φ7

∂A1∂A4

> 0 for A2 > A3 > A5 > 1 and a6 > 6.10648, ∂2Φ7

∂A1∂A5
> 0 for A2 > A3 > A4 > 1 and a6 > 6.10648,

and ∂Φ7

∂A1
is an increasing function with respect to A2, A3, A4 and A5 for A2 > A3 > A4 > A5 > 1 and

a6 > 6.10648. Hence the minimum of ∂Φ7

∂A1
occurs at A2 = A3 = A4 = A5 = 1 and we have

∂Φ7

∂A1

∣

∣

∣

∣

A2=A3=A4=A5=1

= 23a6 + a26 −
132

5
a26A2 − a36A2 −

132

5
a26A3 − a36A3 +

43

2
a36A2A3

+ a46A2A3 −
132

5
a26A4 − a36A4 +

43

2
a36A2A4 + a46A2A4 +

43

2
a36A3A4 + a36A3A4

− 16a46A2A3A4 +
3

2
a56A2A3A4 −

132

5
a26A5 − a36A5 +

43

2
a36A2A5 + a46A4A5

+
43

2
a36A3A5 + a46A3A5 − 16a46A2A3A5 +

3

2
a56A2A3A5 +

43

2
a36A4A5 + a46A4A5

− 16a46A2A4A5 +
3

2
a56A2A4A5 − 16a46A3A4A5 +

3

2
a56A3A4A5 +

3

2
a56A2A3A4A5 > 0,
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for a6 > 6.10648. It follows that ∂Φ7

∂A1
> 0 for A2 > A3 > A4 > A5 > 1 and a6 > 6.10648. Notice that

Φ7 is symmetric with respect to A1, A2, A3, A4 and A5. Therefore,
∂Φ7

∂A2
> 0 for A1 > A3 > A4 > A5

> 1 and a6 > 6.10648, ∂Φ7

∂A3
> 0 for A1 > A2 > A4 > A5 > 1 and a6 > 6.10648, ∂Φ7

∂A4
> 0 for A1 > A2

> A3 > A5 > 1 and a6 > 6.10648, ∂Φ7

∂A5
> 0 for A1 > A2 > A3 > A4 > 1 and a6 > 6.10648, and Φ7

is an increasing function with respect to A1, A2, A3, A4 and A5 for A1 > A2 > A3 > A4 > A5 > 1 and

a6 > 6.10648. The minimum occurs at A1 = A2 = A3 = A4 = A5 = 1 and we have

Φ7|A1=A2=A3=A4=A5=1 = 0,

for a6 > 6.10648. Therefore, Φ7 > 0 for a1 > a2 > a3 > a4 > a5 > a6 > 1 and Φ7 = 0 if and only if

a1 = a2 = a3 = a4 = a5 = a6 = Z.

2.2 Proof of Theorem 1.4

Due to the fact that ψ(x, y) = Qn, we can apply our sharp estimate of P6 to the function in order to

obtain an estimate. Let p1 < p2 < p3 < p4 < p5 < p6 be the first six prime numbers up to y. If

pl11 p
l2
2 p

l3
3 p

l4
4 p

l5
5 p

l6
6 6 x, then

l1
log x
log p1

+
l2

log x
log p2

+
l3

log x
log p3

+
l4

log x
log p4

+
l5

log x
log p5

+
l6

log x
log p6

6 1.

It follows that ai =
log x
log pi

and xi = li, 1 6 i 6 6. Note that Q6 = P (a1(1 + a), a2(1 + a), a3(1 + a), a4(1 +

a), a5(1 + a), a6(1 + a)), where

a =
1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5
+

1

a6
.

We split the estimate into four cases:

(I) 5 6 y < 7;

(II) 7 6 y < 11;

(III) 11 6 y < 13;

(IV) 13 6 y < 17.

Cases (I) through (III) have been proven through the estimates of P3, P4 and P5, respectively. Case (IV)

involves the first six prime numbers: p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, and p6 = 13. Consequently,

a =
log 2 + log 3 + log 5 + log 7 + log 11 + log 13

log x

and

ψ(x, y) = Q6

= P

(

log x

log 2

(

1 +
log 2× 3× 5× 7× 11× 13

log x

)

,

log x

log 3

(

1 +
log 2× 3× 5× 7× 11× 13

log x

)

,
log x

log 5

(

1 +
log 2× 3× 5× 7× 11× 13

log x

)

,

log x

log 7

(

1 +
log 2× 3× 5× 7× 11× 13

log x

)

,
log x

log 11

(

1 +
log 2× 3× 5× 7× 11× 13

log x

)

,

log x

log 13

(

1 +
log 2× 3× 5× 7× 11× 13

log x

))

6
1

6!

((

log x

log 2
+

log 3× 5× 7× 11× 13

log 2

)(

log x

log 3
+

log 3× 5× 7× 11× 13

log 3

)

×
(

log x

log 5
+

log 3× 5× 7× 11× 13

log 5

)(

log x

log 7
+

log 3× 5× 7× 11× 13

log 7

)
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×
(

log x

log 11
+

log 3× 5× 7× 11× 13

log 11

)(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13

)

−
((

log x

log 13
+

log 3× 5× 7× 11× 13

log 13

)6

−
(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13
+ 1

)

×
(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13

)(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13
− 1

)

×
(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13
− 2

)(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13
− 3

)

×
(

log x

log 13
+

log 3× 5× 7× 11× 13

log 13
− 4

)))

=
1

720

{

1

log 2 log 3 log 5 log 7 log 11 log 13
(log x+ log 15015)(logx+ log 10010)(logx+ log 6006)

× (log x+ log 4290)(logx+ log 2730)(logx+ log 2310)− 1

log6 13
[(log x+ log 2310)6

− (log x+ log 13 + log 2310)(logx+ log 2310)(logx+ log 2310− log 13)

× (log x+ log 2310− 2 log 13)(log x+ log 2310− 3 log 13)

× (log x+ log 2310− 4 log 13)]

}

.
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