Recent Results on Rigidity of CR Morphisms Between Compact Strongly Pseudoconvex CR Manifolds

Stephen Yau and Huaiqing Zuo

Dedicated to Professor George Daniel Mostow on the occasion of his 90th birthday

Abstract

The purpose of this paper is to summarize the results on rigidity of CR morphisms between compact strongly pseudoconvex CR manifolds developed by the first author and his coauthors. This theory is related to the rigidity of etale covering between resolutions of isolated singularities.

2010 Mathematics Subject Classification: 32V10, 14B05, 32S05, 32S45.
Keywords and Phrases: CR morphism, CR manifold, rigidity, CR automorphism.

1 Introduction

Rigidity phenomena in complex geometry have received a lot of attention historically. Borel and Narasimhan [Bo-Na67] obtained some general results on rigidity of morphisms with domain space carrying no non-constant pseudoconvex function which is bounded above and target space being covered by analytic subset of a bounded domain in \mathbb{C}^{n}. In 1975, Kobayashi and Ochiai [Ko-Oc75] proved that there are only finitely many surjective morphisms between two fixed projective manifolds of general type. In 1981, Kalka, Shiffman and Wong [KSW81] developed a general theory to study the finiteness and rigidity theorems for holomorphic mappings. Let $\operatorname{Hol}_{k}(X, Y)$ denote the complex space of holomorphic maps of rank $\geqslant k$

[^0]from the compact complex space X into the complex manifold Y. They proved that if Y satisfies certain convexity or cohomological conditions, then for suitable $k, \operatorname{Hol}_{k}(X, Y)$ is either discrete or finite. They also showed that if the tangent bundle of Y satisfies k-pseudoconvexity condition, then $\operatorname{Hol}_{k}(X, Y)$ is discrete. As a corollary they asserted that if Y is a compact Hermitian manifold with negative holomorphic sectional curvature, then the set of surjective holomorphic maps from X onto Y is finite. On the other hand, if Y is a compact Kähler manifold with $c_{1}(Y)$ represented by a negative semi-definite form and either $c_{n}(Y) \neq 0$ or $c_{1}^{n}(Y) \neq 0$, Kalka, Shiffman and Wong showed that $\operatorname{Hol}_{n}(X, Y)$ is discrete.

Inspiring by the Grauert-Oka principle, Mok [Mok84] formulated the following problem on n-dimensional Stein spaces.
Problem. Suppose V is an n-dimensional Stein space which has the homotopy type of a real n-dimensional CW-complex. Suppose $f: V \rightarrow V$ is a holomorphic homotopy equivalence. Does it follow that f is a biholomorphism?

Mok [Mok84] pointed out that obvious counter-example on the punctured disc show that the answer is in general negative even in the case of bounded domains and injective holomorphic self-mappings. In [Mok84], instead of assuming that f is a homotopy equivalence, Mok assumes that V is hyperbolic in the sense of Caratheodory and f induces an isomorphism on the n-th integral homology group $H_{n}(V, \mathbb{Z})$, which is assumed to be nonzero and finitely generated. Then he proved that f is a biholomorphism.

Recently Huang, Kebekus and Peternell [H-K-P06] have proved the following beautiful result. Let Y be a projective n-dimensional manifold which is not uniruled. If either $\pi_{1}(Y)$ is finite or $c_{n}(Y) \neq 0$, then for each connected normal compact complex variety X, the space of surjective morphism from X to Y is discrete.

In 1977, Wong [Wo77] proved an important result in complex geometry that any strongly pseudoconvex domain with smooth boundary in \mathbb{C}^{n} with noncompact automorphism group must be biholomorphically equivalent to the unit ball. In 1978, Yau [Ya78] proved the Calabi Conjecture. As a consequence, he [Ya77] proved that $3 c_{2} \geqslant c_{1}^{2}$ for any Kähler surface with ample canonical bundle, and the equality holds if and only if the surface is covered by the ball in \mathbb{C}^{2}. Using this results, he [Ya77] proved the Severi Conjecture that every complex surface which is homotopic to the complex projective plane $\mathbb{C P}^{2}$ is biholomorphic to $\mathbb{C P}^{2}$.

As a consequence of his famous strong rigidity theorem [Mo83] Mostow showed that two compact quotients of the ball of complex dimension $\geqslant 2$ with isomorphic fundamental groups are either biholomorphic or conjugate biholomorphic. S.-T. Yau conjectured that this phenomenon of strong rigidity should hold also for compact Kähler manifolds of complex dimension $\geqslant 2$ with same homotopy type and negative sectional curvature. In his paper [Siu80], Siu proved that Yau's conjecture is true when the curvature tensor of one of the two compact Kähler manifolds is strongly negative with no curvature assumption on the other manifold.

CR manifolds are abstract models of boundary of complex manifolds. Strongly pseudoconvex CR manifolds have rich geometric and analytic structures. The harmonic theory for the $\bar{\partial}_{b}$ complex on compact strongly pseudoconvex CR manifolds was developed by Kohn [Kohn65]. Using this theory, Boutet de Monvel [BM75]
proved that if X is a compact strongly pseudoconvex CR manifold of real dimension $2 n-1, n \geqslant 3$ then there exist C^{∞} functions f_{1}, \ldots, f_{N} on X such that each $\bar{\partial}_{b} f_{j}=0$ and $f=\left(f_{1}, \ldots, f_{N}\right)$ defines an embedding of X in \mathbb{C}^{N}. Thus, any compact strongly pseudoconvex CR manifold of dimension $\geqslant 5$ can be CR embedded in some complex Euclidean space. On the other hand, 3-dimensional strongly pseudoconvex compact orientable CR manifolds are not necessarily embeddable. Throughout this paper, our strongly pseudoconvex CR manifolds are always assumed to be compact orientable and embedded in some \mathbb{C}^{N}. By a beautiful theorem of Harvey and Lawson [Ha-La00, Ha-La75], these CR manifolds are the boundaries of subvarieties with only isolated normal singularities.

Rigidity problems of CR immersions into spheres and hyperquadrics were studied by Ebenfelt, Huang and Zaitsev [EHZ04, EHZ05]. Let X be a strongly pseudoconvex CR manifold of dimension $2 n-1$. For $p \in X$, let $f:(X, p) \longrightarrow S^{2 n+2 d-1}$ be a local CR immersion of X near p into unit sphere $S^{2 n+2 d-1}$ in \mathbb{C}^{n+d}. The result of [EHZ04] states that if $d<\frac{n}{2}-1$, then f is rigid in the sense that any other immersion of (X, p) into $S^{2 n+2 d-1}$ is of the form $\phi \circ f$, where ϕ is biholomorphic automorphism of the unit ball $B \subseteq \mathbb{C}^{n+d}$. As a striking corollary, they show that if X and X^{\prime} are two strongly pseudoconvex CR manifolds of dimension $2 n-1$ in $S^{2 n+2 d-1}$ with $d<\frac{n}{2}-1$ and if X and X^{\prime} are locally CR equivalent at some points $p \in X$ and $p^{\prime} \in X^{\prime}$, then there exists a unitary linear transformation which maps X to X^{\prime}.

In a remarkable paper [Pin74], Pinchuk showed that a proper holomorphic mapping between strongly pseudoconvex domains in \mathbb{C}^{n} is locally biholomorphic. In fact he proved that proper holomorphic self-maps of strongly pseudoconvex domains are necessarily biholomorphic. It was proved in [Be-Ca82] and [Di-Fo82] that proper holomorphic maps extend smoothly to the boundaries and hence induce CR morphisms between the boundaries.

In [Yau11], the first author of this paper took another point of view. In view of Fornaess theory on strongly pseudoconvex domains [For76], he investigated the rigidity property of CR morphisms between strongly pseudoconvex CR manifolds by means of the singularities theory. Later in his joint work with Tu and Zuo [TYZ13], the rigidity of CR morphisms between CR manifolds lying in the same variety is proved. The purpose of this paper is to summarize the results on rigidity of CR morphisms between strongly pseudoconvex CR manifolds by means of the singularity theory.

In Section 2, we shall recall some basic notions and theorems of CR manifolds and the interplay between CR manifold and singularities. In Section 3, we shall discuss the rigidity of CR morphisms between any two compact strongly pseudoconvex CR manifolds. In Section 4, we will show that the rigidity of CR morphisms between two compact strongly pseudoconvex CR manifolds lying in a same variety with isolated singularities is related to the rigidity of etale covering between resolutions of isolated singularities. In Section 5, we give examples of strongly pseudoconvex 3-dimensional CR manifolds and computes their non-constant CR endomorphisms.

2 Preliminaries on CR manifolds

Definition 2.1. Let X be a connected oriented orientable manifold of real dimension $2 n-1$. A CR structure on X is an $(n-1)$-dimensional subbundle S of the complexified tangent bundle $\mathbb{C} T X$ such that
(1) $S \cap \bar{S}=\{0\}$;
(2) If L, L^{\prime} are local sections of X, then so is $\left[L, L^{\prime}\right]$.

A manifold with a CR structure is called a CR manifold. There is a unique subbundle \mathcal{H} of the tangent bundle $T(X)$ such that $\mathbb{C H}=S \oplus \bar{S}$. Furthermore, there is a unique homomorphism $J: \mathcal{H} \rightarrow \mathcal{H}$ such that $J^{2}=-1$ and $S=\{v-i J v$: $v \in \mathcal{H}\}$. The pair (\mathcal{H}, J) is called the real expression of the CR structure.
Definition 2.2. Let L_{1}, \ldots, L_{n-1} be a local frame of S. Then $\bar{L}_{1}, \ldots, \bar{L}_{n-1}$ is a local frame of \bar{S} and one may choose a local section N of $T(X)$ which is purely imaginary, such that $L_{1}, \ldots, L_{n-1}, \bar{L}_{1}, \ldots, \bar{L}_{n-1}, N$ is a local frame of $\mathbb{C} T(X)$. The matrix $\left(c_{i j}\right)$ defined by

$$
\left[L_{i}, \bar{L}_{j}\right]=\sum a_{i j}^{k} L_{k}+\sum b_{i j}^{k} \bar{L}_{k}+\sqrt{-1} c_{i j} N
$$

is Hermitian and called the Levi form of X.
Proposition 2.1. The number of nonzero eigenvalues and the absolute value of the signature of the Levi form $\left(c_{i j}\right)$ at each point are independent of the choice of $L_{1}, \ldots, L_{n-1}, N$.

Definition 2.3. The $C R$ manifold X is called strongly pseudoconvex if the Levi form is definite at each point of X.

Theorem 2.1. (Boutet de Monvel [BM75]) If X is a compact strongly pseudoconvex $C R$ manifold of dimension $(2 n-1)$ and $n \geq 3$, then X is CR embeddable in \mathbb{C}^{N}.

Although there are non-embeddable compact 3-dimensional CR manifolds, in this paper all CR manifolds are assumed to be embeddable in complex Euclidean space.

Theorem 2.2. (Harvey-Lawson [Ha-La75, Ha-La00]) For any compact connected embeddable $C R$ manifold X, there is a unique complex variety V in \mathbb{C}^{N} for some N such that the boundary of V is X and V has only normal isolated singularities.

With the notation in Definition 2.1, for any C^{∞} function u, there is a section $\bar{\partial}_{b} u \in \Gamma\left(\bar{S}^{*}\right)$ defined by $\left(\bar{\partial}_{b} u\right)(\bar{L})=\bar{L} u$ for any $L \in \Gamma(S)$. This can be generalized as follows:

Definition 2.4. A complex vector bundle E over X is said to be holomorphic if there is a differential operator $\bar{\partial}_{E}: \Gamma(E) \rightarrow \Gamma\left(E \otimes \bar{S}^{*}\right)$ such that if $\bar{L} u$ denotes $\left(\bar{\partial}_{E} u\right)(\bar{L})$ for $u \in \Gamma(E)$ and $L \in \Gamma(S)$, then for any $L_{1}, L_{2} \in \Gamma(S)$ and any C^{∞} function f on X
(1) $\bar{L}(f u)=(\bar{L} f) u+f(\bar{L} u)$;
(2) $\left[\bar{L}_{1}, \bar{L}_{2}\right] u=\bar{L}_{1} \bar{L}_{2} u-\bar{L}_{2} \bar{L}_{1} u$.

A solution u of the equation $\bar{\partial}_{E} u=0$ is called a holomorphic section.
The vector bundle $\widehat{T}(X)=\mathbb{C} T(X) / \bar{S}$ is holomorphic with respect to the following $\bar{\partial}=\bar{\partial}_{\widehat{T}(X)}$. Let ω be the projection from $\mathbb{C} T(X)$ to $\widehat{T}(X)$. Take any $u \in \Gamma(\widehat{T}(X))$ and express it as $u=\omega(Z), Z \in \Gamma(\mathbb{C} T(X))$. For any $L \in \Gamma(S)$, define $(\bar{\partial} u)(\bar{L})=\omega([\bar{L}, Z])$. The section $(\bar{\partial} u)(\bar{L})$ of $\widehat{T}(X)$ does not depend on the choice of Z and $\bar{\partial} u$ gives a section of $\widehat{T}(X) \otimes \bar{S}^{*}$. Further the operator $\bar{\partial}$ satisfies the conditions in Definition 2.4. The resulting holomorphic vector bundle $\widehat{T}(X)$ is called the holomorphic tangent bundle of X.

Lemma 2.1. If X is a real hypersurface in a complex manifold M, then the holomorphic tangent bundle $\widehat{T}(X)$ is naturally isomorphic to the restriction to X of the bundle $T^{1,0}(M)$ of all $(1,0)$ tangent vectors to M.

Definition 2.5. Let X be a compact $C R$ manifold of real dimension $2 n-1$. X is said to be a Calabi-Yau CR manifold if there exists a nowhere vanishing holomorphic section in $\Gamma\left(\Lambda^{n} \widehat{T}(X)^{*}\right)$ where $\widehat{T}(X)=\mathbb{C} T(X) / S^{*}$ is the holomorphic tangent bundle of X.

Remark 2.1. (a) Let X be a compact CR manifold of real dimension $2 n-1$ which is a boundary of domain in \mathbb{C}^{n}. Then X is a Calabi-Yau CR manifold.
(b) Let X be a strongly pseudoconvex $C R$ manifold of real dimension $2 n-1$ contained in the boundary of a bounded strongly pseudoconvex domain in \mathbb{C}^{n+1}. Then X is a Calabi-Yau CR manifold.
(c) More generally, let V be a Stein variety V with singular set S such that the canonical bundle of $V-S$ is trivial. If X is a real hypersurface in $V-S$, then X is a Calabi-Yau CR manifold.

Definition 2.6. Let X be a compact connected strongly pseudoconvex embeddable $C R$ manifold of real dimension $2 n-1$. Let V be the normal subvariety in \mathbb{C}^{N} such that the boundary of V is X. Let $\pi: M \rightarrow V$ be a resolution of singularities of V. The geometric genus of X denoted by $p_{g}(X)$ is defined to be $\operatorname{dim} H^{n-1}(M, \mathcal{O})$.

Proposition 2.2. ([Ya-Yu02]) Let X be a connected compact strongly pseudoconvex $C R$ manifold of real dimension $2 n-1$ and $n \geq 2$. Suppose that X bounds a normal variety $V \subseteq \mathbb{C}^{N}$ with isolated singularities $Y=\left\{q_{1}, \ldots, q_{m}\right\}$. Let π : $M \rightarrow V$ be a resolution of singularities of V. Then the geometric genus $p_{g}(X):=$ $\operatorname{dim} H^{n-1}(M, \mathcal{O})$ is a $C R$ invariant of X. In fact, let U be any small strongly pseudoconvex neighborhood of Y. Then

$$
p_{g}(X)=\operatorname{dim} H^{0}\left(U-Y, \Omega^{n}\right) / L^{2}\left(U-Y, \Omega^{n}\right)
$$

where Ω^{n} is the sheaf of germs of holomorphic n-forms and $L^{2}\left(U-Y, \Omega^{n}\right)$ is the space of holomorphic n-forms ω on $U-Y$ which are L^{2}-integrable for some small neighborhood $U^{\prime} \subset \subset U$, i.e., $\int_{U^{\prime}-Y} \omega \wedge \bar{\omega}<\infty$.

Definition 2.7. Let (V, q) be a complex analytic with isolated normal singularity at q of dimension n. The geometric genus $p_{g}(V, q)$ of the $\operatorname{singularity~}(V, q)$ is defined to be $\operatorname{dim} H^{0}\left(U-\{q\}, \Omega^{n}\right) / L^{2}\left(U-\{q\}, \Omega^{n}\right)$ where U is any strongly pseudoconvex neighborhood of q.

Remark 2.2. (a) Let $\pi:(M, A) \rightarrow(U, q)$ be a resolution of singularity. By a theorem of [Yau77], $H^{n-1}(M, \mathcal{O})=\operatorname{dim} H^{0}\left(V-\{q\}, \Omega^{n}\right) / L^{2}\left(V-\{q\}, \Omega^{n}\right)$. It follows easily that $p_{g}(V, q)$ is independent of U in the above definition.
(b) With the notation in Proposition 2.2, we have $p_{g}(X)=\sum_{i=1}^{m} p_{g}\left(V, q_{i}\right)$.

3 General theory on rigidity of CR morphism

The starting point of our investigation on CR morphisms between two embeddable strongly pseudoconvex compact CR manifolds is the following result.

Theorem 3.1. Let X_{1} and X_{2} be two compact connected strongly pseudoconvex CR manifolds of dimension $2 n-1 \geq 3$ which bound complex varieties V_{1} and V_{2} in $\mathbb{C}^{N_{1}}$ and $\mathbb{C}^{N_{2}}$ respectively. Suppose the singular set S_{i} of $V_{i}, i=1,2$ is either an empty set or a set consisting of only isolated normal singularities. If $\phi: X_{1} \rightarrow X_{2}$ is a non-constant CR morphism, then ϕ is surjective and ϕ can be extended to a proper surjective holomorphic map from V_{1} to V_{2} such that $\phi\left(S_{1}\right) \subseteq S_{2}, \phi^{-1}\left(X_{2}\right)=$ X_{1} and $\phi: V_{1}-\phi^{-1}\left(S_{2}\right) \rightarrow V_{2}-S_{2}$ is a covering map. Moreover, if S_{2} does not have quotient singularity, then $\phi^{-1}\left(S_{2}\right)=S_{1}$.

Proof. Let $\phi_{1}, \ldots, \phi_{N_{2}}$ be the component functions of ϕ. Then ϕ_{i} as CR holomorphic function on X_{1} can be extended onto a one-sided neighborhood of X_{1} in V_{1}. By Andreotti and Grauert ([An-Gr62], Théorème 15), ϕ_{i} can be holomorphically extended to $V_{1}-S_{1}$ where S_{1} is the singular set of V_{1}. Since S_{1} is either an empty set or a set consisting of only isolated normal singularities, ϕ_{i} can be holomorphically extended onto V_{1}.

We claim that $\phi\left(V_{1}\right) \subseteq V_{2}$. To see this, let f_{1}, \ldots, f_{k} be the defining equations of V_{2}, i.e. $V_{2}=\left\{y \in \mathbb{C}^{N_{2}}: f_{1}(y)=\cdots=f_{k}(y)=0\right\}$. Clearly $\phi^{*}\left(f_{i}\right)=f_{i} \circ \phi$ is a holomorphic function on V_{1} which vanishes on X_{1} for $1 \leq i \leq k$. Since X_{1} is of real codimension one in $V_{1}, \phi^{*}\left(f_{i}\right)$ is identically zero on V_{1} for $1 \leq i \leq k$. This implies that $\phi\left(V_{1}\right) \subseteq V_{2}$. By the maximum principle, $\phi\left(X_{1}\right) \cap \phi\left(V_{1}-X_{1}\right)=\emptyset$. It follows that $\phi^{-1}\left(X_{2}\right)=X_{1}$ and ϕ is a proper map from V_{1} to V_{2}. By the proper mapping theorem, $\phi\left(V_{1}\right)$ is a complex variety.

We next claim that $\operatorname{dim} \phi\left(V_{1}\right)=n$. If $\operatorname{dim} \phi\left(V_{1}\right)<n$, then for some q in $\phi\left(V_{1}\right)$, $\phi^{-1}(q)$ is a compact variety of dimension at least one sitting inside V_{1}. This gives a contradiction since V_{1} is Stein. As $\phi\left(V_{1}\right) \subseteq V_{2}$ and $\operatorname{dim} V_{1}=n=\operatorname{dim} V_{2}$, we have $\phi\left(V_{1}\right)=V_{2}$. It follows that $\phi\left(X_{1}\right)=X_{2}$. A local computation of Fornaess ([For76], Proposition 12) would apply to show that ϕ is a local biholomorphism near X_{1}. (This was observed independently by Pinchuk [Pin74].) In particular, $\phi: V_{1}-\phi^{-1}\left(S_{2} \cup \phi\left(S_{1}\right)\right) \rightarrow V_{2}-\left(S_{2} \cup \phi\left(S_{1}\right)\right)$ is locally biholomorphic and hence is a finite covering.

Let $p \in S_{1}$ and $q=\phi(p)$. We claim that $q \in S_{2}$. Suppose on the contrary that q is a smooth point in V_{2}; then ϕ maps a neighborhood U_{1} of p to a neighborhood U_{2} of q as a branch covering. Since p is a normal singularity, the punctured neighborhood $U_{1}-\{p\}$ of p is connected. On the other hand, the punctured neighborhood $U_{2}-\{q\}$ of q is simply connected because q is a smooth point. We conclude that $\left.\phi\right|_{U_{1}}: U_{1} \rightarrow U_{2}$ is one-to-one and onto. By the Hartogs extension theorem, the inverse map $\left.\phi^{-1}\right|_{U_{2}-\{q\}}: U_{2}-\{q\} \rightarrow U_{1}-\{p\}$ can be holomorphically extended onto U_{2}. It follows that $\left.\phi\right|_{U_{1}}: U_{1} \rightarrow U_{2}$ is a biholomorphic map. This leads to a contradiction. Therefore $\phi\left(S_{1}\right) \subseteq S_{2}$ and $\phi: V_{1}-\phi^{-1}\left(S_{2}\right) \rightarrow V_{2}-S_{2}$ is a covering map.

Now assume that S_{2} does not have a quotient singularity. Let q be any point in S_{2}. We need to show that $\phi^{-1}(q) \subseteq S_{1}$. If $\phi^{-1}(q)$ is not contained in S_{1}, then there exists a smooth point q^{\prime} of V_{1} in $\phi^{-1}(q)$. Recall that $\phi^{-1}(q)$ is a finite set. We can find an open neighborhood U of q^{\prime} which is biholomorphic to a domain in \mathbb{C}^{n} such that $\left.\phi\right|_{U}$ from U to the germ of $\left(V_{2}, q\right)$ is a branch covering with ramification locus $\left\{q^{\prime}\right\}$. By Theorem 1 of $[\operatorname{Pr} 67]$, we conclude that $\left(V_{2}, q\right)$ is a quotient singularity. This is a contradiction.

As a corollary of Theorem 3.1, we have the following super-rigidity results of CR morphisms between strongly pseudoconvex manifolds.

Corollary 3.1. Let X_{1} be a compact strongly pseudoconvex $C R$ manifold of dimension $2 n-1 \geq 3$ which bounds a complex variety V_{1} in $\mathbb{C}^{N_{1}}$ with isolated normal singularities. Let X_{2} be a compact strongly pseudoconvex $C R$ manifold of dimension $2 n-1$ which bounds a complex submanifold V_{2} in $\mathbb{C}^{N_{2}}$. Then there is no non-constant $C R$ morphism from X_{1} to X_{2}.

It is a natural question to ask what happens if we interchange the roles of X_{1} and X_{2} in Corollary 3.1.

Proposition 3.1. Let X_{1} be a compact strongly pseudoconvex $C R$ manifold of dimension $2 n-1 \geq 3$ which bounds a complex submanifold V_{1} in $\mathbb{C}^{N_{1}}$. Let X_{2} be a compact strongly pseudoconvex $C R$ manifold of dimension $2 n-1$ with either (i) geometric genus $p_{g}\left(X_{2}\right)>0$, or (ii) $p_{g}\left(X_{2}\right) \geq 0$ and X_{2} bounds a complex variety V_{2} in $\mathbb{C}^{N_{2}}$ with a non-quotient singularity. Then there is no non-constant $C R$ morphism from X_{1} to X_{2}.

Proof. By Theorem 3.1, if there exists a non-constant CR morphism $\phi: X_{1} \rightarrow X_{2}$, then ϕ can be extended as a ramified covering map from V_{1} to V_{2} with ramification locus S_{2}. Since V_{1} is smooth, by the proof of Theorem $3.1, S_{2}$ consists of only quotient singularities and hence the geometric genus of these singularities are zero. It follows that $p_{g}\left(X_{2}\right)=0$ in view of Remark $2.2(\mathrm{~b})$. This leads to a contradiction.

Remark 3.1. Proposition 3.1 is false if $p_{g}\left(X_{2}\right)=0$ and V_{2} has only quotient singularities in the interior, as we can see from the following example.

Example 3.1. Let $B=\left\{(x, y) \in \mathbb{C}^{2}:|x|^{2}+|y|^{2}<1\right\}$ and $S=\partial B$. In the notation of Proposition 3.1, let $X_{1}=S$ be the standard sphere and $V_{1}=B$. Let $\sigma: B \rightarrow B$
be the map given by $\sigma(x, y)=(-x,-y)$. Let V_{2} be the quotient of V_{1} by the cyclic group of order 2 generated by σ. Then V_{2} is a strongly pseudoconvex variety with A_{1} singularity $\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1} z_{2}=z_{3}^{2}\right\}$. The quotient map $\phi: V_{1} \rightarrow V_{2}$ is given by $\left(z_{1}, z_{2}, z_{3}\right)=\left(x^{2}, y^{2}, x y\right)$. Clearly ϕ sends X_{1} surjectively onto $X_{2}=\partial V_{2}$ and ϕ is a non-constant CR morphism.

Proposition 3.2. Let X_{1} and X_{2} be two compact strongly pseudoconvex embeddable $C R$ manifolds of dimension $2 n-1 \geq 3$. If there is a non-constant $C R$ morphism from X_{1} to X_{2}, then $p_{g}\left(X_{1}\right) \geq p_{g}\left(X_{2}\right)$.

Proof. Let V_{i} be a normal variety in $\mathbb{C}^{N_{i}}$ with only isolated singularities such that $\partial V_{i}=X_{i}, i=1,2$. Let S_{1} and S_{2} be the singular set of V_{1} and V_{2} respectively. Let $\phi: X_{1} \rightarrow X_{2}$ be a non-constant CR morphism. In view of Theorem 3.1, ϕ can be extended to a proper surjective holomorphic map from V_{1} and V_{2} such that $\phi\left(S_{1}\right)=S_{2}$, and $\phi: V_{1}-\phi^{-1}\left(S_{2}\right) \rightarrow V_{2}-S_{2}$ is a covering map. There is a natural map

$$
\phi^{*}: \frac{\Gamma\left(V_{2}-S_{2}, \Omega^{n}\right)}{L^{2}\left(V_{2}-S_{2}, \Omega^{n}\right)} \rightarrow \frac{\Gamma\left(V_{1}-\phi^{-1}\left(S_{2}\right), \Omega^{n}\right)}{L^{2}\left(V_{1}-\phi^{-1}\left(S_{2}\right), \Omega^{n}\right)} .
$$

Since $\phi: V_{1}-\phi^{-1}\left(S_{2}\right) \rightarrow V_{2}-S_{2}$ is a finite covering map, a form $w \in \Gamma\left(V_{2}-S_{2}, \Omega^{n}\right)$ is L^{2}-integrable if and only if $\phi^{*}(w)$ is L^{2}-integrable. Thus ϕ^{*} is injective. Observe that $\phi^{-1}\left(S_{2}\right)-S_{1}$ is a discrete subset in the smooth part of V_{1}. By Hartog's theorem, $\Gamma\left(V_{1}-\phi^{-1}\left(S_{2}\right), \Omega^{n}\right)=\Gamma\left(V_{1}-S_{1}, \Omega^{n}\right)$ and $L^{2}\left(V_{1}-\phi^{-1}\left(S_{2}\right), \Omega^{n}\right)=$ $L^{2}\left(V_{1}-S_{1}, \Omega^{n}\right)$. It follows that $p_{g}\left(X_{2}\right) \leq p_{g}\left(X_{1}\right)$.

Corollary 3.2. Let X_{1}, X_{2} be two compact strongly pseudoconvex embeddable CR manifolds of dimension $2 n-1 \geq 3$. If $p_{g}\left(X_{1}\right)<p_{g}\left(X_{2}\right)$, then there is no non-constant $C R$ morphism from X_{1} to X_{2}.

The following theorem says that if the codimension of X_{2} is small and $\operatorname{dim} X_{2} \geq$ 5 , then there is no non-constant CR morphism from X_{1} to X_{2} except CR biholomorphic maps. This rigidity phenomenon does not require any curvature assumption on X_{1} or X_{2}.

Theorem 3.2. Let X_{1} and X_{2} be two compact strongly pseudoconvex CR manifolds of dimension $2 n-1 \geq 5$ which bound complex varieties V_{1} and V_{2} with only isolated normal singularities in $\mathbb{C}^{N_{1}}$ and $\mathbb{C}^{N_{2}}$ respectively. Let S_{1} and S_{2} be the singular sets of V_{1} and V_{2} respectively and S_{2} is non-empty. Suppose $2 n-N_{2}-1 \geq 1$. Then there exists no non-constant CR morphism from X_{1} to X_{2} if $\left|S_{1}\right|$ is not divisible by $\left|S_{2}\right|$. If $\left|S_{1}\right|=\left|S_{2}\right|$, then X_{1} is CR biholomorphic to X_{2}.

Proof. Let $\phi: X_{1} \rightarrow X_{2}$ be a non-constant CR morphism. Theorem 3.1 says that ϕ can be extended to a proper surjective holomorphic map from V_{1} to V_{2} such that $\phi\left(S_{1}\right) \subseteq S_{2}$ and $\phi: V_{1}-\phi^{-1}\left(S_{2}\right) \rightarrow V_{2}-S_{2}$ is a covering map of degree d. For any $q \in S_{2}$, we know that the punctured neighborhood of q in V_{2} is $\left(2 n-N_{2}-1\right)$ connected in view of a theorem of Hamm [Ham81]. Since $2 n-N_{2}-1 \geq 1$ by assumption, the punctured neighborhood of q is simply connected. We claim that $\phi^{-1}(q) \subseteq S_{1}$. If $\phi^{-1}(q)$ is not contained in S_{1}, then there exists a smooth point q^{\prime} of V_{1} in $\phi^{-1}(q)$. Recall that $\phi^{-1}(q)$ is a finite set. We can find an open neighborhood
U of q^{\prime} which is biholomorphic to a domain in \mathbb{C}^{n} such that $\left.\phi\right|_{U}$ from U to the germ of $\left(V_{2}, q\right)$ is a branch covering with ramification locus $\left\{q^{\prime}\right\}$. Since the punctured neighborhood of q in V_{2} is simply connected, this implies $\left.\phi\right|_{U}$ is injective and hence $\left.\phi\right|_{U}$ is a biholomorphism. This leads to a contradiction because q is a singular point. We have shown that $\phi^{-1}(q)=\left\{q_{1}^{\prime}, \ldots, q_{d}^{\prime}\right\} \subseteq S_{1}$. There are exactly d points in $\phi^{-1}(q)$ because the punctured neighborhood of q is simply connected. Therefore $\left|S_{1}\right|$ is divisible by $\left|S_{2}\right|$. On the other hand if $\left|S_{1}\right|=\left|S_{2}\right|$, then $d=1$ and hence ϕ is a biholomorphism.

4 CR morphisms between two compact strongly pseudoconvex CR manifolds lying in a same variety

The main purpose of this section is to prove the following theorem.
Theorem 4.1. Let X_{1} and X_{2} be two ($2 n-1$)-dimensional compact strongly pseudoconvex CR manifolds lying in a Stein variety V of dimension n in \mathbb{C}^{N}. Let $V_{1} \subseteq V, V_{2} \subseteq V$ such that $\partial V_{1}=X_{1}$ and $\partial V_{2}=X_{2}$. Assume that the singular set S of V is nonempty and is equal to the singular set of $V_{i}, i=1,2$. Then nontrivial CR morphisms from X_{1} to X_{2} are necessarily CR biholomorphisms.

Proof. Let $\Phi: X_{1} \longrightarrow X_{2}$ be a non-constant CR morphism. In view of Theorem 3.1, Φ can be extended to a proper holomorphic map from V_{1} to V_{2} such that $\Phi: V_{1}-\Phi^{-1}(S) \longrightarrow V_{2}-S$ is a covering map of degree d and $\Phi(S)=S$. Let $S=\left\{q_{1}, \ldots, q_{m}\right\}$. Then $\Phi^{-1}(S)=\left\{q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{k}\right\}$. We shall prove that $\Phi^{-1}(S)=S$. Let $\pi: M \longrightarrow V_{2}$ be a resolution of singularities of V_{2} such that the
exceptional sets

$$
E_{1}=\pi^{-1}\left(q_{1}\right)=\bigcup_{i=1}^{\ell_{1}} A_{i}^{1}, \ldots, E_{m}=\pi^{-1}\left(q_{m}\right)=\bigcup_{i=1}^{\ell_{m}} A_{i}^{m}
$$

are normal crossing divisors.

Consider the fiber product $V_{1} \times M$ of the maps $\Phi: V_{1} \longrightarrow V_{2}$ and $\pi: M \longrightarrow V_{2}$. Let $\tau: \widetilde{M} \longrightarrow V_{1} \underset{V_{2}}{\times} M$ be the normalization map. Then we have the following commutative diagram where π_{1} and π_{2} are natural projections. Notice that $\pi_{1}: V_{V_{2}} \times M \longrightarrow V_{1}$ is a biholomorphism outside $\pi_{1}^{-1}\left(\Phi^{-1}(S)\right)$ and $\pi_{2}: V_{V_{2}} \times M \rightarrow M$ is a covering map outside $\bigcup_{i=1}^{m} E_{i}$. Thus

$$
\widetilde{\Phi}:=\pi_{2} \circ \tau: \widetilde{M} \longrightarrow M
$$

is a d-fold branch covering. For each $A_{i}^{j} \subseteq E_{j}$, and any point $q_{i}^{j} \in A_{i}^{j}$ which is a smooth point in $\bigcup_{i=1}^{m} E_{i}$, we choose a germ of a curve Γ_{i}^{j} at the point q_{i}^{j} which intersects with $\bigcup_{i=1}^{m} E_{i}$ only at q_{i}^{j} and the intersection of A_{i}^{j} and Γ_{i}^{j} is transversal at q_{i}^{j}. Let $\Gamma=\bigcup \Gamma_{i}^{j}, 1 \leqslant j \leqslant m, 1 \leqslant i \leqslant \ell_{j}$. Notice that $\widetilde{\pi}:=\pi_{1} \circ \tau$ is a proper map which is a biholomorphism outside $\widetilde{E}:=\widetilde{\pi}^{-1}\left(\Phi^{-1}(S)\right)=\widetilde{\Phi}^{-1}(E)$ where $E=E_{1} \cup \cdots \cup E_{m}$. Observe that \widetilde{E} has exactly $m+k$ connected components $\widetilde{E}=\widetilde{E}_{1} \cup \cdots \cup \widetilde{E}_{m+k}$. Clearly

$$
\widetilde{\Phi}_{*}(\widetilde{E})=\sum_{i, j} d_{i}^{j} A_{i}^{j}, \text { where } d_{i}^{j} \leqslant d .
$$

By the projection formula (cf. p. 34 of [Ful98], or p. 426 of [Har77]),

$$
\begin{aligned}
\sum_{j=1}^{m} \sum_{i=1}^{\ell_{j}} d_{i}^{j} & =\Gamma \cdot \widetilde{\Phi}_{*}(\widetilde{E})=\widetilde{\Phi}^{*}(\Gamma) \cdot \widetilde{E} \\
& \geqslant\left(\ell_{1}+\cdots+\ell_{m}\right) d .
\end{aligned}
$$

The last inequality comes from the fact that $\widetilde{\Phi}^{*}\left(\Gamma_{i}^{j}\right)$ has d distinct branches because $\widetilde{\Phi}: \widetilde{M}-\widetilde{\Phi}^{-1}(E) \longrightarrow M-E$ is a d-fold covering space. Since $d_{i}^{j} \leqslant d$, we conclude that $d_{i}^{j}=d$ for all i, j. It follows that the branch locus of $\widetilde{\Phi}$ is contained in the singular locus of $\bigcup_{i=1}^{m} E_{i}$ which is of dimension $n-2$. As \widetilde{M} is normal and M is smooth, $\widetilde{\Phi}: \widetilde{M} \longrightarrow M$ is a covering map by purity of branch locus. In particular, \widetilde{M} is smooth.

Now we are ready to prove that $\Phi^{-1}(S)=S$, i.e., there are no p_{1}, \ldots, p_{k} points in $\Phi^{-1}(S)$. Observe that $\widetilde{\pi}^{-1}\left(p_{i}\right), 1 \leqslant i \leqslant k$ and $E_{j}, 1 \leqslant j \leqslant m$ are maximal compact connected analytic subsets in \widetilde{M} and M respectively. Since $\widetilde{\Phi}$ is a covering map, there is a neighborhood \widetilde{U}_{i} of $\widetilde{\pi}^{-1}\left(p_{i}\right)$ which maps biholomorphically to a neighborhood U_{j} of E_{j} for some j via $\widetilde{\Phi}$. As $\widetilde{\pi}: \widetilde{M} \longrightarrow V_{1}$ is a point modification in a neighborhood of p_{i}, there is a neighborhood D_{i} of p_{i} such that

$$
\widetilde{\pi}: \widetilde{\pi}^{-1}\left(D_{i}\right)-\widetilde{\pi}^{-1}\left(p_{i}\right) \longrightarrow D_{i}-\left\{p_{i}\right\}
$$

is a biholomorphism. Similarly, there is a neighborhood O_{j} of q_{j} such that

$$
\pi: \pi^{-1}\left(O_{j}\right)-E_{j} \longrightarrow O_{j}-\left\{q_{j}\right\}
$$

is a biholomorphism. Therefore

$$
\pi \circ \widetilde{\Phi} \circ \widetilde{\pi}^{-1}: D_{i}-\left\{p_{i}\right\} \longrightarrow O_{j}-\left\{q_{j}\right\}
$$

is a biholomorphism. Observe that p_{i} is a smooth point of D_{i} and q_{j} is an isolated normal singularity. It follows that $\pi \circ \widetilde{\Phi} \circ \widetilde{\pi}^{-1}$ extends to a biholomorphism from D_{i} to O_{j}. In particular q_{j} is not a singular point. This contradiction shows that $\Phi^{-1}(S)=S$ and hence $\widetilde{\pi}: \widetilde{M} \longrightarrow V_{1}$ is also a resolution of singularities of V_{1}.

If $\Phi\left(q_{i}\right)=q_{j}$, then $\left(V, q_{i}\right)$ is isomorphic to $\left(V, q_{j}\right)$ as germs of singularities. This is because the resolution of $\left(V, q_{j}\right)$ is a resolution of $\left(V, q_{i}\right)$. The proof of Theorem 4.1 is completed in view of Theorem 4.3 below.

Let (V, x) be a germ of complex analytic space with only one isolated singularity x. By Hironaka's paper [Hir63], it is biholomorphic equivalent to a germ of a complex algebraic singularity. Now let V be a complex analytic variety with only finitely many isolated singularities. By the equivalence and resolution theorems of algebraic varieties over field of characteristic 0 , we can construct a resolution $\pi: \widetilde{V} \rightarrow V$ of V such that \widetilde{V} is smooth and π is a bimeromorphic proper morphism.

The key point in the proof of Theorem C of [Yau11] for surface case is applying the minimal resolution. But in higher dimensional cases, there is no minimal resolution in general. Fortunately, by [BCHM10], there is a unique partial resolution $f: V^{c a n} \rightarrow V$ called the relative canonical model of V such that $V^{c a n}$ has canonical singularity and the canonical divisor $K_{V^{c a n}}$ is f-ample. For surface, the relative canonical model is obtained by contracting all (-2)-rational curves in the minimal resolution of V. In general, the relative canonical model is isomorphic to

$$
\operatorname{Proj} \bigoplus_{m \geq 0} g_{*} \mathcal{O}\left(m K_{Z}\right)
$$

where $g: Z \rightarrow V$ is any resolution of V.
Definition 4.1. Let (V, x) be a germ such that x is the only isolated singularity. Take the relative canonical model $f: V^{\text {can }} \rightarrow V$ of V and denote E to be the exceptional set. Define

$$
c v_{V}(x)=\left(K_{V^{c a n}}\right)^{\operatorname{dim} E} \cdot E,
$$

which is called the canonical volume of x.
If $V^{c a n}$ is not isomorphic to V, we have E being nonempty and $c v_{V}(x)=$ $\left(K_{V^{\text {can }}}\right)^{\operatorname{dim} E} \cdot E>0$ by the f-ampleness. If $V^{\text {can }}$ is isomorphic to V and x is a singular point, we set $c v_{V}(x)=\left(K_{V^{\text {can }}}\right)^{\operatorname{dim} E} \cdot E=\left(K_{V^{\text {can }}}\right)^{0} \cdot x=1$. Finally, if x is a smooth point, we set $c v_{V}(x)=0$.

In general, if V has finitely many isolated normal singularities $x_{i}, i=1, \ldots, m$, then we consider the sum of canonical volume

$$
\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)=\sum_{i=1}^{m}\left(K_{V^{c a n}}\right)^{\operatorname{dim} E_{x_{i}}} \cdot E_{x_{i}}
$$

where $f: V^{\text {can }} \rightarrow V$ is the relative canonical model of V and $E_{x_{i}}$ is the exceptional set over x_{i}. From the definition, we see that $\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)>0$ for nonempty isolated normal singularities $x_{i}, i=1, \ldots, m$, on V.

Theorem 4.2. Let V be an algebraic variety or a complex space with finitely many normal isolated singularities $x_{i}, i=1, \ldots, m$, on V. Let $c v_{V}\left(x_{i}\right)$ be the canonical volume of x_{i}. Then $\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$ is multiplicative in étale covering maps between resolutions. That is, if W is another algebraic variety or complex space with normal isolated singularities $y_{j}, j=1, \ldots, s, p_{1}: \widetilde{W} \rightarrow W$ and $p_{2}: \widetilde{V} \rightarrow V$ are resolutions of W and V respectively, $\Phi: \widetilde{W} \rightarrow \widetilde{V}$ is an étale covering map, then we have $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$ where d is the degree of Φ.

Proof. Suppose we have resolutions $p_{1}: \widetilde{W} \rightarrow W$ and $p_{2}: \widetilde{V} \rightarrow V$, and we consider relative canonical models $p_{1}^{\prime}: W^{\text {can }} \rightarrow W$ and $p_{2}^{\prime}: V^{\text {can }} \rightarrow V$. We start from the following claim:

Claim: If $\Phi: W^{\text {can }} \rightarrow V^{\text {can }}$ is an étale covering map, then $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=$ $d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$ where d is the degree of Φ.

Let E_{1} be the exceptional set of p_{1}^{\prime} and E_{2} the exceptional set of p_{2}^{\prime}. $E_{1}=$ $\sum_{j=1}^{s} E_{y_{j}}$ where $E_{y_{j}}$ is the exceptional set over y_{j}, and similarly $E_{2}=\sum_{i=1}^{m} E_{x_{i}}$ where $E_{x_{i}}$ is the exceptional set over x_{i}. Since the canonical divisors $K_{W^{\text {can }}}$ and $K_{V^{\text {can }}}$ are p_{1}^{\prime}-ample and p_{2}^{\prime}-ample respectively, if E_{1} is not empty, we have $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=$
$\sum_{j=1}^{s}\left(K_{W^{c a n}}\right)^{\operatorname{dim} E_{y_{j}}} \cdot E_{y_{j}}>0$. Similarly, $\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)=\sum_{i=1}^{m}\left(K_{V^{c a n}}\right)^{\operatorname{dim} E_{x_{i}}} \cdot E_{x_{i}}>0$ if
E_{2} is not empty.
By Φ being an étale covering map, we have the pullback $\Phi^{*} K_{V^{\text {can }}}=K_{W^{\text {can }}}$. Also, $\Phi^{*} E_{2}=E_{1}$ since E_{1} and E_{2} are the only proper sets in $W^{c a n}$ and in $V^{c a n}$ respectively if we shrink V and W. Therefore, from
$\sum_{j=1}^{s}\left(K_{W^{\text {can }}}\right)^{\operatorname{dim} E_{y_{j}}} \cdot E_{y_{j}}=\sum_{i=1}^{m}\left(\Phi^{*} K_{V^{c a n}}\right)^{\operatorname{dim} E_{x_{i}}} \cdot \Phi^{*} E_{x_{i}}=d \sum_{i=1}^{m}\left(K_{V^{c a n}}\right)^{\operatorname{dim} E_{x_{i}}} \cdot E_{x_{i}}$
where d is the degree of Φ, we have $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$.
If $V^{c a n} \cong V, E_{2}$ has dimension 0 and $E_{2}=\sum_{i=1}^{m} x_{i}$. Since étale morphisms are locally isomorphisms, Φ sends singular points to singular points, and we have $E_{1}=\sum_{j=1}^{s} y_{j}$ is also 0-dimensional and $W^{\text {can }} \cong W$. The intersection $\left(K_{V^{c a n}}\right)^{0} \cdot x_{i}$ is just 1 by definition. By counting the singular points, we have $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=s=$ $d m=d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)>0$. The claim is proved.

Now, for two resolutions $p_{1}: \widetilde{W} \rightarrow W$ and $p_{2}: \widetilde{V} \rightarrow V$, we have birational $\operatorname{map} \phi_{2}: \widetilde{V} \longrightarrow V^{\text {can }}$ over V (see the diagram below).

Take a common resolution \widetilde{V}^{\prime} of \widetilde{V} and $V^{\text {can }}$ with birational morphisms g : $\widetilde{V}^{\prime} \rightarrow \widetilde{V}$ and $\phi_{2}^{\prime}: \widetilde{V}^{\prime} \rightarrow V^{\text {can }}, \Phi^{\prime}: \widetilde{W}^{\prime} \rightarrow \widetilde{V}^{\prime}$ is the base-change of $\Phi: \widetilde{W} \rightarrow \widetilde{V}$. Then Φ^{\prime} is also an étale covering map with the same degree of Φ. After replacing Φ and ϕ_{2} by Φ^{\prime} and ϕ_{2}^{\prime} respectively, we can assume $\phi_{2}: \widetilde{V} \rightarrow V^{c a n}$ a birational morphism.

By the property of canonical model, $V^{c a n}$ and $W^{c a n}$ have canonical singularities. We use a theorem in [Tak03]:
Theorem. ([Tak03], Theorem 1.1) Let V be a normal analytic space and let $f: \widetilde{V} \rightarrow V$ be a resolution of singularities. Then the induced homomorphism $f_{*}: \pi_{1}(\widetilde{V}) \rightarrow \pi_{1}(V)$ is an isomorphism if (V, Δ) is Kawamata log-terminal (klt) for some divisor Δ.

Definition 4.2. A pair (X, Δ) of a normal variety and an effective \mathbb{Q}-divisor such that $K_{X}+\Delta$ is \mathbb{Q}-Cartier and let $\Delta=\sum d_{i} \Delta_{i}$ be the prime decomposition. We say that (X, Δ) is (1) Kawamata log-terminal $(k l t)$ iff $d_{i}<1$ for all i and there exists a projective birational morphism $\mu: Y \rightarrow X$ from a smooth variety Y with a normal crossing divisor E_{i} such that $K_{Y} \equiv \mu^{*}\left(K_{X}+\Delta\right)+\sum e_{i} E_{i}$ holds with $e_{i}>-1$; (2) canonical iff there exists a projective birational morphism $\mu: Y \rightarrow X$ from a smooth variety Y with a normal crossing divisor E_{i} such that $K_{Y} \equiv \mu^{*}\left(K_{X}+\Delta\right)+\sum e_{i} E_{i}$ holds with $e_{i} \geq 0$ for all i.

Continuation of the proof of Theorem 4.2.
We see that $\pi_{1}\left(V^{c a n}\right) \cong \pi_{1}(\widetilde{V})$ by the above theorem since $V^{c a n}$ has canonical singularities, $\left(V^{\text {can }}, 0\right)$ is $k l t$. Now we take the étale cover $\beta: W^{\prime} \rightarrow V^{\text {can }}$ which gives the subgroup $\beta_{*} \pi_{1}\left(W^{\prime}\right) \subseteq \pi_{1}\left(V^{\text {can }}\right)$ isomorphic to the subgroup $\Phi_{*} \pi_{1}(\widetilde{W}) \subseteq$ $\pi_{1}(\widetilde{V})$.

We see that β is an étale covering map with the same degree as Φ. Note that W^{\prime} has canonical singularities since étale morphisms are locally isomorphisms. Because $\phi_{2 *} \Phi_{*} \pi_{1}(\widetilde{W})=\beta_{*} \pi_{1}\left(W^{\prime}\right)$, there is a morphism $h: \widetilde{W} \rightarrow W^{\prime}$ coming from the morphism $\phi_{2}: \widetilde{V} \rightarrow V^{\text {can }}$ extending to the étale covers \widetilde{W} and W^{\prime} of \widetilde{V} and $V^{\text {can }}$ respectively, and h is birational since ϕ_{2} is. In fact, h is a resolution morphism from \widetilde{W} to W^{\prime}. We want to construct a morphism $q: W^{\prime} \rightarrow W$ such that $p_{1}=q \circ h$. Let z_{i} be a coordinate function defined on W. Since h is proper with connected fiber, $p_{1}^{*}\left(z_{i}\right)$ is a function on \widetilde{W} which descends to W^{\prime} as a continuous function $h_{*} p_{1}^{*}\left(z_{i}\right)$ which is holomorphic outside codimension one subvariety of $W^{\prime} . h_{*} p_{1}^{*}\left(z_{i}\right)$ is actually holomorphic on the smooth part of W^{\prime} because it is a continuous function on W^{\prime}. Recall that the singular set of W^{\prime} consists of isolated normal singularities. So $h_{*} p_{1}^{*}\left(z_{i}\right)$ is actually holomorphic on W^{\prime}. This gives a morphism $q: W^{\prime} \rightarrow W$ such that $p_{1}=q \circ h$. As p_{1} and q are birational, q is also birational. If $E \subseteq W^{\prime}$ is an exceptional curve over W, by projection formula, we have

$$
K_{W^{\prime}} \cdot E=\beta^{*} K_{V^{c a n}} \cdot E=K_{V^{c a n}} \cdot \beta_{*} E>0
$$

since $\beta_{*} E$ is a sum of exceptional curves in $V^{c a n}$ over V and $K_{V^{c a n}}$ is relative ample over V. So $K_{W^{\prime}}$ is relatively ample over W. Then, by the uniqueness of relative canonical model, we have W^{\prime} isomorphic to $W^{\text {can }}$. Replace W^{\prime} by $W^{c a n}$, we have an étale covering map $\beta: W^{c a n} \rightarrow V^{c a n}$ and this is the claim above, which gives $\sum_{j=1}^{s} c v_{W}\left(y_{j}\right)=d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$ where $d=\operatorname{deg} \beta=\operatorname{deg} \Phi$.

Theorem 4.3. Let V be a normal Stein space whose singular set is nonempty and finite. Let $f_{1}: \widetilde{V}_{1} \rightarrow V$ and $f_{2}: \widetilde{V}_{2} \rightarrow V$ be two resolutions of V. If $\widetilde{\Phi}: \widetilde{V}_{1} \rightarrow \widetilde{V}_{2}$ is a finite étale covering map, Φ must be an isomorphism.

Proof. We take $W=V$ in Theorem 4.2. Since the isolated singular points are nonempty, we have $\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)>0$. The equation $\sum_{i=1}^{m} c v_{V}\left(x_{i}\right)=d \sum_{i=1}^{m} c v_{V}\left(x_{i}\right)$, where d is the degree of $\widetilde{\Phi}$, gives $d=1$. Hence $\widetilde{\Phi}$ is an isomorphism.

Remark 4.1. Note that even if V is a smooth projective variety, an étale endomorphism $\Phi: V \rightarrow V$ is not necessary an isomorphism. For example, let V be an abelian variety, $\hat{n}: V \rightarrow V$ is the morphism sending point $x \in V$ to its n times, $n x$, then \hat{n} is an étale covering map which is not an isomorphism if $n>1$. Therefore, we need some restraints on V to force the degree to be 1 .

In [BFF12], a notion of volume for an isolated singular point of a normal variety is defined and the volume is also multiplicative in étale covering maps. By theorem A of [BFF12], if K_{V} is \mathbb{Q}-Cartier and V is not log canonical, the volume of the singularity is nonzero and we can determine the degree of an étale morphism. Our definition of canonical volume is like another multiplicative number between resolutions, and it determines the degree of étale coverings. Our method of proving the multiplicativity of canonical volume by taking the étale cover corresponding to a subgroup of the fundamental group is like the proof in discussion of nearly étale map in [NZ09].

The following example shows that strongly pseudoconvexity plays an important role in the above theory.

Example 4.1. Let $X_{1}=\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{2}, a|x|^{4}+|y|^{4}+|z|^{4}=\epsilon_{0}\right\}$ and $X_{2}=\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{2}, a|x|^{2}+|y|^{2}+|z|^{2}=\epsilon_{0}\right\}$ where a is a positive real number. Let $\psi: X_{1} \rightarrow X_{2}$ be given by $\psi(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)$. Then ψ is a surjective CR morphism from X_{1} to X_{2}, but ψ is not a CR biholomorphism. Note that X_{2} is strongly pseudoconvex, but X_{1} is only weakly pseudoconvex.

5 Explicit computation of CR automorphisms of strongly pseudoconvex 3-dimensional CR manifolds

The purpose of this section is to prove the following results by direct computation.
Theorem 5.1. Let a be a positive real number and $X_{a}=\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{2}\right.$, $\left.a|x|^{2}+|y|^{2}+|z|^{2}=\epsilon_{0}\right\}$.
(1) If there exists a non-constant CR morphism from X_{a} to X_{b}, then $a=b$.
(2) For $a \neq \frac{1}{4}$, any non-constant $C R$ morphism ψ from X_{a} to itself must be a CR biholomorphism and ψ must be one of the following forms:
(a) $\psi(x, y, z)=\left(e^{i \theta_{1}} x, e^{i \theta_{2}} y, e^{i \frac{\theta_{1}+\theta_{2}}{2}} z\right), 0 \leq \theta_{1}, \theta_{2} \leq 2 \pi$.
(b) $\psi(x, y, z)=\left(e^{i \theta_{1}} y / \sqrt{a}, e^{i \theta_{2}} \sqrt{a} x, e^{i \frac{\theta_{1}+\theta_{2}}{2}} z\right), 0 \leq \theta_{1}, \theta_{2} \leq 2 \pi$.
(3) For $a=\frac{1}{4}$, any non-constant $C R$ morphism ψ from $X_{\frac{1}{4}}$ to itself must be a $C R$ biholomorphism and ψ must be one of the following form:

(b) $\psi(x, y, z)=\left(2 e^{i \theta_{1}} y, \frac{1}{2} e^{i \theta_{2}} x, e^{i \frac{\theta_{1}+\theta_{2}}{2}} z\right), 0 \leq \theta_{1}, \theta_{2} \leq 2 \pi$.
(c) $\psi(x, y, z)=\left(\begin{array}{lll}\frac{-2 r^{2}}{2 r^{2}+1} e^{i\left(\theta_{31}-\theta\right)} & \frac{2}{2 r^{2}+1} e^{i\left(\theta_{32}-\theta\right)} & \frac{4 r}{2 r^{2}+1} e^{i \theta_{13}} \\ \frac{-1}{2\left(2 r^{2}+1\right)} e^{i\left(\theta_{31}-\theta\right)} & \frac{2 r^{2}}{2 r^{2}+1} e^{i\left(\theta_{32}+\theta\right)} & \frac{-2 r}{2 r^{2}+1} e^{i\left(\theta_{13}+2 \theta\right)} \\ \frac{r}{2 r^{2}+1} e^{i \theta_{31}} & \frac{2 r}{2 r^{2}+1} e^{i \theta_{32}} & \frac{2 r^{2}-1}{2 r^{2}+1} e^{i\left(\theta_{13}+\theta\right)}\end{array}\right)$

$$
\times\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\text { higher order terms in } x, y \text { and } z
$$

where $0 \leq \theta, \theta_{31}, \theta_{32}, \theta_{13} \leq 2 \pi, \theta_{13}=\frac{\pi}{2}+\frac{\theta_{31}}{2}+\frac{\theta_{32}}{2}-\theta$ and $r>0$.
Corollary 5.1. The automorphism group of the compact strongly pseudoconvex $C R$ manifold $X_{\frac{1}{4}}=\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{2}, \frac{1}{4}|x|^{2}+|y|^{2}+|z|^{2}=\epsilon_{0}\right\}$ consists of the following mappings:
(a) $\psi(x, y, z)=\left(e^{i \theta_{1}} x, e^{i \theta_{2}} y, e^{i \frac{\theta_{1}+\theta_{2}}{2}} z\right), 0 \leq \theta_{1}, \theta_{2} \leq 2 \pi$.
(b) $\psi(x, y, z)=\left(2 e^{i \theta_{2}} y, \frac{1}{2} e^{i \theta_{2}} x, e^{i \frac{\theta_{1}+\theta_{2}}{2}} z\right), 0 \leq \theta_{1}, \theta_{2} \leq 2 \pi$.
(c) $\psi(x, y, z)=\left(\begin{array}{lll}\frac{-2 r^{2}}{2 r^{2}+1} e^{i\left(\theta_{31}-\theta\right)} & \frac{2 e^{i\left(\theta_{32}-\theta\right)}}{2 r^{2}+1} & \frac{4 r e^{i \theta_{13}}}{2 r^{2}+1} \\ \frac{-e^{i\left(\theta_{31}-\theta\right)}}{2\left(2 r^{2}+1\right)} & \frac{2 r^{2} e^{i\left(\theta_{32}+\theta\right)}}{2 r^{2}+1} & \frac{-2 r e^{i\left(\theta_{13}+2 \theta\right)}}{2 r^{2}+1} \\ \frac{r e^{2 \theta_{31}}}{2 r^{2}+1} & \frac{2 r e^{i \theta_{32}}}{2 r^{2}+1} & \frac{2 r^{2}-1}{2 r^{2}+1} e^{i\left(\theta_{13}+\theta\right)}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.

Proof of Theorem 5.1. Firstly, we prove the theorem for $b \neq \frac{1}{4}$.
Let $V_{a}=\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{2}\right.$ and $\left.a|x|^{2}+|y|^{2}+|z|^{2} \leq \epsilon_{0}\right\}$. Let $\psi: X_{a} \rightarrow X_{b}$ be a non-constant CR morphism. Then Theorem 3.1 says that ψ can be extended to a proper surjective holomorphic map $\psi: V_{a} \rightarrow V_{b}$ such that $\psi(0)=0, \psi\left(X_{a}\right)=$ X_{b} and $X_{a}=\Psi^{-1}\left(X_{b}\right)$. Write ψ in the following form:
$\left(\begin{array}{l}\psi_{1}(x, y, z) \\ \psi_{2}(x, y, z) \\ \psi_{3}(x, y, z)\end{array}\right)=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+$ higher order terms in x, y and z.
Then the constants $a_{i j}$ satisfy the following equations:

$$
\begin{align*}
& a_{11} a_{21}-a_{31}^{2}=0 \tag{5.1}\\
& a_{12} a_{22}-a_{32}^{2}=0 \tag{5.2}\\
& a_{13} a_{23}-a_{33}^{2}+a_{11} a_{22}+a_{12} a_{21}-2 a_{31} a_{32}=0 \tag{5.3}\\
& a_{11} a_{23}+a_{13} a_{21}-2 a_{31} a_{33}=0 \tag{5.4}\\
& a_{12} a_{23}+a_{13} a_{22}-2 a_{32} a_{33}=0 \tag{5.5}
\end{align*}
$$

For any $(x, y, z) \in X_{a}$, we have the following equation:

$$
\begin{aligned}
& b\left|\psi_{1}(x, y, z)\right|^{2}+\left|\psi_{2}(x, y, z)\right|^{2}+\left|\psi_{3}(x, y, z)\right|^{2}=a|x|^{2}+|y|^{2}+|z|^{2} \\
\Longrightarrow & \left(b\left|a_{11}\right|^{2}+\left|a_{21}\right|^{2}+\left|a_{31}\right|^{2}\right)|x|^{2}+\left(b\left|a_{12}\right|^{2}+\left|a_{22}\right|^{2}+\left|a_{32}\right|^{2}\right)|y|^{2} \\
& +\left(b\left|a_{13}\right|^{2}+\left|a_{23}\right|^{2}+\left|a_{33}\right|^{2}\right)|z|^{2}+\left(b a_{11} \bar{a}_{12}+a_{21} \bar{a}_{22}+a_{31} \bar{a}_{32}\right) x \bar{y} \\
& +\left(b a_{12} \bar{a}_{11}+a_{22} \bar{a}_{21}+a_{32} \bar{a}_{31}\right) \bar{x} y+\left(b a_{11} \bar{a}_{13}+a_{21} \bar{a}_{23}+a_{21} \bar{a}_{33}\right) x \bar{z} \\
& +\left(b a_{13} \bar{a}_{11}+a_{23} \bar{a}_{21}+a_{33} \bar{a}_{31} \bar{x} z+\left(b a_{12} \bar{a}_{13}+a_{22} \bar{a}_{23}+a_{32} \bar{a}_{33}\right) y \bar{z}\right. \\
& +\left(b a_{13} \bar{a}_{12}+a_{23} \bar{a}_{22}+a_{33} \bar{a}_{32}\right) \bar{y} z=a|x|^{2}+|y|^{2}+|z|^{2} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& b\left|a_{11}\right|^{2}+\left|a_{21}\right|^{2}+\left|a_{31}\right|^{2}=a, \tag{5.6}\\
& b\left|a_{12}\right|^{2}+\left|a_{22}\right|^{2}+\left|a_{32}\right|^{2}=1, \tag{5.7}\\
& b\left|a_{13}\right|^{2}+\left|a_{23}\right|^{2}+\left|a_{33}\right|^{2}=1, \tag{5.8}\\
& b a_{11} \bar{a}_{12}+a_{21} \bar{a}_{22}+a_{31} \bar{a}_{32}=0, \tag{5.9}\\
& b a_{11} \bar{a}_{13}+a_{21} \bar{a}_{23}+a_{31} \bar{a}_{33}=0, \tag{5.10}\\
& b a_{12} \bar{a}_{13}+a_{22} \bar{a}_{23}+a_{32} \bar{a}_{33}=0 . \tag{5.11}
\end{align*}
$$

Case 1. $a_{31} \neq 0$ and $a_{32} \neq 0$. In view of (5.1) and (5.2), we have $a_{11} \neq 0$, $a_{21} \neq 0, a_{12} \neq 0$ and $a_{22} \neq 0$ in this case.

$$
\begin{align*}
(5.1) & \Rightarrow \frac{a_{11}}{a_{31}}=\frac{a_{31}}{a_{21}}:=r_{1} \neq 0 \\
& \Rightarrow a_{11}=r_{1} a_{31}, a_{21}=\frac{1}{r_{1}} a_{31}, \tag{5.12}\\
(5.2) & \Rightarrow \frac{a_{22}}{a_{32}}=\frac{a_{32}}{a_{12}}:=r_{2} \neq 0 \\
& \Rightarrow a_{22}=r_{2} a_{32}, a_{12}=\frac{1}{r_{2}} a_{32}, \tag{5.13}\\
(5.4) \text { and }(5.12) & \Rightarrow r_{1} a_{23}+\frac{1}{r_{1}} a_{13}-2 a_{33}=0, \tag{5.14}\\
(5.5) \text { and }(5.13) & \Rightarrow \frac{1}{r_{2}} a_{23}+r_{2} a_{13}-2 a_{33}=0, \tag{5.15}\\
\text { (5.14) and }(5.15) & \Rightarrow\left(r_{1}-\frac{1}{r_{2}}\right) a_{23}+\left(\frac{1}{r_{1}}-r_{2}\right) a_{13}=0 . \tag{5.16}
\end{align*}
$$

There are two cases to be considered.
Case 1 (a): $r_{1}-\frac{1}{r_{2}}=0$, i.e. $r_{2}=\frac{1}{r_{1}}$.

$$
\begin{align*}
& (5.13) \Rightarrow a_{22}=\frac{1}{r_{1}} a_{32}, a_{12}=r_{1} a_{32}, \tag{5.17}\\
& (5.14) \Rightarrow a_{33}=\frac{1}{2} r_{1} a_{23}+\frac{1}{2 r_{1}} a_{13}, \tag{5.18}
\end{align*}
$$

$$
\begin{equation*}
(5.3),(5.12) \text { and }(5.17) \Rightarrow a_{13} a_{23}-a_{33}^{2}=0, \tag{5.19}
\end{equation*}
$$

$$
\begin{equation*}
\text { (5.19) and }(5.18) \Rightarrow a_{13}=r_{1}^{2} a_{23} \tag{5.20}
\end{equation*}
$$

$$
\begin{aligned}
(5.18) \text { and }(5.20) & \Rightarrow a_{33}=r_{1} a_{23}=\frac{1}{r_{1}} a_{13}, \\
(5.9),(5.12) \text { and }(5.17) & \Rightarrow b\left|r_{1}\right|^{2}+\frac{1}{\left|r_{1}\right|^{2}}+1=0,
\end{aligned}
$$

which is a contradiction. Hence Case 1 (a) cannot happen.
Case 1 (b): $r_{1}-\frac{1}{r_{2}} \neq 0$.

$$
\begin{align*}
(5.16) & \Rightarrow a_{23}=\frac{r_{2}}{r_{1}} a_{13}, \tag{5.21}\\
(5.14) \text { and }(5.21) & \Rightarrow a_{33}=\left(\frac{r_{2}}{2}+\frac{1}{2 r_{1}}\right) a_{13 .} . \tag{5.22}
\end{align*}
$$

In view of (5.21) and (5.22), we have $a_{13} \neq 0$ because of (5.8).

$$
\begin{equation*}
\text { (5.9), (5.12) and }(5.13) \Rightarrow b \frac{r_{1}}{\bar{r}_{2}}+\frac{\bar{r}_{2}}{r_{1}}+1=0 . \tag{5.23}
\end{equation*}
$$

(5.10), (5.12), (5.21), (5.22) and the fact that $a_{31} \neq 0, a_{13} \neq 0$ imply

$$
\begin{equation*}
b r_{1}+\frac{\bar{r}_{2}}{\left|r_{1}\right|^{2}}+\frac{\bar{r}_{2}}{2}+\frac{1}{2 \bar{r}_{1}}=0 . \tag{5.24}
\end{equation*}
$$

(5.11), (5.13), (5.21) and (5.22) and the fact that $a_{32} \neq 0$ and $a_{13} \neq 0$ imply

$$
\begin{equation*}
\frac{b}{r_{2}}+\frac{\left|r_{2}\right|^{2}}{\bar{r}_{1}}+\frac{\bar{r}_{2}}{2}+\frac{1}{2 \bar{r}_{1}}=0 . \tag{5.25}
\end{equation*}
$$

Clearly (5.23), (5.24) and (5.25) imply

$$
\begin{aligned}
& \quad \operatorname{det}\left(\begin{array}{ccc}
\frac{r_{1}}{\bar{r}_{2}} & \frac{\bar{r}_{2}}{r_{1}} & 1 \\
r_{1} & \frac{\bar{r}_{2}}{\left|r_{1}\right|^{2}} & \frac{\bar{r}_{2}}{2}+\frac{1}{2 \bar{r}_{1}} \\
\frac{1}{r_{2}} & \frac{\left|r_{2}\right|^{2}}{\bar{r}_{1}} & \frac{\bar{r}_{2}}{2}+\frac{1}{2 \bar{r}_{1}}
\end{array}\right)=0 \\
& \Rightarrow\left(\overline{r_{1} r_{2}}+1\right)\left(r_{1} r_{2}+\overline{r_{1} r_{2}}\right)\left(r_{1} r_{2}-1\right)+2 \bar{r}_{1} \bar{r}_{2}\left(1-r_{1} r_{2}\right)\left(1+r_{1} r_{2}\right)=0 .
\end{aligned}
$$

Since $r_{1}-\frac{1}{r_{2}} \neq 0$, i.e. $r_{1} r_{2}-1 \neq 0$, we have

$$
\begin{aligned}
& \left(\bar{r}_{1} \bar{r}_{2}+1\right)\left(r_{1} r_{2}+\bar{r}_{1} \bar{r}_{2}\right)-2 \bar{r}_{1} \bar{r}_{2}\left(1+r_{1} r_{2}\right)=0 \\
\Rightarrow & \left(r_{1} r_{2}-\bar{r}_{1} \bar{r}_{2}\right)\left(1-\bar{r}_{1} \bar{r}_{2}\right)=0 .
\end{aligned}
$$

Since $\bar{r}_{1} \bar{r}_{2}-1 \neq 0$, we have

$$
\begin{equation*}
r_{1} r_{2}=\bar{r}_{1} \bar{r}_{2} . \tag{5.26}
\end{equation*}
$$

Let $\alpha=\frac{r_{1}}{\bar{r}_{2}}$. Then $\alpha=\bar{\alpha}, r_{1}=\alpha \bar{r}_{2}$ and $\bar{r}_{1}=\alpha r_{2} .(5.23)$, (5.24) and (5.25) can be rewritten as

$$
\begin{gather*}
b \alpha^{2}+\alpha+1=0 \tag{5.27}\\
\frac{b}{r_{2}}+\frac{\bar{r}_{2}}{\alpha}+\frac{\bar{r}_{2}}{2}+\frac{1}{2 \alpha r_{2}}=0 \tag{5.28}\\
b \alpha+\frac{\alpha\left|r_{2}\right|^{2}}{2}+\frac{1}{2}+\left|r_{2}\right|^{2}=0 \tag{5.29}
\end{gather*}
$$

$(5.28)-\alpha(5.29) \Rightarrow$

$$
\begin{align*}
& \left(b \alpha^{2}-1\right)\left(\alpha\left|r_{2}\right|^{2}-1\right)=0 \\
& \text { i.e. } b \alpha^{2}=1 \text { or } \alpha\left|r_{2}\right|^{2}=1 \tag{5.30}
\end{align*}
$$

If $\alpha\left|r_{2}\right|^{2}=1$, then (5.29) implies

$$
\frac{b}{\left|r_{2}\right|^{2}}+1+\left|r_{2}\right|^{2}=0
$$

which is absurd since the left hand side is positive. Therefore we conclude that $\alpha^{2}=\frac{1}{b}$. Then (5.27) and (5.29) imply

$$
\begin{equation*}
\alpha=-2 \text { and } b=\frac{1}{4} \tag{5.31}
\end{equation*}
$$

Case 2. $a_{31}=0$. By (5.1), we have either $a_{11}=0$ or $a_{21}=0$.
Case 2 (a): $a_{31}=0$ and $a_{11}=0$. By (5.6), we have $a_{21} \neq 0$.

$$
\begin{align*}
(5.9) & \Rightarrow a_{21} \bar{a}_{22}=0 \tag{5.32}\\
(5.4) & \Rightarrow a_{22}=0 \tag{5.33}\\
(5.2) \text { and }(5.32) & \Rightarrow a_{32}=0 \tag{5.34}
\end{align*}
$$

By (5.7), (5.32) and (5.34), we have $a_{12} \neq 0$

$$
\begin{align*}
(5.5),(5.32) \text { and }(5.34) & \Rightarrow a_{12} a_{23}=0 \Rightarrow a_{23}=0 \tag{5.35}\\
(5.3) \text { and }(5.35) & \Rightarrow-a_{33}^{2}+a_{12} a_{21}=0 \tag{5.36}\\
(5.6) & \Rightarrow\left|a_{21}\right|^{2}=a \tag{5.37}\\
(5.7),(5.32) \text { and }(5.34) & \Rightarrow\left|a_{12}\right|^{2}=\frac{1}{b} \tag{5.38}\\
(5.8),(5.33) \text { and }(5.35) & \Rightarrow\left|a_{33}\right|^{2}=1 \tag{5.39}
\end{align*}
$$

(5.36), (5.37), (5.38) and (5.39) imply $a=b$ and

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{12} & 0 \\
a_{21} & 0 & 0 \\
0 & 0 & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & e^{i \theta_{1}} / \sqrt{a} & 0 \\
e^{i \theta_{2}} \sqrt{a} & 0 & 0 \\
0 & 0 & e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{array}\right)
$$

Case 2 (b): $a_{31}=0$ and $a_{21}=0$. By (5.6), we have $a_{11} \neq 0$.

$$
\begin{align*}
(5.9) & \Rightarrow a_{12}=0, \tag{5.40}\\
(5.4) & \Rightarrow a_{23}=0, \tag{5.41}\\
(5.2) \text { and }(5.40) & \Rightarrow a_{32}=0, \tag{5.42}\\
(5.42),(5.40) \text { and }(5.7) & \Rightarrow a_{22} \neq 0, \\
(5.42),(5.40),(5.5) \text { and } a_{22} \neq 0 & \Rightarrow a_{13}=0, \tag{5.43}\\
(5.3),(5.43) \text { and }(5.40) & \Rightarrow-a_{33}^{2}+a_{11} a_{22}=0, \tag{5.44}\\
(5.6) & \Rightarrow b\left|a_{11}\right|^{2}=a, \tag{5.45}\\
(5.7) & \Rightarrow\left|a_{22}\right|^{2}=1, \tag{5.46}\\
(5.8) & \Rightarrow\left|a_{33}\right|^{2}=1 . \tag{5.47}
\end{align*}
$$

(5.44), (5.45), (5.46) and (5.47) $\Rightarrow a=b$ and

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
e^{i \theta_{1}} & 0 & 0 \\
0 & e^{i \theta_{2}} & 0 \\
0 & 0 & e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{array}\right) .
$$

Case 3. $a_{32}=0$. By (5.2), we have either $a_{12}=0$ or $a_{22}=0$.
Case 3 (a): $a_{32}=0$ and $a_{12}=0$. By (5.7), we have $a_{22} \neq 0$.

$$
\begin{align*}
(5.9) & \Rightarrow a_{21}=0, \tag{5.48}\\
(5.5) & \Rightarrow a_{13}=0, \tag{5.49}\\
(5.1) \text { and }(5.48) & \Rightarrow a_{31}=0, \tag{5.50}\\
(5.6),(5.48) \text { and }(5.50) & \Rightarrow b\left|a_{11}\right|^{2}=a \text { and } a_{11} \neq 0, \tag{5.51}\\
(5.4),(5.48) \text { and }(5.5) & \Rightarrow a_{23}=0, \tag{5.52}\\
(5.7) & \Rightarrow\left|a_{22}\right|^{2}=1, \tag{5.53}\\
(5.8) & \Rightarrow\left|a_{33}\right|^{2}=1, \tag{5.54}\\
(5.3) & \Rightarrow a_{33}^{2}=a_{11} a_{22} . \tag{5.55}
\end{align*}
$$

(5.51), (5.53), (5.54) and (5.55) $\Rightarrow a=b$ and

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
e^{i \theta_{1}} & 0 & 0 \\
0 & e^{i \theta_{2}} & 0 \\
0 & 0 & e^{i \frac{\theta_{1}+\theta_{2}}{2}}
\end{array}\right) .
$$

Case 3 (b): $a_{32}=0=a_{22}$. By (5.7), we have $a_{12} \neq 0$.

$$
\begin{align*}
(5.9) & \Rightarrow a_{11}=0, \tag{5.56}\\
(5.1) \text { and }(5.50) & \Rightarrow a_{31}=0, \tag{5.57}\\
(5.6),(5.56) \text { and }(5.57) & \Rightarrow a_{21} \neq 0, \tag{5.58}\\
(5.10),(5.56),(5.58) \text { and }(5.57) & \Rightarrow a_{23}=0, \tag{5.59}\\
(5.11) & \Rightarrow a_{13}=0, \tag{5.60}\\
(5.6),(5.56) \text { and }(5.57) & \Rightarrow\left|a_{21}\right|^{2}=a, \tag{5.61}
\end{align*}
$$

$$
\begin{align*}
(5.7) & \Rightarrow b\left|a_{12}\right|^{2}=1 \tag{5.62}\\
(5.8),(5.59) \text { and }(5.60) & \Rightarrow\left|a_{33}\right|^{2}=1 \tag{5.63}\\
(5.3),(5.56),(5.57) \text { and }(5.59) & \Rightarrow a_{33}^{2}=a_{12} a_{21} \tag{5.64}
\end{align*}
$$

$(5.61),(5.62),(5.63)$ and $(5.64) \Rightarrow a=b$ and

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{33} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{12} & 0 \\
a_{21} & 0 & 0 \\
0 & 0 & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \frac{e^{i \theta_{1}}}{\sqrt{a}} & 0 \\
e^{i \theta_{2}} \sqrt{a} & 0 & 0 \\
0 & 0 & e^{\frac{i\left(\theta_{1}+\theta_{2}\right)}{2}}
\end{array}\right)
$$

We have shown that if there exists a non-constant CR morphism $\psi: X_{a} \longrightarrow X_{b}$, then $a=b$ and ψ must be one of the following forms.
(i) $\psi_{1}=a_{11} x+\psi_{1}^{(2)}+\psi_{1}^{(3)}+\cdots$,

$$
\begin{aligned}
& \psi_{2}=a_{22} y+\psi_{2}^{(2)}+\psi_{2}^{(3)}+\cdots \\
& \psi_{3}=a_{33} z+\psi_{3}^{(2)}+\psi_{3}^{(3)}+\cdots
\end{aligned}
$$

where $a_{11}=e^{i \theta_{1}}, a_{22}=e^{i \theta_{2}}$ and $a_{33}=e^{i \frac{\theta_{1}+\theta_{2}}{2}}, \psi_{i}^{(j)}=$ homogeneous polynomial of degree j.
(ii) $\psi_{1}=a_{12} y+\psi_{1}^{(2)}+\psi_{1}^{(3)}+\cdots$,

$$
\begin{aligned}
& \psi_{2}=a_{21} x+\psi_{2}^{(2)}+\psi_{1}^{(3)}+\cdots \\
& \psi_{3}=a_{33} z+\psi_{3}^{(2)}+\psi_{3}^{(3)}+\cdots
\end{aligned}
$$

where $a_{12}=e^{i \theta_{1}} / \sqrt{a}, a_{21}=e^{i \theta_{2}} \sqrt{a}$ and $a_{33}=e^{i \frac{\theta_{1}+\theta_{2}}{2}}$. In both case (i) and case (ii), we have

$$
\begin{equation*}
a \psi_{1} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{2}+\psi_{3} \bar{\psi}_{3}=a|x|^{2}+|y|^{2}+|z|^{2} \tag{5.65}
\end{equation*}
$$

By comparing the 3 rd order terms in (5.65), we see easily that the 2 nd order terms of $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ are zero. Repeating this argument, we see that $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ has only linear terms.

Secondly, we prove the theorem for $b=\frac{1}{4}$.
The proof is the same as those for $b \neq \frac{1}{4}$ above except in Case 1 (b). Here we shall follow our previous notations. Let us summarize what we have proved in this situation:

$$
\begin{gather*}
a_{31} \neq 0, a_{32} \neq 0, a_{11} \neq 0, a_{21} \neq 0, a_{12} \neq 0 \text { and } a_{22} \neq 0 \tag{5.66}\\
r_{1} r_{2} \neq 1, r_{1} \neq 0, r_{2} \neq 0 \tag{5.67}\\
r_{1}=-2 \bar{r}_{2} \tag{5.68}
\end{gather*}
$$

(5.1) implies

$$
\begin{equation*}
a_{11}=r_{1} a_{31}, a_{21}=\frac{1}{r_{1}} a_{31} \tag{5.69}
\end{equation*}
$$

(5.2) implies

$$
a_{22}=r_{2} a_{32}, a_{12}=\frac{1}{r_{2}} a_{32},
$$

(5.4) and (5.5) imply

$$
\begin{equation*}
a_{23}=\frac{r_{2}}{r_{1}} a_{13}, a_{33}=\left(\frac{r_{2}}{2}+\frac{1}{2 r_{1}}\right) a_{13} \tag{5.70}
\end{equation*}
$$

Notice that (5.9), (5.10) and (5.11) are equivalent to (5.68) in this situation

$$
\begin{align*}
& (5.6) \Rightarrow\left|a_{31}\right|^{2}=\frac{4 a r^{2}}{\left(2 r^{2}+1\right)^{2}}, \tag{5.71}\\
& (5.7) \Rightarrow\left|a_{32}\right|^{2}=\frac{4 r^{2}}{\left(2 r^{2}+1\right)^{2}}, \tag{5.72}\\
& (5.8) \Rightarrow\left|a_{13}\right|^{2}=\frac{16 r^{2}}{\left(2 r^{2}+1\right)^{2}}, \tag{5.73}\\
& (5.3) \Rightarrow \frac{a_{13}^{2}}{4 r_{1}}=\frac{a_{31} a_{32}}{r_{2}} . \tag{5.74}
\end{align*}
$$

Let

$$
\begin{align*}
& r_{2}=r e^{i \theta} \tag{5.75}\\
&(5.68) \Rightarrow r_{1}=-2 r e^{-i \theta} \tag{5.76}\\
&(5.74),(5.75) \text { and }(5.76) \Rightarrow a_{13}^{2}=-8 e^{-2 i \theta} a_{31} a_{32}, \tag{5.77}\\
&(5.77),(5.71),(5.72) \text { and }(5.73) \Rightarrow a=\frac{1}{4} . \tag{5.78}
\end{align*}
$$

$$
\begin{equation*}
a_{31}=\frac{r}{2 r^{2}+1} e^{i \theta_{31}} \tag{5.79}
\end{equation*}
$$

$$
\begin{equation*}
a_{32}=\frac{2 r}{2 r^{2}+1} e^{i \theta_{32}} \tag{5.80}
\end{equation*}
$$

$$
\begin{equation*}
a_{13}=\frac{4 r}{2 r^{2}+1} e^{i \theta_{13}} \tag{5.81}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{13}=\frac{\pi}{2}+\frac{\theta_{31}}{2}+\frac{\theta_{32}}{2}-\theta \tag{5.82}
\end{equation*}
$$

It follows that the automorphism group of $X_{\frac{1}{4}}$ contains a linear subgroup of dimension 4 in the following form

$$
\begin{aligned}
\psi(x, y, z) & =\left(\begin{array}{ccc}
-2 r e^{-i \theta} a_{31} & \frac{1}{r} e^{-i \theta} a_{32} & a_{13} \\
-\frac{1}{2 r} e^{i \theta} a_{31} & r e^{i \theta} a_{32} & -\frac{1}{2} e^{2 i \theta} a_{13} \\
a_{31} & a_{32} & \frac{2 r^{2}-1}{4 r} e^{i \theta} a_{13}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{-2 r^{2}}{2 r^{2}+1} e^{i\left(\theta_{31}-\theta\right)} & \frac{2}{2 r^{2}+1} e^{i\left(\theta_{32}-\theta\right)} & \frac{4 r}{2 r^{2}+1} e^{i \theta_{13}} \\
\frac{-1}{2\left(2 r^{2}+1\right)} e^{i\left(\theta_{31}+\theta\right)} & \frac{2 r^{2}}{2 r^{2}+1} e^{i\left(\theta_{32}+\theta\right)} & \frac{-2 r}{2 r^{2}+1} e^{i\left(\theta_{13}+2 \theta\right)} \\
\frac{r}{2 r^{2}+1} e^{i \theta_{31}} & \frac{2 r}{2 r^{2}+1} e^{i \theta_{32}} & \frac{2 r^{2}-1}{2 r^{2}+1} e^{i\left(\theta_{13}+\theta\right)}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
\end{aligned}
$$

It can be shown that

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
-2 r e^{i \theta} a_{31} & \frac{1}{r} e^{-i \theta} a_{32} & a_{13} \\
-\frac{1}{2 r} e^{i \theta} a_{31} & r e^{i \theta} a_{32} & -\frac{1}{2} e^{2 i \theta} a_{13} \\
a_{31} & a_{32} & \frac{2 r^{2}-1}{4 r} e^{i \theta} a_{13}
\end{array}\right) \\
&=a_{31} a_{32} a_{33}\left(-r^{3}-\frac{3 r}{2}-\frac{6 r^{2}+1}{8 r^{3}}\right) \neq 0 .
\end{aligned}
$$

References

[An-Gr62] Andreotti, A. and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193259.
[Be-Ca82] Bell, S. and Catlin, D., Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385-396.
[BCHM10] Birkar, C., Cascini, P., Hacon, C., and McKernan, J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468.
[Bo-Na67] Borel, A., and Narasimhan, R., Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247-255.
[BFF12] Boucksoml, S., Fernex, de T., and Favre, C., The volume of an isolated singularity, Duke Math. J. 161 (2012), no. 8, 1455-1520.
[BM75] Boutet de Monvel, L., Intégration des équations de Cauchy Riemann, Séminaire Goulaouic-Lions-Schwartz, Exré IX, 1974-1975.
[Di-Fo82] Diederich, K. and Fornaess, J. E., Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), no. 3, 363-384.
[EHZ04] Ebenfelt, P., Huang, X., and Zaitsev, D., Rigidity of CR-immersions into spheres, Comm. Anal. Geom. 12 (2004), no. 3, 631-670.
[EHZ05] Ebenfelt, P., Huang, X., and Zaitsev, D., The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), no. 1, 169-191.
[For76] Fornaess, J. E., Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 1, 529-569.
[Ful98] Fulton, W., Intersection Theory, 2nd ed., Springer, 1998.
[Ham81] Hamm, H., On the vanishing of local homotopy groups for isolated singularities of complex spaces, J. Reine Angew. Math. 323 (1981), 172-176.
[Ha-La75] Harvey, R. and Lawson, B., On boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 233-290.
[Ha-La00] Harvey, R. and Lawson, B., Addendum to Theorem 10.4 in Boundaries of complex analytic varieties, arXiv: math/0002195v1 [math CV] 23 Feb., 2000.
[Har77] Hartshorne, R., Alebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1977.
[Hir63] Hironaka, H., On the equivalence of singularities. i, Arithmetical Algebraic Geometry, Proc. Conf. Purdue Univ. (1963), 153-200.
[H-K-P06] Huang, J.-M., Kebekus, S., and Peternell, T., Holomorphic maps onto varieties of non-negative Kodaira dimension, Journal of Alg. Geom. 15 (2006), 551-561.
[Ko-Oc75] Kobayashi, S. and Ochiai, T., Meromorphic mappings onto compact spaces of general type, Invent. Math. 31 (1975), 7-16.
[Kohn65] Kohn, J., Boundaries of complex manifolds, Proc. Conference on Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965, 81-94.
[KSW81] Kalka, M., Shiffman, B., and Wong, B., Finiteness and rigidity theorems for holomorphic mappings, Michigan Math. J. 28 (1981), 289-295.
[Mok84] Mok, N., Rigidity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann. 266 (1984), 433-447.
[Mo83] Mostow, G. D., Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Studies, Vol. 78, Princeton University Press, 1983.
[NZ09] Nakayama, N. and Zhang, D.-Q., Building blocks of étale endomorphisms of complex projective manifolds, Proc. Lond. Math. Soc. 99 (2009), no. 3, 725-756.
[Pin74] Pinchuk, S., On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 909-917.
[Pr67] Prill, D., Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. Journal 34 (1967), no. 3, 375-386.
[Siu80] Siu, Y.-T., The complex analyticity of harmonic map and the strong rigidity of compact Kähler manifolds, Ann. of Math. 112 (1980), no. 2, 73-111.
[Tak03] Takayama, S., Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003), no. 8, 825-836.
[TYZ13] Tu, Y. C., Yau, S.S.-T., and Zuo, H.Q., Nonconstant CR morphisms between compact strongly pseudoconvex CR manifolds and étale covering between resolutions of isolated singularities, J. Differential Geom. 95 (2013), no. 2, 337-354.
[Wo77] Wong, B., Characterization of the unit ball in \mathbb{C}^{n} by its automorphism group, Invent. Math. 41 (1977), no. 3, 253-257.
[Ya77] Yau, S.-T., Calabi's conjecture and some new results in algebraic geometry, PNAS 74 (1977), no. 5, 1798-1799.
[Ya78] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-341.
[Yau77] Yau, S.S.-T., Two theorems on higher dimensional singularities, Mathematische Annalen 231 (1977), 55-59.
[Yau11] Yau, S.S.-T., Rigidity of CR morphisms between compact strongly pseudoconvex CR manifolds, Journal of European Mathematical Society 13 (2011), 175-184.
[Ya-Yu02] Yau, S.S.-T. and Yu, Y., Algebraic classification of rational CR structures on topological 5 -sphere with transversal holomorphic S^{1}-action in \mathbb{C}^{4}, Math. Nachr. (2002), 207-233.

Department of Mathematical Sciences, Tsinghua University Beiding 100084, China
E-mail address: yau@uic.edu

Mathematical Sciences Center, Tsinghua University
Beijing, 100084, China
E-mail address: hqzuo@math.tsinghua.edu.cn

[^0]: Stephen Yau is supported by the start-up fund from Tsinghua University. Huaiqing Zuo is supported by NSFC 11401335 and the start-up fund from Tsinghua University.

