
UN
PR
OO

F

Recent Results on Rigidity of CR

Morphisms Between Compact Strongly

Pseudoconvex CR Manifolds

Stephen Yau and Huaiqing Zuo

Dedicated to Professor George Daniel Mostow on the occasion of his 90th birthday

Abstract

The purpose of this paper is to summarize the results on rigidity of CR morphisms
between compact strongly pseudoconvex CR manifolds developed by the first author
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1 Introduction

Rigidity phenomena in complex geometry have received a lot of attention histor-
ically. Borel and Narasimhan [Bo-Na67] obtained some general results on rigidity
of morphisms with domain space carrying no non-constant pseudoconvex function
which is bounded above and target space being covered by analytic subset of a
bounded domain in Cn. In 1975, Kobayashi and Ochiai [Ko-Oc75] proved that there
are only finitely many surjective morphisms between two fixed projective mani-
folds of general type. In 1981, Kalka, Shiffman and Wong [KSW81] developed a
general theory to study the finiteness and rigidity theorems for holomorphic map-
pings. Let Holk(X,Y ) denote the complex space of holomorphic maps of rank � k
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from the compact complex space X into the complex manifold Y . They proved
that if Y satisfies certain convexity or cohomological conditions, then for suitable
k, Holk(X,Y ) is either discrete or finite. They also showed that if the tangent
bundle of Y satisfies k-pseudoconvexity condition, then Holk(X,Y ) is discrete. As
a corollary they asserted that if Y is a compact Hermitian manifold with nega-
tive holomorphic sectional curvature, then the set of surjective holomorphic maps
from X onto Y is finite. On the other hand, if Y is a compact Kähler manifold
with c1(Y ) represented by a negative semi-definite form and either cn(Y ) �= 0 or
cn1 (Y ) �= 0, Kalka, Shiffman and Wong showed that Holn(X,Y ) is discrete.

Inspiring by the Grauert-Oka principle, Mok [Mok84] formulated the following
problem on n-dimensional Stein spaces.
Problem. Suppose V is an n-dimensional Stein space which has the homotopy
type of a real n-dimensional CW-complex. Suppose f : V → V is a holomorphic
homotopy equivalence. Does it follow that f is a biholomorphism?

Mok [Mok84] pointed out that obvious counter-example on the punctured disc
show that the answer is in general negative even in the case of bounded domains
and injective holomorphic self-mappings. In [Mok84] , instead of assuming that
f is a homotopy equivalence, Mok assumes that V is hyperbolic in the sense of
Caratheodory and f induces an isomorphism on the n-th integral homology group
Hn(V,Z), which is assumed to be nonzero and finitely generated. Then he proved
that f is a biholomorphism.

Recently Huang, Kebekus and Peternell [H-K-P06] have proved the following
beautiful result. Let Y be a projective n-dimensional manifold which is not unir-
uled. If either π1(Y ) is finite or cn(Y ) �= 0, then for each connected normal compact
complex variety X , the space of surjective morphism from X to Y is discrete.

In 1977, Wong [Wo77] proved an important result in complex geometry that
any strongly pseudoconvex domain with smooth boundary in Cn with noncom-
pact automorphism group must be biholomorphically equivalent to the unit ball.
In 1978, Yau [Ya78] proved the Calabi Conjecture. As a consequence, he [Ya77]
proved that 3c2 � c21 for any Kähler surface with ample canonical bundle, and the
equality holds if and only if the surface is covered by the ball in C2. Using this
results, he [Ya77] proved the Severi Conjecture that every complex surface which
is homotopic to the complex projective plane CP2 is biholomorphic to CP2.

As a consequence of his famous strong rigidity theorem [Mo83] Mostow showed
that two compact quotients of the ball of complex dimension � 2 with isomor-
phic fundamental groups are either biholomorphic or conjugate biholomorphic.
S.-T. Yau conjectured that this phenomenon of strong rigidity should hold also
for compact Kähler manifolds of complex dimension � 2 with same homotopy
type and negative sectional curvature. In his paper [Siu80], Siu proved that Yau’s
conjecture is true when the curvature tensor of one of the two compact Kähler
manifolds is strongly negative with no curvature assumption on the other mani-
fold.

CR manifolds are abstract models of boundary of complex manifolds. Strongly
pseudoconvex CR manifolds have rich geometric and analytic structures. The har-
monic theory for the ∂b complex on compact strongly pseudoconvex CR manifolds
was developed by Kohn [Kohn65]. Using this theory, Boutet de Monvel [BM75]
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proved that if X is a compact strongly pseudoconvex CR manifold of real di-
mension 2n− 1, n � 3 then there exist C∞ functions f1, . . . , fN on X such that
each ∂bfj = 0 and f = (f1, . . . , fN ) defines an embedding of X in CN . Thus,
any compact strongly pseudoconvex CR manifold of dimension � 5 can be CR
embedded in some complex Euclidean space. On the other hand, 3-dimensional
strongly pseudoconvex compact orientable CR manifolds are not necessarily em-
beddable. Throughout this paper, our strongly pseudoconvex CR manifolds are
always assumed to be compact orientable and embedded in some CN . By a beau-
tiful theorem of Harvey and Lawson [Ha-La00, Ha-La75], these CR manifolds are
the boundaries of subvarieties with only isolated normal singularities.

Rigidity problems of CR immersions into spheres and hyperquadrics were stud-
ied by Ebenfelt, Huang and Zaitsev [EHZ04, EHZ05]. Let X be a strongly pseudo-
convex CR manifold of dimension 2n−1. For p ∈ X , let f: (X, p) −→ S2n+2d−1 be
a local CR immersion of X near p into unit sphere S2n+2d−1 in Cn+d. The result
of [EHZ04] states that if d < n

2 − 1, then f is rigid in the sense that any other
immersion of (X, p) into S2n+2d−1 is of the form φ ◦ f , where φ is biholomorphic
automorphism of the unit ball B ⊆ Cn+d. As a striking corollary, they show that
if X and X ′ are two strongly pseudoconvex CR manifolds of dimension 2n − 1
in S2n+2d−1 with d < n

2 − 1 and if X and X ′ are locally CR equivalent at some
points p ∈ X and p′ ∈ X ′, then there exists a unitary linear transformation which
maps X to X ′.

In a remarkable paper [Pin74], Pinchuk showed that a proper holomorphic
mapping between strongly pseudoconvex domains in Cn is locally biholomorphic.
In fact he proved that proper holomorphic self-maps of strongly pseudoconvex do-
mains are necessarily biholomorphic. It was proved in [Be-Ca82] and [Di-Fo82] that
proper holomorphic maps extend smoothly to the boundaries and hence induce CR
morphisms between the boundaries.

In [Yau11], the first author of this paper took another point of view. In view
of Fornaess theory on strongly pseudoconvex domains [For76], he investigated the
rigidity property of CR morphisms between strongly pseudoconvex CR manifolds
by means of the singularities theory. Later in his joint work with Tu and Zuo
[TYZ13], the rigidity of CR morphisms between CR manifolds lying in the same
variety is proved. The purpose of this paper is to summarize the results on rigidity
of CR morphisms between strongly pseudoconvex CR manifolds by means of the
singularity theory.

In Section 2, we shall recall some basic notions and theorems of CR manifolds
and the interplay between CR manifold and singularities. In Section 3, we shall
discuss the rigidity of CR morphisms between any two compact strongly pseudo-
convex CR manifolds. In Section 4, we will show that the rigidity of CR morphisms
between two compact strongly pseudoconvex CR manifolds lying in a same vari-
ety with isolated singularities is related to the rigidity of etale covering between
resolutions of isolated singularities. In Section 5, we give examples of strongly
pseudoconvex 3-dimensional CR manifolds and computes their non-constant CR
endomorphisms.
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2 Preliminaries on CR manifolds

Definition 2.1. Let X be a connected oriented orientable manifold of real dimen-
sion 2n− 1. A CR structure on X is an (n − 1)-dimensional subbundle S of the
complexified tangent bundle CTX such that

(1) S ∩ S = {0};
(2) If L,L′ are local sections of X, then so is [L,L′].

A manifold with a CR structure is called a CR manifold. There is a unique
subbundle H of the tangent bundle T (X) such that CH = S ⊕ S. Furthermore,
there is a unique homomorphism J : H → H such that J2 = −1 and S = {v−iJv :
v ∈ H}. The pair (H, J) is called the real expression of the CR structure.

Definition 2.2. Let L1, . . . , Ln−1 be a local frame of S. Then L1, . . . , Ln−1 is a
local frame of S and one may choose a local section N of T (X) which is purely
imaginary, such that L1, . . . , Ln−1, L1, . . . , Ln−1, N is a local frame of CT (X). The
matrix (cij) defined by

[Li, Lj ] =
∑

ak
ijLk +

∑
bkijLk +

√−1cijN

is Hermitian and called the Levi form of X.

Proposition 2.1. The number of nonzero eigenvalues and the absolute value of
the signature of the Levi form (cij) at each point are independent of the choice of
L1, . . . , Ln−1, N .

Definition 2.3. The CR manifold X is called strongly pseudoconvex if the Levi
form is definite at each point of X.

Theorem 2.1. (Boutet de Monvel [BM75]) If X is a compact strongly pseudo-
convex CR manifold of dimension (2n− 1) and n ≥ 3, then X is CR embeddable
in CN .

Although there are non-embeddable compact 3-dimensional CR manifolds, in
this paper all CR manifolds are assumed to be embeddable in complex Euclidean
space.

Theorem 2.2. (Harvey-Lawson [Ha-La75, Ha-La00]) For any compact connected
embeddable CR manifold X, there is a unique complex variety V in CN for some
N such that the boundary of V is X and V has only normal isolated singularities.

With the notation in Definition 2.1, for any C∞ function u, there is a section
∂bu ∈ Γ(S

∗
) defined by (∂bu)(L) = Lu for any L ∈ Γ(S). This can be generalized

as follows:

Definition 2.4. A complex vector bundle E over X is said to be holomorphic if
there is a differential operator ∂E : Γ(E) → Γ(E ⊗ S

∗
) such that if Lu denotes

(∂Eu)(L) for u ∈ Γ(E) and L ∈ Γ(S), then for any L1, L2 ∈ Γ(S) and any C∞

function f on X
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(1) L(fu) = (Lf)u+ f(Lu);

(2) [L1, L2]u = L1L2u− L2L1u.

A solution u of the equation ∂Eu = 0 is called a holomorphic section.

The vector bundle T̂ (X) = CT (X)/S is holomorphic with respect to the fol-
lowing ∂ = ∂

bT (X). Let ω be the projection from CT (X) to T̂ (X). Take any

u ∈ Γ(T̂ (X)) and express it as u = ω(Z), Z ∈ Γ(CT (X)). For any L ∈ Γ(S),
define (∂u)(L) = ω([L,Z]). The section (∂u)(L) of T̂ (X) does not depend on the
choice of Z and ∂u gives a section of T̂ (X) ⊗ S

∗
. Further the operator ∂ satisfies

the conditions in Definition 2.4. The resulting holomorphic vector bundle T̂ (X) is
called the holomorphic tangent bundle of X .

Lemma 2.1. If X is a real hypersurface in a complex manifold M , then the
holomorphic tangent bundle T̂ (X) is naturally isomorphic to the restriction to X
of the bundle T 1,0(M) of all (1, 0) tangent vectors to M .

Definition 2.5. Let X be a compact CR manifold of real dimension 2n − 1.
X is said to be a Calabi-Yau CR manifold if there exists a nowhere vanishing
holomorphic section in Γ(ΛnT̂ (X)∗) where T̂ (X) = CT (X)/S∗ is the holomorphic
tangent bundle of X.

Remark 2.1. (a) Let X be a compact CR manifold of real dimension 2n−1 which
is a boundary of domain in Cn. Then X is a Calabi-Yau CR manifold.

(b) Let X be a strongly pseudoconvex CR manifold of real dimension 2n − 1
contained in the boundary of a bounded strongly pseudoconvex domain in Cn+1.
Then X is a Calabi-Yau CR manifold.

(c) More generally, let V be a Stein variety V with singular set S such that the
canonical bundle of V − S is trivial. If X is a real hypersurface in V − S, then X
is a Calabi-Yau CR manifold.

Definition 2.6. Let X be a compact connected strongly pseudoconvex embeddable
CR manifold of real dimension 2n−1. Let V be the normal subvariety in CN such
that the boundary of V is X. Let π : M → V be a resolution of singularities of V .
The geometric genus of X denoted by pg(X) is defined to be dimHn−1(M,O).

Proposition 2.2. ([Ya-Yu02]) Let X be a connected compact strongly pseudocon-
vex CR manifold of real dimension 2n − 1 and n ≥ 2. Suppose that X bounds
a normal variety V ⊆ CN with isolated singularities Y = {q1, . . . , qm}. Let π :
M → V be a resolution of singularities of V . Then the geometric genus pg(X) :=
dimHn−1(M,O) is a CR invariant of X. In fact, let U be any small strongly
pseudoconvex neighborhood of Y . Then

pg(X) = dimH0(U − Y,Ωn)/L2(U − Y,Ωn)

where Ωn is the sheaf of germs of holomorphic n-forms and L2(U − Y,Ωn) is the
space of holomorphic n-forms ω on U − Y which are L2-integrable for some small
neighborhood U ′ ⊂⊂ U , i.e.,

∫
U ′−Y

ω ∧ ω <∞.
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Definition 2.7. Let (V, q) be a complex analytic with isolated normal singularity
at q of dimension n. The geometric genus pg(V, q) of the singularity (V, q) is defined
to be dimH0(U −{q},Ωn)

/
L2(U −{q},Ωn) where U is any strongly pseudoconvex

neighborhood of q.

Remark 2.2. (a) Let π : (M,A) → (U, q) be a resolution of singularity. By a
theorem of [Yau77], Hn−1(M,O) = dimH0(V − {q},Ωn)

/
L2(V − {q},Ωn). It

follows easily that pg(V, q) is independent of U in the above definition.

(b) With the notation in Proposition 2.2, we have pg(X) =
m∑

i=1

pg(V, qi).

3 General theory on rigidity of CR morphism

The starting point of our investigation on CR morphisms between two embeddable
strongly pseudoconvex compact CR manifolds is the following result.

Theorem 3.1. Let X1 and X2 be two compact connected strongly pseudoconvex
CR manifolds of dimension 2n− 1 ≥ 3 which bound complex varieties V1 and V2

in CN1 and CN2 respectively. Suppose the singular set Si of Vi, i = 1, 2 is either an
empty set or a set consisting of only isolated normal singularities. If φ : X1 → X2

is a non-constant CR morphism, then φ is surjective and φ can be extended to a
proper surjective holomorphic map from V1 to V2 such that φ(S1) ⊆ S2, φ−1(X2) =
X1 and φ : V1 − φ−1(S2) → V2 − S2 is a covering map. Moreover, if S2 does not
have quotient singularity, then φ−1(S2) = S1.

Proof. Let φ1, . . . , φN2 be the component functions of φ. Then φi as CR holo-
morphic function on X1 can be extended onto a one-sided neighborhood of X1 in
V1. By Andreotti and Grauert ([An-Gr62], Théorème 15), φi can be holomorphi-
cally extended to V1 − S1 where S1 is the singular set of V1. Since S1 is either
an empty set or a set consisting of only isolated normal singularities, φi can be
holomorphically extended onto V1.

We claim that φ(V1) ⊆ V2. To see this, let f1, . . . , fk be the defining equations
of V2, i.e. V2 = {y ∈ CN2 : f1(y) = · · · = fk(y) = 0}. Clearly φ∗(fi) = fi ◦ φ is
a holomorphic function on V1 which vanishes on X1 for 1 ≤ i ≤ k. Since X1 is of
real codimension one in V1, φ∗(fi) is identically zero on V1 for 1 ≤ i ≤ k. This
implies that φ(V1) ⊆ V2. By the maximum principle, φ(X1) ∩ φ(V1 −X1) = ∅. It
follows that φ−1(X2) = X1 and φ is a proper map from V1 to V2. By the proper
mapping theorem, φ(V1) is a complex variety.

We next claim that dim φ(V1) = n. If dim φ(V1) < n, then for some q in φ(V1),
φ−1(q) is a compact variety of dimension at least one sitting inside V1. This gives
a contradiction since V1 is Stein. As φ(V1) ⊆ V2 and dimV1 = n = dimV2, we
have φ(V1) = V2. It follows that φ(X1) = X2. A local computation of Fornaess
([For76], Proposition 12) would apply to show that φ is a local biholomorphism
near X1. (This was observed independently by Pinchuk [Pin74].) In particular,
φ : V1 − φ−1(S2 ∪ φ(S1)) → V2 − (S2 ∪ φ(S1)) is locally biholomorphic and hence
is a finite covering.
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Let p ∈ S1 and q = φ(p). We claim that q ∈ S2. Suppose on the contrary that q
is a smooth point in V2; then φ maps a neighborhood U1 of p to a neighborhood U2

of q as a branch covering. Since p is a normal singularity, the punctured neighbor-
hood U1 − {p} of p is connected. On the other hand, the punctured neighborhood
U2 − {q} of q is simply connected because q is a smooth point. We conclude that
φ|U1 : U1 → U2 is one-to-one and onto. By the Hartogs extension theorem, the
inverse map φ−1|U2−{q} : U2 − {q} → U1 − {p} can be holomorphically extended
onto U2. It follows that φ|U1 : U1 → U2 is a biholomorphic map. This leads to a
contradiction. Therefore φ(S1) ⊆ S2 and φ : V1 − φ−1(S2) → V2 − S2 is a covering
map.

Now assume that S2 does not have a quotient singularity. Let q be any point in
S2. We need to show that φ−1(q) ⊆ S1. If φ−1(q) is not contained in S1, then there
exists a smooth point q′ of V1 in φ−1(q). Recall that φ−1(q) is a finite set. We can
find an open neighborhood U of q′ which is biholomorphic to a domain in Cn such
that φ|U from U to the germ of (V2, q) is a branch covering with ramification locus
{q′}. By Theorem 1 of [Pr67], we conclude that (V2, q) is a quotient singularity.
This is a contradiction.

As a corollary of Theorem 3.1, we have the following super-rigidity results of
CR morphisms between strongly pseudoconvex manifolds.

Corollary 3.1. Let X1 be a compact strongly pseudoconvex CR manifold of di-
mension 2n−1 ≥ 3 which bounds a complex variety V1 in CN1 with isolated normal
singularities. Let X2 be a compact strongly pseudoconvex CR manifold of dimen-
sion 2n − 1 which bounds a complex submanifold V2 in CN2 . Then there is no
non-constant CR morphism from X1 to X2.

It is a natural question to ask what happens if we interchange the roles of X1

and X2 in Corollary 3.1.

Proposition 3.1. Let X1 be a compact strongly pseudoconvex CR manifold of
dimension 2n− 1 ≥ 3 which bounds a complex submanifold V1 in CN1 . Let X2 be
a compact strongly pseudoconvex CR manifold of dimension 2n− 1 with either (i)
geometric genus pg(X2) > 0, or (ii) pg(X2) ≥ 0 and X2 bounds a complex variety
V2 in CN2 with a non-quotient singularity. Then there is no non-constant CR
morphism from X1 to X2.

Proof. By Theorem 3.1, if there exists a non-constant CR morphism φ : X1 → X2,
then φ can be extended as a ramified covering map from V1 to V2 with ramification
locus S2. Since V1 is smooth, by the proof of Theorem 3.1, S2 consists of only
quotient singularities and hence the geometric genus of these singularities are zero.
It follows that pg(X2) = 0 in view of Remark 2.2(b). This leads to a contradiction.

Remark 3.1. Proposition 3.1 is false if pg(X2) = 0 and V2 has only quotient
singularities in the interior, as we can see from the following example.

Example 3.1. Let B = {(x, y) ∈ C2 : |x|2+|y|2 < 1} and S = ∂B. In the notation
of Proposition 3.1, let X1 = S be the standard sphere and V1 = B. Let σ : B → B
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be the map given by σ(x, y) = (−x,−y). Let V2 be the quotient of V1 by the cyclic
group of order 2 generated by σ. Then V2 is a strongly pseudoconvex variety with
A1 singularity {(z1, z2, z3) ∈ C3 : z1z2 = z2

3}. The quotient map φ : V1 → V2 is
given by (z1, z2, z3) = (x2, y2, xy). Clearly φ sends X1 surjectively onto X2 = ∂V2

and φ is a non-constant CR morphism.

Proposition 3.2. Let X1 and X2 be two compact strongly pseudoconvex embed-
dable CR manifolds of dimension 2n − 1 ≥ 3. If there is a non-constant CR
morphism from X1 to X2, then pg(X1) ≥ pg(X2).

Proof. Let Vi be a normal variety in CNi with only isolated singularities such that
∂Vi = Xi, i = 1, 2. Let S1 and S2 be the singular set of V1 and V2 respectively.
Let φ : X1 → X2 be a non-constant CR morphism. In view of Theorem 3.1, φ can
be extended to a proper surjective holomorphic map from V1 and V2 such that
φ(S1) = S2, and φ : V1 − φ−1(S2) → V2 −S2 is a covering map. There is a natural
map

φ∗ :
Γ(V2 − S2,Ωn)
L2(V2 − S2,Ωn)

→ Γ(V1 − φ−1(S2),Ωn)
L2(V1 − φ−1(S2),Ωn)

.

Since φ : V1−φ−1(S2) → V2−S2 is a finite covering map, a form w ∈ Γ(V2−S2,Ωn)
is L2-integrable if and only if φ∗(w) is L2-integrable. Thus φ∗ is injective. Observe
that φ−1(S2) − S1 is a discrete subset in the smooth part of V1. By Hartog’s
theorem, Γ(V1 − φ−1(S2),Ωn) = Γ(V1 − S1,Ωn) and L2(V1 − φ−1(S2),Ωn) =
L2(V1 − S1,Ωn). It follows that pg(X2) ≤ pg(X1).

Corollary 3.2. Let X1, X2 be two compact strongly pseudoconvex embeddable
CR manifolds of dimension 2n − 1 ≥ 3. If pg(X1) < pg(X2), then there is no
non-constant CR morphism from X1 to X2.

The following theorem says that if the codimension of X2 is small and dimX2 ≥
5, then there is no non-constant CR morphism from X1 to X2 except CR biholo-
morphic maps. This rigidity phenomenon does not require any curvature assump-
tion on X1 or X2.

Theorem 3.2. Let X1 and X2 be two compact strongly pseudoconvex CR mani-
folds of dimension 2n− 1 ≥ 5 which bound complex varieties V1 and V2 with only
isolated normal singularities in CN1 and CN2 respectively. Let S1 and S2 be the sin-
gular sets of V1 and V2 respectively and S2 is non-empty. Suppose 2n−N2−1 ≥ 1.
Then there exists no non-constant CR morphism from X1 to X2 if |S1| is not
divisible by |S2|. If |S1| = |S2|, then X1 is CR biholomorphic to X2.

Proof. Let φ : X1 → X2 be a non-constant CR morphism. Theorem 3.1 says that
φ can be extended to a proper surjective holomorphic map from V1 to V2 such that
φ(S1) ⊆ S2 and φ : V1 − φ−1(S2) → V2 − S2 is a covering map of degree d. For
any q ∈ S2, we know that the punctured neighborhood of q in V2 is (2n−N2 − 1)-
connected in view of a theorem of Hamm [Ham81]. Since 2n − N2 − 1 ≥ 1 by
assumption, the punctured neighborhood of q is simply connected. We claim that
φ−1(q) ⊆ S1. If φ−1(q) is not contained in S1, then there exists a smooth point q′ of
V1 in φ−1(q). Recall that φ−1(q) is a finite set. We can find an open neighborhood
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U of q′ which is biholomorphic to a domain in Cn such that φ|U from U to the germ
of (V2, q) is a branch covering with ramification locus {q′}. Since the punctured
neighborhood of q in V2 is simply connected, this implies φ|U is injective and hence
φ|U is a biholomorphism. This leads to a contradiction because q is a singular point.
We have shown that φ−1(q) = {q′1, . . . , q′d} ⊆ S1. There are exactly d points in
φ−1(q) because the punctured neighborhood of q is simply connected. Therefore
|S1| is divisible by |S2|. On the other hand if |S1| = |S2|, then d = 1 and hence φ
is a biholomorphism.

4 CR morphisms between two compact strongly
pseudoconvex CR manifolds lying in a same

variety

The main purpose of this section is to prove the following theorem.

Theorem 4.1. Let X1 and X2 be two (2n − 1)-dimensional compact strongly
pseudoconvex CR manifolds lying in a Stein variety V of dimension n in CN . Let
V1 ⊆ V , V2 ⊆ V such that ∂V1 = X1 and ∂V2 = X2. Assume that the singular set
S of V is nonempty and is equal to the singular set of Vi, i = 1, 2. Then nontrivial
CR morphisms from X1 to X2 are necessarily CR biholomorphisms.

Proof. Let Φ: X1 −→ X2 be a non-constant CR morphism. In view of Theo-
rem 3.1, Φ can be extended to a proper holomorphic map from V1 to V2 such that
Φ: V1 − Φ−1(S) −→ V2 − S is a covering map of degree d and Φ(S) = S. Let
S = {q1, . . . , qm}. Then Φ−1(S) = {q1, . . . , qm, p1, . . . , pk}. We shall prove that
Φ−1(S) = S. Let π : M −→ V2 be a resolution of singularities of V2 such that the
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exceptional sets

E1 = π−1(q1) =
�1⋃

i=1

A1
i , . . . , Em = π−1(qm) =

�m⋃
i=1

Am
i

are normal crossing divisors.

Consider the fiber product V1×
V2

M of the maps Φ: V1 −→ V2 and π : M −→ V2.

Let τ : M̃ −→ V1 ×
V2

M be the normalization map. Then we have the follow-

ing commutative diagram where π1 and π2 are natural projections. Notice that
π1 : V1×

V2

M −→ V1 is a biholomorphism outside π−1
1 (Φ−1(S)) and π2 : V1×

V2

M →M

is a covering map outside
m⋃

i=1

Ei. Thus

Φ̃ := π2 ◦ τ : M̃ −→M

is a d-fold branch covering. For each Aj
i ⊆ Ej , and any point qj

i ∈ Aj
i which is

a smooth point in
m⋃

i=1

Ei, we choose a germ of a curve Γj
i at the point qj

i which

intersects with
m⋃

i=1

Ei only at qj
i and the intersection of Aj

i and Γj
i is transversal

at qj
i . Let Γ =

⋃
Γj

i , 1 � j � m, 1 � i � �j. Notice that π̃ := π1 ◦ τ is a proper
map which is a biholomorphism outside Ẽ := π̃−1(Φ−1(S)) = Φ̃−1(E) where
E = E1 ∪ · · · ∪ Em. Observe that Ẽ has exactly m + k connected components
Ẽ = Ẽ1 ∪ · · · ∪ Ẽm+k. Clearly

Φ̃∗(Ẽ) =
∑
i,j

dj
iA

j
i , where dj

i � d.

By the projection formula (cf. p. 34 of [Ful98], or p. 426 of [Har77]),

m∑
j=1

�j∑
i=1

dj
i = Γ · Φ̃∗(Ẽ) = Φ̃∗(Γ) · Ẽ

� (�1 + · · · + �m)d.
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The last inequality comes from the fact that Φ̃∗(Γj
i ) has d distinct branches because

Φ̃ : M̃ − Φ̃−1(E) −→ M − E is a d-fold covering space. Since dj
i � d, we conclude

that dj
i = d for all i, j. It follows that the branch locus of Φ̃ is contained in the

singular locus of
m⋃

i=1

Ei which is of dimension n − 2. As M̃ is normal and M is

smooth, Φ̃ : M̃ −→ M is a covering map by purity of branch locus. In particular,
M̃ is smooth.

Now we are ready to prove that Φ−1(S) = S, i.e., there are no p1, . . . , pk

points in Φ−1(S). Observe that π̃−1(pi), 1 � i � k and Ej , 1 � j � m are maximal
compact connected analytic subsets in M̃ and M respectively. Since Φ̃ is a covering
map, there is a neighborhood Ũi of π̃−1(pi) which maps biholomorphically to a
neighborhood Uj of Ej for some j via Φ̃. As π̃ : M̃ −→ V1 is a point modification
in a neighborhood of pi, there is a neighborhood Di of pi such that

π̃ : π̃−1(Di) − π̃−1(pi) −→ Di − {pi}
is a biholomorphism. Similarly, there is a neighborhood Oj of qj such that

π : π−1(Oj) − Ej −→ Oj − {qj}
is a biholomorphism. Therefore

π ◦ Φ̃ ◦ π̃−1 : Di − {pi} −→ Oj − {qj}
is a biholomorphism. Observe that pi is a smooth point of Di and qj is an isolated
normal singularity. It follows that π◦Φ̃◦ π̃−1 extends to a biholomorphism fromDi

to Oj . In particular qj is not a singular point. This contradiction shows that
Φ−1(S) = S and hence π̃ : M̃ −→ V1 is also a resolution of singularities of V1.

If Φ(qi) = qj , then (V, qi) is isomorphic to (V, qj) as germs of singularities. This
is because the resolution of (V, qj) is a resolution of (V, qi). The proof of Theorem
4.1 is completed in view of Theorem 4.3 below.

Let (V, x) be a germ of complex analytic space with only one isolated singularity
x. By Hironaka’s paper [Hir63], it is biholomorphic equivalent to a germ of a
complex algebraic singularity. Now let V be a complex analytic variety with only
finitely many isolated singularities. By the equivalence and resolution theorems
of algebraic varieties over field of characteristic 0, we can construct a resolution
π : Ṽ → V of V such that Ṽ is smooth and π is a bimeromorphic proper morphism.

The key point in the proof of Theorem C of [Yau11] for surface case is apply-
ing the minimal resolution. But in higher dimensional cases, there is no minimal
resolution in general. Fortunately, by [BCHM10], there is a unique partial resolu-
tion f : V can → V called the relative canonical model of V such that V can has
canonical singularity and the canonical divisor KV can is f -ample. For surface, the
relative canonical model is obtained by contracting all (−2)-rational curves in the
minimal resolution of V . In general, the relative canonical model is isomorphic to

Proj
⊕
m≥0

g∗O(mKZ)
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where g : Z → V is any resolution of V .

Definition 4.1. Let (V, x) be a germ such that x is the only isolated singularity.
Take the relative canonical model f : V can → V of V and denote E to be the
exceptional set. Define

cvV (x) = (KV can)dimE ·E,
which is called the canonical volume of x.

If V can is not isomorphic to V , we have E being nonempty and cvV (x) =
(KV can)dimE · E > 0 by the f -ampleness. If V can is isomorphic to V and x is a
singular point, we set cvV (x) = (KV can)dimE · E = (KV can)0 · x = 1. Finally, if x
is a smooth point, we set cvV (x) = 0.

In general, if V has finitely many isolated normal singularities xi, i = 1, ...,m,
then we consider the sum of canonical volume

m∑
i=1

cvV (xi) =
m∑

i=1

(KV can)dimExi · Exi

where f : V can → V is the relative canonical model of V and Exi is the exceptional

set over xi. From the definition, we see that
m∑

i=1

cvV (xi) > 0 for nonempty isolated

normal singularities xi, i = 1, ...,m, on V .

Theorem 4.2. Let V be an algebraic variety or a complex space with finitely many
normal isolated singularities xi, i = 1, ...,m, on V . Let cvV (xi) be the canonical

volume of xi. Then
m∑

i=1

cvV (xi) is multiplicative in étale covering maps between

resolutions. That is, if W is another algebraic variety or complex space with
normal isolated singularities yj, j = 1, ..., s, p1 : W̃ → W and p2 : Ṽ → V are
resolutions of W and V respectively, Φ : W̃ → Ṽ is an étale covering map, then

we have
s∑

j=1

cvW (yj) = d
m∑

i=1

cvV (xi) where d is the degree of Φ.

Proof. Suppose we have resolutions p1 : W̃ →W and p2 : Ṽ → V , and we consider
relative canonical models p′1 : W can → W and p′2 : V can → V . We start from the
following claim:

Claim: If Φ : W can → V can is an étale covering map, then
s∑

j=1

cvW (yj) =

d
m∑

i=1

cvV (xi) where d is the degree of Φ.

Let E1 be the exceptional set of p′1 and E2 the exceptional set of p′2. E1 =
s∑

j=1

Eyj where Eyj is the exceptional set over yj , and similarly E2 =
m∑

i=1

Exi where

Exi is the exceptional set over xi. Since the canonical divisors KW can and KV can

are p′1-ample and p′2-ample respectively, if E1 is not empty, we have
s∑

j=1

cvW (yj) =
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s∑
j=1

(KW can)dimEyj ·Eyj > 0. Similarly,
m∑

i=1

cvV (xi) =
m∑

i=1

(KV can)dimExi ·Exi > 0 if

E2 is not empty.
By Φ being an étale covering map, we have the pullback Φ∗KV can = KW can .

Also, Φ∗E2 = E1 since E1 and E2 are the only proper sets in W can and in V can

respectively if we shrink V and W . Therefore, from

s∑
j=1

(KW can)dimEyj ·Eyj =
m∑

i=1

(Φ∗KV can)dimExi ·Φ∗Exi = d

m∑
i=1

(KV can)dimExi ·Exi

where d is the degree of Φ, we have
s∑

j=1

cvW (yj) = d
m∑

i=1

cvV (xi).

If V can ∼= V , E2 has dimension 0 and E2 =
m∑

i=1

xi. Since étale morphisms

are locally isomorphisms, Φ sends singular points to singular points, and we have

E1 =
s∑

j=1

yj is also 0-dimensional and W can ∼= W . The intersection (KV can)0 ·xi is

just 1 by definition. By counting the singular points, we have
s∑

j=1

cvW (yj) = s =

dm = d
m∑

i=1

cvV (xi) > 0. The claim is proved.

Now, for two resolutions p1 : W̃ → W and p2 : Ṽ → V , we have birational
map φ2 : Ṽ ��� V can over V (see the diagram below).

Take a common resolution Ṽ ′ of Ṽ and V can with birational morphisms g :
Ṽ ′ → Ṽ and φ′2 : Ṽ ′ → V can, Φ′ : W̃ ′ → Ṽ ′ is the base-change of Φ : W̃ → Ṽ .
Then Φ′ is also an étale covering map with the same degree of Φ. After replacing
Φ and φ2 by Φ′ and φ′2 respectively, we can assume φ2 : Ṽ → V can a birational
morphism.

By the property of canonical model, V can and W can have canonical singulari-
ties. We use a theorem in [Tak03]:
Theorem. ([Tak03], Theorem 1.1) Let V be a normal analytic space and let
f : Ṽ → V be a resolution of singularities. Then the induced homomorphism
f∗ : π1(Ṽ ) → π1(V ) is an isomorphism if (V,Δ) is Kawamata log-terminal (klt)
for some divisor Δ.
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Definition 4.2. A pair (X,Δ) of a normal variety and an effective Q-divisor
such that KX + Δ is Q-Cartier and let Δ =

∑
diΔi be the prime decomposition.

We say that (X,Δ) is (1) Kawamata log-terminal (klt) iff di < 1 for all i and
there exists a projective birational morphism μ : Y → X from a smooth variety
Y with a normal crossing divisor Ei such that KY ≡ μ∗(KX + Δ) +

∑
eiEi

holds with ei > −1; (2) canonical iff there exists a projective birational morphism
μ : Y → X from a smooth variety Y with a normal crossing divisor Ei such that
KY ≡ μ∗(KX + Δ) +

∑
eiEi holds with ei ≥ 0 for all i.

Continuation of the proof of Theorem 4.2.
We see that π1(V can) ∼= π1(Ṽ ) by the above theorem since V can has canonical

singularities, (V can, 0) is klt. Now we take the étale cover β : W ′ → V can which
gives the subgroup β∗π1(W ′) ⊆ π1(V can) isomorphic to the subgroup Φ∗π1(W̃ ) ⊆
π1(Ṽ ).

We see that β is an étale covering map with the same degree as Φ. Note that
W ′ has canonical singularities since étale morphisms are locally isomorphisms.
Because φ2∗Φ∗π1(W̃ ) = β∗π1(W ′), there is a morphism h : W̃ → W ′ coming from
the morphism φ2 : Ṽ → V can extending to the étale covers W̃ and W ′ of Ṽ and
V can respectively, and h is birational since φ2 is. In fact, h is a resolution morphism
from W̃ to W ′. We want to construct a morphism q : W ′ →W such that p1 = q◦h.
Let zi be a coordinate function defined on W . Since h is proper with connected
fiber, p∗1(zi) is a function on W̃ which descends to W ′ as a continuous function
h∗p∗1(zi) which is holomorphic outside codimension one subvariety of W ′. h∗p∗1(zi)
is actually holomorphic on the smooth part of W ′ because it is a continuous
function on W ′. Recall that the singular set of W ′ consists of isolated normal
singularities. So h∗p∗1(zi) is actually holomorphic on W ′. This gives a morphism
q : W ′ → W such that p1 = q ◦ h. As p1 and q are birational, q is also birational.
If E ⊆W ′ is an exceptional curve over W , by projection formula, we have

KW ′ ·E = β∗KV can · E = KV can · β∗E > 0

since β∗E is a sum of exceptional curves in V can over V and KV can is relative
ample over V . So KW ′ is relatively ample over W . Then, by the uniqueness of
relative canonical model, we have W ′ isomorphic to W can. Replace W ′ by W can,
we have an étale covering map β : W can → V can and this is the claim above,

which gives
s∑

j=1

cvW (yj) = d
m∑

i=1

cvV (xi) where d = degβ = degΦ.
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Theorem 4.3. Let V be a normal Stein space whose singular set is nonempty and
finite. Let f1 : Ṽ1 → V and f2 : Ṽ2 → V be two resolutions of V . If Φ̃ : Ṽ1 → Ṽ2 is
a finite étale covering map, Φ̃ must be an isomorphism.

Proof. We take W = V in Theorem 4.2. Since the isolated singular points are

nonempty, we have
m∑

i=1

cvV (xi) > 0. The equation
m∑

i=1

cvV (xi) = d
m∑

i=1

cvV (xi),

where d is the degree of Φ̃, gives d = 1. Hence Φ̃ is an isomorphism.

Remark 4.1. Note that even if V is a smooth projective variety, an étale en-
domorphism Φ : V → V is not necessary an isomorphism. For example, let V
be an abelian variety, n̂ : V → V is the morphism sending point x ∈ V to its n
times, nx, then n̂ is an étale covering map which is not an isomorphism if n > 1.
Therefore, we need some restraints on V to force the degree to be 1.

In [BFF12], a notion of volume for an isolated singular point of a normal variety
is defined and the volume is also multiplicative in étale covering maps. By theorem
A of [BFF12], if KV is Q-Cartier and V is not log canonical, the volume of the
singularity is nonzero and we can determine the degree of an étale morphism.
Our definition of canonical volume is like another multiplicative number between
resolutions, and it determines the degree of étale coverings. Our method of proving
the multiplicativity of canonical volume by taking the étale cover corresponding
to a subgroup of the fundamental group is like the proof in discussion of nearly
étale map in [NZ09].

The following example shows that strongly pseudoconvexity plays an important
role in the above theory.

Example 4.1. Let X1 = {(x, y, z) ∈ C3 : xy = z2, a|x|4 + |y|4 + |z|4 = ε0} and
X2 = {(x, y, z) ∈ C3 : xy = z2, a|x|2 + |y|2 + |z|2 = ε0} where a is a positive
real number. Let ψ : X1 → X2 be given by ψ(x, y, z) = (x2, y2, z2). Then ψ is a
surjective CR morphism from X1 to X2, but ψ is not a CR biholomorphism. Note
that X2 is strongly pseudoconvex, but X1 is only weakly pseudoconvex.

5 Explicit computation of CR automorphisms of
strongly pseudoconvex 3-dimensional CR
manifolds

The purpose of this section is to prove the following results by direct computation.

Theorem 5.1. Let a be a positive real number and Xa = {(x, y, z) ∈ C3 : xy = z2,
a|x|2 + |y|2 + |z|2 = ε0}.

(1) If there exists a non-constant CR morphism from Xa to Xb, then a = b.

(2) For a �= 1
4 , any non-constant CR morphism ψ from Xa to itself must be a

CR biholomorphism and ψ must be one of the following forms:
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(a) ψ(x, y, z) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z), 0 ≤ θ1, θ2 ≤ 2π.

(b) ψ(x, y, z) = (eiθ1y/
√
a, eiθ2

√
ax, ei

θ1+θ2
2 z), 0 ≤ θ1, θ2 ≤ 2π.

(3) For a = 1
4 , any non-constant CR morphism ψ from X 1

4
to itself must be a

CR biholomorphism and ψ must be one of the following form:

(a) ψ(x, y, z) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z), 0 ≤ θ1, θ2 ≤ 2π.

(b) ψ(x, y, z) = (2eiθ1y, 1
2e

iθ2x, ei
θ1+θ2

2 z), 0 ≤ θ1, θ2 ≤ 2π.

(c) ψ(x, y, z) =

⎛
⎜⎝

−2r2

2r2+1e
i(θ31−θ) 2

2r2+1e
i(θ32−θ) 4r

2r2+1e
iθ13

−1
2(2r2+1)e

i(θ31−θ) 2r2

2r2+1e
i(θ32+θ) −2r

2r2+1e
i(θ13+2θ)

r
2r2+1e

iθ31 2r
2r2+1e

iθ32 2r2−1
2r2+1e

i(θ13+θ)

⎞
⎟⎠

×
⎛
⎝ x

y
z

⎞
⎠ + higher order terms in x, y and z,

where 0 ≤ θ, θ31, θ32, θ13 ≤ 2π, θ13 = π
2 + θ31

2 + θ32
2 − θ and r > 0.

Corollary 5.1. The automorphism group of the compact strongly pseudoconvex
CR manifold X 1

4
= {(x, y, z) ∈ C3 : xy = z2, 1

4 |x|2 + |y|2 + |z|2 = ε0} consists of
the following mappings:

(a) ψ(x, y, z) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z), 0 ≤ θ1, θ2 ≤ 2π.

(b) ψ(x, y, z) = (2eiθ2y, 1
2e

iθ2x, ei
θ1+θ2

2 z), 0 ≤ θ1, θ2 ≤ 2π.

(c) ψ(x, y, z) =

⎛
⎜⎝

−2r2

2r2+1e
i(θ31−θ) 2ei(θ32−θ)

2r2+1
4reiθ13

2r2+1
−ei(θ31−θ)

2(2r2+1)
2r2ei(θ32+θ)

2r2+1
−2rei(θ13+2θ)

2r2+1
reiθ31

2r2+1
2reiθ32

2r2+1
2r2−1
2r2+1e

i(θ13+θ)

⎞
⎟⎠

⎛
⎝ x

y
z

⎞
⎠.

Proof of Theorem 5.1. Firstly, we prove the theorem for b �= 1
4 .

Let Va = {(x, y, z) ∈ C3 : xy = z2 and a|x|2+|y|2+|z|2 ≤ ε0}. Let ψ : Xa → Xb

be a non-constant CR morphism. Then Theorem 3.1 says that ψ can be extended
to a proper surjective holomorphic map ψ : Va → Vb such that ψ(0) = 0, ψ(Xa) =
Xb and Xa = Ψ−1(Xb). Write ψ in the following form:⎛
⎝ ψ1(x, y, z)

ψ2(x, y, z)
ψ3(x, y, z)

⎞
⎠ =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠+higher order terms in x, y and z.

Then the constants aij satisfy the following equations:

a11a21 − a2
31 = 0, (5.1)

a12a22 − a2
32 = 0, (5.2)

a13a23 − a2
33 + a11a22 + a12a21 − 2a31a32 = 0, (5.3)

a11a23 + a13a21 − 2a31a33 = 0, (5.4)
a12a23 + a13a22 − 2a32a33 = 0. (5.5)
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For any (x, y, z) ∈ Xa, we have the following equation:

b|ψ1(x, y, z)|2 + |ψ2(x, y, z)|2 + |ψ3(x, y, z)|2 = a|x|2 + |y|2 + |z|2
=⇒ (b|a11|2 + |a21|2 + |a31|2)|x|2 + (b|a12|2 + |a22|2 + |a32|2)|y|2

+(b|a13|2 + |a23|2 + |a33|2)|z|2 + (ba11a12 + a21a22 + a31a32)xy
+(ba12a11 + a22a21 + a32a31)xy + (ba11a13 + a21a23 + a21a33)xz
+(ba13a11 + a23a21 + a33a31)xz + (ba12a13 + a22a23 + a32a33)yz
+(ba13a12 + a23a22 + a33a32)yz = a|x|2 + |y|2 + |z|2.

It follows that

b|a11|2 + |a21|2 + |a31|2 = a, (5.6)
b|a12|2 + |a22|2 + |a32|2 = 1, (5.7)
b|a13|2 + |a23|2 + |a33|2 = 1, (5.8)
ba11a12 + a21a22 + a31a32 = 0, (5.9)
ba11a13 + a21a23 + a31a33 = 0, (5.10)
ba12a13 + a22a23 + a32a33 = 0. (5.11)

Case 1. a31 �= 0 and a32 �= 0. In view of (5.1) and (5.2), we have a11 �= 0,
a21 �= 0, a12 �= 0 and a22 �= 0 in this case.

(5.1) ⇒ a11

a31
=
a31

a21
:= r1 �= 0

⇒ a11 = r1a31, a21 =
1
r1
a31, (5.12)

(5.2) ⇒ a22

a32
=
a32

a12
:= r2 �= 0

⇒ a22 = r2a32, a12 =
1
r2
a32, (5.13)

(5.4) and (5.12) ⇒ r1a23 +
1
r1
a13 − 2a33 = 0, (5.14)

(5.5) and (5.13) ⇒ 1
r2
a23 + r2a13 − 2a33 = 0, (5.15)

(5.14) and (5.15) ⇒
(
r1 − 1

r2

)
a23 +

(
1
r1

− r2

)
a13 = 0. (5.16)

There are two cases to be considered.
Case 1 (a): r1 − 1

r2
= 0, i.e. r2 =

1
r1

.

(5.13) ⇒ a22 =
1
r1
a32, a12 = r1a32, (5.17)

(5.14) ⇒ a33 =
1
2
r1a23 +

1
2r1

a13, (5.18)

(5.3), (5.12) and (5.17) ⇒ a13a23 − a2
33 = 0, (5.19)

(5.19) and (5.18) ⇒ a13 = r21a23, (5.20)



UN
PR
OO

F

190 Stephen Yau and Huaiqing Zuo

(5.18) and (5.20) ⇒ a33 = r1a23 =
1
r1
a13,

(5.9), (5.12) and (5.17) ⇒ b|r1|2 +
1

|r1|2 + 1 = 0,

which is a contradiction. Hence Case 1 (a) cannot happen.

Case 1 (b): r1 − 1
r2

�= 0.

(5.16) ⇒ a23 =
r2
r1
a13, (5.21)

(5.14) and (5.21) ⇒ a33 =
(
r2
2

+
1

2r1

)
a13. (5.22)

In view of (5.21) and (5.22), we have a13 �= 0 because of (5.8).

(5.9), (5.12) and (5.13) ⇒ b
r1
r2

+
r2
r1

+ 1 = 0. (5.23)

(5.10), (5.12), (5.21), (5.22) and the fact that a31 �= 0, a13 �= 0 imply

br1 +
r2
|r1|2 +

r2
2

+
1

2r1
= 0. (5.24)

(5.11), (5.13), (5.21) and (5.22) and the fact that a32 �= 0 and a13 �= 0 imply

b

r2
+

|r2|2
r1

+
r2
2

+
1

2r1
= 0. (5.25)

Clearly (5.23), (5.24) and (5.25) imply

det

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
r2

r2
r1

1

r1
r2
|r1|2

r2
2

+
1

2r1
1
r2

|r2|2
r1

r2
2

+
1

2r1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

⇒ (r1r2 + 1)(r1r2 + r1r2)(r1r2 − 1) + 2r1r2(1 − r1r2)(1 + r1r2) = 0.

Since r1 − 1
r2

�= 0, i.e. r1r2 − 1 �= 0, we have

(r1r2 + 1)(r1r2 + r1r2) − 2r1r2(1 + r1r2) = 0
⇒ (r1r2 − r1r2)(1 − r1r2) = 0.

Since r1r2 − 1 �= 0, we have
r1r2 = r1r2. (5.26)
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Let α = r1
r2

. Then α = α, r1 = αr2 and r1 = αr2. (5.23), (5.24) and (5.25) can
be rewritten as

bα2 + α+ 1 = 0, (5.27)
b

r2
+
r2
α

+
r2
2

+
1

2αr2
= 0, (5.28)

bα+
α|r2|2

2
+

1
2

+ |r2|2 = 0. (5.29)

(5.28) −α (5.29) ⇒

(bα2 − 1)(α|r2|2 − 1) = 0,

i.e. bα2 = 1 or α|r2|2 = 1. (5.30)

If α|r2|2 = 1, then (5.29) implies

b

|r2|2 + 1 + |r2|2 = 0,

which is absurd since the left hand side is positive. Therefore we conclude that
α2 = 1

b . Then (5.27) and (5.29) imply

α = −2 and b =
1
4
. (5.31)

Case 2. a31 = 0. By (5.1), we have either a11 = 0 or a21 = 0.
Case 2 (a): a31 = 0 and a11 = 0. By (5.6), we have a21 �= 0.

(5.9) ⇒ a21a22 = 0 ⇒ a22 = 0, (5.32)
(5.4) ⇒ a13a21 = 0 ⇒ a13 = 0, (5.33)

(5.2) and (5.32) ⇒ a32 = 0. (5.34)

By (5.7), (5.32) and (5.34), we have a12 �= 0

(5.5), (5.32) and (5.34) ⇒ a12a23 = 0 ⇒ a23 = 0, (5.35)
(5.3) and (5.35) ⇒ −a2

33 + a12a21 = 0, (5.36)
(5.6) ⇒ |a21|2 = a, (5.37)

(5.7), (5.32) and (5.34) ⇒ |a12|2 =
1
b
, (5.38)

(5.8), (5.33) and (5.35) ⇒ |a33|2 = 1. (5.39)

(5.36), (5.37), (5.38) and (5.39) imply a = b and⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ =

⎛
⎝ 0 a12 0

a21 0 0
0 0 a33

⎞
⎠ =

⎛
⎝ 0 eiθ1/

√
a 0

eiθ2
√
a 0 0

0 0 ei(θ1+θ2)

⎞
⎠ .
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Case 2 (b): a31 = 0 and a21 = 0. By (5.6), we have a11 �= 0.

(5.9) ⇒ a12 = 0, (5.40)
(5.4) ⇒ a23 = 0, (5.41)

(5.2) and (5.40) ⇒ a32 = 0, (5.42)
(5.42), (5.40) and (5.7) ⇒ a22 �= 0,

(5.42), (5.40), (5.5) and a22 �= 0 ⇒ a13 = 0, (5.43)
(5.3), (5.43) and (5.40) ⇒ −a2

33 + a11a22 = 0, (5.44)
(5.6) ⇒ b|a11|2 = a, (5.45)
(5.7) ⇒ |a22|2 = 1, (5.46)
(5.8) ⇒ |a33|2 = 1. (5.47)

(5.44), (5.45), (5.46) and (5.47) ⇒ a = b and⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ =

⎛
⎝ a11 0 0

0 a22 0
0 0 a33

⎞
⎠ =

⎛
⎝ eiθ1 0 0

0 eiθ2 0
0 0 ei(θ1+θ2)

⎞
⎠ .

Case 3. a32 = 0. By (5.2), we have either a12 = 0 or a22 = 0.
Case 3 (a): a32 = 0 and a12 = 0. By (5.7), we have a22 �= 0.

(5.9) ⇒ a21 = 0, (5.48)
(5.5) ⇒ a13 = 0, (5.49)

(5.1) and (5.48) ⇒ a31 = 0, (5.50)
(5.6), (5.48) and (5.50) ⇒ b|a11|2 = a and a11 �= 0, (5.51)
(5.4), (5.48) and (5.5) ⇒ a23 = 0, (5.52)

(5.7) ⇒ |a22|2 = 1, (5.53)
(5.8) ⇒ |a33|2 = 1, (5.54)
(5.3) ⇒ a2

33 = a11a22. (5.55)

(5.51), (5.53), (5.54) and (5.55) ⇒ a = b and⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ =

⎛
⎝ a11 0 0

0 a22 0
0 0 a33

⎞
⎠ =

⎛
⎝ eiθ1 0 0

0 eiθ2 0
0 0 ei

θ1+θ2
2

⎞
⎠ .

Case 3 (b): a32 = 0 = a22. By (5.7), we have a12 �= 0.

(5.9) ⇒ a11 = 0, (5.56)
(5.1) and (5.50) ⇒ a31 = 0, (5.57)

(5.6), (5.56) and (5.57) ⇒ a21 �= 0, (5.58)
(5.10), (5.56), (5.58) and (5.57) ⇒ a23 = 0, (5.59)

(5.11) ⇒ a13 = 0, (5.60)
(5.6), (5.56) and (5.57) ⇒ |a21|2 = a, (5.61)



UN
PR
OO

F

Rigidity of CR Morphisms Between Compact Strongly Pseudoconvex CR ... 193

(5.7) ⇒ b|a12|2 = 1, (5.62)
(5.8), (5.59) and (5.60) ⇒ |a33|2 = 1, (5.63)

(5.3), (5.56), (5.57) and (5.59) ⇒ a2
33 = a12a21. (5.64)

(5.61), (5.62), (5.63) and (5.64) ⇒ a = b and

⎛
⎝ a11 a12 a13

a21 a22 a33

a31 a32 a33

⎞
⎠ =

⎛
⎝ 0 a12 0

a21 0 0
0 0 a33

⎞
⎠ =

⎛
⎜⎝ 0 eiθ1√

a
0

eiθ2
√
a 0 0

0 0 e
i(θ1+θ2)

2

⎞
⎟⎠ .

We have shown that if there exists a non-constant CR morphism ψ : Xa −→ Xb,
then a = b and ψ must be one of the following forms.

(i) ψ1 = a11x+ ψ
(2)
1 + ψ

(3)
1 + · · · ,

ψ2 = a22y + ψ
(2)
2 + ψ

(3)
2 + · · · ,

ψ3 = a33z + ψ
(2)
3 + ψ

(3)
3 + · · · ,

where a11 = eiθ1 , a22 = eiθ2 and a33 = ei
θ1+θ2

2 , ψ(j)
i = homogeneous polynomial

of degree j.

(ii) ψ1 = a12y + ψ
(2)
1 + ψ

(3)
1 + · · · ,

ψ2 = a21x+ ψ
(2)
2 + ψ

(3)
1 + · · · ,

ψ3 = a33z + ψ
(2)
3 + ψ

(3)
3 + · · · ,

where a12 = eiθ1/
√
a, a21 = eiθ2

√
a and a33 = ei

θ1+θ2
2 . In both case (i) and case

(ii), we have
aψ1ψ1 + ψ2ψ2 + ψ3ψ3 = a|x|2 + |y|2 + |z|2. (5.65)

By comparing the 3rd order terms in (5.65), we see easily that the 2nd order
terms of (ψ1, ψ2, ψ3) are zero. Repeating this argument, we see that (ψ1, ψ2, ψ3)
has only linear terms.

Secondly, we prove the theorem for b = 1
4 .

The proof is the same as those for b �= 1
4 above except in Case 1 (b). Here we

shall follow our previous notations. Let us summarize what we have proved in this
situation:

a31 �= 0, a32 �= 0, a11 �= 0, a21 �= 0, a12 �= 0 and a22 �= 0, (5.66)
r1r2 �= 1, r1 �= 0, r2 �= 0, (5.67)

r1 = −2r2. (5.68)

(5.1) implies

a11 = r1a31, a21 =
1
r1
a31, (5.69)
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(5.2) implies

a22 = r2a32, a12 =
1
r2
a32,

(5.4) and (5.5) imply

a23 =
r2
r1
a13, a33 =

(
r2
2

+
1

2r1

)
a13. (5.70)

Notice that (5.9), (5.10) and (5.11) are equivalent to (5.68) in this situation

(5.6) ⇒ |a31|2 =
4ar2

(2r2 + 1)2
, (5.71)

(5.7) ⇒ |a32|2 =
4r2

(2r2 + 1)2
, (5.72)

(5.8) ⇒ |a13|2 =
16r2

(2r2 + 1)2
, (5.73)

(5.3) ⇒ a2
13

4r1
=
a31a32

r2
. (5.74)

Let

r2 = reiθ , (5.75)
(5.68) ⇒ r1 = −2re−iθ, (5.76)

(5.74), (5.75) and (5.76) ⇒ a2
13 = −8e−2iθa31a32, (5.77)

(5.77), (5.71), (5.72) and (5.73) ⇒ a =
1
4
. (5.78)

a31 =
r

2r2 + 1
eiθ31 , (5.79)

a32 =
2r

2r2 + 1
eiθ32 , (5.80)

a13 =
4r

2r2 + 1
eiθ13 , (5.81)

θ13 =
π

2
+
θ31
2

+
θ32
2

− θ. (5.82)

It follows that the automorphism group of X 1
4

contains a linear subgroup of
dimension 4 in the following form

ψ(x, y, z) =

⎛
⎝ −2re−iθa31

1
r e

−iθa32 a13

− 1
2r e

iθa31 reiθa32 − 1
2e

2iθa13

a31 a32
2r2−1

4r eiθa13

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠

=

⎛
⎜⎝

−2r2

2r2+1e
i(θ31−θ) 2

2r2+1e
i(θ32−θ) 4r

2r2+1e
iθ13

−1
2(2r2+1)e

i(θ31+θ) 2r2

2r2+1e
i(θ32+θ) −2r

2r2+1e
i(θ13+2θ)

r
2r2+1e

iθ31 2r
2r2+1e

iθ32 2r2−1
2r2+1e

i(θ13+θ)

⎞
⎟⎠

⎛
⎝ x

y
z

⎞
⎠ .
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It can be shown that

det

⎛
⎝ −2reiθa31

1
r e

−iθa32 a13

− 1
2r e

iθa31 reiθa32 − 1
2e

2iθa13

a31 a32
2r2−1

4r eiθa13

⎞
⎠

= a31a32a33

(
−r3 − 3r

2
− 6r2 + 1

8r3

)
�= 0.
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