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Abstract Let X1 and X2 be two compact connected strongly pseudoconvex embeddable Cauchy-Riemann

(CR) manifolds of dimensions 2m − 1 and 2n − 1 in Cm+1 and Cn+1, respectively. We introduce the Thom-

Sebastiani sum X = X1⊕X2 which is a new compact connected strongly pseudoconvex embeddable CR manifold

of dimension 2m+2n+1 in Cm+n+2. Thus the set of all codimension 3 strongly pseudoconvex compact connected

CR manifolds in Cn+1 for all n > 2 forms a semigroup. X is said to be an irreducible element in this semigroup

if X cannot be written in the form X1 ⊕X2. It is a natural question to determine when X is an irreducible CR

manifold. We use Kohn-Rossi cohomology groups to give a necessary condition of the above question. Explicitly,

we show that if X = X1 ⊕ X2, then the Kohn-Rossi cohomology of the X is the product of those Kohn-Rossi

cohomology coming from X1 and X2 provided that X2 admits a transversal holomorphic S1-action.
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1 Introduction

One of the natural fundamental questions of complex geometry is to study the boundaries of complex

varieties. For example, the famous classical complex Plateau problem asks which odd-dimensional real

sub-manifolds of CN are boundaries of complex sub-manifolds in CN . In their beautiful seminal paper,

Harvey and Lawson [5, 6] proved the following theorem.

Theorem 1.1 (Harvey-Lawson). Let X be a compact connected strongly pseudoconvex embeddable

CR manifold. Then there exists a unique complex variety V in CN for some N such that the boundary

∂V = X and V has only normal isolated singularities.

∗Corresponding author
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The above theorem is one of the deepest theorems in complex geometry. It relates the theory of

strongly pseudoconvex CR manifolds on the one hand and the theory of isolated normal singularities on

the other hand (see [10,15]).

CR manifolds in CN which bound varieties with isolated singularities behave quite differently to those

CR manifolds in CN which bound Stein manifolds. Let D and Bn be a domain and ball in Cn, respec-
tively. The CR manifold X = ∂D is said to have spherical property if for each point p ∈ X, there is a

biholomorphic map f : U → V such that f(U ∩X) ⊂ V ∩ ∂Bn where U and V are open neighborhoods

of p and f(p), respectively. It is well known in [2] that D is a simply connected bounded domain in Cn

with spherical real analytic boundary X = ∂D, then every local biholomorphic map at boundary as above

extends to a biholomorphic map from D to Bn. As a consequence, a local biholomorphic map between

X1 = ∂D1 and X2 = ∂D2 where D1, D2 are simply connected domains in Cn with spherical real analytic

boundaries can extend to a global biholomorphic map from D1 onto D2. In [7], Ji et al. showed that the

above phenomenon is no longer true if the CR manifolds bound varieties with isolated singularities.

Therefore, it is of great interest to study the interior regularity of V , the Harvey-Lawson solution of

complex Plateau problem. For this purpose one has to study CR-invariants. It seems to us that the

first fundamental invariant of this kind was introduced by Kohn and Rossi [8], the so-called Kohn-Rossi

∂b-cohomology groups Hp,q
KR(X) (for definition see Section 2). They proved the finite dimensionality of

their cohomology groups under certain natural conditions. Of course it would be of interest to compute

the dimension of these ∂b-cohomology groups. In general, a strongly pseudoconvex manifoldM is a mod-

ification of a Stein space V with isolated singularities. In [8], Kohn-Rossi made the following conjecture.

In general, either there is no Kohn-Rossi cohomology of X the boundary of M (or V ) in degree (p, q),

q ̸= 0, n− 1, or it must result from the interior singularities of V . The following theorem of Yau answers

the Kohn-Rossi conjecture affirmatively.

Theorem 1.2 (See [16]). Let M be a strongly pseudoconvex manifold of dimension n (n > 3) which

is a modification of a Stein space V at the isolated singularities s1, . . . , sm. Let X = ∂M . Then

dimHp,q
KR(X) =

∑m
i=1 b

p,q+1
si for 1 6 q 6 n − 2, where bp,q+1

si = dimHq+1
{si}(V,Ω

p
V ) is a local invariant

of the singularity si. Suppose that s1, . . . , sm are hypersurface singularities. Then for 1 6 q 6 n− 2,

dimHp,q
KR(X) =

{
0, if p+ q 6 n− 2 or p+ q > n+ 1,

τ1 + · · ·+ τm, if p+ q = n− 1 or p+ q = n,

where τi is the number of moduli of V at si and can be computed explicitly.

Remark 1.3. Let f be a holomorphic function in Cn+1. Suppose V = {f = 0} has an isolated

singularity at the origin. Then the Tjurina number τ of V at 0 is equal to

τ = dimC{x0, x1, . . . , xn}
/(

f,
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

The Milnor number µ of V at 0 is equal to

µ = dimC{x0, x1, . . . , xn}
/(

∂f

∂x0
, . . . ,

∂f

∂xn

)
.

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function with an isolated critical point at the origin.

Recall that a polynomial f(x0, x1, . . . , xn) is weighted homogeneous of type (w0, w1, . . . , wn), where

w0, w1, . . . , wn are fixed positive rational numbers, if it can be expressed as a linear combination of

monomials xi00 x
i1
1 · · ·xinn for which i0

w0
+ i1
w1

+ · · ·+ in
wn

= 1. On the other hand, for arbitrary holomorphic

function f(x0, x1, . . . , xn) with 0 as an isolated singularity of V =
{
x : f(x) = 0

}
. We say that V has

quasi-homogeneous singularity if f ∈
(
∂f
∂x0

, ∂f∂x1
, . . . , ∂f∂xn

)
, the ideal generated by ∂f

∂x0
, ∂f∂x1

, . . . , ∂f∂xn
in the

local ring OV,0. Saito [12] proved that V has quasi-homogeneous singularity at 0, if and only if after a

biholomorphic change of variables, f is a weighted homogeneous polynomial.

Definition 1.4. Let (V1, 0) and (V2, 0) be two germs of varieties in (CN , 0). We say that (V1, 0) and

(V2, 0) have the same analytic type (i.e., (V1, 0) ∼= (V2, 0)) if there exists a germ of biholomorphism from

(CN , V1, 0) to (CN , V2, 0).
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By Theorem 1.1, any compact connected strongly pseudoconvex embeddable CR manifold X bounds

a complex variety V in CN with only isolated normal singularities at Y .

Definition 1.5. Let X1 and X2 be two compact connected strongly pseudoconvex embeddable CR

manifolds of dimension 2n − 1 which bound normal varieties V1 and V2 with only isolated singularities

at Y1 and Y2, respectively. We say that X1 and X2 are algebraically equivalent if (V1, Y1) ∼= (V2, Y2) as

germs of varieties.

It is well known that the “number of moduli” of a “moduli space” of strongly pseudoconvex CR man-

ifolds has to be infinite (see [1]). However, under the notion of algebraically equivalence of CR manifolds

in the sense of Definition 1.5, then the number of moduli becomes a finite problem. Obviously, two

analytically equivalent CR manifolds are automatically algebraically equivalent. In order to understand

the classification problem of CR manifolds, a first step is to understand the classification problem of CR

manifolds up to algebraic equivalence.

Let V := {(x0, x1, . . . , xn) : f(x0, x1, . . . , xn) = 0} be a hypersurface with Y as a finite set of isolated

singularities in Cn+1. Let XV be a CR manifold of dimension 2n−1 sitting in V such that XV bounds the

variety V which contains all singularities Y . It is clear that all such CR manifolds XV are algebraically

equivalent to each other.

Let V1 and V2 be two hypersurfaces defined by f(x0, . . . , xm) = 0 and g(y0, . . . , yn) = 0 with singular-

ities Y1 = {p1, . . . , pn1} and Y2 = {q1, . . . , qn2} in Cm+1 and Cn+1, respectively. Then it is easy to see

f(x0, . . . , xm) + g(y0, . . . , yn) = 0 defines hypersurface in Cm+n+2 with n1n2 isolated singularities. We

shall denote this hypersurface by V1 ⊕ V2, the Thom-Sebastiani (see [13]), addition of two hypersurfaces.

Definition 1.6. Let V1 and V2 be two hypersurfaces with associate CR manifolds XV1 and XV2 . We

define XV1 ⊕XV2 as XV1⊕V2 , where V1 ⊕ V2 is the Thom-Sebastiani: Sum as above.

Remark 1.7. For each hypersurface V , we can assume without loss of generality that XV is a strongly

pseudoconvex CR manifold.

Remark 1.8. The set of all codimension 3 strongly pseudoconvex compact connected CR manifolds

in Cn+1 for all n > 2 forms a semigroup under the addition defined in Definition 1.6. A CR manifold X

is said to be irreducible if it cannot be written as the sum of two CR manifolds.

It is natural to ask the following question.

Question. Given a real codimension 3 compact connected CR manifold X, how can one tell whether

X is an irreducible element in the semi-group of real codimension 3 CR manifolds.

Main Theorems A and B below, answer this question partially.

Main Theorem A. Let X1 and X2 be two compact connected strongly pseudoconvex embeddable CR

manifolds of dimensions 2m − 1 and 2n − 1 in Cm+1 and Cn+1 respectively. Assume that X2 admits

a transversal holomorphic S1-action (see Definition 2.3). Let X = X1 ⊕ X2. The following statements

hold.

(a) If 1 6 t 6 m+ n− 1 and s+ t = m+ n+ 1 or m+ n, then dimHs,t
KR(X) ̸= 0 and dimHs,t

KR(X) =

dimHa,b
KR(X1) dimHc,d

KR(X2), where a, b, c, d satisfy the following conditions:

(1) 1 6 b 6 m− 2 and a+ b = m or m− 1.

(2) 1 6 d 6 n− 2 and c+ d = n or n− 1.

(3) a+ b+ n = c+ d+m = s+ t− 1.

(b) If 1 6 t 6 m+ n− 1 and s+ t ̸= m+ n+ 1 and s+ t ̸= m+ n, then dimHs,t
KR(X) = 0.

If the condition that X2 admits a transversal holomorphic S1-action is deleted in Main Theorem A,

then the equality should be replaced by inequality as follows.

Main Theorem B. Let X1 and X2 be two compact connected strongly pseudoconvex embeddable CR

manifolds of dimensions 2m − 1 and 2n − 1 in Cm+1 and Cn+1, respectively. Let X = X1 ⊕ X2. The

following statements hold.

(a) If 1 6 t 6 m+ n− 1 and s+ t = m+ n+ 1 or m+ n, then dimHs,t
KR(X) ̸= 0 and dimHs,t

KR(X) >
dimHa,b

KR(X1) dimHc,d
KR(X2), where a, b, c, d satisfy the following conditions:
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(1) 1 6 b 6 m− 2 and a+ b = m or m− 1.

(2) 1 6 d 6 n− 2 and c+ d = n or n− 1.

(3) a+ b+ n = c+ d+m = s+ t− 1.

(b) If 1 6 t 6 m+ n− 1 and s+ t ̸= m+ n+ 1 and s+ t ̸= m+ n, then dimHs,t
KR(X) = 0.

In Section 2, we present some basic notation and facts about CR manifolds. We also recall the

definitions of Kohn-Rossi cohomology groups. In Section 3, we give the proof of our main theorems.

Section 4 presents some concluding remarks.

2 Preliminaries

In 1965, Kohn and Rossi [8] defined their cohomology on CR manifold. Following Tanaka [14], we

reformulate the definition in a way independent of the interior manifold.

Definition 2.1. Let X be a connected orientable manifold of real dimension 2n− 1. A CR structure

on X is an (n− 1)-dimensional subbundle S of CT (X) (complexified tangent bundle) such that

(1) S ∩ S̄ = {0},
(2) if L, L′ are local sections of S, then so is [L,L′].

Such a manifold with a CR structure is called a CR manifold.

Definition 2.2. Let X be a CR manifold with structures S as in Definition 2.1. Since S ∩ S̄ = {0},
there is a unique subbundle H of T (X) such that

CH = S ⊕ S̄,

i.e., H is the real part of S ⊕ S̄. Furthermore, there is a unique homomorphism J : H → H such that

J2 = −1, 1 = identity.

The pair (H, J) is called the real expression of S.

Definition 2.3. With the notation in the above definition, a smooth S1-action on X is said to be

holomorphic if it preserves the subbundle H ⊂ T (X) and commutes with J . It is said to be transversal

if, in addition, the vector field V which generates the action is transversal to H at all points of X .

Theorem 2.4 (See [9]). Let X be a strongly pseudoconvex CR manifold of dimension 2n− 1 > 1, and

suppose that X admits a transversal holomorphic S1-action. Then there exists a holomorphic equivariant

embedding X ↪→ V as a hypersurface in an n-dimensional algebraic variety V ⊂ CN with a linear C∗-

action.

Definition 2.5. Let L1, . . . , Ln−1 be a local frame of the CR structure S on X so that L̄1, . . . , L̄n−1

is a local frame of S̄. Since S⊕ S̄ has complex codimension one in CT (X), we may choose a local section

N of CT (X) such that L1, . . . , Ln−1, L̄1, . . . , L̄n−1, N span CT (X). We may assume that N is purely

imaginary. Then the matrix (cij) defined by

[Li, L̄j ] =
∑
k

aki,jLk +
∑
k

bki,jL̄k + ci,jN

is Hermitian, and is called the Levi form of X.

Proposition 2.6. The number of non-zero eigenvalues and the absolute value of the signature of (cij)

at each point are independent of the choice of L1, . . . , Ln−1, N .

Definition 2.7. X is said to be strongly pseudoconvex if the Levi form is positive definite at each point

of X.

Let {A k(X), d} be the De Rham complex of X with complex coefficients, and let Hk(X) be the De

Rham cohomology groups. There is a natural filtration of the De Rham complex as follows. For any
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integer p and k, put Ak(X) = ∧k(CT (X)∗) and denote by F p(Ak(X)) the subbundle of Ak(X) consisting

of all ϕ ∈ Ak(X) which satisfy the equality

ϕ(Y1, . . . , Yp−1, Z̄1, . . . , Z̄k−p+1) = 0

for all Y1, . . . , Yp−1 ∈ CT (X)0 and Z1, . . . , Zk−p+1 ∈ S0, 0 being the origin of ϕ. Then

Ak(X) = F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · · ⊃ F k(Ak(X)) ⊃ F k+1(Ak(X)) = 0.

Setting F p(A k(X)) = Γ(F p(Ak(X))), we have

A k(X) = F 0(A k(X)) ⊃ F 1(A k(X)) ⊃ · · · ⊃ F k(A k(X)) ⊃ F k+1(A k(X)) = 0.

Since clearly dF p(A k(X)) ⊆ F p(A k+1(X)), the collection {F p(A k(X))} gives a filtration of the De

Rham complex.

We denote by Hp,q
KR(X) the groups Ep,q1 (X) of the spectral sequence {Ep,qr (X)} associated with the

filtration {F p(A k(X))}. We call Hp,q
KR(X) the Kohn-Rossi cohomology group of type (p, q). More

explicitly, let

Ap,q(X) = F p(Ap+q(X)), A p,q(X) = Γ(Ap,q(X)),

Cp,q(X) = Ap,q(X)/Ap+1,q−1(X), C p,q(X) = Γ(Cp,q(X)).

Since d : A p,q(X) → A p,q+1(X) maps A p+1,q−1(X) into A p+1,q(X), it induces an operator d′′ :

C p,q(X) → C p,q+1(X). Hp,q
KR(X) are then the cohomology groups of the complex {C p,q(X), d′′}.

In our proof of the main theorems, we need the following result in commutative algebra.

If {p1, . . . , pm} is a finite subset of Cn+1, andMi = I({pi}) is the maximal ideal of Cn+1 corresponding

to pi, we will write

C[x0, . . . , xn]Mi = {f/g : g(pi) ̸= 0} = Oi

for simplicity of notation. Oi is called the local ring of C[x0, . . . , xn] at pi.
Theorem 2.8 (See [3, Theorem 2.2]). Let I be a zero-dimensional ideal in C[x0, . . . , xn] and let V (I) =

{p1, . . . , pm}. Then, there is an isomorphism between C[x0, . . . , xn]/I and the direct product of the rings

Ai = Oi/IOi, for i = 1, . . . ,m.

3 Proofs of the main theorems

Proof of Main Theorem A. Since X1 and X2 are two compact connected strongly pseudoconvex em-

beddable CR manifolds of dimensions 2m− 1 and 2n− 1 in Cm+1 and Cn+1, it follows from Theorem 1.1

that there exist two corresponding hypersurfaces V1 and V2, which are bounded by X1 and X2 in Cm+1

and Cn+1, respectively, having isolated singularities p1, . . . , pn1 and q1, . . . , qn2 . Let f(x0, . . . , xm) and

g(y0, . . . , yn) be the defining equations for V1 and V2, respectively. Since X2 admits a transversal holo-

morphic S1-action, it follows from Theorem 2.4 that g is a weighted homogeneous polynomial. We

know that f(x0, . . . , xm) + g(y0, . . . , yn) defines hypersurface in Cm+n+2 with n1n2 isolated singularities

{a1, . . . , an1n2}. By Theorem 1.2, for 1 6 t 6 m+ n− 1, we have

dimHs,t
KR(X) =

{
0, if s+ t 6 m+ n− 1 or s+ t > m+ n+ 2,

τ1 + · · ·+ τn1n2 , if s+ t = m+ n or p+ q = m+ n+ 1,

where τi is the Tjurina number of V := V (f + g) at ai for i = 1, . . . , n1n2, i.e., τi = dimOi/(f

+ g, ∂(f+g)∂x0
, . . . , ∂(f+g)∂yn

)Oi, where Oi is the local ring of C[x0, . . . , xm, y0, . . . , yn] at ai. It follows from

Theorem 2.8 that

τ1 + · · ·+ τn1n2 = dimC[x0, . . . , xm, y0, . . . , yn]
/(

f + g,
∂(f + g)

∂x0
, . . . ,

∂(f + g)

∂yn

)
.
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Thus we have

dimHs,t
KR(X) =


0, if s+ t 6 m+ n− 1 or s+ t > m+ n+ 2,

dimC[x0, . . . , xm, y0, . . . , yn]
/(

f + g,
∂(f + g)

∂x0
, . . . ,

∂(f + g)

∂yn

)
,

if s+ t = m+ n or p+ q = m+ n+ 1.

Similarly, for 1 6 b 6 m− 2 we have

dimHa,b
KR(X1) =


0, if a+ b 6 m− 2 or a+ b > m+ 1,

dimC[x0, . . . , xm]

/(
f,

∂f

∂x0
, . . . ,

∂f

∂xm

)
,

if a+ b = m− 1 or a+ b = m,

and for 1 6 d 6 n− 2 we have

dimHc,d
KR(X2) =


0, if c+ d 6 n− 2 or c+ d > n+ 1,

dimC[y0, . . . , yn]
/(

g,
∂g

∂y0
, . . . ,

∂g

∂yn

)
,

if c+ d = n− 1 or c+ d = n.

It follows from Theorem 1.2 that if 1 6 t 6 m+n−1 and s+t = m+n orm+n+1, then dimHs,t
KR(X) ̸= 0

and we have

dimHs,t
KR(X) = dimC[x0, . . . , xm, y0, . . . , yn]

/(
f + g,

∂(f + g)

∂x0
, . . . ,

∂(f + g)

∂yn

)
(3.1a)

= dimC[x0, . . . , xm, y0, . . . , yn]
/(

f + g,
∂f

∂x0
, . . . ,

∂f

∂xm
,
∂g

∂y0
, . . . ,

∂g

∂yn

)
(3.1b)

= dimC[x0, . . . , xm, y0, . . . , yn]
/(

f,
∂f

∂x0
, . . . ,

∂f

∂xm
,
∂g

∂y0
, . . . ,

∂g

∂yn

)
(3.1c)

= dimC[x0, . . . , xm]

/(
f,

∂f

∂x0
, . . . ,

∂f

∂xm

)
⊗ C[y0, . . . , yn]

/(
∂g

∂y0
, . . . ,

∂g

∂yn

)
. (3.1d)

The third equality above comes from the fact that g is weighted homogeneous while the last equality

follows from [4, Korollars 1 and 2, p. 181]. By Theorem 1.2 it is easy to see that when the following

conditions are satisfied,

(1) 1 6 b 6 m− 2 and a+ b = m or m− 1;

(2) 1 6 d 6 n− 2 and c+ d = n or n− 1;

(3) a+ b+ n = c+ d+m = s+ t− 1,

then dimHc,d
KR(X1) ̸= 0 and dimHc,d

KR(X2) ̸= 0, and

dimHs,t
KR(X) = dimC[x0, . . . , xm]

/(
f,

∂f

∂x0
, . . . ,

∂f

∂xm

)
⊗ C[y0, . . . , yn]

/(
∂g

∂y0
, . . . ,

∂g

∂yn

)
= dimC[x0, . . . , xm]

/(
f,

∂f

∂x0
, . . . ,

∂f

∂xm

)
dimC[y0, . . . , yn]

/(
∂g

∂y0
, . . . ,

∂g

∂yn

)
= dimHc,d

KR(X1) dimHc,d
KR(X2).

Part (b) of Main Theorem A follows from Theorem 1.2 directly.

Proof of Main Theorem B. The proof of Main Theorem B is the same as the proof of Main Theorem A.

We only need to replace (3.1a)–(3.1d) by the following (3.2a)–(3.2e):

dimHs,t
KR(X) = dimC[x0, . . . , xm, y0, . . . , yn]

/(
f + g,

∂(f + g)

∂x0
, . . . ,

∂(f + g)

∂yn

)
(3.2a)

= dimC[x0, . . . , xm, y0, . . . , yn]
/(

f + g,
∂f

∂x0
, . . . ,

∂f

∂xm
,
∂g

∂y0
, . . . ,

∂g

∂yn

)
(3.2b)
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> dimC[x0, . . . , xm, y0, . . . , yn]
/(

f + g, g,
∂f

∂x0
, . . . ,

∂f

∂xm
,
∂g

∂y0
, . . . ,

∂g

∂yn

)
(3.2c)

= dimC[x0, . . . , xm, y0, . . . , yn]
/(

f,
∂f

∂x0
, . . . ,

∂f

∂xm
, g,

∂g

∂y0
, . . . ,

∂g

∂yn

)
(3.2d)

= dimC[x0, . . . , xm]

/(
f,

∂f

∂x0
, . . . ,

∂f

∂xm

)
⊗ C[y0, . . . , yn]

/(
g,
∂g

∂y0
, . . . ,

∂g

∂yn

)
. (3.2e)

The proof is complete.

4 Concluding remarks

The ultimate goal in CR geometry is the following: Given two strongly pseudoconvex CR manifolds,

determine whether they are CR biholomorphically equivalent. This is certainly a very difficult problem.

In order to solve the classification problem of CR manifolds, one can first investigate the irreducibility

of a hypersurface type CR manifold, i.e., given a real codimension 3 compact connected CR manifold

X, how can one tell whether X is an irreducible element in the semi-group of real codimension 3 CR

manifolds. In Main Theorems A and B, we give a partial answer to this question in terms of the Kohn-

Rossi cohomology groups which depend only on the information of the CR manifold. In our future work,

we shall try to answer this question by means of singularity theory. In 1995, Luk and Yau [11] introduced

many CR invariants to CR manifolds just using the theory of resolution of singularity. For example,

when the CR manifold X has dimension 3, those invariants introduced in [11] include mZ , pf , pa, pg, q

etc., where pg is called geometric genus and can also be defined for CR manifolds of any dimension.

Some of these invariants are proved to be very useful in studying the existence problem of non-trivial

CR morphisms between strongly pseudoconvex CR manifolds. In [17], Yau proved that there is no non-

constant CR morphism from X1 to X2 if pg(X1) < pg(X2). Recently, Lin et al. [10] generalized this

definition and got a series of CR invariants pm which is called plurigenera of compact connected strongly

pseudoconvex CR manifolds. Their p1 coincides with previously defined pg. We hope that one can also

use the CR invariants which are defined from singularity theory or others [18] to give a complete answer

to the irreducibility question in the near future.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

11531007 and 11401335), Start-Up Fund from Tsinghua University and Tsinghua University Initiative Scientific

Research Program. The first author thanks National Center for Theoretical Sciences for providing excellent

research environment while part of this research was done.

References

1 Burns Jr D, Shnider S, Wells Jr R O. Deformations of strictly pseudoconvex domains. Invent Math, 1978, 46: 237–253

2 Chern S S, Ji S Y. On the Riemann mapping theorem. Ann of Math, 1996, 144: 421–439

3 Cox D, Little J, O’Shea D. Using Algebraic Geometry. New York: Springer-Verlag, 1998

4 Grauert H, Remmert R. Analytische Stellenalgebren. Berlin-New York: Springer-Verlag, 1971

5 Harvey R, Lawson B. On boundaries of complex analytic varieties I. Ann of Math, 1975, 102: 233–290

6 Harvey R, Lawson B. Addendum to Theorem 10.4 in “Boundaries of complex analytic varieties”. ArXiv:

math/0002195v1[math CV], 2000

7 Ji S Y, Yau S S T, Zhan C. Spherical extension property no longer true for domains in algebraic variety with isolated

singularity. Sci China Math, 2010, 53: 257–260

8 Kohn J J, Rossi H. On the extension of holomorphic functions from the boundary of a complex manifold. Ann of

Math, 1965, 81: 451–472

9 Lawson H B, Yau S S T. Holomorphic symmetries. Ann Scient Éc Norm Sup, 1987, 20: 557–577
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