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Abstract

Let R = C[x1, x2, · · · , xn]/(f) where f is a weighted homogeneous polynomial defining
an isolated singularity at the origin. Then R and Der(R,R) are graded. It is well-known
that Der(R,R) does not have a negatively graded component. Wahl conjectured that this
is still true for R = C[x1, x2, · · · , xn]/(f1, f2, · · · , fm) which defines an isolated, normal
and complete intersection singularity and f1, f2, · · · , fm weighted homogeneous polynomials
with the same weight type (w1, w2, · · · , wn). Here we give a positive answer to the Wahl
Conjecture and its generalization (without the condition of complete intersection singularity)
for R when the degree of fi, 1 ≤ i ≤ m are bounded below by a constant C depending
only on the weights w1, w2, · · · , wn. Moreover this bound C is improved when any two of
w1, w2, · · · , wn are coprime. Since there are counter-examples for the Wahl Conjecture and
its generalization when fi are low degree, our theorem is more or less optimal in the sense
that only the lower bound constant can be improved.
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1. Introduction

On the one hand, in [YZ2], we have studied the problems of nonexistence of negative weight
derivation on moduli algebras which are zero-dimensional weighted homogeneous singularities.
We also gave sharp upper estimates of dimensions of derivation algebras for these moduli algebras
[YZ1]. The nonexistence of negative weight derivation on zero-dimensional weighted homoge-
neous complete intersection singularities was also studied in [PP1, PP2]. On the other hand,
the nonexistence of negative weight derivation on positive-dimensional weighted homogeneous
singularities has also been considered by many mathematicians ([MS], [Wa1, Wa2, Wa3]).
In [Ka1] and [Ka2], the nonexistence of negative weight derivation was proved for isolated
weighted homogeneous hypersurface singularities and weighted homogeneous curve singulari-
ties. Kantor proved the following results in detail:

(a) [Ka1] If A = C[tn1 , · · · , tnr ] is a non-regular monomial curve, then A has no derivations
of negative weight.

(b) [Ka2] If A = C[x1, · · · , xn]/(f) is an isolated weighted homogeneous hypersurface singu-
larity and normalized grading, then A has no derivations of negative weight.

Wahl proposed a very general conjecture (cf. Conjecture 1.4, [Wa2]) about the nonexistence
of negative weight derivation for positive-dimensional weighted homogeneous singularities. One
special case of his conjecture for singular cones led him to give a beautiful cohomological char-
acterization of complex projective space ([Wa3], [MS]). As noted in [GS], the Wahl Conjecture
can be rephrased in the case of the weighted homogeneous isolated complete intersection singu-
larity (ICIS).

Wahl Conjecture (ICIS). Any weighted homogeneous ICIS with dimension ≥ 2 has no
negative weight derivations with respect to some positive grading.
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The Wahl Conjecture for complete intersections was first solved by Aleksandrov in [Al].

Theorem 1.1. ( [AGLV, pp. 34–35]) Let (V, 0) be a positive-dimensional weighted homoge-
neous ICIS which is defined by f1, f2, · · · , fp ∈ C[x1, · · · , xn]. Then

A := C[x1, · · · , xn]/(f1, f2, · · · , fp)
has no derivations of negative weight except the following two cases: 1). p = 1, and f1 has
multiplicity 2; 2). p ≥ 2, n ≥ 3p, dim V ≥ 4 and fi has multiplicity 2 for every i ∈ {1, 2, · · · , p}.
In the first exceptional case, the grading is not unique and can always be chosen such that the
singularity has no derivations of negative weight. In the second case, the grading is defined
uniquely, and for such a singularity there may be derivations of negative weight.

Counter-example 1 (Aleksandrov [Al]). Let a ≥ 3. If one assigns weights 1, 1, 1, 1, a, a, a
to the variables x1, · · · , x7, the equations

f1 := x7x1 + x6x2 + x5x3 + xa+1
4

f2 := x7x4 + x6x1 + x5x2 + xa+1
3

define a five-dimensional weighted homogeneous complete intersection

A = C[x1, · · · , x7]/(f1, f2)
with an isolated singularity. On A there is a derivation

D := (x2x4 − x21)∂/∂x5 − (x3x4 − x1x2)∂/∂x6 + (x1x3 − x22)∂/∂x7
of negative weight 2− a.

Remark 1.1. In the original statement of Theorem 1.1, Aleksandrov mistakely claimed that
for embedding dimension 6, all weighted homogeneous ICIS have no negative weight derivations
with respect to some positive grading. Recently Granger and Schulze [GS] reproved Aleksan-
drov’s theorem and gave the following counter-example for embedding dimension 6.

Counter-example 2 (Granger and Schulze, [GS]). Let n ≥ 6 and pick c7, · · · , cn ∈ C\{1}
pairwise different such that c9i + 1 6= 0 for all i. If one assigns weights 8, 8, 5, 2, · · · , 2 to the
variables x1, · · · , xn, the equations

f1 := x1x4 + x2x5 + x23 − x54 +

n∑
i=7

x5i

f2 := x1x5 + x2x6 + x23 + x56 +

n∑
i=7

cix
5
i

define a weighted homogeneous complete intersection A = C[x1, · · · , xn]/(f1, f2) with an isolated
singularity. On A there is a derivation

D := 2x3(x5 − x6)∂/∂x1 − 2x3(x4 − x5)∂/∂x2 + (x4x6 − x25)∂/∂x3
of weight −1.

Both singularities in Counter-examples 1 and 2 are complete intersection. We shall give a non-
complete intersection singularity which has a negative weight derivation. This is a Gorenstein
singularity obtained by taking quotient of C3 by finite cyclic group of order 3.

Example 3.
Let G be the subgroup of SL(3,C) generated byexp(2πi/3) 0 0

0 exp(2πi/3) 0
0 0 exp(2πi/3)

 .
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Then a set of minimal generators of C[x, y, z]G is

x1 = x3, x2 = y3, x3 = z3, x4 = xyz, x5 = x2y,

x6 = xy2, x7 = x2z, x8 = xz2, x9 = y2z, x10 = yz2,

whose relations are

x25 = x1x6, x5x6 = x1x2, x26 = x2x5, x27 = x1x8, x7x8 = x1x3,

x28 = x3x7, x29 = x2x10, x9x10 = x2x3, x210 = x3x9, x1x9 = x4x5,

x1x10 = x4x7, x2x7 = x4x6, x2x8 = x4x9, x3x5 = x4x8, x3x6 = x4x10,

x5x7 = x1x4, x5x8 = x4x7, x5x9 = x4x6, x5x10 = x24, x6x7 = x4x5,

x6x8 = x24, x6x9 = x2x4, x6x10 = x4x9, x7x9 = x24, x7x10 = x4x8,

x8x9 = x4x10, x8x10 = x3x4.

We assign the following weights

wt(x1) = 1, wt(x2) = 4, wt(x3) = 7, wt(x4) = 4, wt(x5) = 2

wt(x6) = 3, wt(x7) = 3, wt(x8) = 5, wt(x9) = 5, wt(x10) = 6.

Then, it is easy to see that the relation equations are weighted homogeneous under this weight
system and define a three-dimensional isolated quotient singularity (cf. [YY], Theorem A ). We
obtain a derivation

3x6∂/∂x2 + x7∂/∂x4 + x1∂/∂x5 + 2x5∂/∂x6 + 2x4∂/∂x9 + x8∂/∂x10

of degree −1.
Based on these examples, it is natural to propose the following conjecture.

Generalized Wahl Conjecture. Let P = C[x1, x2, . . . , xn] be the weighted polynomial ring
in n weighted variables x1, x2, . . . , xn (n ≥ 2) with positive integer weights w1 ≥ w2 ≥ · · · ≥
wn. Let (V, 0) be a positive-dimensional variety which is defined by weighted homogeneous
polynomials f1, f2, · · · , fm ∈ P . Suppose (V, 0) is an isolated singularity. Then the graded
ring R = P/(f1, f2, . . . , fm) has no negative weight derivations if the (weighted) degrees of
fi, 1 ≤ i ≤ m, are large.

Remark 1.2. (cf. [Al]) If the singularity is a positive-dimensional isolated complete in-
tersection singularity, then the derivation algebra is generated by Euler derivations and trivial
derivations. Thus, the generators of the derivations are completely known. However, for non-
complete intersection singularities, there is no known description of all holomorphic vector fields.
Therefore the generalized Wahl Conjecture is substantially more difficult than the Wahl Con-
jecture for ICIS.

In this paper, we solve the Generalized Wahl Conjecture.

Main Theorem A (Generalized Wahl Conjecture). Let P = C[x1, x2, . . . , xn] be the
weighted polynomial ring in n weighted variables x1, x2, . . . , xn (n ≥ 2) with positive integer
weights w1 ≥ w2 ≥ · · · ≥ wn. Suppose that f1, f2, . . . , fm are weighted homogeneous polynomi-
als of degrees greater than (m−1+w1)(w1w2)

n−1 and f1, f2, . . . , fm define a positive-dimensional
isolated singularity at the origin. Then there are no non-zero negative weight derivations on
R = P/(f1, f2, . . . , fm).



4 BING YI CHEN, HAO CHEN, STEPHEN S.-T. YAU & HUAI QING ZUO

Remark 1.3. We claim that our degree condition on f1, · · · , fm implies that f1, · · · , fm
cannot contain any quadratic terms when m ≥ 2. We assume that wt(xi) = wi, 1 ≤ i ≤ n
and w1 ≥ w2 ≥ · · · ≥ wn ≥ 1 where wi are integers. Let di be the weighted degree of fi. We
have di > (m − 1 + w1)(w1w2)

n−1, 1 ≤ i ≤ m. If w1 = 1, then wi = 1, 2 ≤ i ≤ n. Since
di > (m−1+w1)(w1w2)

n−1 ≥ 2, so obviously fi cannot contain any quadratic terms. If w1 > 1,
then di > (m − 1 + w1)(w1w2)

n−1 ≥ 2w1. Thus fi cannot contain any quadratic terms due to
the degree consideration.

From Counter-examples 1 and 2 for the Wahl Conjecture in the complete intersection case
([Al], [GS]) and Example 3, we know that the nonexistence of negative weight derivation on
positive-dimensional singularities can be expected only for “ large” degree cases. But of course
our constant (m − 1 + w1)(w1w2)

n−1 here may not be sharp. Main Theorem B below tells us
that this bound can be improved under the additional condition that any two of the weights
w1, w2, . . . , wn are coprime.

Main Theorem B. Let P = C[x1, x2, . . . , xn] be the weighted polynomial ring in n
weighted variables x1, x2, . . . , xn(n ≥ 2) with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn and
f1, f2, . . . , fm be m weighted homogeneous polynomials of degrees greater than (m−1+w1)w1w2.
Suppose that any two of the original weights w1, w2, . . . , wn are coprime and f1, f2, . . . , fm define
a positive-dimensional isolated singularity at the origin. Then there are no non-zero negative
weight derivations on R = P/(f1, f2, . . . , fm).

Remark 1.4. Notice that the singularities investigated in Main Theorem A and Main The-
orem B are not necessarily normal singularities. Indeed, if we take m = 1, n = 2, P = C[x1, x2],
f1 = x81 + x122 , w1 = 3, and w2 = 2, then it is easy to check f1 satisfies the conditions in the
main theorems, but the singularity defined by f1 is not normal.

The main idea of the proofs of the main theorems is as follows. Suppose there exists a non-
zero negative weight derivation D on R = P/I with respect to weight type (w1, w2, . . . , wn)
where w1 ≥ w2 · · · ≥ wn ≥ 1. We can regard D as a negative weight derivation on the weighted
polynomial ring P = C[x1, x2, . . . , xn] which preserves the ideal I. It is well known that D is of
the following form

(1.1) D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

where pi are weighted homogeneous polynomials with the degrees wi + wtD, respectively. Let
the weighted homogeneous polynomials f1, f2, . . . , fm generate the ideal I and without loss of
generality we assume that deg f1 ≥ deg f2 ≥ · · · ≥ deg fm. By the condition D(f1, f2, . . . , fm) ⊂
(f1, f2, . . . , fm) and deg f1 ≥ deg f2 ≥ · · · ≥ deg fm, we have

Df1 = `21f2 + `31f3 + · · ·+ `m1 fm

Df2 = `32f3 + `42f4 + · · ·+ `m2 fm

. . . . . . . . . . . .(1.2)

Dfm−1 = `mm−1fm

Dfm = 0

where `ij are weighted homogeneous polynomials.

For any negative weight derivation D as in (1.1) on P we associate families of new weight
type (`1, `2, . . . , `n) controlled by parameters εi (see Definition 3.1). In Theorem 4.1, we prove
that if we can choose suitable parameters εi to make the new weight type (`1, `2, . . . , `n) satisfy
the three conditions below:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that `i0/wi0 = max{`i/wi : i = 1, 2, . . . , n};
(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial};
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(3) pi0 is a non-zero polynomial,
where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . n, then the degree of each fj is low,
which contradicts the condition in the main theorems that the degree of each fj is bounded
below by a constant. Thus such D doesn’t exist and there are no negative weight derivations on
R.

From the argument above, we emphasize here the key point is to choose suitable parameters
for a given negative weight derivation D, which preserves the ideal (f1, f2, . . . , fm), to satisfy
the above three conditions (1)-(3). First we let

εi =

{
ε, pi is a non-zero polynomial
0, otherwise

,

where ε is a positive real number. Then we have εmin = ε and `i = 0 for i such that pi is the
zero polynomial. Let Imax = {e : `e/we is the maximum among all `i/wi for i = 1, 2, . . . , n}. It is
easy to see that εi = εmin and pi is a non-zero polynomial for any i ∈ Imax. Under the additional
condition that any two of the weights w1, w2, . . . , wn are coprime, we can prove that Imax has
only one element, implying that conditions (1)-(3) in Theorem 4.1 are satisfied. Consequently,
Main Theorem B follows immediately using Theorem 4.1. But in general Imax might have more
than one element, thus we need to adjust the parameters εi in order to separate {`i/wi : i ∈ Imax}
such that these numbers have only one maximum. The parameters are adjusted as follows: pick
an index i1 /∈ Imax and replace the parameter εi1 with εi1 + ε/(w1w2), then the new weight type
and Imax change accordingly. Then pick an index i2 /∈ Imax and replace the parameter εi2 with
εi2 + ε/(w1w2)

2. Repeat this process. Theorem 6.1 guarantees the procedure will be terminated
after finite steps, and Main Theorem A is proved. We speculate that this new technique of
decomposing equations according to the new weight type might be useful for attacking other
problems in singularity theory.

The paper is organized as follows. We recall the definition and properties of derivations in
section 2. In section 3 we define and give the necessary properties for the main technical tool—
new weight type associated to a negative weight derivation on the weighted polynomial ring.
Some lemmas and theorems which are used in the proof of our main theorems are introduced
and are proved in section 4. We shall give the proofs of Main Theorem A and B in section 4
and 5.

2. Derivations

Let P = C[x1, · · · , xn] be the polynomial ring of n weighted variables x1, . . . , xn with positive

integer weights w1, w2, . . . , wn. For a monomial xi11 x
i2
2 · · ·xinn in P its weighted degree is defined

to be w1i1 + · · · + wnin. A polynomial f ∈ P is called weighted homogeneous with respect to
weights w1, · · · , wn if there exists a positive integer d such that

∑
aiwi = d, for each monomial∏

xaii appearing in f with a nonzero coefficient. The number d is called the (weighted) degree
of f and denoted by degf . For an ideal I generated by weighted homogeneous polynomials in
P we have a graded quotient algebra R = P/I = ⊕∞i=0Ri. Furthermore R is called a graded
complete intersection algebra if I is generated by a regular sequence f1, · · · , fm,m ≤ n. When
the Krull dimension of R is zero, R is a positively graded Artinian algebra.

Let R = P/I be a positively graded algebra as above. Then the derivations of R are induced
by derivations of P sending I to I. Let Der(R) be the R-module of derivations of R. As R
is graded, we have a natural grading on Der(R) = ⊕+∞

k=−∞Der(R)k where Der(R)k = {D ∈
Der(R) : D(Ri) ⊂ Ri+k for any i}. In particular, the Euler derivation ∆ =

∑
wixi

∂
∂xi

has
weight 0.

A complete local C-algebra (i.e. singularity) is weighted homogeneous if it is the completion

R̂ of a graded algebra R. If the singularity is isolated, weighted-homogeneity is equivalent to
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having a positive grading on the completion. The same singularity may have essentially dif-
ferent graded structures. For example, R = C[x, y, z]/(xz − y2) is bigraded, so it has many
gradings (e.g., using weights {1, k+ 1, 2k+ 1}). However, Saito [Sa] has proved that an isolated
weighted homogeneous hypersurface singularity defined by f ∈ C[z1, · · · , zn] has unique normal-
ized weights. Saito’s choice of weights gives a graded algebra R = C[z1, · · · , zn]/(f) for which
there are no derivations of negative weight. A complete intersection weighted homogeneous iso-
lated singularity R̂ uniquely determines a graded algebra R (assuming dim R > 0, and excluding
the case of multiplicity 2 hypersurfaces). In general, if the maximal reductive automorphism

group of R̂ has dimension 1, then R̂ admits a unique positively graded structure (cf. [Wa2]).

3. New weight type

Let P = C[x1, x2, . . . , xn], w1 ≥ w2 ≥ · · · ≥ wn be as above and D be a non-zero negative
weight derivation on P . It is well known that D is of the following form

(3.1) D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

where pi is a weighted homogeneous polynomial of degree wi + wtD with respect to the weight
type (w1, w2, . . . , wn) or the zero polynomial for i = 1, 2, . . . , n. Since wtD < 0, we know that
pi is a polynomial in xi+1, xi+2, . . . , xn for 1 ≤ i ≤ n. Thus pn is a constant polynomial. We
define a new weight type associated to D as follows.

Definition 3.1. Let D be a non-zero negative weight derivation on the weighted polynomial
ring P as in (3.1). The following weight type (`1, `2, . . . , `n) controlled by the given n parame-
ters ε1, ε2, . . . , εn are called the new weight type associated to D, where εi are non-negative real
parameters. Set

`n = εn.

If `n, `n−1, . . . , `q+1 are defined, `q is defined as follows:
(i) if the coefficient pq(xq+1, . . . , xn) of ∂/∂xq in D is the zero-polynomial

(3.2) `q = εq,

(ii) if the coefficient pq(xq+1, . . . , xn) of ∂/∂xq in D is a non-zero polynomial

(3.3) `q = εq + max{`q+1iq+1 + `q+2iq+2 + · · ·+ `nin | monomial x
iq+1

q+1x
iq+2

q+2 . . . x
in
n

appears in the expansion of pq}

where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . n.

It is clear that when

εi =

{
−wtD, pi is a non-zero polynomial
wi, otherwise

,

then the new weight type (`1, `2, . . . , `n) is just the original weight type (w1, w2, . . . , wn).

Definition 3.2. The degree of a monomial xα = xi11 x
i2
2 . . . x

in
n is defined to be w1i1 + w2i2 +

· · · + wnin. The Q-degree of xα is defined to be `1i1 + `2i2 + · · · + `nin. And the Q-degree of a
polynomial f is defined as follows,

Q-deg f := max{Q-degrees of monomials in the expansion of f}.

Thus `i = εi + Q-deg pi for i = 1, 2, . . . , n such that pi is a non-zero polynomial, where pi is the
coefficient of ∂/∂xi in D.
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Definition 3.3. For any polynomial f in P , we denote by fmax the sum of terms in the
expansion of f with maximum Q-degree with respect to (`1, `2, . . . , `n), i.e., if we write

f =
∑
α∈I

cαx
α

where I is a finite set, then

fmax :=
∑

α∈I and Q-deg xα=Q-deg f

cαx
α.

Definition 3.4. With the same notation as before, we define

dmax(D) := max{the Q-degree of (pj)max∂/∂xj | pj is a non-zero polynomial},
and

(3.4) Dmax :=
∑

for j such that
(pj)max∂/∂xj has Q-degree dmax(D)

(pj)max∂/∂xj

where the Q-degree of (pj)max∂/∂xj is defined to be Q-deg (pj)max − `j.

Proposition 3.1. With the same notation as above, we have

(3.5) Dmax =
∑

for j such that
pj is a non-zero polynomial and εj=εmin

(pj)max∂/∂xj

where

εmin = min{εi for i such that pi is a non-zero polynomial}.
Then Q-degree Dmax = −εmin.

Proof. It is clear from the definition of the new weight type and Dmax. q.e.d.

Proposition 3.2. Let D,Dmax, εmin be as above and g be an arbitrary polynomial in P . We
have either

(i) Dmaxgmax = 0, in this case Q-deg (Dg)max < Q-deg gmax − εmin,
or
(ii) Dmaxgmax = (Dg)max.

Proof. Write

g = gmax + lower Q-deg terms = gmax + gr + gr−1 + . . . ,

and

D = Dmax + lower Q-deg terms = Dmax +Ds +Ds−1 + . . . ,

where

· · · < Q-deg gr−1 < Q-deg gr < Q-deg gmax,

and

· · · < Q-deg Ds−1 < Q-deg Ds < Q-deg Dmax.

Then we have

Dg = Dmaxgmax +Dmaxgr +Dsgmax +Dsgr + . . . .

If Dmaxgmax 6= 0, then Dg = Dmaxgmax + lower Q-deg terms. Thus we have

Dmaxgmax = (Dg)max.

If Dmaxgmax = 0, then Dg = Dmaxgr +Dsgmax +Dsgr + . . . . Thus

Q-deg (Dg)max ≤ max{Q-deg Dmax + Q-deg gr,Q-deg Ds + Q-deg gmax}.
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Since Q-degree Dmax = −εmin by Proposition 3.1, we have

Q-deg Dmax + Q-deg gr < Q-deg Dmax + Q-deg gmax = Q-deg gmax − εmin,

and

Q-deg Ds + Q-deg gmax < Q-deg Dmax + Q-deg gmax = Q-deg gmax − εmin.
Therefore, Q-deg (Dg)max < Q-deg gmax − εmin. q.e.d.

Corollary 3.1. Let D and g as above. If Dg = 0, then Dmaxgmax = 0.

Proof. This is an immediate consequence of Proposition 3.2. q.e.d.

4. Some lemmas for the proof of main theorems

In this section and the next section, P = C[x1, x2, . . . , xn] is the weighted polynomial ring in
n weighted variables x1, x2, . . . , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn. Let

D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

be a fixed non-zero negative weight derivation on P , and let (`1, `2, . . . , `n) be the new weight
type associated to D controlled by non-negative parameters εi.

The following simple properties of isolated singularities are needed for our proof of the main
results in this section as well as in the next section.

Lemma 4.1. Let I be the ideal generated by weighted homogeneous polynomials f1, f2, . . . ,
fm with respect to weight type (w1, w2, . . . , wn) as above and P/I is a non-zero Artinian algebra.
Let m be the maximal ideal generated by x1, x2, . . . , xn, then we have mr ⊆ I for some integer
r > 0 and P/I is a local Artinian algebra.

Proof. Let di be the degree of fi with respect to (w1, w2, . . . , wn) for i = 1, 2, . . . ,m. Then
for any point (x1, x2, . . . , xn) ∈ Cn, we have

fi(α
w1x1, α

w2x2, . . . , α
wnxn) = αdifi(x1, x2, . . . , xn)

for any i = 1, 2, . . . ,m and any α ∈ C. We claim that Z(I) = {0}, where Z(I) is the zero locus
of I in Cn. If Z(I) 6= {0}, then there is a point (x1, x2, . . . , xn) ∈ Z(I) and (x1, x2, . . . , xn) 6= 0.
Thus {(αw1x1, α

w2x2, . . . , α
wnxn), α ∈ C} ⊆ Z(I) has dimension one, which contradicts P/I is

an Artinian algebra. Thus Z(I) = {0}, which yields that mr ⊆ I for some integer r > 0. Hence,
for any maximal ideal m′ in P such that I ⊆ m′, we have mr ⊆ m′, which implies m = m′. So
P/I has only one maximal ideal, thus P/I is a local Artinian algebra. q.e.d.

Lemma 4.2. Let f1, f2, . . . , fm ∈ C[x1, x2, . . . , xn] be weighted homogeneous polynomials.
Suppose that C[x1, x2, . . . , xn]/(f1, f2, . . . , fm) is a non-zero Artinian algebra. Then for any
given index i ∈ {1, 2, . . . , n} there exists an index j ∈ {1, 2, . . . ,m} such that fj(x1, x2, . . . , xn)
contains a term xaii (with ai a positive integer) in its expansion.

Proof. (By contradiction) Assuming the opposite, we see that the ideal (f1, f2, . . . , fm) has
to be contained within the ideal (x1, x2, . . . , xi−1, xi+1, . . . , xn). However, by Lemma 4.1, there
exists some integer r > 0, such that

(x1, x2, . . . , xn)r ⊆ (f1, f2, . . . , fm).

Consequently, it gives

(x1, x2, . . . , xn)r ⊆ (x1, x2, . . . , xi−1, xi+1, . . . , xn),

which yields a contradiction. The lemma is proved. q.e.d.
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Lemma 4.3. Let f1, f2, . . . , fm ∈ C[x1, x2, . . . , xn] be weighted homogeneous polynomials
defining the germ of a positive-dimensional isolated singularity at the origin by f1 = f2 =
· · · = fm = 0. Then for any given index i ∈ {1, 2, . . . , n} there are indices t ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n} such that ft(x1, x2, . . . , xn) contains a term of the form xaii or xaii xj (with ai a
positive integer) in its expansion.

Proof. We denote (V, 0) as the germ of isolated singularity defined by f1 = f2 = · · · = fm = 0,
and let r be the dimension of V . Since no complete intersection condition is imposed here, dimV
might not be equal to n −m. From the condition that the origin is the only singularity of V
near the origin, we know that the determinants of (n− r)× (n− r) submatrices of the following
matrix 

∂f1/∂x1, ∂f1/∂x2, . . . , ∂f1/∂xn
∂f2/∂x1, ∂f2/∂x2, . . . , ∂f2/∂xn

. . . . . . . . . .
∂fm/∂x1, ∂fm/∂x2, . . . , ∂fm/∂xn


and f1, · · · , fm generate an ideal I such that C[x1, x2, . . . , xn]/I is an Artinian Algebra. By
Lemma 4.2, for any index i ∈ {1, 2, . . . , n}, one of the following cases occurs,

(i) there exists a (n− r)× (n− r) submatrix of the above matrix, such that xbi with a positive
integer b is contained in the expansion of the determinant of this submatrix. Thus one of its
entries, i.e. ∂fp/∂xq, contains a power of xi in its expansion,

(ii) there exists t ∈ {1, 2, . . . ,m} such that xbi with a positive integer b is contained in the
expansion of ft.

Thus the conclusion is proved. q.e.d.

The following observations based on the assumption that {`i/wi : i = 1, . . . , n} has the unique
maximum are crucial to our proof of the main results.

Lemma 4.4. Suppose that there is only one index i0 ∈ {1, 2, . . . , n} such that β = `i0/wi0 =
max{`i/wi : i = 1, 2, . . . , n}. Let f ∈ C[x1, x2, . . . , xn] be a weighted homogeneous polyno-
mial with respect to both the original weight type (w1, w2, . . . , wn) and the new weight type
(`1, `2, . . . , `n). Suppose that the degree of f and the Q-degree of f satisfy

(i)

(4.1) deg f > M/(β − γ),

and
(ii)

(4.2) Q-degf ≥ β deg f −M,

where M is a fixed constant and

γ = max{`i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}.
Then xi0 divides f .

Proof. Suppose that some monomial xa in the expansion of f(x1, x2, . . . , xn) is not divisible

by xi0 . Let us denote xa = xa11 · · ·x
ai0−1

i0−1 x
ai0+1

i0+1 · · ·xann . By the definition of γ, we conclude that

Q-deg f = Q-deg xa

= a1`1 + · · ·+ ai0−1`i0−1 + ai0+1`i0+1 + · · ·+ an`n

≤ γ(a1w1 + · · ·+ ai0−1wi0−1 + ai0+1wi0+1 + · · ·+ anwn)

= γ deg xa = γ deg f.(4.3)

Combining (4.3) with (4.2), we get

(4.4) β deg f −M ≤ Q-deg f ≤ γ deg f.
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This implies

(4.5) deg f ≤M/(β − γ),

which contradicts (4.1). Thus the lemma is proved. q.e.d.

Lemma 4.5. If the coefficient pi0 of ∂/∂xi0 in D is a non-zero polynomial and f is a poly-
nomial which is divisible by xi0, then Df 6= 0.

Proof. Let us expand f(x1, x2, . . . , xn) in powers of xi0

(4.6) f(x1, x2, . . . , xn) = bqx
q
i0

+ bq−1x
q−1
i0

+ · · ·+ bhx
h
i0 , with bh 6= 0,

where h ≤ q and bq, bq−1, . . . , bh are polynomials of x1, x2, . . . , xi0−1, xi0+1, . . . , xn. From the
condition of Lemma 4.5, we know that h ≥ 1. It yields that

(4.7) Df = (D1 + pi0∂/∂xi0)f

where D1 = D − pi0∂/∂xi0 . Therefore, D1f = xhi0D1(bqx
q−h
i0

+ · · ·+ bh) and

(4.8)

Df = xhi0D1

(
bqx

q−h
i0

+ · · ·+ bh

)
+ pi0

(
qbqx

q−1
i0

+ · · ·+ hbhx
h−1
i0

)
= xhi0D1

(
bqx

q−h
i0

+ · · ·+ bh

)
+ xhi0pi0

(
qbqx

q−h−1
i0

+ · · ·+ (h+ 1)bh+1

)
+ hxh−1i0

pi0bh.

It is clear that pi0bh is a non-zero polynomial in x1, x2, . . . , xi0−1, xi0+1, . . . , xn. Hence the last

term on the right hand side of (4.8) is only divisible by xh−1i0
. Thus Df is a non-zero polynomial.

q.e.d.

Lemma 4.6. If `i0/wi0 = max{`i/wi : i = 1, 2 . . . , n} (not necessarily the unique maximum)
and the coefficient pi0 of ∂/∂xi0 in D is a non-zero polynomial, then `i0/wi0 ≤ εi0/(−wtD).
That is to say, `i/wi ≤ εi0/(−wtD) for i = 1, 2, . . . , n.

Proof. Assume that `i0/wi0 > εi0/(−wtD), then by the definition of the new weight type and
the fact that wtD = deg pi0 − wi0 , we have

Q-deg (pi0)max + εi0
deg(pi0)max − wtD

=
`i0
wi0

.

Combining with the assumption that εi0/(−wtD) < `i0/wi0 , we conclude that

(4.9)
Q-deg (pi0)max

deg(pi0)max
>

`i0
wi0

.

However, (pi0)max is a polynomial in xt for t > i0 and we have `t/wt ≤ `i0/wi0 for t > i0. Thus,
we obtain that

Q-deg (pi0)max

deg(pi0)max
≤ `i0
wi0

,

which contradicts (4.9). Thus this lemma is proved. q.e.d.

The following theorem is critical to the proof of Main Theorem A.

Theorem 4.1. Let f1, f2, . . . , fm be m weighted homogeneous polynomials in P with respect
to the weight type (w1, w2, . . . , wn). Suppose these polynomials define a positive-dimensional
isolated singularity at the origin. Suppose that the negative weight derivation D on P preserves
the ideal (f1, f2, . . . , fm). If we can choose suitable parameters εi to make the new weight type
(`1, `2, . . . , `n) satisfy the three conditions below:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that β = `i0/wi0 = max{`i/wi : i =
1, 2, . . . , n},

(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial},
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(3) pi0 is a non-zero polynomial,
where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . , n, then there exists j ∈ {1, 2, . . . ,m}
such that

deg fj ≤
(m− 1 + w1)εmin

β − γ
,

where γ = max{`i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}.

Proof. Without loss of generality, we assume that deg f1 ≥ deg f2 ≥ · · · ≥ deg fm. By
comparing degrees, we find that

(4.10)

Df1 = `21f2 + · · ·+ `m1 fm,

Df2 = `32f3 + · · ·+ `m2 fm,

. . . . . . . ,

Dfm−1 = `mm−1fm,

Dfm = 0,

where `ij with i > j are weighted homogeneous polynomials with respect to the original weight

type (w1, w2, . . . , wn).
By Lemma 4.3, we can find one fj0 which contains a term of the form xai0 or xai0xj with

j ∈ {1, 2 . . . , n} in its expansion. If the former holds, then Q-deg (fj0)max ≥ a`i0 = β deg fj0 ≥
β deg fj0 − w1εmin. If the latter holds, then we have

Q-deg (fj0)max ≥ a`i0 + `j = β(deg fj0 − wj) + `j

≥ β deg fj0 − βwj ≥ β deg fj0 − w1εmin,

where the last inequality follows from the fact that wj ≤ w1 and β ≤ εi0 = εmin by Lemma 4.6.
We construct a sequence j0 < j1 < . . . as follows. If j0, j1, · · · , ji are defined, by Proposition

3.2, then we have either Dmax(fji)max = 0 or Dmax(fji)max = (Dfji)max. If the former holds,
let the sequence end. If the latter holds, by the ji-th equation in (4.10), there is an index
ji+1 ∈ {ji + 1, . . . ,m} such that

(4.11) Q-deg
(
`
ji+1

ji
fji+1

)
max

= Q-deg (Dmax(fji)max) .

Now we prove by induction that the sequence has the following property

(4.12) Q-deg(fji)max ≥ −i(β wtD + εmin) + β deg fji − w1εmin.

We have proven that (4.12) holds for i = 0. Suppose the proposition holds for i, we shall validate
it for i+ 1. By (4.11) and Proposition 3.1, we obtain

Q-deg
(
`
ji+1

ji

)
max

+ Q-deg(fji+1)max = −εmin + Q-deg(fji)max.

Using the fact that deg fji + wtD = deg `
ji+1

ji
+ deg fji+1 and β deg `

ji+1

ji
≥ Q-deg(`

ji+1

ji
)max, we

get

(4.13)

Q-deg(fji+1)max = − εmin + Q-deg(fji)max −Q-deg(`
ji+1

ji
)max

≥ − εmin − i(β wtD + εmin) + β deg fji − w1εmin −Q-deg(`
ji+1

ji
)max

= − εmin − i(β wtD + εmin) + β(deg `
ji+1

ji
+ deg fji+1 − wtD)

− w1εmin −Q-deg(`
ji+1

ji
)max

≥ − (i+ 1)(β wtD + εmin) + β deg fji+1 − w1εmin.

From (4.10), we have Dfm = 0. It follows from Corollary 3.1 that

Dmax(fm)max = 0.



12 BING YI CHEN, HAO CHEN, STEPHEN S.-T. YAU & HUAI QING ZUO

From this point of view and the fact that ji < ji+1, we find that the sequence ends within (m−1)
steps. That is to say, there is an index t ∈ {1, 2, . . . ,m− 1} such that

(4.14) Dmax(fjt)max = 0,

(4.15) Q-deg(fjt)max ≥ −t(εmin + β wtD) + β deg fjt − w1εmin.

By Lemma 4.6, we have (εmin + β wtD) ≥ 0. Notice that t ≤ m− 1, we have

(4.16) Q-deg(fjt)max ≥ −(m− 1)(εmin + β wtD) + β deg fjt − w1εmin.

Assume that

(4.17) deg(fjt)max >
(m− 1 + w1)εmin

β − γ
.

By the fact that wtD < 0, we have

(4.18) deg(fjt)max >
(m− 1)(εmin + β wtD) + w1εmin

β − γ
.

By Lemma 4.4 (here M = (m−1)(εmin+β wtD)+w1εmin and notice that deg fjt = deg(fjt)max)
we know that (fjt)max is divisible by xi0 . Since εi0 = εmin, Proposition 3.1 tells us that the
coefficient of ∂/∂xi0 in Dmax is (pi0)max. Since pi0 is a non-zero polynomial, so (pi0)max is a
non-zero polynomial. Thus, Dmax(fjt)max 6= 0 by Lemma 4.5, which contradicts (4.14). Thus,
the assumption (4.17) is false, and

deg fjt = deg(fjt)max ≤
(m− 1 + w1)εmin

β − γ
.

The conclusion is proved. q.e.d.

Lemma 4.7. If there exists a positive real number ε such that all parameters εi are divisible
by ε, that is to say, εi = biε where bi is a non-negative integer for i = 1, 2, . . . , n, then we have

(i) `i = qiε, where qi is a non-negative integer for i = 1, 2, . . . , n;
(ii) For any i, j ∈ {1, 2, . . . , n}, if `i/wi > `j/wj , then

`i/wi − `j/wj ≥ ε/(w1w2).

Proof. (i) (By induction on i) If i = n, then the lemma holds, since `n = εn = bnε by
Definition 3.1. Suppose it also holds for i = k + 1, . . . , n, we prove it for i = k. If pk is the zero
polynomial, then the lemma holds obviously since `k = εk. Otherwise, for any term x

ak+1

k+1 . . . x
an
n

in the expansion of pk, we have

Q-deg x
ak+1

k+1 . . . x
an
n = (ak+1qk+1 + · · ·+ anqn)ε.

By Definition 3.1, we have

`k = εk + max{Q-degrees of monomials x
ak+1

k+1 . . . x
an
n in the expansion of pk}

=
(
bk + max{ak+1qk+1 + · · ·+ anqn :

the monomialx
ak+1

k+1 . . . , x
an
n appears in the expansion of pk}

)
ε.

Thus the lemma for case i = k holds.
(ii) By (i), we have

`i/wi − `j/wj = (`iwj − `jwi)/(wiwj) = (qiwj − qjwi)ε/(wiwj).
Notice that `i/wi > `j/wj , implies qiwj−qjwi > 0. Since qiwj−qjwi is an integer, so qiwj−qjwi ≥
1. Recall the fact that w1 ≥ w2 ≥ · · · ≥ wn ≥ 1, we obtain that

`i/wi − `j/wj ≥ ε/(wiwj) ≥ ε/(w1w2).

q.e.d.
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We recall the following Lemma, which is a consequence of Corollary 3.4 in [Ro].

Lemma 4.8. Let (V, 0) be a germ of positive-dimensional isolated singularity, defined by
f1, f2, . . . , fm ∈ C[x1, x2, . . . , xn]. Let

D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

be a holomorphic vector field on (V, 0). Then pi(0) = 0 for 1 ≤ i ≤ n.

Remark 4.1. Let f1, f2, . . . , fm be weighted homogeneous polynomials in P and they define
a positive-dimensional isolated singularity at the origin. Suppose that D is a non-zero negative
weight derivation on P/(f1, f2, . . . , fm) as in (3.1). Suppose pk for some k is not identically zero.
From Lemma 4.8, we know that pk(0) = 0, so the polynomial pk cannot be constant. Thus, the
(weighted) degree of pk is positive. Since D is a negative weight derivation, so pn is a constant
polynomial. This implies pn has to be the zero polynomial.

5. Proof of Main Theorem B

In this section, we first prove Main Theorem B. Main Theorem A is proved in next section.

Theorem 5.1 (Main Theorem B). Let P = C[x1, x2, . . . , xn] be the weighted polynomial
ring of n weighted variables x1, x2, . . . , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn
(n ≥ 2) and f1, f2, . . . , fm be m weighted homogeneous polynomials of degrees greater than (m−
1 + w1)w1w2. Suppose that any two of the original weights w1, w2, . . . , wn are coprime and
f1, f2, . . . , fm define a positive-dimensional isolated singularity at the origin. Then there are no
non-zero negative weight derivations on R = P/(f1, f2, . . . , fm).

Proof. (By contradiction) Suppose D is a non-zero negative weight derivation on R or equiv-
alently a non-zero negative weight derivation on P which preserves the ideal (f1, f2, . . . , fm) as
in (3.1). We take the new weight type (`1, . . . , `n) of D controlled by parameters εi, where

εi =

{
ε, pi is a non-zero polynomial
0, otherwise

,

with ε a positive real number and pi the coefficient of ∂/∂xi in D for i = 1, 2, . . . , n. Let
Imax = {e : `e/we is the maximum among all `i/wi for i = 1, 2, . . . , n}. It is clear that `i > 0
for any i such that pi is a non-zero polynomial and `i = 0 for any i such that pi is the zero
polynomial. Thus `i > 0 and pi is a non-zero polynomial for any i ∈ Imax, which implies that
εi = ε for any i ∈ Imax.

We claim that Imax has only one element. Since ε divides εi for all i = 1, 2, . . . , n, by Lemma
4.7, we have `i = qiε, where qi is a non-negative integer for i = 1, 2, . . . , n. Now we prove that
qi < wi for all i by induction on i. If i = n, then we know pn is the zero polynomial (see Remark
4.1), thus ln = εn = 0, which shows that qn = 0 < wn. Suppose qi < wi for i = k+1, k+2, . . . , n,
we prove that qk < wk. If pk is the zero polynomial, then lk = εk = 0, which yields that
qk = 0 < wk. If pk is a non-zero polynomial, then εk = ε, thus `k = εk+Q-deg pk = ε+Q-deg pk.
By Lemma 4.8 we have pk(0) = 0, thus pk doesn’t contain any constant term. Since pk is a
polynomial in xk+1, . . . , xn and `i = qiε < wiε for i > k, we have Q-deg pk < εdeg pk. Notice
that wk = −wtD + deg pk, hence

`k = ε+ Q-deg pk < (1 + deg pk)ε ≤ (−wtD + deg pk)ε = wkε,

which implies that qk < wk. Thus qi < wi for i = 1, 2, . . . , n. Since `i > 0 for any i ∈ Imax,
we have qi > 0 for any i ∈ Imax. Suppose that Imax has more than one element, then for any
i, j ∈ Imax such that i 6= j, qi/wi 6= qj/wj since 0 < qi < wi, 0 < qj < wj and wi, wj are coprime.
It follows that `i/wi 6= `j/wj , which contradicts i, j ∈ Imax. Thus the claim that Imax has only
one element is proved.
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Write I = {i0}. Let β = `i0/wi0 and γ = max{`i/wi : i = 1, 2, . . . , i0−1, i0+1, . . . , n}. Since ε
divides εi for all i, by Lemma 4.7, we have β−γ ≥ ε/(w1w2). Let εmin = min{εi for i such that pi is a non-zero polynomial}
and it is clear that εmin = ε. Then by Theorem 4.1, we know that there exists j ∈ {1, 2, . . . ,m}
such that

deg fj ≤
(m− 1 + w1)εmin

β − γ
≤ (m− 1 + w1)(w1w2),

which contradicts the condition that deg fj > (m − 1 + w1)(w1w2) for all j. So the conclusion
is proved. q.e.d.

6. Proof of main theorem A

In this section we give the proof of Main Theorem A. In order to use Theorem 4.1, we need
to choose suitable parameters εi to make the new weight type (`1, . . . , `n) satisfy the following
conditions in Theorem 4.1:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that `i0/wi0 = max{`i/wi : i = 1, 2, . . . , n};
(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial};
(3) pi0 is a non-zero polynomial.

First we let

εi =

{
ε, pi is a non-zero polynomial
0, otherwise

,

where ε is a positive real number. Let (`1, . . . , `n) be the new weight type associated to a non-
zero negative weight derivation D and controlled by parameters εi. Then we have εmin = ε and
`i = 0 for i such that pi is the zero polynomial. Let Imax = {e : `e/we is the maximum among
all `i/wi for i = 1, 2, . . . , n}. It is easy to see that εi = εmin and pi is a non-zero polynomial for
any i ∈ Imax. Thus if Imax has only one element then the conditions (1)-(3) in Theorem 4.1 are
satisfied. But in general Imax might have more than one element. So the key step is to adjust
the parameters εi in order to separate {`i/wi : i ∈ Imax} such that these numbers have only one
maximum.

Lemma 6.1. Let D be a non-zero negative weight derivation such that pi(0) = 0 for 1 ≤ i ≤ n,
where pi is the coefficient of ∂/∂xi in D. Suppose there exists a positive real number ε such that
all parameters εi are divisible by ε. Fix an index j0 ∈ {1, 2, . . . , n}, define another group of
parameters ε′i as follows,

ε′i =

{
εi + ε/(w1w2), i = j0
εi, i 6= j0

.

Let (`1, . . . , `n) and (`′1, . . . , `
′
n) be new weight type associated to D and controlled by parameters

εi and ε′i respectively, then we have

(i) For any i, j = 1, 2, . . . , n such that both pi and pj are non-zero polynomials, we have

`i/wi < `j/wj ⇒ `′i/wi < `′j/wj .

(ii) For any i, j = 1, 2, . . . , n such that both pi and pj are non-zero polynomials, then for any
term ti and tj in the expansion of pi and pj, respectively, we have

(Q-deg ti + εi)/wi < (Q-deg tj + εj)/wj

⇒ (Q ′-deg ti + ε′i)/wi < (Q ′-deg tj + ε′j)/wj .

(iii) For any i = 1, 2, . . . , n such that pi is a non-zero polynomial, then for any terms t1 and t2
in the expansion of pi, we have

Q-deg t1 < Q-deg t2 ⇒ Q ′-deg t1 < Q ′-deg t2,

where Q-deg and Q ′-deg denote the degrees with respect to the new weight type (`1, . . . , `n) and
(`′1, . . . , `

′
n), respectively.
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Proof. We claim that 0 ≤ `′i − `i ≤ wiε/(w1w2) for all i, and 0 ≤ `′i − `i < wiε/(w1w2) for i
such that pi is a non-zero polynomial.

(By induction) If i = n, then `n = εn, `′n = ε′n and pn is the zero polynomial. By the definition
of ε′i, we know that 0 ≤ ε′n − εn ≤ ε/(w1w2) ≤ wnε/(w1w2), thus the claim holds for i = n.

Suppose the claim holds for i = k + 1, . . . , n, we prove it holds for i = k. There are the
following two cases:

(1) pk is the zero polynomial. The claim holds due to the same argument as in that of i = n.
(2) pk is a non-zero polynomial, since pk(0) = 0, so there is no constant term in the expansion

of pk. There are two subcases:
(2a) k = j0. Pick any s > k. If ps is a non-zero polynomial, then by the assumption, we

have 0 ≤ `′s − `s < wsε/(w1w2). Otherwise, `s = εs and `′s = ε′s. Notice that s 6= k = j0, we
have εs = ε′s, which yields that `′s − `s = 0 < wsε/(w1w2). Thus 0 ≤ `′s − `s < wsε/(w1w2) for
all s > k. For any term t = x

ak+1

k+1 . . . x
an
n in the expansion of pk (ak+1, . . . , an are not all zero),

using the fact that ak+1wk+1 + · · ·+ anwn = wk + wtD, we have

0 ≤ Q ′-deg t−Q-deg t = ak+1(`
′
k+1 − `k+1) + · · ·+ an(`′n − `n)

< (ak+1wk+1 + · · ·+ anwn)ε/(w1w2) = (wk + wtD)ε/(w1w2).

Therefore,

Q ′-deg t < Q-deg t+ (wk + wtD)ε/(w1w2) ≤ Q-deg pk + (wk + wtD)ε/(w1w2),

for any term t in the expansion of pk. Thus, it follows that

Q ′-deg pk < Q-deg pk + (wk + wtD)ε/(w1w2).(6.1)

Since
Q-deg t ≤ Q ′-deg t ≤ Q ′-deg pk,

for any term t in the expansion of pk, we have

Q-deg pk ≤ Q ′-deg pk.(6.2)

Combining (6.1) and (6.2), we obtain that

0 ≤ Q ′-deg pk −Q-deg pk < (wk + wtD)ε/(w1w2).

By definition, we have ε′k − εk = ε/(w1w2). Thus

0 ≤ `′k − `k = ε′k + Q ′-deg pk − (εk + Q-deg pk) < (wk + wtD + 1)ε/(w1w2).

Since wtD is a negative integer, we have wtD + 1 ≤ 0, and the claim is proved.
(2b) k 6= j0, so ε′k = εk. For any term t = x

ak+1

k+1 . . . x
an
n in the expansion of pk (ak+1, . . . , an

are not all zero), using the fact that ak+1wk+1 + · · · + anwn = wk + wtD and the assumption
that 0 ≤ `′s − `s ≤ wsε/(w1w2) for s > k, we have

0 ≤ Q ′-deg t−Q-deg t = ak+1(`
′
k+1 − `k+1) + · · ·+ an(`′n − `n)

≤ (ak+1wk+1 + · · ·+ anwn)ε/(w1w2) = (wk + wtD)ε/(w1w2).

Therefore, it gives

Q ′-deg t ≤ Q-deg t+ (wk + wtD)ε/(w1w2) ≤ Q-deg pk + (wk + wtD)ε/(w1w2),

for any term t in the expansion of pk. Thus, it yields

Q ′-deg pk ≤ Q-deg pk + (wk + wtD)ε/(w1w2).(6.3)

Since
Q-deg t ≤ Q ′-deg t ≤ Q ′-deg pk

for any term t in the expansion of pk, we get

Q-deg pk ≤ Q ′-deg pk.(6.4)
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Combining (6.3) and (6.4), we have

0 ≤ Q ′-deg pk −Q-deg pk ≤ (wk + wtD)ε/(w1w2).

Since ε′k − εk = 0, by the definition of the new weight type, we have 0 ≤ `′k − `k ≤ (wk +
wtD)ε/(w1w2). Since wtD is a negative integer, we have wk + wtD < wk. Thus 0 ≤ `′k − `k <
wkε/(w1w2) and the claim is proved.

From the argument above, we also know that for any i such that pi is a non-zero polynomial
and for any term t in the expansion of pi, we have

(6.5) 0 ≤ (Q ′-deg t+ ε′i)− (Q-deg t+ εi) < wiε/(w1w2).

(i) For any i, j such that both pi and pj are non-zero polynomials, if `i/wi < `j/wj , by Lemma
4.7, we have `j/wj − `i/wi ≥ ε/(w1w2). By the claim above, we have 0 ≤ `′i/wi − `i/wi <
wiε/(w1w2wi) = ε/(w1w2) and 0 ≤ `′j/wj − `j/wj . Combining these inequalities, we have

`′i/wi < `′j/wj . Thus (i) is proved.

(ii) For any i, j such that both pi and pj are non-zero polynomials and for any term ti and tj
in the expansion of pi and pj , respectively, by Lemma 4.7, we know that all `k, k = 1, · · · , n are
divisible by ε. Thus Q-deg ti + εi and Q-deg tj + εj are divisible by ε. Let us write Q-deg ti + εi
and Q-deg tj+εj as the forms qiε and qjε respectively where qi and qj are integers. If (Q-deg ti+
εi)/wi < (Q-deg tj + εj)/wj , then qiwj < qjwi. Notice that qiwj and qjwi are integers, so qjwi−
qiwj ≥ 1. Thus (Q-deg tj +εj)/wj− (Q-deg ti+εi)/wi = (qjwi−qiwj)ε/(wiwj) ≥ ε/(w1w2). By
(6.5), we have (Q ′-deg ti+ ε′i)/wi− (Q-deg ti+ εi)/wi < wiε/(w1w2wi) = ε/(w1w2). Combining
the two previous inequalities and notice that Q-deg tj + εj ≤ Q ′-deg tj + ε′j , again by (6.5), we
have

(Q ′-deg ti + ε′i)/wi < (Q-deg tj + εj)/wj ≤ (Q ′-deg tj + ε′j)/wj .

(iii) Using (ii) for case i = j, we obtain that for any i such that pi is a non-zero polynomial
and for any terms t1 and t2 in the expansion of pi, we have

(Q-deg t1 + εi)/wi < (Q-deg t2 + εi)/wi

⇒ (Q ′-deg t1 + ε′i)/wi < (Q ′-deg t2 + ε′i)/wi.

Thus, we have

Q-deg t1 < Q-deg t2 ⇒ Q ′-deg t1 < Q ′-deg t2.

q.e.d.

Theorem 6.1. Let f1, f2, . . . , fm be m weighted homogeneous polynomials in P with respect to
a weight type (w1, w2, . . . , wn). Suppose these polynomials define a positive-dimensional isolated
singularity at the origin. Let D be a non-zero negative weight derivation as in (3.1) on P
preserving the ideal (f1, . . . , fm). Let (`1, . . . , `n) be the new weight type associated to D and
controlled by parameters εi. Fix a subset I of {1, 2, . . . , n}, (n ≥ 2) containing more than one
element. Suppose the parameters ε1, ε2, . . . , εn satisfy the conditions that

(6.6) εi =


ε, i ∈ I and pi is a non-zero polynomial
0, i ∈ I and pi is the zero polynomial
ε+ ε/(w1w2)

bi , i /∈ I and pi is a non-zero polynomial
ε/(w1w2)

bi , i /∈ I and pi is the zero polynomial

,

where ε is a positive real number, k is the number of elements in I (k ≥ 2), and b : i 7→ bi
is an one-to-one map from {1, 2, . . . , n} \ I to {1, 2, . . . , n − k}. Let Imax = {e : `e/we is the
maximum among all `i/wi for i = 1, 2, . . . , n}. If Imax ⊆ I and pi is a non-zero polynomial for
any i ∈ Imax, then there exists j ∈ {1, 2, . . . ,m} such that

deg fj ≤ (m− 1 + w1)(w1w2)
n−1.
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Proof. Consider the case that Imax = I, which can be easily reduced to the case that Imax is
a proper subset of I. In fact, assume that Imax = I. Let us write I = Imax = {i1, . . . , ik}, where
i1 < i2 < · · · < ik, k ≥ 2. Since pi is a non-zero polynomial for any i ∈ Imax = I, by (6.6) , we
can see that εi = ε for any i ∈ Imax = I.

Before proceeding to give the proof of Theorem 6.1, we shall first prove the following propo-
sition.

Proposition 6.1. For any term t0 in the expansion of (pik−1
)max and for any term t1 in the

expansion of (pik)max, we have t0 = cxaikt1, with non-negative integer a and non-zero constant
coefficient c.

Proof. Let h : {1, 2, . . . , n− k} → {1, . . . , n} \ I be the inverse function of the map b : i 7→ bi.

That is, bh(i) = i for i = 1, 2, . . . , n − k. Define a group of parameters ε
(0)
i , ε

(1)
i , . . . , ε

(n−k)
i , i =

1, · · · , n recursively:

ε
(0)
i =

{
ε, pi is a non-zero polynomial
0, otherwise

.

Assume that the (j − 1)-th group of parameters (ε
(j−1)
1 , . . . , ε

(j−1)
n ) has been defined, then we

define

ε
(j)
i =

{
ε
(j−1)
i + ε/(w1w2)

j , i = h(j)

ε
(j−1)
i , i 6= h(j)

.

By this definition, on the one hand it is clear that ε
(j)
i = ε for any i ∈ Imax = I and any

j = 0, 1, . . . , n − k. In particular, ε
(n−k)
i = ε = εi for i ∈ Imax = I. On the other hand, for

i /∈ Imax, there exists a unique j ∈ {1, · · · , n − k} such that h(j) = i, hence bi = j. It follows
from definition that

ε
(n−k)
i = εji = ε

(j−1)
i + ε/(w1w2)

bi = ε
(0)
i + ε/(w1w2)

bi = εi.

Thus (ε
(n−k)
1 , . . . , ε

(n−k)
n ) = (ε1, . . . , εn). Let (`

(j)
1 , . . . , `

(j)
n ) be the new weight type controlled

by parameters (ε
(j)
1 , . . . , ε

(j)
n ) for j = 0, 1, . . . , n − k, and Q(j)-deg means the associated degree.

For convenience, we write ik−1 = s and ik = t, then s < t. Since s, t ∈ Imax = I, so ps
and pt are not zero polynomials. Pick any term t0 in the expansion of (ps)max and pick any
term t1 in the expansion of (pt)max. Notice that s, t ∈ Imax, we have `s/ws = `t/wt, thus

(Q-deg t0 + εs)/ws = (Q-deg t1 + εt)/wt. Since (ε1, . . . , εn) = (ε
(n−k)
1 , . . . , ε

(n−k)
n ), we have

(6.7) `(n−k)s /ws = `
(n−k)
t /wt,

and

(6.8) (Q(n-k)-deg t0 + ε(n−k)s )/ws = (Q(n-k)-deg t1 + ε
(n−k)
t )/wt.

We claim that

(6.9) `(j)s /ws = `
(j)
t /wt,

for j = 0, 1, . . . , n − k. Suppose that there exists e such that `
(e)
s /ws 6= `

(e)
t /wt, notice that

both ps and pt are not zero polynomials, by Lemma 6.1(i) (here we set ε = ε/(w1w2)
e) we

have `
(e+1)
s /ws 6= `

(e+1)
t /wt. Similarly, `

(e+1)
s /ws 6= `

(e+1)
t /wt implies `

(e+2)
s /ws 6= `

(e+2)
t /wt.

Continuing this process, it implies that `
(n−k)
s /ws 6= `

(n−k)
t /wt, which contradicts (6.7). Hence

(6.9) is proved. Similarly, using Lemma 6.1(ii) and (6.8), we have

(6.10) (Q(j)-deg t0 + ε(j)s )/ws = (Q(j)-deg t1 + ε
(j)
t )/wt.



18 BING YI CHEN, HAO CHEN, STEPHEN S.-T. YAU & HUAI QING ZUO

Since ε
(j)
s = ε

(j)
t = ε for j = 0, . . . , n− k, (6.10) implies

(6.11) (Q(j)-deg t0 + ε)/ws = (Q(j)-deg t1 + ε)/wt,

for j = 0, 1, . . . , n − k. We claim that t0 is independent of xi for i = s + 1, . . . , t − 1. Suppose
not, then there exists e ∈ {s + 1, . . . , t − 1} such that t0 depends on xe. Let j = be, then

h(j) = e. Thus by definition we have ε
(j−1)
i = ε

(j)
i for i 6= e and ε

(j−1)
e < ε

(j)
e , which implies that

`
(j−1)
i = `

(j)
i for i > e, `

(j−1)
e < `

(j)
e , and `

(j−1)
i ≤ `

(j)
i for i < e. Notice that t1 is a monomial in

xt+1, . . . , xn only, and t+ 1 > e, we have

(6.12) Q(j-1)-deg t1 = Q(j)-deg t1.

Notice that t0 depends on xe, we have

(6.13) Q(j-1)-deg t0 < Q(j)-deg t0.

Since (6.12) and (6.13) contradict (6.11), the claim that t0 is independent of xi for i = s +
1, . . . , t − 1 is proved. So t0 can be written as the form cxat t2, where t2 is a monomial in
xt+1, . . . , xn, a is a non-negative integer and c is a constant coefficient.

Next, we will prove t2 = t1 up to a scale by two steps. Let t1 and t2 be written as c1x
at+1

t+1 . . . x
an
n

and c2x
bt+1

t+1 . . . x
bn
n , respectively.

Step 1: We first prove that

(6.14) ai/bi = (deg t1 − wtD)/(deg t2 − wtD),

for i = t+ 1, . . . , n.
Since the term t1 appears in the expansion of (pt)max, for any term g in the expansion of pt we

have Q-deg t1 ≥ Q-deg g, i.e. Q(n-k)-deg t1 ≥ Q(n-k)-deg g. Using Lemma 6.1(iii), we obtain
Q(j)-deg t1 ≥ Q(j)-deg g for any j = 0, 1, . . . , n − k and for any term g in the expansion of pt.
Thus we have

(6.15) `
(j)
t = Q(j)-deg t1 + ε,

for j = 0, 1, . . . , n−k. By (6.11), (6.15) and the facts that ws = deg t0−wtD, wt = deg t1−wtD
and t0 = cxat t2, we have

Q(j)-deg t0 + ε

deg t0 − wtD
=
a`

(j)
t + Q(j)-deg t2 + ε

awt + deg t2 − wtD
=

Q(j)-deg t1 + ε

deg t1 − wtD
=
`
(j)
t

wt
,

for j = 0, 1, . . . , n− k. It implies that

(6.16)
Q(j)-deg t2 + ε

deg t2 − wtD
=

Q(j)-deg t1 + ε

deg t1 − wtD
,

for j = 0, 1, . . . , n − k. We prove the claim that ai/bi = (deg t1 − wtD)/(deg t2 − wtD) for
i = t + 1, . . . , n by induction. If i = t + 1, let j = bt+1, then h(j) = t + 1. Thus we have

`
(j)
t+1 − `

(j−1)
t+1 > 0 and `

(j)
t+2 − `

(j−1)
t+2 = · · · = `

(j)
n − `(j−1)n = 0. Consequently, we obtain

Q(j)-deg t1 = Q(j-1)-deg t1 + at+1(`
(j)
t+1 − `

(j−1)
t+1 ),

and

Q(j)-deg t2 = Q(j-1)-deg t2 + bt+1(`
(j)
t+1 − `

(j−1)
t+1 ).

By (6.16), one gets at+1/bt+1 = (deg t1 − wtD)/(deg t2 − wtD), thus the claim holds for t+ 1.
Suppose (6.14) holds for t+ 1, t+ 2, . . . , i− 1, let us verify it for i. Let j = bi, then h(j) = i,

thus we have `
(j)
i − `

(j−1)
i > 0 and `

(j)
i+1 − `

(j−1)
i+1 = · · · = `

(j)
n − `(j−1)n = 0. Consequently, it gives

Q(j)-deg t1 = Q(j-1)-deg t1 + at+1(`
(j)
t+1 − `

(j−1)
t+1 ) + · · ·+ ai(`

(j)
i − `

(j−1)
i ),
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and

Q(j)-deg t2 = Q(j-1)-deg t2 + bt+1(`
(j)
t+1 − `

(j−1)
t+1 ) + · · ·+ bi(`

(j)
i − `

(j−1)
i ).

By assumption and (6.16), we obtain ai/bi = (deg t1 − wtD)/(deg t2 − wtD).
Step 2: We shall prove that deg t1 − wtD = deg t2 − wtD. Assume that deg t1 − wtD >

deg t2−wtD, then by (6.14), we have ai > bi for i = t+ 1, . . . , n. Let t3 = x
at+1−bt+1

t+1 . . . xan−bnn ,
then t1 = t2t3 up to a scale. Consequently, one gets

`t
wt

=
Q-deg t1 + ε

deg t1 − wtD
=

Q-deg t2 + Q-deg t3 + ε

deg t2 + deg t3 − wtD
.(6.17)

By the fact that (ε
(n−k)
1 , . . . , ε

(n−k)
n ) = (ε1, . . . , εn) and (6.16) for j = n− k, we have

(6.18)
Q-deg t1 + ε

deg t1 − wtD
=

Q-deg t2 + ε

deg t2 − wtD
.

By (6.17) and (6.18), we obtain `t/wt = Q-deg t3/ deg t3. Since t ∈ Imax and t + 1, . . . , n /∈
Imax, we have `t/wt > `t+1/wt+1, . . . , `t/wt > `n/wn. Since t3 is a monomial of xt+1, . . . , xn,
we have Q-deg t3/ deg t3 < `t/wt, which contradicts `t/wt = Q-deg t3/ deg t3. Therefore, the
assumption deg t1 − wtD > deg t2 − wtD is invalid. Similarly we can prove the assumption
deg t1 − wtD < deg t2 − wtD is invalid. Thus deg t1 − wtD = deg t2 − wtD. It implies that
ai = bi for i = t+ 1, . . . , n, thus t1 = t2 up to a scale. Thus Proposition 6.1 is proved. q.e.d.

Now we come back to the proof of Theorem 6.1.
Fix a term t0 in the expansion of (pik−1

)max. For any two terms t1, t2 in the expansion of
(pik)max, by Proposition 6.1, we have t0 = c1x

a1
ik
t1 and t0 = c2x

a2
ik
t2, where c1, c2 are non-zero

constant coefficients and a1, a2 are non-negative integers. Therefore, c1x
a1
ik
t1 = c2x

a2
ik
t2. Notice

that t1, t2 are monomials of variables xik+1, . . . , xn, so t1 = t2 up to a scale. Therefore, there is
only one term in the expansion of (pik)max.

Fix a term t2 in the expansion of (pik)max. For any two terms t0, t1 in the expansion of
(pik−1

)max, by Proposition 6.1, we have t0 = c0x
a0
ik
t2 and t1 = c1x

a1
ik
t2, where c0, c1 are non-zero

constant coefficients and a0, a1 are non-negative integers. Since pik−1
is a weighted homogeneous

polynomial with respect to the original weight type (w1, w2, · · · , wn), deg t0 = deg t1, thus
a0 = a1. So t0 = t1 up to a scale. It follows that there is only one term in the expansion of
(pik−1

)max. Hence,

(pik−1
)max = cxaik(pik)max,

where c is a non-zero constant coefficient and a is a non-negative integer. Notice that deg(pik−1
)max =

deg pik−1
= wik−1

+ wtD and deg(pik)max = deg pik = wik + wtD, we have wik−1
+ wtD =

awik + wik + wtD, which yields that

(6.19) wik−1
= (a+ 1)wik .

Since ik−1, ik ∈ Imax, `ik−1
/wik−1

= `ik/wik . Thus, we obtain

(6.20) `ik−1
= (a+ 1)`ik .

In the sequel, we shall make a coordinate change which preserves the original weight type
(w1, w2, . . . , wn). The coordinate change is of the following form

(6.21)

x1 = x′1,

. . . . . .

xik−1
= x′ik−1

+ c(x′ik)a+1/(a+ 1),

. . . . . .

xn = x′n.
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We obtain the transformation of derivations in this coordinate change (6.21) as follows:

(6.22)

∂

∂x′1
=

∂

∂x1
,

. . . . . .

∂

∂x′ik−1

=
∂

∂xik−1

,

∂

∂x′ik
=

∂

∂xik
+ c(x′ik)a

∂

∂xik−1

,

. . . . . .

∂

∂x′n
=

∂

∂xn
.

If the expression of the negative weight derivation D is written in the new coordinate system,
say

D′ = p′1
∂

∂x′1
+ p′2

∂

∂x′2
+ · · ·+ p′n

∂

∂x′n
.

It is clear that p′t = pt for t 6= ik−1, and

p′ik−1
= pik−1

− c(x′ik)apik = pik−1
− cxaikpik .

Let (`′1, . . . , `
′
n) be the new weight type associated to D′ in the new coordinate system and

controlled by the original parameters (ε1, ε2, . . . , εn) and Q ′-deg means the associated degree.
For any t > ik−1, we have p′t = pt and pt is independent of xik−1

, thus the expression of
pt in the original coordinate system is the same as that of p′t in the new coordinate system,
since the coordinate change only occurs on xik−1

, which implies that `′t = `t for all t > ik−1.
We claim that `′ik−1

< `ik−1
. Since (pik−1

)max = cxaik(pik)max, we have either (pik−1
− cxaikpik)

is the zero polynomial or Q-deg (pik−1
− cxaikpik) < Q-deg pik−1

. If the former holds, then

p′ik−1
is the zero polynomial and it is clear that `′ik−1

< `ik−1
. If the latter holds, notice that

p′ik−1
= pik−1

− cxaikpik is a polynomial in xt for t > ik−1 and `′t = `t for t > ik−1, we have

Q ′-deg p′ik−1
= Q-deg (pik−1

− cxaikpik), thus Q ′-deg p′ik−1
< Q-deg pik−1

, which implies `′ik−1
<

`ik−1
. Now we claim that `′t ≤ `t for all t = 1, 2, . . . , n and we shall prove it by induction.

From the above argument, the inequality holds for t ≥ ik−1. Assume the claim holds for
t+ 1, t+ 2, . . . , n, and we shall show it holds for t < ik−1. For any term g = x

at+1

t+1 . . . x
an
n in the

expansion of pt, then

g = (x′t+1)
at+1 . . .

(
x′ik−1

+
c

a+ 1
(x′ik)a+1

)aik−1 . . . (x′n)an

in the new coordinate system. By the fact that Q ′-deg (x′ik)a+1 = (a+1)`′ik = (a+1)`ik = `ik−1

due to (6.20), we obtain Q ′-deg g ≤ Q-deg g for any term g in the expression of pt. Since
p′t = pt , t < ik−1, we obtain Q ′-deg p′t ≤ Q-deg pt, which yields that `′t ≤ `t and the claim is
proved.

Let I ′max = {e : `′e/we is the maximum among all `′i/wi for i = 1, 2, . . . , n}. From the above
argument, we know that for any i /∈ Imax, `′i/wi ≤ `i/wi < `ik/wik = `′ik/wik , which implies that

i /∈ I ′max. Thus I ′max ⊆ Imax. Notice that `′ik−1
/wik−1

< `ik−1
/wik−1

= `ik/wik = `′ik/wik , we

have I ′max ⊆ Imax \ {ik−1}, which yields that I ′max is a proper subset of Imax = I. And for any
i ∈ I ′max, we have i ∈ Imax and i 6= ik−1, so that pi is a non-zero polynomial and p′i = pi, thus
the condition that p′i is a non-zero polynomial for any i ∈ I ′max is satisfied. Thus the case that
Imax = I can be reduced to the case that Imax is a proper subset of I.
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In the sequel, we shall prove Theorem 6.1 by induction on k which is the number of elements
in I. If k = 2, we may assume that Imax is a proper subset of I, thus Imax has only one element.
Assume that Imax = {i0}. Let β = `i0/wi0 , γ = max{`i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}
and εmin = min{εi for i such that pi is a non-zero polynomial}. Since i0 ∈ Imax ⊂ I, we know
pi0 is a non-zero polynomial and εi0 = ε. Since εi ≥ ε = εi0 for any i such that pi is a non-zero
polynomial, we have εmin = ε = εi0 . Since all εi are divisible by ε/(w1w2)

n−k = ε/(w1w2)
n−2,

by Lemma 4.7, we have β − γ ≥ ε/(w1w2)
n−1. By Theorem 4.1, there exists j ∈ {1, 2, . . . ,m}

such that

deg fj ≤
(m− 1 + w1)εmin

β − γ
≤ (m− 1 + w1)(w1w2)

n−1.

Now by induction, we assume that the conclusion holds for 2, . . . , k − 1, we shall prove it for
k. If Imax has only one element, then the conclusion is arrived by using the similar argument
as above. Hence, we may assume without loss of generality that Imax contains more than one
element, and Imax is a proper subset of I, and pick j0 ∈ I \ Imax. Define another parameters ε′i
as follows:

ε′i =

{
εi + ε/(w1w2)

n−k+1, i = j0
εi, i 6= j0

.

Consider the new weight type (`′1, . . . , `
′
n) controlled by parameters (ε′1, . . . , ε

′
n), let I ′max =

{e : `′e/we is the maximum among all `′i/wi for i = 1, 2, . . . , n}. We claim that I ′max ⊆ Imax. For
any i /∈ Imax, we need to consider the following two cases:

(1) pi is a non-zero polynomial. Fix an index j ∈ Imax, then `i/wi < `j/wj . By setting

ε = ε/(w1w2)
n−k in Lemma 6.1(i), we have `′i/wi < `′j/wj , which yields that i /∈ I ′max.

(2) pi is a zero polynomial, then ε′i ≤ ε/(w1w2), thus `′i ≤ ε/(w1w2). For any t ∈ Imax ⊂ I,
pt is a non-zero polynomial, so εt = ε. Since t 6= j0, we have ε′t = εt = ε, which implies that
`′t = ε′t + Q ′-deg pt ≥ ε. The equality holds when Q ′-deg pt = 0. Assume that i ∈ I ′max, then
we have

ε/wt ≤ `′t/wt ≤ `′i/wi ≤ ε/(w1w2wi),

for any t ∈ Imax. Thus, w1w2wi ≤ wt for any t ∈ Imax, hence w2 = wi = 1 and w1 = wt for any
t ∈ Imax. Since Imax has more than one element, there exists t0 ∈ Imax such that t0 ≥ 2, so that
wt0 ≤ w2. Thus, w1 = wt0 ≤ w2 = 1, so that w1 = 1. That is to say, w1 = w2 = · · · = wn. Notice
that deg pi < wi and pi(0) = 0 by Lemma 4.8 for i such that pi is a non-zero polynomial, thus
pi has to be the zero polynomial for i = 1, 2, . . . , n, i.e., D = 0. This leads to a contradiction.
Hence the assumption i ∈ I ′max is absurd.

Thus, i /∈ I ′max for all i /∈ Imax, which yields that I ′max ⊆ Imax ⊆ I \ {j0}. For any i ∈ I ′max, we
have i ∈ Imax, thus pi is a non-zero polynomial. Let I ′ = I \ {j0}, then the number of elements
of I ′ is k − 1 and I ′max ⊆ I ′. The conclusion follows immediately from the assumption. q.e.d.

Theorem 6.2 (Main Theorem A). Let P = C[x1, x2, . . . , xn] be the weighted polynomial ring
in n weighted variables x1, x2, . . . , xn (n ≥ 2) with positive integer weights w1 ≥ w2 ≥ · · · ≥
wn. Suppose that f1, f2, . . . , fm are weighted homogeneous polynomials with degrees greater than
(m − 1 + w1)(w1w2)

n−1 and f1, f2, . . . , fm define a positive-dimensional isolated singularity at
the origin. Then there are no non-zero negative weight derivations on R = P/(f1, f2, . . . , fm).

Proof. (By contradiction) Suppose D is a non-zero negative weight derivation on R or equiv-
alently a non-zero negative weight derivation on P which preserves the ideal (f1, f2, . . . , fm) as
in (3.1). We take the new weight type (`1, . . . , `n) of D controlled by parameters εi, where

εi =

{
ε, pi is a non-zero polynomial
0, otherwise

,

where ε is a positive real number. It is clear that `i > 0 for any i such that pi is a non-
zero polynomial and `i = 0 for any i such that pi is the zero polynomial. Thus pi is a non-zero
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polynomial for any i ∈ Imax. Let I = {1, 2, . . . , n} and it is clear that Imax ⊆ I. Then by Theorem
6.1 we know that there exists j ∈ {1, 2, . . . ,m} such that deg fj ≤ (m−1+w1)(w1w2)

n−1, which
contradicts the condition that deg fj > (m− 1 + w1)(w1w2)

n−1 for all j. So the conclusion has
been arrived at. q.e.d.
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