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Abstract It is well known that the geometric genus andmultiplicity are two important invari-
ants for isolated singularities. In this paper we give a sharp lower estimate of the geometric
genus in terms of the multiplicity for isolated hypersurface singularities. In 1971, Zariski
asked whether the multiplicity of an isolated hypersurface singularity depends only on its
embedded topological type. This problem remains unsettled. In this paper we answer posi-
tively Zariski’s multiplicity question for isolated hypersurface singularity if Milnor number
or geometric genus is small.
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1 Introduction

Let (V, 0) ⊂ (CN , 0) be the analytic germ of an n-dimensional complex isolated complete
intersection singularity (ICIS). One of the most important goals of singularity theory is the
clarification of the subtle connections between some basic numerical invariants, the Milnor
number μ, multiplicity ν and geometric genus pg .
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For the surface case, it is already a difficult problem. In this case, if FV is the Milnor
fiber of (V, 0) and (μ+, μ0, μ−) are the Sylvester invariants of the symmetric intersection
form of the middle integral homology H2(FV ,Z), then 2pg = μ0 + μ+ (Durfee [5]), while,
obviously,μ = μ++μ0+μ−. Hence, numerical relations betweenμ and pg can be rewritten
in terms of the Sylvester invariants. In topology, the signature σ := μ+ −μ− is well studied.
In fact, for compact complex surfaces, the Euler number, Todd genus and the signature are
the most important index-theoretical numerical invariants; their local analogs are the above
integersμ, pg and σ . The relation ofμ, pg was investigated intensively giving rise to several
open problems as well. In particular, this was formulated in Durfee’s Conjecture [5] and
Yau’s Conjecture [31] (for weighted homogeneous singularities) as follows:

Durfee’s Conjecture: If (V, 0) is an isolated complete intersection surface singularity,
then 6pg ≤ μ.

Yau’s Conjecture: Let f : (Cn, 0) → (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let μ, pg and ν be the Milnor number, geometric
genus and multiplicity of the singularity V = {z : f (z) = 0}, then

μ − p(ν) ≥ n!pg,
where p(ν) = (ν − 1)n − ν(ν − 1) . . . (ν − n + 1), and equality holds if and only if f is a
homogeneous polynomial.

TheYau’s Conjecture are sharp estimate and can be viewed as an improvement of Durfee’s
Conjecture in the case of weighted homogeneous singularity, and it has some important
applications in geometry.

TheDurfee’s Conjecture andYau’s Conjectureswere studied systematically by the authors
and their collaborators [4,13–15,29–31,33].

The relation of μ, ν was investigated in [31]. We proved μ ≥ (ν − 1)n for isolated
hypersurface singularity (V, 0). It is natural to ask: what is the relation between ν and pg? In
[26], Yau give a lower bound for pg in terms of multiplicity and some other number which
depends on the equation of a hypersurface singularity as follows.

Theorem 1.1 (Yau [26]) . Let

f (z1, . . . , zn−1, zn) = zmn + a1(z1, . . . zn−1)z
m−1
n + · · · + am(z1, . . . , zn−1)

be holomorphic near (0, . . . , 0). Let di be the order of the zero of ai (z1, . . . , zn−1) at
(0, . . . , 0), di ≥ i . Let d = min1≤i≤m(

di
i ). Suppose that

V = {(z1, . . . , zn) : f (z1, . . . , zn) = 0}
defined in a suitably small polydisc, has p = (0, . . . , 0) as its only singularity. Then
pg > (m − 1)d − (n − 1).

In [32], we investigated the relation between pg and irregularity for isolated complete
intersection singularities with C

∗-action. In the following result, a lower bound for pa in
terms of the multiplicity ν for an isolated two dimensional hypersurface singularity was
given.

Theorem 1.2 [28] Let (V, 0) be an isolated two dimensional hypersurface singularities in
C
3. Then we have

pa ≥ ν(ν − 1)(ν − 3)

8
+ 1, for ν is odd and ν ≥ 3,

pa ≥ ν(ν − 2)2

8
+ 1, for ν is even and ν ≥ 3,
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where pa is the arithmetic genus (see Definition 2.6) and ν is the multiplicity of (V, 0).

Thus a lower bound for pg in terms of the multiplicity ν is also obtained as follows.

Corollary 1.1 Let (V, 0) be an isolated two dimensional hypersurface singularities in C
3.

Then we have

pg ≥ ν(ν − 1)(ν − 3)

8
+ 1, for ν is odd and ν ≥ 3,

pg ≥ ν(ν − 2)2

8
+ 1, for ν is even and ν ≥ 3,

where pg is the geometric genus and ν is the multiplicity of (V, 0).

Proof It follows from Theorem 1.2 and Proposition 2.1 immediately. ��
It is easy to see that the new lower bound for pg in Corollary 1.1 is better than the Yau’s

bound in Theorem 1.1. For example: let f = z51 + z52 + z53, then by Theorem 1.1, we have
pg > (5 − 1) − (3 − 1) = 2 (notice that m = 5, d = 1, n = 3). However, if we use
Corollary 1.1, we get pg ≥ 6. In fact, pg = 10 for this singularity.

From the example above, we can see that the lower bound of pg in Corollary 1.1 is far
from sharp. One of the main goals of this paper is to construct a sharp lower estimate for pg .

Main Theorem A Let (V, 0) be an isolated hypersurface singularities in C
n defined by a

holomorphic function f . Then we have

pg ≥ 1

n!
n−1∏

i=0

(ν − i), (1.1)

where pg is the geometric genus and ν is the multiplicity of (V, 0).

Remark 1.1 If f in Main Theorem A is homogeneous or semi-homogeneous (see Defini-
tion 2.13), then it is easy to conclude that the “=” holds in (1.1) from the proof of the Main
TheoremA. However, the inverse direction is not correct. For example, let f = x3+ y3+ z4.
Since pg = 1 and ν = 3, so pg = 1 = 3(3−1)(3−2)

6 . Thus “=” holds in (1.1). However, f is
not homogeneous and semi-homogeneous.

In other words, one can not expect the “=” holds in (1.1) implies f is homogeneous or
semi-homogeneous.

If n = 3, we have the following immediate corollary.

Corollary 1.2 Let (V, 0) be an isolated two dimensional hypersurface singularities in C
3

defined by a holomorphic function f . Then we have

pg ≥ ν(ν − 1)(ν − 2)

6
,

where pg is the geometric genus and ν is the multiplicity of (V, 0).

Remark 1.2 It is easy to check that the lower bound for pg in Corollary 1.2 is greater than
the bound in Corollary 1.1. Example: let f = z41 + z42 + z43, then by Corollary 1.1, we have
pg ≥ 3. However, if we use Corollary 1.2, we get pg ≥ 4. In fact, pg = 4 for this singularity.
From this example we can see that the lower bound in Corollary 1.2 and Main Theorem A
are sharp.
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Let f, g : (Cn, 0) → (C, 0) be germs (at the origin) of holomorphic functions,
V f := f −1(0), Vg := g−1(0) the corresponding germs of hypersurfaces in C

n , and ν f , νg
the multiplicities at 0 of V f and Vg respectively.

Definition 1.1 One says that f and g have the same topological type (or are called topo-
logically equivalent) if there is a germ of homeomorphism φ : (Cn, 0) → (Cn, 0) such that
φ(V f ) = Vg .

Zariski’s multiplicity Question: (cf. [34]) If f and g are topologically equivalent, then
is it true that ν f = νg?

The question is, in general, still open despite more than four decades effort to prove it.
Nevertheless, the answer is known to be true in the following special cases:

(i) if n = 2 (Zariski [35]);
(ii) if ν f = 1, that is, if 0 is not a critical point of f (A’Campo [1], Lê [11]);
(iii) if n = 3 and ν f = 2 (Navarro Aznar [18]);
(iv) if n = 3 and f and g are quasihomogeneous with an isolated critical point at the origin

(Xu-Yau [25,27]).
(v) if n = 3 and f and g have an isolated critical point at the origin and the arithmetic

genius pa of V f at 0 is ≤ 2 (Yau [28]).

There are several other partial positive answers to Zariski’s question, the reader interested
in this question can refer to Eyral’s beautiful survey article [6].

The following result which gives positive answer to Zariski’s question partially, is a corol-
lary of Main Theorem A.

Corollary 1.3 Let (V, 0) and (W, 0) be two isolated two dimensional hypersurface singu-
larities in C

3 having the same topological type. If pg(V, 0) ≤ 3, then ν(V, 0) = ν(W, 0)
where pg(V, 0) is the geometric genus of (V, 0), ν(V, 0) and ν(W, 0) are the multiplicities
of (V, 0) and (W, 0) respectively.

Another purpose of this paper is to prove the following results.

Main Theorem B Let f, g : (C3, 0) → (C, 0) be germs of holomorphic functions with an
isolated critical point at the origin, V f , Vg the corresponding germs of zero locus in C3, and
ν f , νg the multiplicities at 0 of V f , Vg respectively. Suppose that f and g are topologically
equivalent. If the Milnor number of V f at 0 is less than or equal to 26, then ν f = νg.

Main Theorem C Let f, g : (Cn, 0) → (C, 0), n > 3 be germs of holomorphic functions
with an isolated critical point at the origin, V f , Vg the corresponding germs of hypersurfaces
in Cn, and ν f , νg the multiplicities at 0 of V f , Vg respectively. We suppose that f and g are
topologically equivalent. If the Milnor number of V f at 0 is less than or equal to 2n −1, then
ν f = νg.

In Sect. 2, we recall the necessarymaterials which are needed to prove theMain Theorems.
In Sect. 3, we shall give the proofs of the Main Theorems.

2 Preliminary

2.1 Geometric geneus and arithmetic genus

Definition 2.1 Let (V, 0) be a normal surface singularity. If there exist an open neighborhood
U of 0 in V and a non-vanishing holomorphic 2-form on the deleted neighborhood U\{0},
then we say that (V, 0) is a Gorenstein singularity.
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We shall consider normal surface Gorenstein singularities. Let V be a two-dimensional
normal analytic space with only singular point 0 in it. Let π : M → V be a resolution of
V , and let A = π−1(0) which is called the exceptional set associated to a resolution π .
We always decompose A into irreducible components A1 ∪ A2 ∪ · · · An . The weighted dual
graph of (V, 0) consists of the information of the genera of all Ai and the intersection matrix
(Ai · A j ).

Definition 2.2 A positive cycle D on the exceptional set A = A1 ∪ A2 ∪ · · · An ⇔ D =
d1A1+d2A2+· · ·+dn An with di nonnegative integer and (d1, d2, . . . , dn) �= (0, 0, . . . , 0).

Definition 2.3 Let D1 = d1A1 + d2A2 + · · · + dn An and D2 = d ′
1A1 + d ′

2A2 + · · · +
d ′
n An be positive cycles on A. Then D1 + D2 := (d1 + d ′

1)A1 + · · · + (dn + d ′
n)An , and

D1 ≥ D2 ⇔ di ≥ d ′
i for any i = 1, . . . , n.

Definition 2.4 Let D1 = d1A1 + d2A2 + · · · + dn An be a positive cycle on A. The sheaf of
germs of holomorphic functions on M is denoted by O. The sheaf of germs of holomorphic
functions on M which vanish on Ai of order at least di , for each i , is denoted by O(−D).
TheO(−D) is a subsheaf ofO. LetOD := O/O(−D). TheOD is a coherent analytic sheaf
on M .

Definition 2.5 Let D be a positive cycle on A. The virtual genus of D, denoted by p(D), is
defined by p(D) = 1− h0(M,OD) + h1(M,OD). By Riemann-Roch Theorem, we can see
that p(D) = 1 + 1

2 (D
2 + DK ) where K is the canonical divisor on M . From this, one can

see that p(D1 + D2) = p(D1) + p(D2) + D1 · D2 − 1.

Definition 2.6 The arithmetic genus of the A, denoted by pa(A), is defined by

sup{p(D) : D is a positive cycle on A}.
This is independent of the choice of the resolution, so this is an invariant of a normal surface
singularity (V, 0). Thus we denote this simply by pa .

Definition 2.7 Let π : M → V be a resolution of an isolated n-dimensional singularity
(V, 0). The geometric genus pg is defined by the dimension of the direct image sheaf:
pg := dimC(Rn−1π∗OM )0.

Without loss of generality, we may assume that V is a Stein space, and the resolution M
is a strictly pseudoconvex manifold. Then pg = hn−1(M,OM ).

In [9,26], Laufer and Yau proved that pg = dimCH0(V ∗,O(KV ∗))/L2(V ∗) where
V ∗ := V \{0} and L2(V ∗) is a vector subspace of H0(V ∗,O(KV∗)) consisting of
square-integrable 2-forms on deleted neighborhood of the singularity. This says that pg
is independent of the choice of the resolution. So pg is an invariant of (V, 0).

Proposition 2.1 (Artin [3]) Let (V, 0) be a 2-dimensional normal singularity, then

(1) 0 ≤ pa ≤ pg,
(2) pa = 0 ⇔ pg = 0.

2.2 Newton polyhedron and non-degenerate

Let f (z1, . . . , zn) be a germ of an analytic function at the origin such that f (0) = 0. Suppose
f has an isolated critical point at the origin. f can be developed in a convergent Taylor series

123



S. S.-T. Yau, H. Zuo

f (z1, . . . , zn) = ∑
aλzλ where zλ = zλ11 · · · zλnn . Recall that the Newton boundary �( f ) is

the union of compact faces of �+( f ) where �+( f ) is the convex hull of the union of subsets
{λ + R

n+} for λ such that aλ �= 0. Let �−( f ), the Newton polyhedron of f , be the cone
over �( f ) with cone point at 0. For any closed face � in �( f ), we associate the polynomial
f�(z) = ∑

λ∈� aλzλ. The principal part of f is a polynomial consisting of monomials, the
indices of which lie in the �( f ). In other words, the principal part of f is the sum of f�(z)
for all � in �( f ).

Definition 2.8 f is called non-degenerate if f� has no critical point in (C∗)n for any
� ∈ �( f ) where C∗ = C\{0}.
Definition 2.9 f is called convenient if �+( f ) meets each of the coordinate axes.

Definition 2.10 Let X be a complex analytic space. A subset C ⊂ X is called constructible
if one can find an m ∈ N and analytic subsets A1, . . . , Am and B1, . . . , Bm of X such that

C =
m⋃

i=1

(Ai\Bi ).

Theorem 2.1 [2, Lemma 6.1] The set of degenerate principal parts is a proper constructible
subset in the space of all principal parts corresponding to a given Newton polyhedron, the
complement of which is everywhere dense.

We say that a point p of the integral lattice Zn in R
n is positive if all coordinates of p are

positive. The following beautiful theorem is due to Merle-Teissier.

Theorem 2.2 (Merle-Teissier, [16]) Let (V, 0) be an isolated hypersurface singularity
defined by a non-degenerate holomorphic function f : (Cn, 0) → (C, 0). Then the geo-
metric genus pg = #{p ∈ Z

n ∩ �−( f ) : p is positive}.
Definition 2.11 Let (V, 0) be an isolated hypersurface singularity defined by a holomorphic
function f : (Cn, 0) → (C, 0). The Milnor number μ of the singularity (V, 0) is defined
respectively by

μ = dimC C{z1, z2, . . . , zn}
/
( fz1 , . . . , fzn ).

Definition 2.12 The multiplicity of the singularity (V f , 0) is defined to be the order of the
lowest non-vanishing term in the power series expansion of f at 0.

The following result about nonsingular germs is well-known.

Theorem 2.3 (A’Campo [1] and Lê [11]) Let f, g : (Cn, 0) → (C, 0) be germs of holomor-
phic functions and let ν f and νg be the multiplicities at the origin of f and g respectively.
We suppose that f and g are topologically equivalent. If ν f = 1, so is νg.

The following result is a corollary of A’Campo’s work.

Theorem 2.4 (Navarro Aznar [18]) Let f, g : (C3, 0) → (C, 0) be germs of holomorphic
functions and let ν f and νg be the multiplicities at the origin of f and g respectively. Suppose
that f and g are topologically equivalent. If ν f = 2, so is νg.
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2.3 Weighted homogeneous singularities

Recall that a polynomial f (z1, . . . , zn) is weighted homogeneous of type (w1, . . . , wn; 1),
where w1, . . . , wn are fixed positive rational numbers, if it can be expressed as a linear
combination of monomials zi11 · · · zinn for which i1w1 + · · · + inwn = 1. As a consequence
of the theorem of Merle-Teissier (see Theorem 2.2), for an isolated singularity defined by a
weighted homogeneous polynomial, computing the geometric genus is equivalent to counting
the number of positive integral points in the tetrahedron defined by x1w1 + · · · + xnwn ≤ 1,
x1 ≥ 0, . . . , xn ≥ 0. We have the following result.

Theorem 2.5 (Milnor-Orlik [17]) Let f (z1, . . . , zn) be a weighted homogeneous polyno-
mial of type (w1, . . . , wn) with isolated singularity at the origin. Then the Milnor number
μ = ( 1

w1
− 1) · · · ( 1

wn
− 1).

Let f ∈ C{z1, . . . , zn} defines an isolated singularities at the origin. Let the weight wi of
zi be a positive integer for all i . We have the weighted Taylor expansion f = fρ + fρ+1+· · ·
with respect to w = (w1, . . . , wn) and fρ �= 0, where fk is a weighted homogeneous of

type (w1, . . . , wn; k), for k ≥ ρ. Here fk is linear combination of monomials zi11 · · · zinn for
which i1w1 + · · · + inwn = k.

Definition 2.13 With the notation as above. Suppose that f defines an isolated singularity
at the origin. f is called a semi-quasihomogeneous function if the initial term fρ defines an
isolated singularity at the origin. Furthermore, if f is semi-quasihomogeneous with respect
to w1 = · · · wn = 1, then f is called semi-homogeneous.

2.4 Integral points in simplex

Let �n be an n-dimensional real right-angled simplex defined by the inequality

x1
a1

+ x2
a2

+ · · · + xn
an

≤ 1,

where x1 ≥ 0, . . . , xn ≥ 0 and a1 ≥ a2 ≥ · · · ≥ an > 0. Define Pn(a1, . . . , an) to be the
number of positive integral points in �n , as shown below:

Pn(a1, . . . , an) = #

{
(x1, x2, . . . , xn) ∈ Z

n+ | x1
a1

+ x2
a2

+ · · · + xn
an

≤ 1

}
.

Define Qn(a1, . . . , an) to be the number of nonnegative integral points in �n , as shown
below:

Qn(a1, . . . , an) = #

{
(x1, x2, . . . , xn) ∈ (Z+ ∪ {0})n | x1

a1
+ x2

a2
+ · · · + xn

an
≤ 1

}
.

These two different numbers are tied together through the equation (see [14])

Pn(a1, a2, . . . , an) = Qn(a1(1 − a), a2(1 − a), . . . , an(1 − a)), (2.1)

where a = 1
a1

+ · · · + 1
an
.

Theorem 2.6 (Lehmer [12]) If a1 = a2 = · · · = an = a ≥ 0, then

Qn(a, . . . , a) =
([a] + n

n

)

where [a] is Gauss symbol, i.e., the integral part of a.
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Remark 2.1 If a = 0 in Theorem 2.6, then

Qn(0, . . . , 0) = 1 = #
{
(x1, x2, . . . , xn) ∈ (Z+ ∪ {0})n | x1 + x2 + · · · + xn ≤ 0

}
.

2.5 Plurigenus

Definition 2.14 Let V be an analytic space with the singular locus S. A proper birational
morphism π : Ṽ → V is called a good resolution of the singularities on X , if

(1) Ṽ is non-singular,
(2) the restriction Ṽ \π−1(S) → V \S of π is an isomorphism, and
(3) the reduced fiber π−1(S)red is a divisor of simple normal crossings.

Definition 2.15 For a normal isolated singularity (V, 0) of dimension n ≥ 2, we define a
plurigenera {δm}m∈Z+ by

δm(V, 0) = dimC�(V \{0},O(mK ))/L2/m(V \{0}),
where L2/m(V \{0}) denotes the set of all L2/m-integrable m-ple holomorphic n-form on
V \{0}.
Remark 2.2 It is shown in [9,26] that pg(V, 0) = δ1(V, 0).

Proposition 2.2 (Watanabe [24]) The plurigenus δm(V, 0) is represented as

δm(V, 0) = dimC�(Ṽ \E,O(mKṼ ))/�(Ṽ ,O(mKṼ + (m − 1)E))

= dimCO(mKV )/π∗O(mKṼ + (m − 1)E),

where π : Ṽ → V is a good resolution of the singularity and E = π−1(0)red .

Proposition 2.3 (Okuma [20]) Let (V, 0) be a normal Gorenstein surface singularity. Then
δm(V, 0) is determined by pg(V, 0) and the weighted dual graph.

2.6 Deformation

Let f : Y → S be a morphism of complex analytic spaces and F a coherent OY -module.
The sheaf F is said to be flat over S, if the stalk Fy is a flat OS, f (y)-module for every
y ∈ Y . The morphism f is said to be flat, if OY is flat over S. Let s ∈ S be a point and ms

the maximal ideal of the point s. The fiber Ys is the complex analytic space ( f −1(s),OYs ),
where OYs = OY /msOY . We write as Ys = f −1(s). The coherent OYs -module F/msF is
denoted by Fs . Let f : Y → S be a flat surjective morphism and o ∈ S a distinguished
point. If V is a complex analytic space such that Yo ∼= V , then f is called a deformation of
V , and Y and S are called a total space and a base space, respectively. If the base space S is
a nonsingular curve, then the deformation f is called a 1-parameter deformation.

Definition 2.16 Let (V, 0) be a singularity. A flat surjective morphism of germ f : (Y, 0) →
(S, o) is called a deformation of the singularity (V, 0) if the fiber (Yo, 0) is isomorphic to
(V, 0). Thenwe say that (V, 0) is deformed to thefiber f −1(s), or that f −1(s) is a deformation
of (V, 0), for s ∈ S\{0}.
Theorem 2.7 (Ishii [8], upper semi-continuity of δm) Let (V, 0) be a normal isolated sin-
gularity and f : (Y, 0) → (S, o) be a 1-parameter deformation of (V, 0). Then, for each
m ∈ N,
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δm(Y, 0) ≥
∑

p∈Sing(Ys )
δm(Ys, p) for s ∈ S near 0,

where Sing(Ys) denotes the set of singular points of Ys .

3 Proof of the main theorems

Proof of the Main Theorem A
We fist prove the following Lemma.

Lemma 3.1 Let f, g : (Cn, 0) → (C, 0) be two isolated hypersurface singularities and
suppose that f, g are non-degenerate with �+( f ) ⊆ �+(g). Then pg( f ) ≥ pg(g).

Proof Since f, g are non-degenerate, so by Theorem 2.2, we have pg(g) = #{p ∈ Z
n+ ∩

�−(g)} and pg( f ) = #{p ∈ Z
n+ ∩ �−( f )}. �+( f ) ⊆ �+(g) implies that �−(g) ⊆ �−( f ).

Thus we have Zn+ ∩ �−(g) ⊆ Z
n+ ∩ �−( f ), this implies pg( f ) ≥ pg(g). ��

When 2 ≤ ν ≤ n − 1, the Main Theorem A is automatically true. So one only needs to
consider the case that ν ≥ n. We first assume that f is a non-degenerate (see Definition 2.8)
and convenient singularity (see Definition 2.9). In fact the condition “convenient” is not a
restriction. This is because by adding zNi for a sufficient large N , the isomorphism class of
f does not change. Hereafter we shall assume that f is convenient.
Let g = zν1+· · ·+zνn where ν is themultiplicity of f . It is obvious that g is non-degenerate

and convenient. It is also easy to see that �+( f ) ⊆ �+(g). By Lemma 3.1, we conclude
that pg( f ) ≥ pg(g). It follows from Theorem 2.2 and (2.1) that pg(g) = Pn(ν, . . . , ν) =
Qn(ν − n, . . . , ν − n). Since ν ≥ n, so by Theorem 2.6, we have

pg(g) = Qn(ν − n, . . . , ν − n) = 1

n!
n−1∏

i=0

(ν − i).

This completes the proof the theorem.
For general f , by Theorem 2.8 we can construct a 1-parameter deformation of (V ( f ), 0)

fixing the Newton polyhedron such that the generic fiber is a non-degenerate hypersurface.
This means that f can deform to a non-degenerate singularity g, such that �( f ) = �(g)
which implies ν(g) = ν( f ) = ν. Then it follows from the upper semi-continuity of pg (cf.
Theorem 2.7 for m = 1) that pg( f ) ≥ pg(g). Since g is non-degenerate singularity, so we
have pg(g) ≥ 1

n!
∏n−1

i=0 (ν − i). Thus pg( f ) ≥ 1
n!

∏n−1
i=0 (ν − i). This completes the proof. ��

Proof of the Corollary 1.3

We need the following proposition which says that plurigenera {δm}m∈Z+ are topological
invariants. For m = 1, this was proven in [28].

Proposition 3.1 Let (V, 0) and (W, 0) be two isolated two dimensional hypersurface sin-
gularities in C

3 having the same topological type. Then δm(V, 0) = δm(W, 0).

Proof Since (V, 0) and (W, 0) have the same topological type, the fundamental groups of
the links of (V, 0) and (W, 0) are isomorphic (see for example [21]). Thus, by the result
of Neumann [19], the minimal resolution graph �V of (V, 0) is the same as the minimal
resolution graph �W of (W, 0) except the following two cases:
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Case 1. Both �V and �W are exactly those of the form below with all ai ≤ −2

a1 a2 an
� � �

Case 2. Both �V and �W are exactly those of the form below with ai ≤ −2 and one
ai ≤ −3.

a1

a2 a3

an−1an

In Case 1, we have δm(V, 0) = δm(W, 0) = 0, while in Case 2 we have
δm(V, 0) = δm(W, 0) = 1 (see [7]).

In order to finish the proof of the proposition, wemay assume that�V is the same as�W . It
is well known that Milnor number μ of an isolated hypersurface singularity is an invariant of
topological type (see for example [23]). Therefore, μ(V, 0) = μ(W, 0). On the other hand,
Laufer’s formula [10], says that

1 + μ = K 2 + χT (A) + 12pg,

where χT (A) is the topological Euler characteristic of A. Since K 2 and χT (A) can be com-
puted from the resolution graph, it follows that pg(V, 0) = pg(W, 0). By Proposition 2.3,
δm(V, 0) = δm(W, 0). ��
Remark 3.1 The Proposition 3.1 is also correct for isolated Gorenstein surface singularities.
The proof is the same as above. Notice that the Laufer’s formula was generalized to isolated
Gorenstein surface singularities by Steenbrink [22].

Since (V, 0) and (W, 0) have the same topological type and pg(V, 0) ≤ 3, so by Proposi-
tion 3.1,we have pg(V, 0) = pg(W, 0) ≤ 3. In viewofCorollary 1.2,we see that ν(V, 0) ≤ 3
and ν(W, 0) ≤ 3. Using the deep Theorem 2.3 and Theorem 2.4 that a surface singularity
in C3 having multiplicity 2 cannot have the same topological type at 0 as another surface of
multiplicity different from 2. It follows immediately that ν(V, 0) = ν(W, 0). This completes
the proof. ��

We need the following proposition which is one of crucial steps in our proof of our Main
Theorems B and C.

Proposition 3.2 [31] Let f : (Cn, 0) → (C, 0) be a holomorphic germ defining an isolated
hypersurface singularity V = {z : f (z) = 0} at the origin. Letμ and ν be the Milnor number
and multiplicity of (V, 0) respectively. Then

μ ≥ (ν − 1)n (3.1)

and the equality in (3.1) holds if and only if f is a semi-homogeneous function after a
biholomorphic change of coordinates.
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Proof of the Main Theorem B

By Proposition 3.2, μ f ≥ (ν f − 1)3. Since μ f ≤ 26, we have ν f ≤ 3. Notice that Milnor
number is an invariant of the topological type, we have also νg ≤ 3. By the same argument
in the proof of Corollary 1.3, we have ν f = νg. ��
Proof of the Main Theorem C

By Proposition 3.2, μ f ≥ (ν f − 1)n . Since μ f ≤ 2n − 1, we have ν f ≤ 2. Moreover, the
Milnor number is an invariant of the topological type, we have also νg ≤ 2. By Theorem 2.3,
it follows immediately ν f = νg. ��
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