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Abstract

Let V be a hypersurface with an isolated singularity at the origin defined by the holo-
morphic function f : (C",0) — (C,0). The Yau algebra L(V) is defined to be the
Lie algebra of derivations of the moduli algebra A(V) = O,/(f, %, . ,%), ie.,
L(V) = Der(A(V), A(V)) and plays an important role in singularity theory. It is known
that L (V) is a finite dimensional Lie algebra and its dimension A(V) is called Yau number.
In this article, we generalize the Yau algebra and introduce a new series of k-th Yau alge-
bras LK(V) which are defined to be the Lie algebras of derivations of the moduli algebras
ARV = O0,/(f, m*T(f)), k = 0, ie., LX(V) = Der(A¥(V), AK(V)) and where m is the
maximal ideal of O,,. In particular, it is Yau algebra when k = 0. The dimension of LK(V)is
denoted by A (V). These numbers i.e., k-th Yau numbers AX(V), are new numerical analytic
invariants of an isolated singularity. In this paper we studied these new series of Lie algebras
L¥(V) and also compute the Lie algebras L' (V) for fewnomial isolated singularities. We
also formulate a sharp upper estimate conjecture for the A*(V) of weighted homogeneous
isolated hypersurface singularities and we prove this conjecture in case of k = 1 for large
class of singularities.
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1 Introduction

The algebra of germs of holomorphic functions at the origin of C” is denoted as O,,. Clearly,
O,, can be naturally identified with the algebra of convergent power series in n indeterminates
with complex coefficients. As a ring O, has a unique maximal ideal m, the set of germs of
holomorphic functions which vanish at the origin. Let C[xy, ..., x,] be the polynomial
ring. For any f € Clxy, ..., x,], we denote by V = V(f) the germ at the origin of C"
of hypersurface {f = 0} C C". In other words, if the origin is an isolated zero of the
gradient of f, then V is a germ of isolated hypersurface singularity. According to Hilbert’s
Nullstellensatz for an isolated singularity V = V (f) = {f = 0} the factor-algebra A(V) =
O,/(f, %, e %) is finite dimensional. This factor-algebra is called the moduli algebra
of V and its dimension t (V) is called Tyurina number. The Mather—Yau theorem stated that:
Let V| and V; be two isolated hypersurface singularities and, A(V;) and A(V>) be the moduli
algebra, then (V1,0) = (V2,0) < A(V)) = A(V2).

The order of the lowest nonvanishing term in the power series expansion of f at 0 is called
the multiplicity (denoted by mulz(f)) of the singularity (V, 0). It is well-known that a poly-
nomial f € C[xy, ..., x,]is said to be weighted homogeneous if there exist positive rational
numbers wy, . .., w, (weightsof xp, ..., x,) andd suchthat, ) a;w; = d for each monomial
]_[xi” i appearing in f with nonzero coefficient. The number d is called weighted homoge-
neous degree (w-degree) of f with respect to weights w ;. The weight type of f is denoted as
(wy, -+, wy; d). Without loss of generality, we can assume that w-deg f = 1. According to
[20,29] the weight types of 1 or 2-dimensional weighted homogeneous hypersurface singular-
ities are toplogical invariants. The Milnor number of the isolated hypersurface singularity is
defined by u = dim C[xy, ..., x,,]/(%, R %). The Milnor number in case of weighted
homogeneous hypersurface singularity is calculated by: u = (ﬁ — l)(i -1 (ﬁ -1
[17]. In 1971, Saito was the first person who gave the necessary and sufficient numerical
condition for V to be defined by a weighted homogeneous polynomial. His beautiful the-
orem says that f is a weighted homogeneous polynomial after a biholomorphic change of
coordinates «<— n = t [19].

Another important class of isolated hypersurface singularity is fewnomial singularities
which is defined by Elashvili and Khimshiashvili [10]. A weighted homogeneous polyno-
mial f(x1,...,x,) is called fewnomial if number of variables coincides with number of
monomials [10,15,16,32]. According to Ebeling and Takahashi [11], the fewnomial singu-
larity, which is defined by a fewnomial polynomial, is also called an invertible singularity.

It is well-known that for any isolated hypersurface singularity (V,0) C (C", 0) where
V = V(f) = {f = 0}, based on the Mather—Yau theorem [18], one considers the Lie
algebra of derivations of moduli algebra A(V) = O, /(f, %, ce %), ie., L(V) =
Der(A(V), A(V)). It is known that L(V) is a finite dimensional solvable Lie algebra [24,
25]. L(V) is called the Yau algebra of V in [30] and [16] in order to distinguish from Lie
algebras of other types appearing in singularity theory [1,3,5]. The Yau algerba play an
improtant role in singularities. Yau and his collabrators have been systematically studying
the Lie algebras of isolated hypersurface singularities begin from eighties (see, e.g., [4,5,7—
9,13,14,22-28,31,32]). The Mather—Yau theorem was slightly generalized in ([12], Theorem
2.26) (without assuming isolated singularity):

Theorem 1.1 Let f, g € m C O,,. The following are equivalent:

(1) (V(f),0) = (V(g),0);
(2) Forallk >0, O,/(f, ka(f)) =0,/(g, ka(g)) as C-algebra;
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(3) There is some k > 0 such that O, /(f, ka(f)) =0,/(g, mXJ(g)) as C-algebra,

where J(f) = (ax1 an)

In particular, if k = 0 and k = 1 above, then the claim of the equivalence of (1) and (3) is
exactly the Mather—Yau theorem [18].

Based on Theorem 1.1, it is natural for us to introduce the new series of k-th Yau algebras
L¥(V) (or L¥((V, 0))) which are defined to be the Lie algebra of derivations of the moduli
algebra AX(V) = O, /(f, m*J(f)), k = 0,1.e., LX(V) = Der(A*(V), A¥(V)) and where m
is the maximal ideal. Its dimension is denoted as A¥ (V) (or A ((V, 0))). This number A% (V)
is a new numerical analytic invariant. We call it k-th Yau number. We have reasons to believe
that these new Lie algebras and numerical invariants will also play an important role in the
study of singularities.

It is interesting to bound the Yau number with a number which depends on weight type.
In [32], Yau and Zuo firstly proposed the sharp upper estimate conjecture that bound the Yau
number. They also proved that this conjecture holds in case of binomial isolated hypersurface
singularities. Furthermore, in [14], this conjecture was verified for trinomial singularities.

A natural interesting question is: whether one can give a sharp bound for the k-th Yau num-
bers of isolated hypersurface singularities. We proposed the following sharp upper estimate
conjecture which is a generalization of the conjecture in [32].

Conjecture 1.1 Assume that )»k({xl“1 4 xt = 0) = hilag, ..., an), (k > 0). Let
V,0) = {(x1,x2,...,x,) € C" : f(xl,xz, ..o Xxp) = 0}, (n = 2) be an isolated sin-
gularity defined by the weighted homogeneous polynomial f(x1, X2, ..., Xp) of weight type
(wy, wo, ..., wy; 1). Then kk(V) < hy(1/wy, ..., 1/wy).

The conjecture was proved for binomial and trinomial singularities when k = 0 [14,32].
The main purpose of this paper is to prove the conjecture for binomial and trinomial
singularities when k = 1. We obtain the following main results.

Main Theorem A Let (V,0) = {(x1,x2,...,x,) € C" : x{' + -+ + x3" = 0}, (n > 2).
Then

n

Al(wzhml,...,an)zz

j= l

—D+nn+1).

Main Theorem B Let (V, 0) be a binomial singularity defined by the weighted homogeneous
polynomial f(x1, x2) (see corollary 2.1) with weight type (w1, wa; 1). Then

2 1L _ 9
AI(V)Sh1< ) Zi_l]_[<li 1>+6.
=1

wj

Main Theorem C Let (V, 0) be a fewnomial singularity defined by the weighted homogeneous
polynomial f(x1, x2, x3) (see proposition 2.2) with weight type (w1, wa, w3; 1). Then

1
My <h ! 3”7’_23 ! 1)+12
()_IE,EE X_: —ll_!;i_ + 12.
/
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2 Generalities on derivation Lie algebras of isolated singularities

In this section we shall briefly defined the basic definitions and important results which are
helpful to solve the problem. The following basic concepts and results will be used to compute
the derivation Lie algebras of isolated hypersurface singularities.

Let A, B be associative algebras over C. The subalgebra of endomorphisms of A gen-
erated by the identity element and left and right multiplications by elements of A is called
multiplication algebra M (A) of A. The centroid C (A) is defined as the set of endomorphisms
of A which commute with all elements of M (A). Obviously, C(A) is a unital subalgebra of
End (A). The following statement is a particular case of a general result from Proposition
1.2 of [6]. Let S = A ® B be a tensor product of finite dimensional associative algebras with
units. Then

DerS = (DerA) ® C(B) + C(A) ® (DerB).

We will only use this result for commutative associative algebras with unit, in which case
the centroid coincides with the algebra itself and one has following result for commutative
associative algebras A, B:

Theorem 2.1 [6] For commutative associative algebras A, B,

DerS = (DerA) @ B+ A ® (DerB). 2.1

We shall use this formula in the sequel.

Definition 2.1 Let J be an ideal in an analytic algebra S. Then Der;S C DercS is Lie
subalgebra of all o € Derc S for which o (J) C J.

We shall use the following well-known result to compute the derivations.

Theorem 2.2 [32] Let J be an ideal in R = C{x1, ..., x,}. Then there is a natural isomor-
phism of Lie algebras

(DerjR)/(J - DercR) = Derc(R/J).

Recall that a derivation of commutative associative algebra A is defined as a linear endo-
morphism D of A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b). Thus for such an
algebra A one can consider the Lie algebra of its derivations Der(A, A) with the bracket
defined by the commutator of linear endomorphisms.

Definition 2.2 Let f(x1, ..., x,) be a complex polynomial and V = {f = 0} be a germ of
an isolated hypersurface singularity at the origin in C". Let AR (VY =0,/(f, mkJ( N, 1<
k < n be a moduli algebra. Then Der (A*(V), AK(V)) defined the derivation Lie algebras
L¥(V). The A%(V) is the dimension of derivation Lie algebra L* (V).

It is noted that when k& = 0, then derivation Lie algebra is called Yau algebra.

Definition 2.3 A polynomial f € Clxj, x2,...,x,] is called quasi-homogeneous (or
weighted homogeneous) if there exist positive rational numbers wy, . .., w, (called weights
of indeterminates x ;) and d such that, for each monomial [ | xﬁj appearing in f with non-
zero coefficient, one has > wjk; = d. The number d is called the quasi-homogeneous
degree (w-degree) of f with respect to weights w; and is denoted deg f. The collection
(w; d) = (wq, ..., wy; d) is called the quasi-homogeneity type (gh-type) of f.
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Definition 2.4 An isolated hypersurface singularity in C" is fewnomial if it can be defined by
a n-nomial in n variables and it is a weighted homogeneous fewnomial isolated singularity
if it can be defined by a weighted homogeneous fewnomial. 3-nomial isolated hypersurface
singularity is also called trinomial singularity.

Proposition 2.1 Let f be a weighted homogeneous fewnomial isolated singularity with mult
(f) = 3. Then f analytically equivalent to a linear combination of the following three series:

Type A. x{" +x3% + - —I—x::"_’ll +ximon>1,
Type B. x{'xa 4+ x57x3 + -+ +x," " xn + 13", n > 2,

Type C. x{'xz + x3?x3 +--- —|—x::"_’1] Xn +x0x1, 0 > 2.
Proposition 2.1 has an immediate corollary.

Corollary 2.1 Each binomial isolated singularity is analytically equivalent to one from the
three series:

(A) x{" +x3%,
(B) x{'x2 + x52,
(C) x{'x2 + x3%x1.

Wolfgang and Atsushi [11] give the following classification of weighted homogeneous
fewnomial singularities in case of three variables.

Proposition 2.2 [11] Let f(x1, x2, x3) be a weighted homogeneous fewnomial isolated sin-
gularity with mult (f) > 3. Then f is analytically equivalent to following five types:

Type 1. x{' +x3% 4+ x5°,
a a as
Type 2. x| x2 + x5°x3 + x37,
Type 3. x\'x2 + x5°x3 4+ x5°x1,
ay

Type 4. x}" +x3% 4+ x5°x2,
Type 5. x\'x2 + x5%x1 + x§13.

3 Proof of main theorems

In order to prove the main theorems, we need to prove following propositions.

Proposition 3.1 Let (V, 0) be a weighted homogeneous fewnomial isolated singularity which
is defined by f = x{" + x> + - +x;" (aj = 3,i = 1,2,...,n) with weight type
(Lo L L. Then

@ @

M= Y2 @ - D,
i=1

j=1
Proof Tt follows that the generalized moduli algebra

AV (V) = Clxr, x2, .o 50}/ (f, m I (),

has dimension (a; — 1)(ap — 1)(a3 — 1) ... (a, — 1) + n and has a monomial basis of the
form (cf. [2], Theorem 13.1)
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{xl x2 x0<it<ar—2,0<ir<a—2,...,0<i, <a,—2;
ay—1 ar—1 az—1 a,—1
S SR e D S

with following relations:

ar __ aj—1 _ arj—1 _ _ apj—1 =0,
aix{' =aix{'" o =ax('" x3 = =ax{" x, =
agxlx;rl = ayxy’ = azx;2_1x3 =arxy’~ y=- = arxy’~ Ty, =0,
—1 -1 —1 -1
a3xixy | =azxpxy  =azxy =asxy x4 =---=a3xy  x, =0,
apx1xf = ax® ! = gax® T == gx9 = 0.

In order to compute a derivation D of A' (V) it suffices to indicate its values on the generators
X1, X2, - . ., X, which can be written in terms of the monomial basis. Without loss of generality,
we write

—2ay—-2 a,—2

i1 02 i j aj—1
Dxj = Z Z Z cll ineoninX1 X2 coexy) +Ca|—1,0,0 0%

i1=0 i,=0 i,=0
J ax—1 J an—1 .

+ Ou—100..0% Tt 00 a-1%" »J=12,...,n
We obtain the following description of the Lie algebras in question [24,32]. The following
derivations form a basis of Der AL(V):
X2, 1<ip<a1—2,0<ia<ar—2,0<iz<az—2,...,0 <iy <a,—2;

‘“_181 x22 131, - ,x:;"_lal;
(x5 a-2 “3 zxff“ 2 .x,‘f"_z)Z)l;

xlllxéz...x;"az, O0<ii<a1—-2,1<ip<a;—2,0<i3<az—2,

0<ig<as4—2,...,0<i, <ay,—2;
xfl_la x“z“az,...,xgn—laz;
-2 B -2 _as—2 an—2 .
(x1 X37 Txyt LX)
xlllxéz...x;"ag., 0<i1<a1—-2,0<ip<ay—2,1<i3<az-—2,
0<i4<a4—2,...,0§in§an—2;
83 )Ca2 133,...,)6:"_133;
-2 az -2 as—2 -2 .
( XX ) 0s;
x'llxz ..x’"a,,, 0<ij<a1—2,0<ihr<ay—2,0<i3<az—2,....,1<i,<a,—2;
o, x5 0 xB
(x 2x512 2x§l1 2 . an ]_ )a
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Therefore we have the following formula

J

n a-—2 n
Myy=3 L E(ai — D4+ 1),

aj-
]
Proposition 3.2 Let (V,0) be a weighted homogeneous fewnomial isolated singularity of

type A which is defined by f = x{' + x3% (a1 > 2, ay > 2) with weight type (i, al—z; 1).
Then

(V) = 2a1ay — 3(ay +a2) +10; a1 > 3,a2 > 3
ap + 2; ay >2,a) =2.

Proof 1t follows that the generalized moduli algebra

ANV = Clxy, 2}/ (f, m.I(f)),

has dimension aja; — (a; + a2) + 3 and has a monomial basis of the form (cf. [2], Theorem
13.1)

(ifa; =3, (K'x2,0<ip <a; —2;0 <ip <ap —2; x9 1 x827 1y, 3.1)
Q@ifay =2, {x]'.0 < i <a — Lixa), (3.2)

with the following relations:

Xt +x52 =0, (3.3)
aixi' =0, (3.4)
ax™ 'y =0, (3.5)
arxy? =0, (3.6)
azxgrlxl =0. (3.7)

In order to compute a derivation D of A (V) it suffices to indicate its values on the generators
X1, xo which can be written in terms of the basis (3.1) or (3.2). Without loss of generality,
we write

a1—2ay—2

L J iy 2 J aj—1 J a—1 .
Dxj = Z Z Gl Xy ¢ 108 FCQa1X s J=12
i1=0 ip=0

Using the relations (3.3)—(3.7) one easily finds the necessary and sufficient conditions defining
a derivation of A (V) as follows:

C,

O =

R S (3.8)

= =0, (3.9)

<o,
of

j=1 S}

€0,0 = €1,0

Using (3.8)—(3.9) we obtain the following description of the Lie algebras in question. The
following derivations form a basis of DerAl(V):

i1 0 . . —1 -2 —1
x'x20, 1 <ip <a1—2,0<i» <ax—2;x]" 01337 015 x50 0

x'x70,0<ij<a;—2,1<ih<ay—2; xf'_lag;xf'_zaz; x§2_182.
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Therefore we have the following formula
AN(V) = 2a1ar — 3(a) + a2) + 10.

In case of

ay >2,ap =2,
we have following derivations which form a basis of L Lwv):

xilal, 1<ii<a —1; x231,x282,x?'_132.

Therefore we get following formula

AN (V) =a; + 2.

[m}

Proposition 3.3 Ler (V, 0) be a binomial isolated singularity of type B which is defined by
f=x{"x2+x3% (a1 = 1, ap > 2) with weight type (2=L L. 1) Then

ayax’ ay’

2ai1ar —2a1 —3ar +11; a; > 2,ap, >3
MWy =124 +2 ar=2,a =2
4; ar=1,a; > 2.

Furthermore, if mult (f) > 3, then our proposed conjecture is true, i.e.,

2 2
dayay —2ay —3ay + 11 < 2% 3 (492 ) 1o,
a — 1 a — 1

Proof Tt is easy to see that the generalized moduli algebra
AN(V) = Clar, x2}/(f, mT (),
has dimension a>(a; — 1) + 3 and has a monomial basis of the form (cf. [2], Theorem 13.1)

. o ' ) ; . -1
Mifar =2, {x'x?,0<i1 a1 —20<ir <ap— Lix{", a1 — 1 < iy <api;x]'" x2},

(3.10)
@ifa; =2, {x{'.0 < iy <2a1 — 1;x2), (3.11)
B)ifar =1, {15 x1; x2}, (3.12)
with the following relations:
xj'x 4+ x57 =0, (3.13)
arxy'xy =0, (3.14)
alxi”*lx% =0, (3.15)
A g x T =0, (3.16)
x7'x2 4+ axxy? = 0. (3.17)
Using the relations (3.13)—(3.17) we get
xi=0,i>2a —1, (3.18)
xb=0,i>a. (3.19)
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In order to compute a derivation D of AL(V) it suffices to indicate its values on the generators
X1, x2 which can be written in terms of the basis (3.10), (3.11) or (3.12). Thus we can write

ar—2ax—1
i _i> ar—1 .
Dx; = Z chllle Xy + Z c Ox1 +c Xy X2, = 1,2.
i1=0 ir=0 i1=a;—1

Using the relations (3.13)—(3.19) one finds the conditions defining a derivation of A'(V) as
follows:

| N O | -0
CO,O_CO,I_'.'_CO,a273_O’ (3.20)
2 _ 2 . _2 -0
Co,0=Clo="""=C4-20=0; (3.21)

1 _ 2 1 _ 2 1 _ 2

€1,0 =€0,1>€2,0 = €115 -+ > €41 2,0 = Cay-4,1- (3.22)

Using (3.20)—(3.22) we obtain the following description of the Lie algebra in question. The
following derivations form a basis of DerAl(V):

x'xFo, 1 <iy<a1—2,2<ip<ay—1Lix]'d;,a1 — 1 <i; <ai;

A

x'x01, 1 <ip <ap— LxY0, a0 —2<ip <a)—1;

X' xd,a1 —2 <ip <ay— L;x',a1 — 1 <ij <ay;
i i

IA

o +a) s < <a -2
xi'xézaz,o <ip<a—22<ip<a—1.
Therefore we have following formula
(V) = 2a1ay — 2a1 — 3a> + 11.
In case of
ay > 2,a; =2,

we obtain the conditions defining a derivation of A'(V) as follows:

co0 =0, aw{,o +22 o =3 (3.23)
Go=clo==c_10=0 (3.24)
a163,,o+63,_1+l~,,o =0,2<ij<a —-1. (3.25)

Using (3.23)—(3.25) we obtain the following description of the Lie algebra in question. The
following derivations form a basis of DerAl(V):

2a1 132 xllal ay <i; <2a —1;

22619 —ax N By,2 < iy < ay — 1

X101 + alxzaz, —2x101 + ayx] 32, x291.
Therefore we have the following formula
A(V) =2a; +2. (3.26)
In case of a1 = 1, ap > 2, we have following derivations form a basis of DerAl(V):

X101; x201; X102; X202.

@ Springer



N. Hussain et al.

Therefore we have the following formula

2V = 4. (3.27)
2a1a% ayap

2a1a; — 2ay —3ay + 11 < —3( +a2> +10. (3.28)
a — 1 a — 1

It is follows from proposition 3.2 we have

2a1ap — 3(a1 + az) +10; a1 > 3,a2 > 3

hl(al,az):{al+2; 0 =2 a2,

a—1 1.
ayjay ’ ay’

After putting the weight type (
have

1) of binomial isolated singularity of type B we

2 2
m( L )2 aj‘ff—3(52‘f21+a2)+10;a122,azz3
w; w2

’ 2ay + 2 a > 1,ay =2.

Finally we need to show that After solving 3.28 we have (a; —2)(a; — 1) — 1 > 0. It is noted
that (ap —2) > 1 and (a; — 1) > 1. It is also noted that when a; > 1, ap = 2 then

11 |
h|—, —)=4()
w; w2

Proposition 3.4 Let (V,0) be a binomial isolated singularity of type C which is defined by

f=x{"x2+x5%x1 (a1 > 1, ap > 1) with weight type (07(2/12_—11’ a‘ll(‘lz__ll; 1). Then

[}

2a1ap — 2a;1 — 2ar +12; a; > 3,a, >3

2a; + 6; ay>2,ap =2

1 _ 1 ; 1= 2,a2

A V) = 4; ar>1,ap =1
4, ar=1,ay > 2.

Furthermore, we need to show that when ay > 3, a, > 3 then

2(a1ay — 1)? ai+ar—2
2 -2 < ———— — -HD|—m—F— 10.
TR T Bt )<<a1—1)<a2—1)>+ ’

Proof 1t is easy to see that when a; > a > 3 then generalized moduli algebra
ANV) =Clxr, xa} / (f.mI(f)).

has a dimension ajay + 2 and has monomial basis of the form (cf. [2], Theorem 13.1)

{Xi‘X?,l <ii<ai—-2%1<ip<a—1L;x2,1<ir<2a—2

xlalflxz; xil,O <i] < al} . (3.29)
Butif a; > ap = 2, then we have

[0 =it =201 =20, 3, 1ima]. (330)

with the following relations:

x'xo +x3%x1 =0, (3.31)
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arxy'xy + x37x1 =0, (3.32)
aix{" 5 + x5 =0, (3.33)
A L apx$ T =0, (3.34)

x}'x2 4+ axxy?x; = 0. (3.35)

Using the relations (3.31)—(3.35) we get

xi =0, i>2a -2, (3.36)
xb=0,i>2a— 1. (3.37)

In order to compute a derivation D of A (V) it suffices to indicate its values on the generators
X1, x2 which can be written in the basis (3.29) or (3.30). Thus we can write

a1—2ax—1 2a,—2 ap
o J i1 iz Jo i J aj—1 Jooi .
Dx; = Z Z G X1 % + Z Co.iX2 TCh11% X2+ X:cilyox1 ,j=12.
i1=1 ir=1 ir=1 i1=0

Using the relations (3.31)—(3.37) one easily finds the necessary and sufficient conditions
defining a derivation of AL(V) as follows:

00 =Co1 =" =Coa3 =0 (3.38)
Go=clo== _s0=0ia1c} 4= a2 (3.39)
(@ —Dejg=(@—Dcj.....(a1—Deh _po=(—Dc 5, (3.40)
(a1 — Defy = (@ —Dcja ..., (@ — Def g3 =(ar— Dcj g0 (341)

Using (3.38)—(3.41) we obtain the following description of the Lie algebra in question. The
following derivations form a basis of DerAl(V):

xR 2<i <a -2 1<ib<a-—1l

XX, @ —2<ir<a—1;x'91, a1 — 1 < iy <ar;

x?al, ap —1 <iy <2a; —2;

xi'x?ag, I<ii<a—-22<ib<a—1;

x?az, a— 1 <ir <2a —2;

X108 X 00, @ — 1 <y <ap;xi'xady, a1 —2 <iy <ap;

agx;rzal +alxi”7232;

(a2 — 1)x1xé28] + (a1 — 1)x£2+182, I <ip <ax—3;

xi'al —|—xi'_1x282, 1<ij<a —2.
Therefore we have the following formula

AN(V) = 2a1a2 — 2(a) + a2) + 12. (3.42)

In case of

ay > ax =2,

Similarly one easily finds the necessary and sufficient conditions defining a derivation of
AL(V) as follows:
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¢ = 0; (3.43)
C(%,o = C%,o == 02172,0 = 0; (3.44)
2 1 2 L2 1 2 .
cgq = (a2 — ey g+ 2%171,0’ cip=(aa—1Dco+ 26‘(11’0, (3.45)
I 2 1 2 1
(a2 = De3 g = =2¢(q,2)13,00 (@2 = D)y o = =2¢, 21400+ (@2 = Deg 2
= —2c%a1_4’0. (3.46)

Similarly one obtains the basis of derivation represented by following derivations form a
basis of DerA!(V):

X215 X10201; X301 13013 1191 — (a1 — Dxody;
x'3y; 2a1 —3 < iy <2a; —2; %185 a1 — 1 < iy <2a; —2;
X720 — (a1 — Dx1x20; 2x19) — (a1 — DT ™29, 1 <iy <ay —2.
Therefore we get the following formula
AN (V) =2a; +6.
In case of
ay>1,a; =1,

one obtains the basis of derivation represented by following derivations form a basis of
DerA! (V):

()" x)d1; %2013 X205 (x)" + x1) .
Therefore we get the following formula
Ay =4.
In case of
ar =1,ar > 2,

one obtains the basis of derivation represented by following derivations form a basis of
DerAl(V):

(x5 + x2)01; x101; X105 (X572 + x2) 9.
Therefore we get the following formula
) =4.
It is follows from proposition 3.2 and weight types of proposition 3.4 we have 7 (w%’ w%) =

2(ajay—1)? tar—2 . .
m —3(ajap — 1)(%) +10; a; > 3, ap > 3. Finally we need to show that

2(a1ay — 1)? ay+ay;—2
2aiap —2(ay +a2) +12 < ———F——— —3(@ap — ) | —————— | + 10.
(@1 = i@ — 1) (@ — D@ -1
(3.47)
After solving 3.47 it is easy to see that
ai(ay — D(ar = 3) + az(a1 — D(az — 3) +2(a1 — 3) + 2a1 +4az = 0.
O
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Proposition 3.5 Let (V, 0) be a fewnomial surface isolated singularity of type 1 which is

defined by f = x|" +x5* + x5° (a1 = 2,ay > 2, a3 > 2) with weight type (—, o al—} D).
Then
ar+7; ay>2,ay=2,a3 =2
ar +7; ay=2,a; >3,a3 =
Mvy=Ja+7; ar=2a=2,a3>3

3ajazaz +5(ay + ap + as)
—4(ajay + ayaz + araz) + 6; Otherwise.

Proof Tt is easy to see that the moduli algebra AL(Wv) = C{x1, x2, x3}/(f,m.J(f)) has
dimension (ajaras — ajay — ajaz — axas + ay + a» + a3 + 2) and has a monomial basis of
the form (cf. [2], Theorem 13.1)

PP l<ii<a—2l<ib<a-20<iz<a—2xi,1<ij<a— 1

x1x3,l§i1 <a—21<i3<az—2; x2x3,l<12<a2—2 0<i3<az—2; xaz_],
i .

x3,0<iz <az—1}.

In order to compute a derivation D of A (V) it suffices to indicate its values on the generators

X1, X2, x3 which can be written in terms of the basis. Thus we can write

a-2ay72a3-2 a;—1 az—1 aj—2a3-2
= i AR i3 J i i3
Dxj=3. 2. D Ciinis™i'®2 X+ >, ‘u 00)‘1 + 29 ‘00z3 + 2D ot
i1=1 ir=1 i3=0 i1=1 i3=0 i1=1 ir=1
ar—2az—=2
J ip i3 ] -1 .
+ Z Z C0,in,i3*2 X3 T C0up—1,0%2" > T = 1,2,3.
ir=1i3=0

Using the above derivations we obtain the following description of Lie algebras in question.
The derivations represented by the following vector fields form a basis in DerA! (V):

xi'xézx?al, 1<ij<a;—2,0<ih<ap—2,0<i3<az—2;

x52 2 x37 29, ;xy! 181;x§27181;x§’37181;
xl x§2x§382, O0<i1<a1—-2,1<ip<a;—2,0<i3<a3-—2;

x?l_z B4 ; x| 182;x;2_182;x§l3_182;
xi x2x§383, O<ll §a1—2,0§i2§(12—2,1§i3 §a3—2;

xy! -2 X527 295: 35 %) 183;x§27183;x3”.37183.

Therefore we have

)LI(V) =3ayapa3z + 5(ay1 + a» + a3) — 4(aray + ayaz + aasz) + 6.

Incaseofa; > 2, ax = 2, az = 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

X101, 1<y < ar — 1503015 X201 %3025 x290; 10 B0; 12833 x303; 17103,
Therefore we have

AV =a; +7.
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Incaseof a; = 2, a» > 3, az = 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA' (V):

X2, 1<iyr <ay— 15 x301; x527 1013 x300; x191; 1 92; X303 1035 x52 103,
Therefore we have
A V) =ar +7.

Incaseof a; = 2,a =2, az > 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

XPoy, 1<iz <ay— 1287915 00015 1101 x5 1023 12005 %1923 x283; X103
Therefore we have
AN(V) =a3+7.

[m}

Proposition 3.6 Ler (V,0) be a fewnomial surface isolated singularity of type 2 which
is defined by f = x{'xy + x3?x3 +x§13 (ay > l,ap > 1,a3 > 1) with weight type

(%, %, ;—3; 1). Then

Saz +7; ay=2,ap=2,a3 > 2
dayaz — 2a; — 3a3z + 11; ar>3,ap=2,a3 >3
ajaz +7; ar>1l,ap=1,a3 >2

MWy =1 axar = 2); ar=2a>1a=1
0; ar=1,ap>1,a3 =1
3aiayaz — 2a1ay — 2aya3

—dazaz + 2a1 + 2ar + 6az + 5; Otherwise.

Furthermore, we need to show that when ay > 3, ay > 3, a3 > 3, then

3a1a%a%
3ajaraz — 2a1ay — 2a1a3 — 4azas + 2a; + 2ax + 6az +5 < :
(I — a3+ azaz)(az — 1)
4 alagag N a1a2a§ N a2a§ +5< ajaras
(1 —asz + araz)(az — 1) 1 —a3+aras az — 1 1 —asz +axas

ara
+20 +a3> +6.

ay — 1

Proof 1t is easy to see that the moduli algebra A'(V) = C{x1, x2, x3}/(f, m.J(f)) has
dimension (ajayaz — araz + a3 + 2) and has a monomial basis of the form (cf. [2], Theorem
13.1)

i1 iy i . . . —1 i .
(afxd l<ii<ar—21<ib<ax—1,0<i3<a3— L;x{"" x,0<i3 <a3—2;
xx3,0<ib<a—10<iz<a—Lix'xy, 1 <ij<a1—20<iz<a3—1;
ay, ar, .ai—l
X, X)X Xl

In order to compute a derivation D of AY(V) it suffices to indicate its values on the generators
X1, X2, x3 which can be written in terms of the basis. Thus we can write
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aj—2ay—1laz—1 azy—2
o J iy i3 J aj—1 i3 J aj—1 J aj
Dxj=3 % > Cil,iz,zle g+ Y Ca—1,0,i3%1 %3 T 11,081 214 00%
i1=1 ip=1i3=0 i3=0
ay—laz—1 o aj—2az3—1 o )
J iy i3 J iy iz j a .
D D i NS T D D €0 1 gy 0 F= 1,23
ir=0 i3=0 ir=1i3=0

Using the above derivations we obtain the following description of Lie algebras in question.
The derivations represented by the following vector fields form a basis in DerA! (V):

PN a0, 1< i3 < a3 — 1503015 (14 a3)x1d) + 2(as — 1x2dy + 4x393;
x1x391 4 2x393; x1x301, 2 <i3 <az—2; x1x231;x1231;x§37132; X393
X2x300 — x§83; xzx?ag, 2<iz<az—1; xgaz; x1x§3‘2az; X1x202; x;“_zag;
xlzaz + 2x§’37283; xg37183, x2x3 93, 1 <iz<az—1; x1x3 203, 1 <i3 <az—2;x1x203.
Therefore we have
AN(V) =5a3 +7.
Incaseofa; > 3, ar =2, a3 > 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA! V):
(14 az)x]' 3y +ar(as — Dx' x84+ 201 o3ds, 1<iy <ar — 1;
x2x3 01, 1 <iz <az— 1'x1 013
31 x281 xl x3 81 +a1x1 n+183 I<ii<a—-1L1<i3<a3—2;
X 9, 1<i) <a — 2 xxdy, 1<ip<ar—2; 0<i3<a3 — 1;xf1_1x231;
1
az(az — 1)
i1 _az—1 . i lz+l . . .
xj'x3® 02, 1<y §a1—2,x1x2x3 82—x1 03, 1 <iij<a—2;1<i3<az—1;

03_13 + xill 03; x2x3382 — xl3+133 1<iz<a3—2 xzx 32,

x2282 _ all 18 xal—l 03 232, aj— xzaz; 132+2x382, ( 13)62 +xa3—1) 33
xzx;ag, 2<iz<az—1; x1 xzxfa;, l<ij<a1—22<i3<a3—1;x{ 2x§” 19
xf'_2x2x383; xf1_1x§383, 1 <iz<az—2; xf1_1x233; (Exf‘ + x2x3)03.

Therefore we have

A(V) = 4a1a3 — 2ay — 3az + 11.

Incaseofa; > 1,ax = 1, a3 > 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

. Iy )
x$01 —arx('T X503, 1 <i3 <a3—2;x101 + (a1 — (@3 — Dxad —alx‘l“ 93;

A

xi'x?al +a1xi‘_1x§3+183, 1<ij<a—1;1<i3<az—2; xi‘ @8- 83, 1<ii<a—1;

_ 1 _ _
oy 4+ axd gy (" + x3)dn; (;m +x77 >62, AT B (1 + x3)83;
3

—1 ll} ii—1 03

x] dg,xl 01 —ajaz(az — 1)x, 82 +a|xl 71)6333251'] <a;—1.

_ 1 _
3 181;x282; (—xz +x3° 1) 93.
as -
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Therefore we have
ANV = ajas + 7.

Incaseofa; > 2,ay > 1, az = 1, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

x1x281, 1<ii<a —2;0<ip <ap—1.
Therefore we have
AN(V) = ax(a) —2).

In last case we obtain the basis of derivation represented by following derivations form a
basis of DerA!(V):

(%x2 +x )01, 422 .38] + %x?'_lx?_laz, 1<iz3<az—2; x§2‘2x§’3“81;
(1 —as +a2a3)xi‘ 91 +ai(az — 1)xi‘*‘x232 +a1a2x'1.'71x383, 1<ij<a —1;
xi‘x?al—i-alxi' '3“63 I1<ij<a—21<i3<az—2;

x‘lll_l “81 7)61 -2 13 33 1<iz<az—3;

a3
Ao 1< <ar = 2 T T 0 2 T a0 x5 T xRy, 1< iy < a3 — 1

_ 1
x5 182+7x?'83,x1x2x3281, l<ii<a1—21<ihb<ar—1;0<i3<a3—1;
az(az — 1)
xzx;382—a1x§3+183, 1<iz<a3-—2; X2x3 32, 12+132+ 1x2 2x303, 1 <ir <ap —2;
xzx;az, 2<ih<a-L1<iz<a3—1;x20 — lxi”ag;
ar . _
xix® 132—7)(“)( a0, L<ip<ap —2; x4 X337 28y, x 1 080z xM By
13 P T 1 1 1

1 _
x|x2x382,1<l1<a1—22<12<a2—11<13<a3—1< +xm )83;
aZ

. . 1

x1x231+ 1xlx2 sty l<ij<a; —2:2<ip<a—1: —x{1 +x3? 305
a

x2x333,1<12<a2—12<l3<a3—1x17 z33,1<t3<ag—2x 232 X303;

x1 x2x3183, l<ij<a1—21<ip<ay—1;2<i3<a3z—1; xl 05
x1 x2x3‘327a1x1 ”+133, l<ii<ai—21<i3<a3—1;x] -2 x5 195,
Therefore we have
A](V) = 3ajapaz — 2a1ay — 2ayaz — 4aras + 2a; + 2ar + 6a3 + 5.

It is follows from proposition 3.5 and weight types of proposition 3.6 we have

2a1+7; arzl,ap=1,a3 =2
8aia
2a21721 =355 2a|a2 +2a) +16;  a;>=3,a2>2,a3 =2
ayazas aZ“'& a
1 1 1 1—az+azaz az—1 3
h|—,—, — | =1 4 (- ans_ aa
w; w2 w3 l—az+araz az—1
ayazasz azas
+17a3+112113 as + 1(13)
ayazasz azas .
+5(W+ a1 +a3) + 6; ap = 3,(12 > 3,a3 > 3.
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It is easy to see that our conjecture is true in following cases:

(i) a1 =3,a0 =2,a3 =2,
(1)) a; = 1l,aro =1,a3 =2,
(i) a1 > 3,a > 3,a3 > 3,
@(iv) a; > 3,ap > 3,a3 = 2.

It is easy to prove proposed conjecture in first two cases and last two cases following as:
Case (iii) when a; > 3,ay > 3,a3 > 3, then 3ajara3 — 2ajar — 2a1a3 — 4a2a3 +
2.3 2.3
ayasa ajaya
2ay +2ay + 643 +5 < 3—argay@-n ~ Himram@-n T 1 )+
5(1 ajazas + 32”3 +a3) +6

az+tazas az—

After simpliﬁcatlon we get (a3 — 1) (a2 — 3) + (a1 — Dazaz((az — D(az —3) + (a3 — 2)) +
ay(Baz —2)(a; — 1) + az(a; — 1) > 0. Case(iv) when a; > 3, a> > 3, a3 = 2 then

ajar a% azaz
—asz +(l2(l3 az3—1

Sala% 2ai1ap
-3 2a 16,
a1 gy, g TRt

dayay — 2a; — 6ax + 17 <
after simplification we get ax(a; —2) +aj(a —2) +1 > 0. O

Proposition 3.7 Ler (V,0) be a fewnomial surface isolated singularity of type 3 which is
defined by f = x{'xp + x5°x3 + x3°x1 (a1 = 1, a2 > 1, a3 > 1) with weight type

<l—a3+a2a3 l—ay+aas 1—ay+aja l)

l4+aiaaz =~ 1+aiaas °~ 1+ aiaras
Then
azaz + 8; ar=1l,aa>1,a3 > 1
ayaz + 8; ar>2,ap=1,a3 > 2
1 _ Jaiaa +8; ay>2,ay>2,a3 =1
A V)= 24; ar=2,ay=2,a3 =2

3ajazasz +2(a1 + az + a3)
—2(ajaz + ajaz + axaz) + 11; Otherwise.

Furthermore, we need to show that when a; > 3,a, > 3,a3 > 3, then 3ajaraz +
. 3(14ajazaz)’

2ar + a2 + a3) — 2a1ay + aiaz + aza3) + 11 < (I-az+azaz)(1—a)+ajaz)(1—ax+ayaz) +

( (I+ajazaz)* + (I+ajazaz)* +

(I—az+azaz)(1—aj+ajaz) (I—ay+ayaz)(l—ax+ayaz)

l+ajaras 14+ajara3 I4ajazaz \ _
5( 1—az+azas + l—aj+ayaz + 17a2+a1a2)
(+ayayaz) )+ 6

(1—az+azxaz)(1—ax+ayaz)

Proof 1t is easy to see that the moduli algebra A'(V) = C{xy, x2, x3}/(f, m.J(f)) has
dimension (ajazaz + 3) and has a monomial basis of the form (cf. [2], Theorem 13.1)

{x1x2x3,1<11<a1—2 1<ihb<ap—1,0<i3 <az—2; x1,1<11<a1,
-1,

)

x1x3,1<11<a1—1 1 <iz <az—2; x2x3,0<12<a2—2 0<i3z <2a3 -2, x1x

xl x2,0<11<a1—3 ay <ip <2ap —1; xll -2 gz,xlal lxz,xgz lxg‘,0§i3§a3—1}.

In order to compute a derivation D of AY(V) it suffices to indicate its values on the generators
X1, X2, x3 which can be written in terms of the basis. Thus we can write
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ayj—2ay—1az—2 az—1
L J iy 2 az—l i3
Dxj=3 " D Y ¢l pux i+ Zcu 0071 T D i X3
i1=1 ir=1 i3=0 i1=1 i3=0
ar—22a3—1 a;—32ax—1
J J az—1
D0 D X D D 0¥+ ¢ a1 X1
ir=0 i3=0 i1=0 iz=a>
aj—1laz—2
J -2 az i1 i3 .
+ ¢ 201 +Cu1—l 1.0%1 "o+ Z Z Ct. 0.X1 %3, J=1,2,3.
i1=1 iz=1

Using the above derivations we obtain the following description of Lie algebras in question.
The derivations represented by the following vector fields form a basis in DerA! (V):

(1 —a3 +a2a3)xil a+ (1 —a +a1a3)x;1_1x232 +(—a +a102)xi'_1x3i)3, 1<ij<a—1,;
i iz—1 i3+1 .
(1—a3 +a2a3)x1x§38] + (1 —a +a1a3)x2x§3 Hh+1—-a +a]a2)xl337L a3, 1 <iz<az—2;

i, in+1 in—1 )
(1—a3 +aza3)X1x12231 +0-a +ala3)x122+ B+ (1 —ay+ara)xy? x303, 1 <ip <ap —2;

x5 A o+ S T 0 4+ S A g0 2m — 2 2 10 < 200 — I
e .
x2x331,O<12<a272a3+1<13<2a371xlxz82 —x;  , 0<ip <a; —3;
ay — 1
1
x1x231,1<11<a173 a2+1<12<2a271x1x2 131+m)€1ﬂ1332
1212 -2 0361, o2= lx? 31;x;'x2x3 0], 2<i1<a;—2%1<ipb<ap—1;1<i3<az—2;

xlx2 B x381, l§i3 §a3—2’x1 x2 291, 1<iy<a; —2;
-2 in

22 3d + lxl Xy x303, 1 <ip <ap—2
—1 —1 i .
x122+(a2 )31 +aj(ay — l)x?l x12283; 1<ip<ap-—2;
ip i3+1. . .
xlx2 x3 xlzzx;3+ 03, 1 <ip<ap—2;1<i3<az—2;
i1 i3 i1—1 _iz+1 . 3 . .
x| X301 +ajx; x3 03, 2<ii<a—L1=<i3<a3—-2

xﬁ‘x x! lx'zxaﬁs, 2<ii<a—%l<ip<a-L

i3+(az3—1) aj—1 i . a ap—1
x33 37V +aj(ar — l)xl1 x3383, 1<i3<a3 —2;x1181 +a1xll Xx303;

i . ip i3, . .
X700, 203 —2<i3 <2a3— Lixgx30), 1<ip<ap—2; a3 <iz3 <2a3— 1

1 l’;+l

1 .
xle;az—i——lz 03, 2<ip<ar—1; 1 <iz<az—2

a1 =2 .
X x2Xx303;

1 —1 —1 1
i a i a . a
22x33 9 + a—xz2 x33, 1<i) <ap—2; xll X201 — po—

11221121
X3

xllx2 ,0<ij<a1 =3 ap+1<ip <2ap—1ix, d2;

X! x2x3 ¥ — (a2 — x| xl3+133, l<ij<a -2 1<5i3<a3 -2
az—1, 1 aj - ar=1 i3 : .
X1x 0+ ——x; 83x 317*)6 a3, 1 <iz<az—2;
3 a3(a3—1) 2 o't
x;1x282+ xllxlzz IX383, I<iij<a1—22<ip<ap—-1;

—1

1— az—1. aj(ap — 1) aj—1__ ..
3 0 — ——x; Xx203;

ay=2 ap. . a;—1 azyq .
x| X703 (ayx, +2x37)03; x5 “

a;—1 ap— az a,—2 2
xll xX20r — (ar — l)xll X333, x| “ ) — 73x22 3033
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x122x§333, 0<ip<ax—2; a3+1=<i3 <2a3—1;

iy iy

2a
x| x2x3 0, 1 <ij<a1—2;2<ip<ap—-1;1<i3<a3—-2; x22 %33,

1 _
(—2x11+xa2 ! )33;xg2 xl3333, 2<i3 Sa3—1;x12233, ay+1<ip <2a—1;

-2 az -2 ap—1
93 x|

x”x12283, 1<ii <a-3; a2+1§i2§2a2—1;x Xy°  x303;

i i . . . az—1 a
xllxzzx3 B, 1<ij<a1—2; 1<ip<a—-1;2<i3<a3—-2; (a3x1x33 +x22)33.

Therefore we have
)LI(V) =3ajaraz + 2(a; + ar + a3) — 2(ajar + ayasz + arasz) + 11.

Incaseofa; = 1,a2 > 1, a3 > 1, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

(x2 + x57)01; (a2(1 — a3 +aza3))x32a3+1331 - a3x2x§37132 —x303, 1 <iz<a3—1;
2a a 2a a
—x2x3°01; (1 — a3 + a2a3)x191 + a3x292 4 x393; (x2 + x5°)d2; —x2x3 7 023 (x2 + x57)83;
a3x§“3+(l371)8 +x37x703, 1 <ip <ap—2;0 <i3 < a3z —1;a3x10, +a2x§a3_283;

2a3+(az— 1)32+)C2xu383
3 03.

X103; —x2x3 303, a3 + 1 < i3 < 2as; asx;
Therefore we have
AN(V) = araz + 8.

Similarly it is easy to compute the basis of DerA!(V)incaseof a; > 2,as = 1,a3 > 2 and
a; >2,ap >2,a3 = 1.Incaseofa; =2, a, = 2, a3 = 2, we obtain the basis of derivation
represented by following derivations form a basis of DerA!(V):
X301 + X102 + x203; x3281; x;al; X201 + x302 + x103; X2x301; x2281; X101 + X202 + x303;
x1281;x§82; xgaz; X2X300; X302; X1X3005 X1X200; X7 00; x3283; xgas; X2X303; X303; X1 X303

X1x301; X1x201; X1Xx203; x1283.

Therefore we have

AL(v) = 24.
It is easy to see that when a; > 3,ay > 3,a3 > 3, then h —,w—z w%) =
3(l+a1a2a3)3 + 5( I+ajaraz + l+aiaras + A+ajazas )
(I—az+azaz)(1—aj+ajaz)(1—ax+ajaz) I—a3z+azas l1—aj+aja3 I—a+ajar

(I+ajaraz)? (I+aiazaz)? (I+aiaraz)*
((1—a3+a2a3)(1—al+ala3) + (I1-ar+ayaz)(1—ax+ajaz) + (1—03+a2a3)(1—az+a1a2)) + 6. We
need to show that 3ajaxaz + 2(a; + ax + a3) — 2(a1az + ajaz + axaz) + 11 <

3(1-&-(11(12:13)3 + 5( l+ajaras + l+ajaras + A+tajazas )
(]—a3+aza3)(]—a1+a1ag)(1—a2+a1a2) 1—2(13+a2a3 1—a1+a1a32 1—ay+ayar
_ (I+ajazaz) (I+ajazas) (I+ajazas)
Waraa)i-atas T Tataa)(-ataa) T T—ataa)(-aiaa) + 0. After

simplification we get 6(ajax + axaz + a1a3) + ay(ax — 3) + ax(az — 3) + az(a; — 3) +
2a3[az(az — 3) +az(ax — 3)1 + 2a3[a; (a3 — 3) + az(a) — 3)] + 2a3[a (a2 — 3) + ax(a) —
3)]+2(a%+a§+a§)+2(a3a2 +a%a3 +a§a1)+afa%a§+ 10(a1a§a3 +a1a2a§)+4afa2a3 +
2aiazaz[3a; — 8] +a?a2a (a3 —3)(ap —3) +a%a§ (a3 —3)(a1ar —2)+ Za%azag(a3 +ay —
6) + 2a1a2a§’(a1 -3 +a a§a3(a3 — 3)(a1 —3)+4a a%(al 3)(a2a; -2)+ 2a13a2a3(a2 —
3)+ 2a Jaz(a; — 3+ (a3 — 3)) + ara3a;3(a — 3)(a1 —3)+aja3(ar — 3)(ajaz — 2) +
2a1a2 (a1 +ay—6)+ 2a2a3a1(a3 -3)+1>0. ]

@ Springer



N. Hussain et al.

Proposition 3.8 Ler (V,0) be a fewnomial surface isolated singularity of type 4 which is

defined by f = x1 +x22+x xy(ay = 2,a0 > 1,a3 > 1)w1thwezghttype(—, o ‘;22(131, 1).

Then
ay+7; ar >2,ap=2,a3 =1
az(a; — 2); ay>2,ap=1a3>1
Sayap —ay — Tar + 15; ar >3,ap>3,a3=3
3ap + 11; ay=2,ay >3,a3=3
9a; — 2; ar>3,ap=2,a3 =3
Sa; + 4, ar >3, ap=2,a3 =2

AI(V): ay + 13; ar=2,ay>3,a3=2
2a3 + 7, ay=2,ap =2,a3 >3
2ayaz — 3ar — 2a3 + 17, ay=2,ap >3,a3 >3
dayaz — 3a; — 6az + 16; ay>3,ap=2,a3 >3
11; ar=2,ap=2,ap =2
3ajaraz — 4ayay — 3ajaz — 4aras
+8ay + S5ap + 5a3 — 1; Otherwise.

Furthermore, we need to show that when a1 >3, ar > 3,a3 > 3, then 3ayayas — 4ajar —
3ajaz—4azaz+8ai+S5ar+5a3—1 < le%m +5(a1tax+ 255 azaz T)— 4(a1a2+aal;ia3 +5 azag 7)+6.

Proof Tt is easy to see that the moduli algebra Al(v) = C{x1, x2, x3}/(f,m.J(f)) has
dimension (ajaxas — ayjay — aras + ay + ap + 2) and has a monomial basis of the form (cf.
[2], Theorem 13.1)

{xl Xéle;,ofl‘l <a1—20<ir<a,—-2,0<i3<a3 —2;x§3,a3— 1 <i3z<2a3—2
xllfl x5? -1 xzxélrl; xi%?, 1<ii<a—2a3—1<i3<2a3—2}.

In order to compute a derivation D of A (V) it suffices to indicate its values on the generators
X1, X2, x3 which can be written in terms of the basis. Thus we can write

aj—2ay—2az—2 2a3—2 a;—2 2a3-2

iy iy i3 J i3 J i1 .03 J ar—1
Dxj = Z Z ZC” in,i3X1 X2 X3+ Z €0,0,i5%3 + Z Z Ci1,0,3%1 X3 T €4 10,0%1

i1=0 ip=0 i3=0 i3=a3—1 i1=1i3=az—1

J ar—1 Jj a—-1 .
+€0.ay-1.0%2 + Colay—1X2X3° 5 J = 1,2,3.

Incaseofa; > 2,ax =2, a3 = 1, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

—1 . —1
XN a9y, 1<y < ar — 15 x281; x302; x200; X s
1

x303; x203; x5

Therefore we have
A V) =a +7.

Incaseofa; > 2,ax = 1, az > 1, we obtain the basis of derivation represented by following
derivations form a basis of DerA' (V):

x'x90, 1<ij<a1—2,0<i3<az— 1.
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Therefore we have
(V) = az(ar —2).

Incaseofa; > 3, ax > 3, a3 = 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

xlxzx{al, 1<ij<a;—-2,1<ih<ay;—2,0<i3<1;

xl x3381, 1<ii<a—2,1<i3 <4 x2x381 x381,

+X3)81; x332 + szgz 233,)(3332, 3<iz <4

XXy 82—1——):{83, 1<i3<2; x2x382,x2 x3382, 2<ir<ay—2, 0<i3<1;
N as

181, 1<ij<a —1; (azxa2 !

xgzilaz, xl x;az, Il <ii<a;—2,3<i3<4;x1x200 + ?X1X333,
X1X2X302; xl x2 x;az, 1<ii<a —2,2<ih<a—2,0<i3<1; x?lilaz;
xi383, 3<i3 <4 x§2x383, 1<ir<ap;-2, xzxgag' xgz_lag;
xl xg 03, 1 <ij<a;—2,2<i3< 4;xi”_183;xi”_2 92 283,
xl XQ)C383, I1<ii<a1—2,1<ip<ay—2.

Therefore we have

AN(V) =5a1a0 — ay — Taz + 15.

Incaseof a; =2, a; > 3, a3 = 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

; . a
(azxgz ! +X§) d1; X301; X191; Xox391; x50, 2 < i3 < 4y x20) + X393
X2z, 1 <ip <ay—2;x5%, 2<ir <ay— 15 xox3d; x10; x50, 2 < i3 < 4
xpx3dy, 1 <ip <ar—2;x783, ap —2 <ip < ar — 1; x2x303; x195.
Therefore we have

ANV) =3ay + 11.

Incaseofa; > 3, ap = 2, a3 = 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

(202 +x3) 8 x{ B xP 0, 4 <iz < SixaBAL 1<ii<a1—2,0<i3 <4

_ 2 .- i 1
X130, — gxfl x303; x5 20y — Salds, 1 <iy <20 %3005 100 + §x383;
x172x29, — %x“'_za cxiiyBt2y, %xi'xi38 I<ii<a;—-3;1<i3<2;
1 302 3 1 35 X1 X3 2 3143 3, 1L =11 =a sy L =13 = 45
32, 82,)6383 3<iz<5; x1x3383,1<11§a1—3;3§i3§4;

-2
xl 1333, 2<l3<4 xl 33;)C233.
Therefore we have

AL (V) =9a; — 2.
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Incaseof a; > 3, ax = 2, az = 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA' (V):

X201 23015 000 X B0y, 1<y <ap —2;0 < iz < 2;x0 785 230, — x303;

1
3a . L a1=2 20 ai—la . 24 . 34 . .
x382,x282+§x383,x11 x303; x)"' T 025 X303 X303 X203;
01*13. ih. 2 1<i 2. 412 L0 2 i1 1<i 3.
Xy 03 xpx303, 1 <) <ap—25x) Tx3d3;xp x50y —xpx3d3, 1 <ip <ap—3;

ar—2 ay—2
Xy Tx30 —xp 03

Therefore we have
AN(V) = 5a; + 4.

Incaseofa; =2, a; > 3, a3 = 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA! (V):

x201; xo3d1; X527 01 %1915 X305 X300; x202, 1 < iy < ap — 15 xax39; X102

x303; x303; x2x303; X103; X203, ap —2 < iy <ay— 1.
Therefore we have

ANV) = ar + 13.
Incaseofa; = 2, ap = 2, a3 > 3, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):
) a3y g . 2m=lg o da—ly LU : :
(2x2 + x5%) 015 37 913 x1 915 x5 82,x282+a—x383,x182,x3 03, a3 < i3 <2a3 —1;
3

. _ 2 .
x283; 1193 2579 — ;x?aa, l<iz<a;—1.
3

Therefore we have
ANV) =2a3 +7.
Incaseofa; = 2, az > 3, a3 > 3, we obtain the basis of derivation represented by following

derivations form a basis of DerA! (V):

1 ay —1

(a2x3271 +x§l3> 31;)6%“37281;)(2)6;{37131;)6] 81;x2xl337 0 + x?ag,, 1 <iz <az—2;

x§332, az — 1 <i3 <2a3 —2;x132;x£2x§332, 2<ih<ap—2;1<iz3<az—2;
xPy, a3 —2<iz<ay— LxPxPoy, l<ip<ay—2%1<i3<a3—2;
x§233, ay —2 <ip <ap—1;x103; X2x§13_133;
xéz(‘)z, 2<ir<ap— l;x?ag, a3 —1<i3 <2a3—2.
Therefore we have
(V) = 2apa3 — 3ay — 2a3 + 17.
Incaseofa; > 3, ax = 2, az > 3, we obtain the basis of derivation represented by following

derivations form a basis of DerA' (V):
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(232 + x83) 815 x99y, 2a3 —2 < i3 < 2a3 — Lx'xPoy, 1 <ij <ay —2,0 <i3 <2a3-2;

R 2 1 _
x? 1+1382 - fx§383, 1 <iz<az—1;x20,+ fX383 x -2 §a3 232, xi“ 132;
as as
2a3— i3 2 i1 _iz3—az+1 . .
oS oy aY e — —af kP T s, 1<y <ay —3ia3 i3 <2a3 -2

as
ar;—2 i 2 4-2 iz—a +1 . i .
xll 331——)611 ,; 37093, az — 1 §l3§2a3—3;x3383, ay <i3 <2az — 1;x703;

x?1_133,x1 x3333, 1<ii<a;—2;a3 <i3 <2a3 — Z;x‘lll_zxgn_la}

Therefore we have
ANV) = 4aja3 — 3a; — 6az + 16.

Incaseofa; = 2, ax = 2, a3 = 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

2 .39 L2 R .29 .,39 .
(2x2 + x3) 013 x301;5 x101; X302 — X303; X302 X1 02; X303; X303

1
X207 + 5}6333; X203; X103.

Therefore we have
Av) =11

In last case we obtain the basis of derivation represented by following derivations form a
basis of DerA! (V):
xilx2x3 d, 1 <ij<a1—2,1<ip<ap—-2,0<i3<az—2

. . 2a3-2
x1x3*81,1511§a1—2,l§t3§203—2;x2x33 a1; x3 3T ar;

-2 i .
x;z 33;)6;332, a3y <i3 <2a3 —2;

i . —1
xilﬁl, 1<ii<a -1, (azxgz +x§3>81;x33 a2 + 1
iz—1 ar iy . . az—1
XX3 82+a—x383,1§l3§a3—1,x2x3 82,x2x382,2<12<u2—2 0<iz <az—2;

x;z 92; xl x3382, 1<ii<a;—2,a3—1<i3<2a3—2;

x1x2x1337 ) + fxlx?ag,, 1<iz<az—2;

-2 1,
x1x2x§73 32,)C1 x2x3 d, 1<ii<a;—2,2<ip<ar—2,0<i3<a3-—2; xll 92;

x?&g, a3 < i3 <2a3 —2; x2 x3 03, 1<ir<ap—2, 1<i3<az—2; x2x337 33;x;27183;
xi|x§3a3, 1<ii<a -2, a3—1§i3§2a3—2;x11 03 x -2 gz 233;

)cl x2x3 i, 1 <ij<a;—2,1<ip<ay—-2,1<i3<a3—2.
Therefore we have
AI(V) = 3ajaraz — 4ayay — 3ajaz — 4aras + 8a; + Say + Saz — 1.
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It is easy to see that we have

ar+7, ar=2a=2a =1
2a3 +7; ay=2,a=2,a3 22
dajaz —3(a1 + a3) + 16; ap =z 3,a2=2,a3 22
1 1 1 2”%“3_3(a+aza3 + 16; ay=2,a; >3,a3 >2
hl(wil’wiz’u;): 112*12 1 142 =243 =
3
lea21a3 +5 <a1 +ax + ;122(131)
—4<a1a2+a1a2d%+;122a31)+6; ay >3,ay >3, a3 > 2.

We need to shows that when a; > 3,apy > 3,a3 > 3, then 3ajaraz — 4ayar — 3a1a3 —

4aras +8ay +5az +5a3 — 1 < SZWZM +5(ar +ax + 245) —Marax + L+ 27) +6.
After simplification we get

a2a3
az 1

3a1+ (a2 — 1)+ (a1 — 2)(a2 — D(az —3) +ai(az — 3) + (a1 — 2)(a2 — 3)az = 0.
It is easy to see that in following cases:

(i) a1 >2,a0=2,a3 =1,
(i) ay =2,a0 =2,a3 > 3,
(i) ay =2,ar =2,a3 =2,
(iV) a123,a2:2,a3:2,
(V) a1 23,a0=2,a3 = 3,
Vi) ay =2,az > 3,a3 > 3,
(vii) a; > 3,ar > 3,a3 =2,

our proposed conjecture also holds. The first five cases is easy to prove. The last two cases
is following as: Case(vi) when a; = 2, a; > 3, a3z > 3, then

2a%a
2ara3 — 3ay —2a3 + 17 < L 3(ar + a3 + 16,
a — 1 a — 1
after simplification we get
(a2 —2)(az —2) + (a2 — 3) > 0.

Case (vii) when a; > 3, a> > 3, az = 2, then

6a1a% 10a; 8ajay 861%
2a1ay —2a; — 3a; +9 < I +5a1+5a2+71 —4ajar — —
a) — a) —

6,
a) — 1 a2—1+

after simplification we get

ay(Bax — 1)+ (aa —3)(2a; — 1) = 0.

Proposition 3.9 Let (V,0) be a fewnomial surface isolated singularity of type 5 which
is defined by f = xf X2+ x3°x1 + x5° (@ = 1,ay = 1,a3 > 2) with weight type

1 1
(atllfzz 1 atllcllz 1° a3 i 1). Then
daraz — 6ay + 12; ay=2,ay>2,a3 >2
A(v) = a(az —2)+9; aj=1l,a0>1,a3 >2
| 3a1axa3 — 4ay1ay — 2azaz — 2ay1a3
+2ay + 2ay + 6a3 + 6; Otherwise.
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Furthermore, we need to show that when ay > 3,ay > 3 ay > 3, then 3ajaraz —
4ayay — 2araz — 2aya3 + 2a) + 2ay + 6a3 + 6 < — UL 5+ s(aua-l L an-l

— az(ax— 1)([11—1 ar—1 a;—1

-2 -1 -1
a3)_4((a(2a—l(1l§(a1)—l) +az(Ziciz )+ax(a|az ))—|—6

Proof 1t is easy to see that the moduli algebra A'(V) = C{xy, x2, x3}/(f, m.J(f)) has
dimension (ajaraz — ajaz + 3) and has a monomial basis of the form [2]

2B 1 <ij<a—21<ip<ar—1;0 <iy <a3 — 2687 x0T 2
xl'x3‘,1 <ii<a—10<i3<a3—2;x7x7,0<ip <2ay —2;0 < i3 <a3—2}.
In order to compute a derivation D of AL(V) it suffices to indicate its values on the generators

X1, x2, x3 which can be written in terms of the basis. Thus we can write

ai—2ay—1az—2 aj—laz—2 2a;—2 a3 —2

§ : ip i3

Dx; = Z Z Z Cilia, t%xl x2 x3 + Z €10, t%xl x3 + Z Z €0,i5,i3%2 *3
i1=1 ip=1 i3=0 i1=1 i3=0 ip=0 i3=0

J az—1 J a;—1 J ay .
+C00.a—1%3 T o110 X2+ 005 J =123

Using the above derivations we obtain the following description of Lie algebras in question.
The derivations represented by the following vector fields form a basis in Der A!(V):

lex;x?a], 2<it<a-2l<ip<a—1,0<i3<a3—2
2, 2 .
o agr 31+*xtfl x50y, 0<iz<a3—2;

-2
X2

ar—1 i a i . -1 a -2
x5’ x3381—|—a—x11 x50, 0 <i3 <az—3;x;° 3779

x2x381, a) <ir<2a—2;0<i3<az—2;;

1 ;_ ; . .
lxl‘ "oxP o, 1<ip<a;—2;0<i3 <a3—2;

. al —
x)' x5 01 +
; 0 —

1 a; —1 _
x4 ¥ 2x0xB38,, 0 < i3 <az—3;
1 X3 o1 3

=1 iy

x1x2 x3 xéﬁ' x50, 1<ir<ar—3;0<i3<a3—2;
-2 -1, 2 _a3-2

xixy? x 3 + —x'fl 82, 0<i3<az—3;xixy° x5 "0

xlxgr x3381, 0<i3<az—2; xfl x337 2o ;x) 1x281;xf181;
aj(a; — 1 _

(—71( 2 )xal ! l3+xa2 ! 13) 0y, 0<iz<az3—3; xaz ! a; 232,
ax(a;p — 1)

xzxg 3, ay < iy <2ay—2;0 <i3 <a3—2;x{ - x5 232,x1 LY

X, 1<ii<a1—2,2<ir<ar—1,0<i3 §a3—2;

-2

X3 xR x 20 200, 1< iy < a3 — 1 (a1 o 4 15203

2ar,—2

1
<—x’fl+x1x;2 93; %7 x3 03, 1 <iz<a3—2;x) l383, 0<iz<az—2;
a

x1x2x3383, 1<ii<a;—2,0<ihb<ay—1,1<i3<a3z—2;

x2x383, 1<ip <2a—3;1<i3<az—2.
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Therefore we have
)xl(V) = 3a1apaz — dayay — 2araz — 2ayas + 2a; + 2ar + 6a3 + 6.

Incaseofa; = 2,a> > 2, a3 > 2, we obtain the basis of derivation represented by following
derivations form a basis of DerA!(V):

2
1o X527 1x§’3 2, — xx57 " 25,:
a 1

12213

x2x29; — X Fh, ar <ip <2ay—3,0<i3<a3—2;

273 a — 1 2

(2022, 0 . is 1 i .

X5 81,0513§a3—2;X1x3’81+a 1xzx332,0513§a3—2;

5 —
X1x201 + 7 X]xzzal; xlzal; x§13—1 02; x;z_]x?_zaz; X1x§l3_232;
a —
2(ap — 1)
<_(17 +xa2 ! ” 0, 0<i3<asz—3; xlxzaz,xlaz,
2

xézx?az, ay <ip <2a0—2,0<i3<a3—2;x7%, 1 <i3 <az—1;
x2 x3383, 1<ih<2a—2:1<i3<az—2; )cza2 233;)61233;

x1x3383, 1<iz<az—2; 2xix» +x22)83
Therefore we have
AN(V) = daraz — 6ay + 12.

Incaseofa; = 1,a2 > 1, a3 > 2, we obtain the basis of derivation represented by following
derivations form a basis of Der A (V):

B9 (82 4 x2)01; 11015 X9 005 (652 4 x2) 80 x1 905 x93 103 (652 + x2) 35 x1 033

XPxF03, 0<ip<ap—1.1<i3<as—2.

Therefore we have
ANV = ax(az —2) +09.

We have

az+T,a1=1,ap=1,a3 >3

2 (ajap—1)? _3(a1a2—l +a1a21 )+ 16;a; >3,ap >3,a3 =2

( 1 1 1 ) (ap—=D(a; =D ar—1
h(— — — )=

3(aya;—1)> ajax—
s@-Na-n >G5

+%)+6;a1 >3,ay > 3,a3 > 3.

‘11“2

+

-2 az(ajap—1)
B 7 |

a
Fay) — (B

It is noted that in following cases:

(i) a; =3,a2 > 3,a3 >3,
(ii) a1 = 3,a2 > 3,a3 =2,
(iii) a1 =1,ap =1,a3 > 3,
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our proposed Conjecture holds. Case(i) We need to show that 3ajara3 — 4ajar — 2araz —
2a1a3+2a1+2a2+6a3+6 3(ajap— 1)_1) +5(a1a271 arar—1 +a3)_4((a(a]a2_1)2 +

— az(@—1(ai ar—1 ai—1 r—D(a1—1)
_1)) + 6. After simplification we get

az(arap—1) az(ajap
ay;—1 + ap

[a1(az —2)(a1 — 3) +ax(a; —2)(ap — 3) + (a1 — 3) + (a2 —3)] (a3 — 1) = 0.

Case (ii) We need to show that

2(a1a2—1)2 ajar — 1 ajar — 1
2 -2 18 < -3 16,
aay = 2arta) 18 < o T T o T — T
after simplification we get ax (a1 —2)(a» —3) +aj(a; —2)(a1 —3)+ (a1 —3)+(a—3) > 0.
It is easy to see that when a; = 1, a» = 1, a3 > 3, then our conjecture is also true. ]
Proof of Main Theorem A Tt is an immediate corollary of proposition 3.1. O

Proof of Main Theorem B Let f € C{x], x} be a weighted homogeneous fewnomial isolated
singularity. Then f can be divided into the following three types:

Type A. x +x
Type B. x1 "X +x2 s
Type C. x{'x2 + x5%x].

The main theorem B is an immediate corollary of Propositions 3.2, 3.3 and 3.4 . O

Proof of Main TheoremC  Let f € C{xy, x2, x3} be a weighted homogeneous fewnomial
isolated surface singularity. Then f can be divided into the following five types:

Type 1. x +x +x

Type 2. x}l X2 +x(21 X3 —I—x§3,
Type 3. xllxz +x22x3 +x33x1,
Type 4. x +x —|—x3 xz,
Type 5. )c1 ) +x2 X1 +x3 .

The main theorem C is an immediate corollary of propositions 3.5, 3.6,3.7,3.8and 3.9 . O
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