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Abstract. Let R = C[x1, x2, . . . , xn]/(f1, . . . , fm) be a positively graded Ar-
tinian algebra. A long-standing conjecture in algebraic geometry, differential
geometry, and rational homotopy theory is the non-existence of negative weight
derivations on R. Alexsandrov conjectured that there are no negative weight
derivations when R is a complete intersection algebra, and Yau conjectured
there are no negative weight derivations on R when R is the moduli algebra
of a weighted homogeneous hypersurface singularity. This problem is also im-
portant in rational homotopy theory and differential geometry. In this paper
we prove the non-existence of negative weight derivations on R when the de-
grees of f1, . . . , fm are bounded below by a constant C depending only on the
weights of x1, . . . , xn. Moreover this bound C is improved in several special
cases.

1. Introduction

Let P = C[x1, . . . , xn] be the polynomial ring of n weighted variables x1, . . . , xn

with positive integer weights w1, w2, . . . , wn. For a monomial xi1
1 xi2

2 · · ·xin
n in P , its

weighted degree is defined to be w1i1 + · · · + wnin. A polynomial f ∈ P is called
weighted homogeneous with respect to weights w1, . . . , wn if there exists a positive
integer d such that

∑
aiwi = d for each monomial

∏
xai
i appearing in f with a

non-zero coefficient. The number d is called the (weighted homogeneous) degree
of f and denoted by deg f . For an ideal I generated by weighted homogeneous
polynomials in P we have a graded quotient algebra R = P/I =

⊕∞
i=0 Ri. Fur-

thermore R is called a graded complete intersection algebra if I is generated by a
regular sequence f1, . . . , fm,m ≤ n. When the Krull dimension of R is zero, R is a
positively graded Artinian algebra.

Let R = P/I be a positively graded algebra as above. Then the derivations of
R are induced by derivations of P sending I to I. Let Der(R) be the R-module
of derivations of R. As R is graded, we have a natural grading on Der(R) =⊕+∞

k=−∞ Der(R)k where Der(R)k = {D ∈ Der(R) : D(Ri) ⊂ Ri+k for any i}. In

particular, the Euler derivation Δ =
∑

wixi
∂

∂xi
has weight 0.
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Given a positively graded algebra R, a very natural and important question in
algebraic geometry is whether there are no derivations on R of negative weight, i.e.,
Der(R)k = 0 for any k < 0. Throughout the paper, we shall focus on positively
graded Artinian algebras R. Those are interesting objects in algebraic geometry (cf.
the overview [Ia]). When R is a positively graded Artinian complete intersection
algebra, we have the following long-standing conjecture of Alexsandrov.

Aleksandrov Conjecture ([A2]). Let R be a positively graded Artinian complete
intersection; i.e., all weights wi, i = 1, . . . , n are positive. Then there are no negative
weight derivations on R.

Remark 1.1. It was pointed out by Aleksandrov and Martin [AM] that the condition
of “positively graded” in the above conjecture cannot be omitted. Assume that one
of the weights wi of xi is negative. For example, let

R = C[x, y, z]/(x5 + y5 + x3y3z, y8, z3).

Then R is Z-graded with wt(x) = 1, wt(y) = 1, and wt(z) = −1. It is easy to see
that D = z2x ∂

∂x + z2y ∂
∂y defines a derivation on R and wt(D) = −2.

The Aleksandrov Conjecture was proved only for some special cases.

Theorem 1.1 ([AM, Theorem 4.3]). Suppose R = C{x, y}/(f, g) is a Z-graded
Artinian complete intersection. Then there are no derivations of negative weight
on R.

Theorem 1.2 ([AM, Proposition 4.1]). Let R be an Artinian homogeneous algebra,
i.e., all weights wi = 1. Then there are no derivations of negative weight on R.

Theorem 1.3 ([PP1]). Let R = C[x1, . . . , xn]/(f1, . . . , fn) be a positively graded
Artinian complete intersection algebra, and assume that deg(fi) ≤ deg(fn), 1 ≤ i ≤
n− 1, and

C[x1, . . . , xn]/(f1, . . . , fn−1)

is reduced. Then there are no derivations of negative weight on R.

Theorem 1.4 ([Ch2]). Assume that R = C[x1, x2, x3]/(f1, f2, f3) is a positively
graded Artinian complete intersection algebra. Then there are no derivations of
negative weight on R.

In [A3], Alexsandrov claimed that his conjecture was also true in cases of three
and four variables. However, very little progress has been made on the Alexsan-
drov Conjecture over the last twenty years. This problem has been regarded as
notoriously hard.

There are many reasons why the problem of non-existence of negative weight
derivations is important [PP2]. It is related to many questions arising in the
deformation theory of singularities (cf. [A1, (6.3)], [A2, A3, AM]). In [PP1], the
authors pointed out that the study of non-existence of negative weight derivations
turns out to be very useful from the point of view of the moduli space theory of
deformations. Furthermore, according to Pinkham [Pi1,Pi2], the existence of coarse
moduli spaces for certain problems depends on a graded R having no derivations of
negative degree. The point is that we can compactify X = SpecR (a variety with
good C∗-action) by considering X̄ = ProjR[T ], where wtT = 1. Then X̄−X = E is
a Weil divisor, isomorphic to ProjR. Then the derivations of weight ≤ 0 of R yield
exactly the derivations of the natural compactification X̄ which are logarithmic at
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E. In section 2, we shall also give its applications in rational homology theory and
differential geometry.

On the other hand, Yau has made the following conjecture in his work on the
Lie algebras of derivations on the moduli algebras of isolated hypersurface singular-
ities and especially his micro-local characterization (using only the Lie algebras of
derivations on the moduli algebras) of weighted homogeneous isolated hypersurface
singularities ([XY],[MY],[Ya1],[Ya2]):

Yau Conjecture. Let (V, 0) = {(x1, x2, . . . , xn) ∈ Cn : f(x1, x2, . . . , xn) = 0} be
an isolated singularity defined by the weighted homogeneous polynomial
f(x1, x2, . . . , xn). Then there are no non-zero negative weight derivations on the
moduli algebra (=Milnor algebra here)A(V ) = C[x1, x2, . . . , xn]/(fx1

, fx2
, . . . , fxn

)
where fxi

= ∂f/∂xi; i.e., the Yau algebra L(V ) := Der(A(V )) of V is a non-
negatively graded algebra.

Though the Yau Conjecture is a special case of the Aleksandrov Conjecture, it
is also of independent interest [YZ1]. The Yau Conjecture has only been proven in
the low-dimensional case n ≤ 4 ([CXY],[Ch1]) by explicit calculations. Recently,
Yau and Zuo proved the following result.

Theorem 1.5 ([YZ2]). Let (V, 0) = {(x1, x2, . . . , xn) ∈ Cn : f(x1, x2, . . . , xn) = 0}
be an isolated singularity defined by the weighted homogeneous polynomial
f(x1, x2, . . . , xn) of canonical weight type (d : w1, w2, . . . , wn) (i.e., d ≥ 2w1 ≥
2w2 ≥ · · · ≥ 2wn > 0). Let A(V ) = C[x1, x2, . . . , xn]/(fx1

, fx2
, . . . , fxn

) be the
moduli algebra. If wn ≥ w1/2, then Der(A(V ))<0 = 0.

It is interesting that in some special cases the complete intersection restriction in
the Aleksandrov Conjecture is not necessary to show the non-existence of negative
weight derivations (for example the Artinian homogeneous algebra; see Theorem
1.2). It is natural to try to relax the complete intersection restriction. Here we
shall consider a more general question and formulate the following conjecture.

Conjecture 1.1. Let R = C[x1, x2, . . . , xn]/(f1, f2, . . . , fm),m ≥ n, be a positively
graded Artinian algebra. If the weighted degree of each fi is bounded below by a
suitable constant C depending only on the weights of x1, . . . , xn, then all derivations
of negative degree of R vanish.

Remark 1.2. The assumption about C is not restrictive but necessary. In view of
the following example, we see that the condition “the weighted degree of each fi
is bounded below by a suitable constant C” in Conjecture 1.1 cannot be omitted.
Take the algebra R = C[x1, x2]/(x

2
1, x1x2, x

2
2), with wt(x1) = 1 and wt(x2) = 2.

Then D = x1
∂

∂x2
induces a non-zero derivation on R and wt(D) = −1.

Remark 1.3. The Aleksandrov Conjecture is a special case of the above Conjecture
1.1 when the weighted degree of each fi is bounded below by a suitable constant
C.

Both the Alexandrov Conjecture and the Yau Conjecture are very hard to
prove in general. In these cases, the variety defined by I = (f1, . . . , fm) con-
sists of the origin alone, the geometry is poor, and the difficulty increases. Until
now, we have not seen any other techniques for dealing with the general dimen-
sion case. The explicit calculation and proof by case analysis methods used in
[AM],[PP1],[CXY],[Ch1, Ch2],[YZ2] are hard to generalize to higher dimensions.
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However, in this paper, we have been able to develop novel techniques (see section
3) to solve these problems. We prove that the Aleksandrov Conjecture is true so
long as the weighted degree of each fi is bounded below by a suitable constant C
depending only on the weights of x1, . . . , xn. In fact, we verify the more general
Conjecture 1.1.

Main Theorem A (Conjecture 1.1). Let P = C[x1, x2, . . . , xn] be the weighted
polynomial ring of n weighted variables x1, x2, . . . , xn with positive integer weights
w1 ≥ w2 ≥ · · · ≥ wn. Suppose that f1, f2, . . . , fm are m (m ≥ n ≥ 2) weighted
homogeneous polynomials with degrees greater than (m − 1)(w1w2)

n−1 and R =
P/(f1, f2, . . . , fm) is an Artinian algebra. Then there are no non-zero negative
weight derivations on R.

Remark 1.4. In the example of Remark 1.2 above, the weights of the generators
x1 and x2 are 1 and 2 respectively, n = 2 and m = 3. In Main Theorem A, the
condition is that the weighted degree of each fi is greater than (m− 1)(w1w2)

n−1,
which is 4. But (x2

1, x1x2, x
2
2) has weighted degrees (2, 3, 4). So the condition

in Main Theorem A is not satisfied. More generally, suppose the weights of the
generators x1 and x2 are w1 and w2 respectively in this example. Then the con-
dition in Main Theorem A is that the weighted degree of each fi is greater than
(m−1)(w1w2)

n−1, which is 2w1w2. But (x
2
1, x1x2, x

2
2) have weighted degrees (2w1,

w1 + w2, 2w2). So the weighted degree of x1x2 is w1 + w2, which is no more than
2w1w2. Thus no matter which weights one chooses for this example, it cannot
satisfy the condition in Main Theorem A.

It is an interesting question whether or not the constant (m− 1)(w1w2)
n−1 can

be made smaller. The following Main Theorem B tells us that this bound can be
improved under the extra condition that any two of the weights w1, w2, . . . , wn are
coprime.

Main Theorem B. Let P = C[x1, x2, . . . , xn] be the weighted polynomial ring of n
weighted variables x1, x2, . . . , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn

and let f1, f2, . . . , fm be m (m ≥ n ≥ 2) weighted homogeneous polynomials with de-
grees greater than (m−1)w1w2. Suppose that any two of the weights w1, w2, . . . , wn

are coprime and R = P/(f1, f2, . . . , fm) is an Artinian algebra. Then there are no
non-zero negative weight derivations on R.

Fewnomial singularities are an important class of weighted homogeneous singu-
larities. The concept of fewnomial singularities was first introduced by Khovan-
ski [Kho]. We say that a polynomial f in n variables is fewnomial if the number of
monomials appearing in f does not exceed n. It is easy to show that, except for cer-
tain trivial cases, a fewnomial in n variables can define an isolated singularity only
if it has exactly n monomials, in which case we speak of it as a fewnomial isolated
singularity. In other words, fewnomial singularities are those which can be defined
by n-nomials in n indeterminates. Simple singularities (i.e., ADE singularity) are
obviously fewnomial in this sense. Fewnomial singularities play an important role
in mirror symmetry theory [ET].

In some sense, the constant (m−1)(w1w2)
n−1 and (m−1)w1w2 in Main Theorems

A and B can be further improved for fewnomial singularities. In particular, we
confirm the Yau Conjecture for fewnomial singularities with multipliciy at least 5.
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Let f ∈ C{x1, x2, . . . , xn}. Recall that the multiplicity of f (mult(f)) is defined
to be the order of the lowest non-vanishing term in the power series Taylor expansion
of f at 0.

Main Theorem C (Yau Conjecture). Let f ∈ C{x1, x2, . . . , xn} be a weighted
homogeneous fewnomial isolated singularity with positive weights w1, w2, . . . , wn and
the multiplicity of f at least 5.

A(f) = C{x1, x2, . . . , xn}/(fx1
, fx2

. . . , fxn
)

is the moduli algebra of f . Then there are no non-zero negative weight derivations
on A(f).

Remark 1.5. In some cases, the condition in Main Theorem C is less strict than
the condition in Main Theorem A (resp. B). This can be seen from the following
example. Let

A(f) = C{x1, x2, . . . , x5}/(fx1
, fx2

. . . , fx5
)

where f = x5
1 + · · · + x5

5 with multiplicity 5 and weights wi = 1, i = 1, . . . , 5,
n = 5, m = 5 (with the same notation as above). In Main Theorem A (resp. B),
the condition is that the weighted degree of each fi = fxi

= 5x4
i is greater than

(m − 1)(w1w2)
n−1 (resp. (m − 1)(w1w2)), which is 4 (resp. 4). But fi = 5x4

i

has weighted degree 4. So this example satisfies the condition of Main Theorem
C, but does not satisfy the condition in Main Theorem A (resp. B). However, we
are not saying that the condition in Main Theorem C is always better than the
condition in Main Theorem A (resp. B). For example, let f = x3

1x2 + x30
2 x3 + x31

3

with multiplicity 4 and weights w1 = 10, w2 = 1, w3 = 1, m = n = 3. Then
(m − 1)(w1w2) = 20 and degfx1

= 21, degfx2
= degfx3

= 30. Thus this example
does not satisfy the condition in Main Theorem C, but it satisfies the condition in
Main Theorem B. It is easy to check that A(f) where f = x3

1x2 + x31
2 does not

satisfy the condition in Main Theorem C, but it satisfies the condition in Main
Theorem A.

The paper is organized as follows. We start by discussing some applications of
our results to rational homotopy theory and differential geometry in section 2. In
section 3 we define and give the necessary properties for the main technical tool—
a new weight type associated with a negative weight derivation on the weighted
polynomial ring. Some lemmas and theorems which are used in the proofs of our
Main Theorems A and B are introduced and are proved in section 4. We shall give
the proofs of Main Theorems A and B in section 5 and 6. In sections 7, 8, and 9, we
recall some preliminary knowledge which is needed in the proof of Main Theorem
C. We give the proof of Main Theorem C in sections 10.

2. Applications

In this section, we give some applications of our results to rational homotopy
theory and differential geometry.

A classic result of Borel [Bo] states that the Serre spectral sequence for the
rational cohomology of the universal bundle G/H → BH → BG collapses if G/H is
a homogeneous space of equal rank pairs (G,H) of compact connected Lie groups.
Halperin made a very general conjecture on the collapsing of the Serre spectral
sequence on a general fibration, which is one of the most important open problems
in rational homotopy theory ([FHT, p. 516], [Me]).
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Recall that a finite simply-connected cell complex C is called elliptic if all but
finitely many cohomology and homotopy groups of C are finite. If C is elliptic,
then C has non-negative Euler characteristic.

Halperin Conjecture ([FHT, p. 516]). Suppose F is a rational elliptic space
with non-zero Euler-Poincaré characteristic and F → E → B is a Serre fibration
of simply-connected spaces. Then the (rational) Serre spectral sequence for this
fibration collapses at E2.

In fact, for an elliptic space with positive Euler characteristic, all cohomology
must be concentrated in even degrees; i.e., cohomology is zero in odd degree. Fur-
thermore, the cohomology algebra is a complete intersection, i.e., the same number
of generators as relations.

It was shown that the above conjecture is equivalent to the following conjecture
about the non-existence of negative weight derivations ([Me, Theorem A on p. 329]).

Halperin Conjecture (Equivalent form). Let P = C[x1, x2, . . . , xn] be the poly-
nomial ring of n weighted variables x1, x2, . . . , xn with positive even integer weights
w1, w2, . . . , wn and let f1, f2, . . . , fn be weighted homogeneous polynomials in P .
Suppose that R is an Artinian complete intersection algebra of the form

C[x1, x2, . . . , xn]/(f1, f2, . . . , fn).

Then there are no non-zero negative weight derivations on R.

In this form the Halperin Conjecture becomes accessible to diverse algebraic
methods, and its deep relationship to algebraic geometry becomes evident. This
conjecture has been proven when the fiber is homogeneous ([Bo],[Me]) or when
n ≤ 3 ([Th1],[Th2],[Ch2]).

The Halperin Conjecture is a special case of Conjecture 1.1 when the weighted
degree of each fi is bounded below by a suitable constant C. Therefore the following
corollary follows from Main Theorem A immediately, thus verifying the Halperin
Conjecture.

Corollary 2.1. Suppose the cohomology algebra of X is R = P/(f1, f2, . . . , fn)
where P = C[x1, x2, . . . , xn] is the weighted polynomial ring of n weighted variables
x1, x2, . . . , xn with positive even integer weights w1 ≥ w2 ≥ · · · ≥ wn. Suppose that
f1, f2, . . . , fn are n (n ≥ 2) weighted homogeneous polynomials with degrees greater
than (n − 1)(w1w2)

n−1 and R is an Artinian complete intersection algebra. Then
the Serre spectral sequence of any fibration with fiber X collapses.

In [Me], Meier proved quite generally that collapsing of the Serre spectral se-
quence is closely related to vanishing of derivations of the cohomology algebra. It
was shown that if the negative weight derivations of the cohomology algebra of X
vanish, then the Serre spectral sequence of any (orientable) fibration with fiber X
collapses. Conversely, Meier also proved that if X is a formal 1-connected space
with H∗(X,Q) of finite type and the Serre spectral sequence collapses whenever X
is (rationally) the fiber and the base is a sphere, then Der<0H

∗(X,Q) = 0.
In view of the above result of Meier, we obtain the following more general result,

which is an immediate corollary of Main Theorem A.

Corollary 2.2. Suppose the cohomology algebra of X is R = P/(f1, f2, . . . , fm)
where P = C[x1, x2, . . . , xn] is the weighted polynomial ring of n weighted variables
x1, x2, . . . , xn with positive even integer weights w1 ≥ w2 ≥ · · · ≥ wn. Suppose that
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f1, f2, . . . , fm are n (n ≥ 2) weighted homogeneous polynomials with degrees greater
than (m − 1)(w1w2)

n−1 and R is an Artinian algebra. Then the Serre spectral
sequence of any fibration with fiber X collapses.

Remark 2.1. In view of the following example due to Gregory Lupton [Lu], we see
that the condition “the weighted degree of each fi is bounded below by
(m− 1)(w1w2)

n−1” in Corollary 2.2 cannot be omitted. Take the algebra

R = C[x1, x2]/(x
2
1, x1x2, x

2
2),

with wt(x1) = 2 and wt(x2) = 4. This is the cohomology algebra of S2 ∨ S4

(2-sphere wedge with 4-sphere, which is not elliptic since its rational homotopy is
not finite-dimensional). Then D = x1

∂
∂x2

induces a non-zero derivation on R and

wt(D) = −2.

The Halperin Conjecture also plays an interesting role in differential geometry
[BK2] and is related to the obstructions for vector bundles to admit complete non-
negatively curved metrics. In 1972 Cheeger and Gromoll [CG] proved their famous
theorem in differential geometry, which asserts that a complete open manifold M of
non-negative sectional curvature is diffeomorphic to the total space of the normal
bundle of a compact totally geodesic submanifold S ↪→ M , called the soul. The
natural converse open question becomes: Which vector bundles admit complete
non-negatively curved metrics? In 2001 Belegradek and Kapovitch [BK1] (see also
[Wil]) proved that up to a finite cover, a soul S splits as S = C × T , where T is a
torus, C is a simply-connected non-negative sectional curvature manifold, and the
normal bundle splits as ξC ×T , where ξC is a vector bundle over C with total space
E(ξC) having non-negative curvature. Thus, in 2002, Belegradek and Kapovitch
[BK2] attacked the converse question by concentrating on vector bundles over C×T .
They say that a vector bundle virtually comes from C if the pullback bundle under
a map id× p : C × T → C × T (where p : T → T is a finite cover) is ξC × T .

If ξ virtually comes from C, then no known method can rule out the existence
of a complete metric with non-negative sectional curvature on the total space E(ξ)
of ξ, and potentially all such bundles might be non-negatively curved. In [BK2], it
was shown that, under various assumptions on C, if ξ is a vector bundle over C×T
such that E(ξ) admits a complete metric with non-negative sectional curvature,
then ξ virtually comes from C. This happens for any C if ξ has rank two. More
generally, “most” vector bundles over C×T do not virtually come from C, at least
when dim(T ) is large enough (see [BK1, 4.4, 4.6] and Lemma B.1 of [BK2]).

Let ξ be a vector bundle over C × T . We say that ξ satisfies (∗) if

(∗)
E(ξ) has a finite cover diffeomorphic to the product of T and the
total space of a vector bundle over a closed simply-connected mani-
fold.

To understand how assumption (∗) restricts ξ, Belegradek and Kapovitch found
conditions on C ensuring that if ξ satisfies (∗), then ξ virtually comes from C.

Definition 2.1. A triple (C, T, k), where k > 0 is an integer, is called splitting
rigid if any rank k vector bundle ξ over C × T that satisfies (∗) virtually comes
from C.

Belegradek and Kapovitch [BK2] showed that if sec(E(ξ)) ≥ 0, then ξ satisfies
(∗). Consequently they got the following proposition.
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Proposition 2.1. If (C, T, k) is splitting rigid and ξ is a rank k vector bundle over
C × T such that E(ξ) has a complete metric with sec(E(ξ)) ≥ 0, then ξ virtually
comes from C.

Thus if (C, T, k) is splitting rigid, then the total spaces of “most” rank k vector
bundles over C×T do not admit complete metrics with non-negative sectional cur-
vature. Therefore, finding splitting rigid triples is crucial to obtaining a necessary
condition for non-negative curvature.

To find splitting rigid triples, Belegradek and Kapovitch made use of rational
homotopy theory. Recall that one can associate a differential graded algebra MX

(called the minimal model of X) to each simply-connected space X such that the
rational homotopy type of X is perfectly algebraically reflected in MX . In particu-
lar, H∗(MX) = H∗(X;Q). It was shown in [BK2] that splitting rigidity of (C, T, k)
often results from the vanishing of certain negative degree derivations of H∗(C;Q).

3. New weight type

Our main idea for the proofs of Main Theorems A and B is as follows. Suppose
R = P/I is an Artinian algebra and there exists a negative weight derivation D on
R with respect to weight type (w1, w2, . . . , wn) where w1 ≥ w2 ≥ · · · ≥ wn ≥ 1.
We can think of D as a negative weight derivation on the weighted polynomial ring
P = C[x1, x2, . . . , xn] which preserves the ideal I. It is well known that D is of the
form

(3.1) D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn,

where p1, p2, . . . , pn are weighted homogeneous polynomials with the degrees w1 +
wtD,w2 + wtD, . . . , wn + wtD. Let weighted homogeneous polynomials f1, f2,
. . . , fm generate the ideal I and without loss of generality assume that deg f1 ≥
deg f2 ≥ · · · ≥ deg fm. Since D(f1, f2, . . . , fm) ⊂ (f1, f2, . . . , fm) and deg f1 ≥
deg f2 ≥ · · · ≥ deg fm, we have

Df1 = �21f2 + �31f3 + · · ·+ �m1 fm,

Df2 = �32f3 + �42f4 + · · ·+ �m2 fm,

. . . . . . . . . . . . .(3.2)

Dfm−1 = �mm−1fm,

Dfm = 0,

where �ij ’s are weighted homogeneous polynomials. Our main technical tool is to
associate with any negative weight derivation D on P as in (3.1) some families
of new weight types (�1, �2, . . . , �n) controlled by the parameters εi (see Definition
3.1). Then in Theorem 4.1, we prove that if we can choose suitable parameters εi
to make the new weight type (�1, �2, . . . , �n) satisfy the following three conditions:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that

�i0/wi0 = max{�i/wi : i = 1, 2, . . . , n};
(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial};
(3) pi0 is a non-zero polynomial,

where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . n, then we claim that
this contradicts the condition in Main Theorem A that the degree of each fj is
greater than (m − 1)(w1w2)

n−1. Thus D doesn’t exist, and there are no negative
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weight derivations on R. So the key point is to choose suitable parameters for a
given negative weight derivation D preserving the ideal (f1, f2, . . . , fm), so that the
above three conditions are satisfied. First we let

εi =

{
ε pi is a non-zero polynomial,
0 pi is the zero polynomial

where ε is a positive real number. Then we have εmin = ε and �i = 0 for i such
that pi is the zero polynomial. Let Imax = {e : �e/we is the maximum among all
�i/wi for i = 1, 2, . . . , n}. It’s easy to see that εi = εmin and pi is a non-zero
polynomial for any i ∈ Imax. Thus if Imax has only one element, then conditions
(1), (2), and (3) are satisfied. But in the general case Imax might have more than
one element. So in this case we need to adjust the parameters εi in order to separate
{�i/wi : i ∈ Imax} such that these numbers have only one maximum. Then we adjust
the parameters as follows: pick an index i1 /∈ Imax and replace the parameter εi1
with εi1 +ε/(w1w2) with the new weight type and Imax changing accordingly. Then
pick an index i2 /∈ Imax and replace the parameter εi2 with εi2 +ε/(w1w2)

2. Repeat
this process, and Theorem 6.1 tells us that within finite steps we will accomplish
our goal and the theorem will be proved. We speculate that this new technique
of decomposing equations according to the new weight type might be useful for
attacking other problems about singularities.

Let P = C[x1, x2, . . . , xn], w1 ≥ w2 ≥ · · · ≥ wn > 0 as above and let D be a
non-zero negative weight derivation on P . It is well known that D is of the form

(3.3) D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn,

where pi is a weighted homogeneous polynomial of degree wi + wtD with respect
to the weight type (w1, w2, . . . , wn) or the zero polynomial for i = 1, 2, . . . , n. Since
wtD < 0, we know that pi is a polynomial of only variables xi+1, xi+2, . . . , xn for
1 ≤ i ≤ n. Thus pn is a constant polynomial (in fact it is zero; see Remark 4.1).
We define a new weight type associated with D as follows.

Definition 3.1. Let D be a non-zero negative weight derivation on the weighted
polynomial ring P as in (3.3). The following weight type (�1, �2, . . . , �n) controlled
by the given n parameters ε1, ε2, . . . , εn is called the new weight type associated
with D, where the εi’s are non-negative real parameters. Set

�n = εn.

If �n, �n−1, . . . , �q+1 are defined, then �q is defined as follows:
(i) If the coefficient pq(xq+1, . . . , xn) of ∂/∂xq in D is the zero-polynomial, then

(3.4) �q = εq.

(ii) If the coefficient pq(xq+1, . . . , xn) of ∂/∂xq in D is a non-zero polynomial,
then

(3.5)

�q = εq +max{�q+1iq+1 + �q+2iq+2 + · · ·+ �nin | monomial x
iq+1

q+1 x
iq+2

q+2 . . . xin
n

appears in the expansion of pq},
where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . , n.

It is clear that when

εi =

{
−wtD pi is a non-zero polynomial,
wi pi is the zero polynomial,
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the new weight type (�1, �2, . . . , �n) is just the original weight type (w1, w2, . . . , wn).

Definition 3.2. The Q-degree of a monomial xα = xi1
1 xi2

2 . . . xin
n is defined to be

�1i1 + �2i2 + · · ·+ �nin, and the Q-degree of a polynomial f is defined as

Q-deg f := max{Q-degrees of monomials in the expansion of f}.
Thus �i = εi + Q-deg pi for i = 1, 2, . . . , n such that pi is a non-zero polynomial,
where pi is the coefficient of ∂/∂xi in D.

Definition 3.3. For any polynomial f in P , we denote by fmax the sum of terms
in the expansion of f with maximum Q-degree with respect to (�1, �2, . . . , �n); i.e.,
if we write

f =
∑
α∈I

cαx
α

where I is a finite set, then

fmax :=
∑

α∈I and Q-deg xα=Q-deg f

cαx
α.

Definition 3.4. With the same notation as above, we define

dmax(D) := max{the Q-degree of (pj)max∂/∂xj | pj is a non-zero polynomial}
and

(3.6) Dmax :=
∑

for j such that
(pj)max∂/∂xj has Q-degree dmax(D)

(pj)max∂/∂xj ,

where the Q-degree of (pj)max∂/∂xj is defined to be Q-deg (pj)max − �j .

Proposition 3.1. With the same notation as above, we have

(3.7) Dmax =
∑

for j such that
pj is a non-zero polynomial and εj=εmin

(pj)max∂/∂xj

where
εmin = min{εi for i such that pi is a non-zero polynomial}.

It follows that the Q-degree of Dmax = −εmin.

Proof. It is clear from the definition of the new weight type and Dmax. �

Proposition 3.2. Let D,Dmax, εmin be as above and let g be an arbitrary polyno-
mial in P . We have either

(i) Dmaxgmax = 0, in this case Q− deg (Dg)max < Q− deg gmax − εmin or
(ii) Dmaxgmax = (Dg)max.

Proof. Write

g = gmax + lowerQ-deg terms = gmax + gr + gr−1 + · · ·
and

D = Dmax + lowerQ-deg terms = Dmax +Ds +Ds−1 + · · · ,
where

· · · < Q-deg gr−1 < Q-deg gr < Q-deg gmax

and
· · · < Q-deg Ds−1 < Q-deg Ds < Q-deg Dmax.
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Then we have

Dg = Dmaxgmax +Dmaxgr +Dsgmax +Dsgr + · · · .
If Dmaxgmax 	= 0, then Dg = Dmaxgmax + lowerQ-deg terms. Thus we have

Dmaxgmax = (Dg)max.

If Dmaxgmax = 0, then Dg = Dmaxgr +Dsgmax +Dsgr + · · · . Thus
Q-deg (Dg)max ≤ max{Q-deg Dmax +Q-deg gr,Q-deg Ds +Q-deg gmax}.

Since Q-degree Dmax = −εmin by Proposition 3.1, we have

Q-deg Dmax +Q-deg gr < Q-deg Dmax +Q-deg gmax = Q-deg gmax − εmin

and

Q-deg Ds +Q-deg gmax < Q-deg Dmax +Q-deg gmax = Q-deg gmax − εmin.

Therefore Q-deg (Dg)max < Q-deg gmax − εmin. �

Corollary 3.1. Let D and g be as above. If Dg = 0, then Dmaxgmax = 0.

Proof. This is an immediate conclusion of Proposition 3.2. �

4. Some lemmas for the proof of Main Theorems A and B

In sections 4, 5, and 6, P = C[x1, x2, . . . , xn] is the weighted polynomial ring of n
weighted variables x1, x2, . . . , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn.
Let

D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

be a fixed non-zero negative weight derivation on P , and let (�1, �2, . . . , �n) be the
new weight type associated with D controlled by non-negative parameters εi.

Lemma 4.1. Let I be the ideal generated by weighted homogeneous polynomials
f1, f2, . . . , fm with respect to weight type (w1, w2, . . . , wn) as above and let P/I be a
non-zero Artinian algebra. Let m be the maximal ideal generated by x1, x2, . . . , xn.
Then we have mr ⊆ I for some integer r > 0, and P/I is a local Artinian algebra.

Proof. Let di be the degree of fi with respect to (w1, w2, . . . , wn) for i = 1, 2, . . . ,m.
Then for any point (x1, x2, . . . , xn) ∈ Cn, we have

fi(α
w1x1, α

w2x2, . . . , α
wnxn) = αdifi(x1, x2, . . . , xn)

for any i = 1, 2, . . . ,m and any α ∈ C. We claim that Z(I) = {0}, where Z(I) is the
zero locus of I in Cn, because if not, then there is a point (x1, x2, . . . , xn) ∈ Z(I)
and (x1, x2, . . . , xn) 	= 0. Thus {(αw1x1, α

w2x2, . . . , α
wnxn), α ∈ C} ⊆ Z(I) has

dimension one, which contradicts that P/I is an Artinian algebra. Thus Z(I) = {0},
which follows that mr ⊆ I for some integer r > 0. Hence, for any maximal ideal
m′ in P such that I ⊆ m′, we have mr ⊆ m′, which implies m = m′. So P/I has
only one maximal ideal; thus P/I is a local Artinian algebra. �

Lemma 4.2. Let f1, f2, . . . , fm ∈ C[x1, x2, . . . , xn] be weighted homogeneous poly-
nomials. Suppose that C[x1, x2, . . . , xn]/(f1, f2, . . . , fm) is a non-zero Artinian
algebra. Then for any given index i ∈ {1, 2, . . . , n} there exists an index j ∈
{1, 2, . . . ,m} such that fj(x1, x2, . . . , xn) contains a term xai

i (with ai a positive
integer) in its expansion.
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Proof. Suppose the conclusion is not true; thus the ideal (f1, f2, . . . , fm) would have
to be contained within the ideal (x1, x2, . . . , xi−1, xi+1, . . . , xn). On the other hand,
by Lemma 4.1, there exists some integer r > 0 such that

(x1, x2, . . . , xn)
r ⊆ (f1, f2, . . . , fm).

Thus

(x1, x2, . . . , xn)
r ⊆ (x1, x2, . . . , xi−1, xi+1, . . . , xn),

which is absurd. The lemma is proved. �

The following observation, based on the assumption that {�i/wi : i = 1, . . . , n}
has the unique maximum, plays an important role in our proofs for the main theo-
rems.

Lemma 4.3. Suppose that there is only one index i0 ∈ {1, 2, . . . , n} such that β =
�i0/wi0 = max{�i/wi : i = 1, 2, . . . , n}. Let f ∈ C[x1, x2, . . . , xn] be a weighted ho-
mogeneous polynomial with respect to both the original weight type (w1, w2, . . . , wn)
and the new weight type (�1, �2, . . . , �n). Suppose that the degree of f and the Q-
degree of f satisfy the following:

(i)

(4.1) deg f > M/(β − γ),

(ii)

(4.2) Q-degf ≥ β deg f −M,

where M is a fixed constant and

γ = max{�i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}.

Then f can be divided by xi0 .

Proof. Suppose that some monomial xa in the expansion of f(x1, x2, . . . , xn) cannot
be divided by xi0 . Write xa = xa1

1 · · ·xai0−1

i0−1 x
ai0+1

i0+1 · · ·xan
n .

By the definition of γ, we conclude that

Q-degf = Q-degxa

= a1�1 + · · ·+ ai0−1�i0−1 + ai0+1�i0+1 + · · ·+ an�n

≤ γ(a1w1 + · · ·+ ai0−1wi0−1 + ai0+1wi0+1 + · · ·+ anwn)

= γ deg xa = γ deg f.(4.3)

Combining (4.3) with (4.2), we get

(4.4) β deg f −M ≤ Q-degf ≤ γ deg f.

This implies that

(4.5) deg f ≤ M/(β − γ),

which contradicts (4.1). Thus the lemma is proved. �

Lemma 4.4. If the coefficient pi0 of ∂/∂xi0 in D is a non-zero polynomial and f
be a polynomial which can be divided by xi0 , then Df 	= 0.
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Proof. Consider the expansion of f(x1, x2, . . . , xn) in powers of xi0 :

(4.6) f(x1, x2, . . . , xn) = bqx
q
i0
+ bq−1x

q−1
i0

+ · · ·+ bhx
h
i0 with bh 	= 0,

where h ≤ q and bq, bq−1, . . . , bh are polynomials of x1, x2, . . . , xi0−1, xi0+1, . . . , xn.
From the condition of Lemma 4.4 we know that h ≥ 1. We have that

(4.7) Df = (D1 + pi0∂/∂xi0)f,

where D1 = D − pi0∂/∂xi0 . Therefore D1f = xh
i0
D1(bqx

q−h
i0

+ · · ·+ bh) and

(4.8)

Df = xh
i0D1

(
bqx

q−h
i0

+ · · ·+ bh

)
+ pi0

(
qbqx

q−1
i0

+ · · ·+ hbhx
h−1
i0

)
= xh

i0D1

(
bqx

q−h
i0

+ · · ·+ bh

)
+ xh

i0pi0

(
qbqx

q−h−1
i0

+ · · ·+ (h+ 1)bh+1

)
+ hxh−1

i0
pi0bh.

It is clear that pi0bh is a non-zero polynomial of x1, x2, . . . , xi0−1, xi0+1, . . . , xn.

Hence the last term in (4.8) can only be divided by xh−1
i0

. Thus Df is a non-zero
polynomial. �

Lemma 4.5. If �i0/wi0 = max{�i/wi : i = 1, 2 . . . , n} (not necessarily the unique
maximum) and the coefficient pi0 of ∂/∂xi0 in D is a non-zero polynomial, then
�i0/wi0 ≤ εi0/(−wtD); that is to say, �i/wi ≤ εi0/(−wtD) for i = 1, 2, . . . , n.

Proof. Assume that �i0/wi0 > εi0/(−wtD). Then by the definition of the new
weight type and the fact that wtD = deg pi0 − wi0 , we have

Q-deg (pi0)max + εi0
deg(pi0)max − wtD

=
�i0
wi0

.

Combining with the assumption that εi0/(−wtD) < �i0/wi0 , we conclude that

(4.9)
Q-deg (pi0)max

deg(pi0)max
>

�i0
wi0

.

However (pi0)max is a polynomial of xt for t > i0, and we have �t/wt ≤ �i0/wi0 for
t > i0. Thus

Q-deg (pi0)max

deg(pi0)max
≤ �i0

wi0

,

which contradicts (4.9). Thus the conclusion is proved. �

The following theorem is critical to the proofs of Main Theorems A and B.

Theorem 4.1. Let f1, f2, . . . , fm be m weighted homogeneous polynomials with
respect to the weight type (w1, w2, . . . , wn) such that

R = C[x1, x2, . . . , xn]/(f1, f2, . . . , fm)

is a non-zero Artinian algebra. Suppose that the negative weight derivation D on
P preserves the ideal (f1, f2, . . . , fm). If we can choose suitable parameters ε′i to
make the new weight type (�1, �2, . . . , �n) satisfy the following three conditions:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that

β = �i0/wi0 = max{�i/wi : i = 1, 2, . . . , n},
(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial},
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(3) pi0 is a non-zero polynomial,
where pi is the coefficient of ∂/∂xi in D for i = 1, 2, . . . n, then there exists j ∈
{1, 2, . . . ,m} such that

deg fj ≤
(m− 1)εmin

β − γ
,

where γ = max{�i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}.

Proof. Without loss of generality we can assume that deg f1 ≥ deg f2 ≥ · · · ≥
deg fm. By comparing degrees we find that

(4.10)

Df1 = �21f2 + · · ·+ �m1 fm,

Df2 = �32f3 + · · ·+ �m2 fm,

. . . . . . .

Dfm−1 = �mm−1fm,

Dfm = 0,

where the �ij ’s with i > j are weighted homogeneous polynomials with respect to
the original weight type (w1, w2, . . . , wn).

By Lemma 4.2 we can find an fj0 which contains a term of the form xa
i0

(with
a a positive integer) in its expansion, which follows that Q-deg (fj0)max ≥ a�i0 =
β deg fj0 .

We construct a sequence j0 < j1 < · · · as follows. If j0, j1, . . . , ji are defined, then
by Proposition 3.2 we have either Dmax(fji)max = 0 or Dmax(fji)max = (Dfji)max.
If the former, let the sequence end. If the latter, by the ji-th equation in (4.10),
there is an index ji+1 ∈ {ji + 1, . . . ,m} such that

(4.11) Q-deg
(
�
ji+1

ji
fji+1

)
max

= Q-deg (Dmax(fji)max) .

Now we prove that the sequence has the following proposition by induction:

(4.12) Q-deg(fji)max ≥ −i(β wtD + εmin) + β deg fji .

We have already proved it for i = 0. Suppose (4.12) holds for i; we will prove it
holds for i+ 1. By (4.11) and Proposition 3.1, we can get

Q-deg
(
�
ji+1

ji

)
max

+Q-deg(fji+1
)max = −εmin +Q-deg(fji)max.

Using the fact that deg fji + wtD = deg �
ji+1

ji
+ deg fji+1

and that β deg �
ji+1

ji
≥

Q-deg(�
ji+1

ji
)max, we get

(4.13)

Q-deg(fji+1
)max = − εmin +Q-deg(fji)max −Q-deg(�

ji+1

ji
)max

≥ − εmin − i(β wtD + εmin) + β deg fji −Q-deg(�
ji+1

ji
)max

= − εmin − i(β wtD + εmin) + β(deg �
ji+1

ji
+ deg fji+1

− wtD)

−Q-deg(�
ji+1

ji
)max

≥ − (i+ 1)(β wtD + εmin) + β deg fji+1
.

Because of the last equation of (4.10), Dfm = 0, it follows from Corollary 3.1 that

Dmax(fm)max = 0.
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From this point and the fact that ji < ji+1, we find that the sequence will end
within (m − 1) steps. That is to say, there is an index t ∈ {1, 2, . . . ,m − 1} such
that

(4.14) Dmax(fjt)max = 0,

(4.15) Q-deg(fjt)max ≥ −t(εmin + β wtD) + β deg fjt .

By Lemma 4.5, we have (εmin + β wtD) ≥ 0. Notice that t ≤ m− 1, so we have

(4.16) Q-deg(fjt)max ≥ −(m− 1)(εmin + β wtD) + β deg fjt .

Assume that

(4.17) deg(fjt)max >
(m− 1)εmin

β − γ
.

Using the fact that wtD < 0, we have

(4.18) deg(fjt)max >
(m− 1)(εmin + β wtD)

β − γ
.

By Lemma 4.3 (here M = (m − 1)(εmin + β wtD) and notice that deg(fjt) =
deg(fjt)max) we know that (fjt)max is divisible by xi0 . Since εi0 = εmin, Propo-
sition 3.1 tells us that the coefficient of ∂/∂xi0 in Dmax is (pi0)max. Also pi0 is
a non-zero polynomial, so (pi0)max is a non-zero polynomial. Thus we know that
Dmax(fjt)max 	= 0 from Lemma 4.4, which contradicts (4.14). Therefore the as-
sumption (4.17) is false. Thus

deg fjt = deg(fjt)max ≤ (m− 1)εmin

β − γ
,

and the conclusion is proved. �

Lemma 4.6. Let (�1, �2, . . . , �n) be the new weight type associated with D controlled
by non-negative parameters ε′i. If there exists a positive real number ε such that all
parameters ε′i can be divided by ε, that is to say, εi = biε where bi is a non-negative
integer for i = 1, 2, . . . , n, then we have

(i) �i = qiε, where qi is a non-negative integer for i = 1, 2, . . . , n;
(ii) for any i, j ∈ {1, 2, . . . , n}, if �i/wi > �j/wj , then

�i/wi − �j/wj ≥ ε/(w1w2).

Proof. (i) We prove it by induction on i. If i = n, then, by Definition 3.1, �n =
εn = bnε, and the lemma holds. Suppose it holds for i = k + 1, . . . , n; we prove
it for i = k. If pk is the zero polynomial, then �k = εk, and the lemma obviously
holds. If pk is a non-zero polynomial, for any term x

ak+1

k+1 . . . xan
n in the expansion

of pk, we have

Q-deg x
ak+1

k+1 . . . xan
n = (ak+1qk+1 + · · ·+ anqn)ε.

By Definition 3.1, we have

�k = εk +max{Q-degrees of monomials x
ak+1

k+1 . . . xan
n in the expansion of pk}

=
(
bk +max{ak+1qk+1 + · · ·+ anqn :

the monomial x
ak+1

k+1 , . . . , xan
n appears in the expansion of pk}

)
ε.

Thus the lemma for case i = k is proved.
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(ii) By (i), we have

�i/wi − �j/wj = (�iwj − �jwi)/(wiwj) = (qiwj − qjwi)ε/(wiwj).

Notice that �i/wi > �j/wj ; thus qiwj − qjwi > 0. Since qiwj − qjwi is an integer,
qiwj − qjwi ≥ 1. Notice that w1 ≥ w2 ≥ · · · ≥ wn ≥ 1; hence

�i/wi − �j/wj ≥ ε/(wiwj) ≥ ε/(w1w2).

�
Lemma 4.7. Let R be a commutative local Artinian algebra. Let D ∈ Der(R,R) be
any derivation of R. Then D preserves the m-adic filtration of R; i.e., D(m) ⊆ m
where m is the maximal ideal of R.

Proof. If the assertion is false, then there exists a ∈ m such that D(a) /∈ m. Since
R is an Artinian algebra, we can find a smallest integer k such that ak 	= 0 but
ak+1 = 0. Then 0 = D(ak+1) = (k + 1)akD(a), which implies that ak = 0 because
D(a) is a unit. This leads to a contradiction. �
Lemma 4.8. Let P and I be as in Lemma 4.1. Suppose that

D = p1∂/∂x1 + p2∂/∂x2 + · · ·+ pn∂/∂xn

is a derivation on P/I. Then pi(0) = 0 for 1 ≤ i ≤ n.

Proof. It follows from Lemma 4.1 that P/I is a local Artinian algebra and has a
unique maximal ideal m. Assume that pi(0) 	= 0 for some 1 ≤ i ≤ n; thus pi is not
in m. However, it follows from Lemma 4.7 that D(xi) = pi ∈ m. This leads to a
contradiction. Thus the lemma is proved. �
Remark 4.1. Suppose that D is a non-zero negative weight derivation on P/I as
before. From Lemma 4.8, we know that each coefficient pi of ∂/∂xi in D does not
contain any constant term. Notice that pn is a constant polynomial, so pn is the
zero polynomial.

5. Proof of Main Theorem B

We first prove Main Theorem B. Main Theorem A is proved in the next section.

Theorem 5.1 (Main Theorem B). Let P = C[x1, x2, . . . , xn] be the weighted
polynomial ring of n weighted variables x1, x2, . . . , xn with positive integer weights
w1 ≥ w2 ≥ · · · ≥ wn and let f1, f2, . . . , fm be m (m ≥ n ≥ 2) weighted homoge-
neous polynomials with degrees greater than (m− 1)w1w2. Suppose that any two of
the original weights w1, w2, . . . , wn are coprime and R = P/(f1, f2, . . . , fm) is an
Artinian algebra. Then there are no non-zero negative weight derivations on R.

Proof. If the conclusion is not true, suppose D is a non-zero negative weight deriva-
tion on R or equivalently a non-zero negative weight derivation on P which preserves
the ideal (f1, f2, . . . , fm) as in (3.3). We take the new weight type (�1, . . . , �n) of D
controlled by the parameters ε′i. Here

εi =

{
ε pi is a non-zero polynomial,
0 pi is the zero polynomial,

where ε is a positive real number. Let Imax = {e : �e/we is the maximum among all
�i/wi for i = 1, 2, . . . , n}. We claim that Imax has only one element for the following
reason. It’s clear that �i > 0 for any i such that pi is a non-zero polynomial and
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�i = 0 for any i such that pi is the zero polynomial. Thus pi is a non-zero polynomial
for any i ∈ Imax, which follows that εi = ε for any i ∈ Imax. Since εi can be divided
by ε for all i = 1, 2, . . . , n, by Lemma 4.6 we have �i = qiε, where qi is a non-negative
integer for i = 1, 2, . . . , n. Now we prove that qi < wi for all i by induction on i. If
i = n, then we know pn is the zero polynomial (see Remark 4.1); thus qn = 0 < wn.
Suppose qi < wi for i = k+1, k+2, . . . , n; we prove that qk < wk. If pk is the zero
polynomial, then qk = εk = 0 < wk. If pk is a non-zero polynomial, by Lemma 4.8
we have pk(0) = 0; thus pk is a non-constant polynomial. We have

�k = εk +Q-deg pk = ε+Q-deg pk,

and notice that

wk = −wtD + deg pk

and pk is a non-constant polynomial of variables xk+1, . . . , xn and �i = qiε < wiε
for i > k. Thus we have Q-deg pk < ε deg pk; hence

�k = ε+Q-deg pk < (1 + deg pk)ε ≤ (−wtD + deg pk)ε = wkε,

which follows that qk < wk. Thus qi < wi for i = 1, 2, . . . , n. Suppose that Imax has
more than one element. Then for any i, j ∈ Imax such that i 	= j, since 0 < qi < wi,
0 < qj < wj , and wi, wj are coprime, qi/wi 	= qj/wj . It follows that �i/wi 	= �j/wj ,
which contradicts i, j ∈ Imax. Thus the claim that Imax has only one element is
proved. Write I = {i0}. Let β = �i0/wi0 and let

γ = max{�i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}.
Since εi can be divided by ε for all i, by Lemma 4.6 we have β − γ ≥ ε/(w1w2).
Let εmin = min{εi for i such that pi is a non-zero polynomial}, and it’s clear that
εmin = ε. Then by Theorem 4.1 we know that there exist j ∈ {1, 2, . . . ,m} such
that deg fj ≤ (m − 1)(w1w2), which contradicts the condition that deg fj > (m −
1)(w1w2) for all j. So the conclusion is proved. �

6. Proof of Main Theorem A

In this section we give the proof for Main Theorem A. In order to use Theo-
rem 4.1, we need to choose suitable parameters ε′i to make the new weight type
(�1, . . . , �n) satisfy the following conditions in Theorem 4.1:

(1) there is only one index i0 ∈ {1, 2, . . . , n} such that

�i0/wi0 = max{�i/wi : i = 1, 2, . . . , n};
(2) εi0 = εmin, where εmin = min{εi for i such that pi is a non-zero polynomial};
(3) pi0 is a non-zero polynomial.
First we let

εi =

{
ε pi is a non-zero polynomial,
0 pi is the zero polynomial,

where ε is a positive real number. Let (�1, . . . , �n) be the new weight type associated
with a non-zero negative weight derivation D and controlled by parameter εi. Then
we have εmin = ε and �i = 0 for i such that pi is the zero polynomial. Let Imax =
{e : �e/we is the maximum among all �i/wi for i = 1, 2, . . . , n}. It’s easy to see that
εi = εmin and pi is a non-zero polynomial for any i ∈ Imax. Thus if Imax has only
one element, then the conditions (1), (2), and (3) in Theorem 4.1 are satisfied. But
in the general case Imax might have more than one element. So the key thing we
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need to do is to adjust the parameters ε′i in order to separate {�i/wi : i ∈ Imax}
such that these numbers have only one maximum.

Lemma 6.1. Let D be a non-zero negative weight derivation such that pi(0) = 0
for 1 ≤ i ≤ n, where pi is the coefficient of ∂/∂xi in D. Suppose there exists a
positive real number ε such that all parameters ε′i can be divided by ε. Fix an index
j0 ∈ {1, 2, . . . , n}, and define another group of parameters (ε′i) as follows:

ε′i =

{
εi + ε/(w1w2) i = j0,
εi i 	= j0.

Let (�1, . . . , �n) and (�′1, . . . , �
′
n) be new weight types associated with D and controlled

by parameters ε′i and (ε′i) respectively. Then we have the following:

(i) For any i, j = 1, 2, . . . , n such that both pi and pj are non-zero polynomials,
we have

�i/wi < �j/wj ⇒ �′i/wi < �′j/wj .

(ii) For any i, j = 1, 2, . . . , n such that both pi and pj are non-zero polynomials,
for any term ti in the expansion of pi and any term tj in the expansion of
pj, we have

(Q-deg ti + εi)/wi < (Q-deg tj + εj)/wj

⇒ (Q ′-deg ti + ε′i)/wi < (Q ′-deg tj + ε′j)/wj .

(iii) For any i = 1, 2, . . . , n such that pi is a non-zero polynomial, for any terms
t1 and t2 in the expansion of pi, we have

Q-deg t1 < Q-deg t2 ⇒ Q ′-deg t1 < Q ′-deg t2.

Here Q-deg and Q ′-deg denote the degrees with respect to the new weight types
(�1, . . . , �n) and (�′1, . . . , �

′
n) respectively.

Proof. We claim that 0 ≤ �′i−�i ≤ wiε/(w1w2) for all i and 0 ≤ �′i−�i < wiε/(w1w2)
for i such that pi is a non-zero polynomial. We prove the claim by induction on i.

If i = n, then �n = εn, �
′
n = ε′n, and pn is the zero polynomial. By the definition

of ε′i, we know that 0 ≤ ε′n − εn ≤ ε/(w1w2) ≤ wnε/(w1w2). Thus the claim holds
for i = n.

Suppose the claim holds for i = k+ 1, . . . , n. We prove it holds for i = k. There
are the following two cases:

(1) pk is the zero polynomial. With the same argument as when i = n, we know
the claim holds.

(2) pk is a non-zero polynomial, since pk(0) = 0, so there is no constant term in
the expansion of pk. There are two subcases as follows.

(a) k = j0. Pick any s > k. If ps is a non-zero polynomial, then by the induc-
tive assumption we have 0 ≤ �′s − �s < wsε/(w1w2). If ps is the zero polynomial,
then �s = εs and �′s = ε′s. Notice that s 	= k = j0. We have εs = ε′s, which follows
that �′s − �s = 0 < wsε/(w1w2). Thus 0 ≤ �′s − �s < wsε/(w1w2) for all s > k. For
any term t = x

ak+1

k+1 . . . xan
n in the expansion of pk (ak+1, . . . , an are not all zero),

using the fact ak+1wk+1 + · · ·+ anwn = wk + wtD, we have

0 ≤ Q′-deg t−Q-deg t = ak+1(�
′
k+1 − �k+1) + · · ·+ an(�

′
n − �n)

< (ak+1wk+1 + · · ·+ anwn)ε/(w1w2)

= (wk + wtD)ε/(w1w2).
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Therefore

Q′-deg t < Q-deg t+ (wk + wtD)ε/(w1w2) ≤ Q-deg pk + (wk + wtD)ε/(w1w2),

for any term t in the expansion of pk; thus

Q′-deg pk < Q-deg pk + (wk + wtD)ε/(w1w2).(6.1)

Since
Q-deg t ≤ Q′-deg t ≤ Q′-deg pk,

for any term t in the expansion of pk, we have

Q-deg pk ≤ Q′-deg pk.(6.2)

Combining (6.1) with (6.3), we have

0 ≤ Q′-deg pk −Q-deg pk < (wk + wtD)ε/(w1w2).

By definition, we have ε′k − εk = ε/(w1w2). Thus

0 ≤ �′k − �k = ε′k +Q′-deg pk − (εk +Q-deg pk) < (wk + wtD + 1)ε/(w1w2).

Since wtD is a negative integer, we have wtD + 1 ≤ 0, and the claim is proved.
(b) k 	= j0, so ε′k = εk. For any term t = x

ak+1

k+1 . . . xan
n in the expansion of pk

(ak+1, . . . , an are not all zero), using the fact that ak+1wk+1+· · ·+anwn = wk+wtD
and the inductive assumption that 0 ≤ �′s − �s ≤ wsε/(w1w2) for s > k, we have

0 ≤ Q′-deg t−Q-deg t = ak+1(�
′
k+1 − �k+1) + · · ·+ an(�

′
n − �n)

≤ (ak+1wk+1 + · · ·+ anwn)ε/(w1w2)

= (wk + wtD)ε/(w1w2).

Therefore

Q′-deg t ≤ Q-deg t+ (wk + wtD)ε/(w1w2) ≤ Q-deg pk + (wk + wtD)ε/(w1w2)

for any term t in the expansion of pk; thus

Q′-deg pk ≤ Q-deg pk + (wk + wtD)ε/(w1w2).(6.3)

Since
Q-deg t ≤ Q′-deg t ≤ Q′-deg pk,

for any term t in the expansion of pk, we have

Q-deg pk ≤ Q′-deg pk.(6.4)

Combining (6.3) with (6.4), we have

0 ≤ Q′-deg pk −Q-deg pk ≤ (wk + wtD)ε/(w1w2).

Also ε′k − εk = 0, so by the definition of the new weight type, we have 0 ≤ �′k− �k ≤
(wk + wtD)ε/(w1w2). Since wtD is a negative integer, we have wk + wtD < wk.
Thus 0 ≤ �′k − �k < wkε/(w1w2), and the claim is proved.

From the argument above, we also know that for any i such that pi is a non-zero
polynomial and for any term t in the expansion of pi, we have

(6.5) 0 ≤ (Q′-deg t+ ε′i)− (Q-deg t+ εi) < wiε/(w1w2).

(i) For any i, j such that both pi and pj are non-zero polynomials, if �i/wi <
�j/wj , by Lemma 4.6 we have �j/wj − �i/wi ≥ ε/(w1w2). By the claim above,
we have 0 ≤ �′i/wi − �i/wi < wiε/(w1w2wi) = ε/(w1w2) and 0 ≤ �′j/wj − �j/wj .
Therefore we have �′i/wi < �i/wi + ε/(w1w2) ≤ �j/wj ≤ �′j/wj . Thus (i) is proved.
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(ii) For any i, j such that both pi and pj are non-zero polynomials and for any
term ti in the expansion of pi and any term tj in the expansion of pj , by Lemma 4.6,
we know all �k, k = 1, . . . , n are divisible by ε; thus Q-deg ti + εi and Q-deg tj + εj
are divisible by ε. Write Q-deg ti + εi and Q-deg tj + εj as the forms qiε and qjε
respectively where qi and qj are integers. If (Q-deg ti+εi)/wi < (Q-deg tj+εj)/wj ,
then qiwj < qjwi. Notice that qiwj and qjwi are integers, so qjwi−qiwj ≥ 1. Thus

(Q-deg tj + εj)/wj − (Q-deg ti + εi)/wi = (qjwi − qiwj)ε/(wiwj) ≥ ε/(w1w2).

By equation (6.5), we have

(Q′-deg ti + ε′i)/wi − (Q-deg ti + εi)/wi < wiε/(w1w2wi) = ε/(w1w2).

Combining these two inequalities and noticing that Q-deg tj + εj ≤ Q′-deg tj + ε′j
(see equation (6.5)), we have

(Q′-deg ti + ε′i)/wi < (Q-deg tj + εj)/wj ≤ (Q′-deg tj + ε′j)/wj .

(iii) Using (ii) for the case that i = j, we can get that for any i such that pi is a
non-zero polynomial and for any terms t1 and t2 in the expansion of pi, we have

(Q-deg t1 + εi)/wi < (Q-deg t2 + εi)/wi

⇒ (Q′-deg t1 + ε′i)/wi < (Q′-deg t2 + ε′i)/wi.

Thus we have

Q-deg t1 < Q-deg t2 ⇒ Q′-deg t1 < Q′-deg t2.

�

Theorem 6.1. Let f1, f2, . . . , fm be m weighted homogeneous polynomials with
respect to the weight type (w1, w2, . . . , wn) such that

R = C[x1, x2, . . . , xn]/(f1, f2, . . . , fm)

is a non-zero Artinian algebra. D is a non-zero negative weight derivation as in
(3.3) on P which preserves the ideal (f1, . . . , fm). (�1, . . . , �n) is the new weight type
associated with D and controlled by parameters ε′i. Fix a subset I of {1, 2, . . . , n}
(n≥2) such that I has more than one element. Suppose the parameter (ε1,ε2, . . . , εn)
satisfies the following condition:

(6.6) εi =

⎧⎪⎪⎨
⎪⎪⎩

ε i ∈ I and pi is a non-zero polynomial,
0 i ∈ I and pi is the zero polynomial,
ε+ ε/(w1w2)

bi i /∈ I and pi is a non-zero polynomial,
ε/(w1w2)

bi i /∈ I and pi is the zero polynomial,

where ε is a positive real number, k is the number of elements in I (k ≥ 2), and
b : i �→ bi is a one-to-one map from {1, 2, . . . , n} \ I to {1, 2, . . . , n − k}. Let
Imax = {e : �e/we is the maximum among all �i/wi for i = 1, 2, . . . , n}. If Imax ⊆ I
and pi is a non-zero polynomial for any i ∈ Imax, then there exists j ∈ {1, 2, . . . ,m}
such that

deg fj ≤ (m− 1)(w1w2)
n−1.

Proof. Consider the following two cases: Case 1: Imax = I, and Case 2: Imax is a
proper subset of I. We first prove that Case 1 can be reduced to Case 2. Then we
only need to consider Case 2.
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Assume that Imax = I. Write I = Imax = {i1, . . . , ik}, where i1 < i2 < · · · <
ik, k ≥ 2. Since pi is a non-zero polynomial for any i ∈ Imax = I, by (6.6) we can
see that εi = ε for any i ∈ Imax = I.

We shall first prove the following proposition.

Proposition 6.1. For any term t0 in the expansion of (pik−1
)max and for any term

t1 in the expansion of (pik)max, we have t0 = cxa
ik
t1, where a is a non-negative

integer and c is a non-zero constant coefficient.

Proof of Proposition 6.1. Let h : {1, 2, . . . , n − k} → {1, . . . , n} \ I be the inverse
function of the map b : i �→ bi; that is to say, bh(i) = i for i = 1, 2, . . . , n− k. Define

a group of parameters ε
(0)
i , ε

(1)
i , . . . , ε

(n−k)
i , i = 1, · · · , n by induction as follows:

ε
(0)
i =

{
ε pi is a non-zero polynomial,
0 pi is the zero polynomial.

Assume that the (j−1)-th group of parameter (ε
(j−1)
1 , . . . , ε

(j−1)
n ) has been defined.

Then we define

ε
(j)
i =

{
ε
(j−1)
i + ε/(w1w2)

j i = h(j),

ε
(j−1)
i i 	= h(j).

By this definition, it is clear that ε
(j)
i = ε for any i ∈ Imax = I and any j =

0, 1, . . . , n − k. In particular ε
(n−k)
i = ε = εi, for i ∈ Imax = I. On the other

hand, for i /∈ Imax, there exists a unique j ∈ {1, . . . , n − k} such that h(j) = i;

hence bi = j. Thus ε
(n−k)
i = εji = ε

(j−1)
i + ε/(w1w2)

bi = ε
(0)
i + ε/(w1w2)

bi = εi.

Thus (ε
(n−k)
1 , . . . , ε

(n−k)
n ) = (ε1, . . . , εn). Let (�

(j)
1 , . . . , �

(j)
n ) be the new weight type

controlled by parameter (ε
(j)
1 , . . . , ε

(j)
n ) for j = 0, 1, . . . , n−k, and let Q(j)-deg mean

the associated degree. For convenience, we write ik−1 = s and ik = t, then s < t.
Since s, t ∈ Imax = I, ps and pt are not the zero polynomials. Pick any term t0 in
the expansion of (ps)max and pick any term t1 in the expansion of (pt)max. Notice
that s, t ∈ Imax. We have �s/ws = �t/wt; thus

(Q-deg t0 + εs)/ws = (Q-deg t1 + εt)/wt.

Since (ε1, . . . , εn) = (ε
(n−k)
1 , . . . , ε

(n−k)
n ), we have

(6.7) �(n−k)
s /ws = �

(n−k)
t /wt,

(6.8) (Q(n-k)-deg t0 + ε(n−k)
s )/ws = (Q(n-k)-deg t1 + ε

(n−k)
t )/wt.

We claim that

(6.9) �(j)s /ws = �
(j)
t /wt

for j = 0, 1, . . . , n− k, because if there exists e such that �
(e)
s /ws 	= �

(e)
t /wt, notice

that both ps and pt are not the zero polynomials by Lemma 6.1(i) (here we set

ε = ε/(w1w2)
e) we have �

(e+1)
s /ws 	= �

(e+1)
t /wt. Similarly, �

(e+1)
s /ws 	= �

(e+1)
t /wt

can imply �
(e+2)
s /ws 	= �

(e+2)
t /wt. Continuing this process, finally it will imply that

�
(n−k)
s /ws 	= �

(n−k)
t /wt, which contradicts (6.7). Hence (6.9) is proved. Likewise,

using Lemma 6.1(ii) and equation (6.8), we have

(6.10) (Q(j)-deg t0 + ε(j)s )/ws = (Q(j)-deg t1 + ε
(j)
t )/wt.
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From above, since ε
(j)
s = ε

(j)
t = ε for j = 0, . . . , n− k, so (6.10) implies that

(6.11) (Q(j)-deg t0 + ε)/ws = (Q(j)-deg t1 + ε)/wt

for j = 0, 1, . . . , n− k. We claim that t0 is independent of xi for i = s+1, . . . , t− 1
for the following reason. Assume the opposite, that there exist e ∈ {s+1, . . . , t−1}
such that t0 depends on xe. Let j = be; then h(j) = e. Thus by definition we have

ε
(j−1)
i = ε

(j)
i for i 	= e and ε

(j−1)
e < ε

(j)
e , which follows that �

(j−1)
i = �

(j)
i for i > e

and �
(j−1)
e < �

(j)
e and �

(j−1)
i ≤ �

(j)
i for i < e. Notice that t1 is a monomial of only

variables xt+1, . . . , xn and t+ 1 > e, so we have

(6.12) Q(j-1)-deg t1 = Q(j)-deg t1.

Notice that t0 depends on xe, so we have

(6.13) Q(j-1)-deg t0 < Q(j)-deg t0.

Equation (6.12) and inequality (6.13) contradict (6.11); thus the claim that t0 is
independent of xi for i = s + 1, . . . , t − 1 is proved. So t0 can be written as the
form cxa

t t2, where t2 is a monomial of variables xt+1, . . . , xn and a is a non-negative
integer and c is a constant coefficient. Next, we will prove t2 = t1 up to a scale by

two steps. Write t1 and t2 as c1x
at+1

t+1 . . . xan
n and c2x

bt+1

t+1 . . . xbn
n respectively.

Step 1. We first prove that

(6.14) ai/bi = (deg t1 − wtD)/(deg t2 − wtD)

for i = t+ 1, . . . , n.
Since the term t1 appears in the expansion of (pt)max, for any term g in the

expansion of pt we have Q-deg t1 ≥ Q-deg g, i.e., Q(n-k)-deg t1 ≥ Q(n-k)-deg g.
Using Lemma 6.1(iii), we can get Q(j)-deg t1 ≥ Q(j)-deg g for any j = 0, 1, . . . , n−k
and for any term g in the expansion of pt. It follows that

(6.15) �
(j)
t = Q(j)-deg t1 + ε,

for j = 0, 1, . . . , n − k. By (6.11), (6.15), and the facts that ws = deg t0 − wtD,
wt = deg t1 − wtD, and t0 = cxa

t t2, we have

Q(j)-deg t0 + ε

deg t0 − wtD
=

a�
(j)
t +Q(j)-deg t2 + ε

awt + deg t2 − wtD

=
Q(j)-deg t1 + ε

deg t1 − wtD
=

�
(j)
t

wt

for j = 0, . . . , n− k. It follows that

(6.16)
Q(j)-deg t2 + ε

deg t2 − wtD
=

Q(j)-deg t1 + ε

deg t1 − wtD

for j = 0, . . . , n−k. We prove the claim that ai/bi = (deg t1−wtD)/(deg t2−wtD)
for i = t+ 1, . . . , n by induction. If i = t+ 1, let j = bt+1; then h(j) = t+ 1. Thus

�
(j)
t+1 − �

(j−1)
t+1 > 0 and �

(j)
t+2 − �

(j−1)
t+2 = · · · = �

(j)
n − �

(j−1)
n = 0. Hence we have

Q(j)-deg t1 = Q(j-1)-deg t1 + at+1(�
(j)
t+1 − �

(j−1)
t+1 ),

Q(j)-deg t2 = Q(j-1)-deg t2 + bt+1(�
(j)
t+1 − �

(j−1)
t+1 ).

By (6.16) we can get at+1/bt+1 = (deg t1 − wtD)/(deg t2 − wtD); thus the claim
holds for t+ 1.
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Suppose (6.14) holds for t+1, t+2, . . . , i−1. Let’s prove it for i. Let j = bi. Then

h(j) = i; thus we have �
(j)
i − �

(j−1)
i > 0 and �

(j)
i+1 − �

(j−1)
i+1 = · · · = �

(j)
n − �

(j−1)
n = 0.

Thus we have

Q(j)-deg t1 = Q(j-1)-deg t1 + at+1(�
(j)
t+1 − �

(j−1)
t+1 ) + · · ·+ ai(�

(j)
i − �

(j−1)
i )

and

Q(j)-deg t2 = Q(j-1)-deg t2 + bt+1(�
(j)
t+1 − �

(j−1)
t+1 ) + · · ·+ bi(�

(j)
i − �

(j−1)
i ).

By inductive assumption and (6.16) we can get

ai/bi = (deg t1 − wtD)/(deg t2 − wtD).

Step 2. We shall prove that deg t1 − wtD = deg t2 − wtD. Assume that deg t1 −
wtD > deg t2 − wtD. Then by (6.14), we have ai > bi for i = t + 1, . . . , n. Let

t3 = x
at+1−bt+1

t+1 . . . xan−bn
n ; then t1 = t2t3 up to a scale. Thus we have

�t
wt

=
Q-deg t1 + ε

deg t1 − wtD
=

Q-deg t2 +Q-deg t3 + ε

deg t2 + deg t3 − wtD
.(6.17)

By the fact that (ε
(n−k)
1 , . . . , ε

(n−k)
n ) = (ε1, . . . , εn) and the equation (6.16) for

j = n− k, we have

(6.18)
Q-deg t1 + ε

deg t1 − wtD
=

Q-deg t2 + ε

deg t2 − wtD
.

By (6.17) and (6.18) we can get �t/wt = Q-deg t3/ deg t3. Since t ∈ Imax and
t + 1, . . . , n /∈ Imax, we have �t/wt > �t+1/wt+1, . . . , �t/wt > �n/wn. Also t3
is a monomial of xt+1, . . . , xn, so Q-deg t3/ deg t3 < �t/wt, which contradicts
�t/wt = Q-deg t3/ deg t3. So the assumption deg t1 − wtD > deg t2 − wtD is
invalid. Similarly we can prove the assumption deg t1 − wtD < deg t2 −wtD is in-
valid. Thus deg t1−wtD = deg t2−wtD. It follows that ai = bi for i = t+1, . . . , n;
thus t1 = t2 up to a scale. So Proposition 6.1 is proved.

Now we come back to the proof of Theorem 6.1.
Fix a term t0 in the expansion of (pik−1

)max. For any two terms t1, t2 in the
expansion of (pik)max, by Proposition 6.1, we have t0 = c1x

a1
ik
t1 and t0 = c2x

a2
ik
t2,

where c1, c2 are non-zero constant coefficients and a1, a2 are non-negative integers.
So c1x

a1
ik
t1 = c2x

a2
ik
t2. Notice that t1, t2 are monomials of variables xik+1, . . . , xn,

so t1 = t2 up to a scale. So there is only one term in the expansion of (pik)max.
Fix a term t2 in the expansion of (pik)max. For any two terms t0, t1 in the

expansion of (pik−1
)max, by Proposition 6.1, we have t0 = c0x

a0
ik
t2 and t1 = c1x

a1
ik
t2,

where c0, c1 are non-zero constant coefficients and a0, a1 are non-negative integers.
Because pik−1

is a weighted homogeneous polynomial with respect to the original
weight type (w1, . . . , wn), we have deg t0 = deg t1; thus a0 = a1. Since t0 = t1 up to
a scale, it follows that there is only one term in the expansion of (pik−1

)max. Hence

(pik−1
)max = cxa

ik
(pik)max,

where c is a non-zero constant coefficient and a is a non-negative integer. Noticing
that deg(pik−1

)max = deg pik−1
= wik−1

+ wtD and deg(pik)max = deg pik = wik +
wtD, we have wik−1

+ wtD = awik + wik + wtD, which follows that

(6.19) wik−1
= (a+ 1)wik .
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And since ik−1, ik ∈ Imax, so �ik−1
/wik−1

= �ik/wik , we have that

(6.20) �ik−1
= (a+ 1)�ik .

In the following, we will take a coordinate change which preserves the original
weight type (w1, w2, . . . , wn). The coordinate change is of the following form:

(6.21)

x1 = x′
1,

. . . . . .

xik−1
= x′

ik−1
+ c(x′

ik
)a+1/(a+ 1),

. . . . . .

xn = x′
n.

Calculating the transformation of derivations in this coordinate change (6.21)
we have

(6.22)

∂

∂x′
1

=
∂

∂x1
,

. . . . . .

∂

∂x′
ik−1

=
∂

∂xik−1

,

∂

∂x′
ik

=
∂

∂xik

+ c(x′
ik
)a

∂

∂xik−1

,

. . . . . .

∂

∂x′
n

=
∂

∂xn
.

Write the expression of the negative weight derivation D in the new coordinate
system as

D′ = p′1
∂

∂x′
1

+ p′2
∂

∂x′
2

+ · · ·+ p′n
∂

∂x′
n

.

It is clear that p′t = pt for t 	= ik−1. Only

p′ik−1
= pik−1

− c(x′
ik
)apik = pik−1

− cxa
ik
pik

is changed. Let (�′1, . . . , �
′
n) be the new weight type associated with D′ in the new

coordinate system and controlled by the origin parameter (ε1, ε2, . . . , εn) and let
Q′-deg mean the associating degree. For any t > ik−1, we have p′t = pt and pt is
independent of xik−1

. Thus the expression of pt in the origin coordinate system is
the same as the expression of p′t in the new coordinate system (since the coordinate
change only happens on xik−1

), which follows that �′t = �t for all t > ik−1. We claim
that �′ik−1

< �ik−1
for the following reason. Since (pik−1

)max = cxa
ik
(pik)max, we have

(pik−1
− cxa

ik
pik) is the zero polynomial or Q-deg (pik−1

− cxa
ik
pik) < Q-deg pik−1

.
If the former, then p′ik−1

is the zero polynomial and it’s clear that �′ik−1
< �ik−1

.

If the latter, notice that p′ik−1
= pik−1

− cxa
ik
pik is a polynomial of xt for t > ik−1

and �′t = �t for t > ik−1. We have Q′-deg p′ik−1
= Q-deg (pik−1

− cxa
ik
pik). Thus

Q′-deg p′ik−1
< Q-deg pik−1

, which implies that �′ik−1
< �ik−1

. Now we claim that

�′t ≤ �t for all t = 1, 2, . . . , n and we will prove it by induction on t. From the
above argument we already know it holds for t ≥ ik−1. Assume the claim holds for
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t + 1, t + 2, . . . , n, and we will prove it holds for t (here t < ik−1). For any term
g = x

at+1

t+1 . . . xan
n in the expansion of pt,

g = (x′
t+1)

at+1 . . .
(
x′
ik−1

+
c

a+ 1
(x′

ik
)a+1

)aik−1 . . . (x′
n)

an

in terms of the new coordinate system. By the fact that Q′-deg(x′
ik
)a+1 = (a +

1)�′ik = (a + 1)�ik = �ik−1
(by equation 6.20) and the inductive assumption, we

can get Q ′-deg g ≤ Q-deg g for any term g in the expression of pt. Also because
p′t = pt (because t < ik−1), we can get Q′-deg p′t ≤ Q-deg pt, which follows that
�′t ≤ �t, and the claim is proved.

Let I ′max = {e : �′e/we is the maximum among all �′i/wi for i = 1, 2, . . . , n}. From
the above argument we know that for any i /∈ Imax, �

′
i/wi ≤ �i/wi < �ik/wik =

�′ik/wik , which follows that i /∈ I ′max. Thus I
′
max ⊆ Imax. Notice that �′ik−1

/wik−1
<

�ik−1
/wik−1

= �ik/wik = �′ik/wik , so we have I ′max ⊆ Imax \ {ik−1}, which follows
that I ′max is a proper subset of Imax = I. And for any i ∈ I ′max, we have i ∈ Imax

and i 	= ik−1, so that pi is a non-zero polynomial and p′i = pi. Thus the condition
that p′i is a non-zero polynomial for any i ∈ I ′max is satisfied. Thus the case that
Imax = I can be reduced to the case that Imax is a proper subset of I.

Then we prove Theorem 6.1 by induction on the number k of elements of I.
If k = 2, for the above reason we may assume that Imax is a proper subset of
I; thus Imax has only one element. Assume that Imax = {i0}. Let β = �i0/wi0 ,
γ = max{�i/wi : i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n}, and εmin = min{εi for i such
that pi is a non-zero polynomial}. Since i0 ∈ Imax ⊂ I, we know that pi0 is a
non-zero polynomial and εi0 = ε. Also εi ≥ ε = εi0 for any i such that pi is a non-
zero polynomial; thus εmin = ε = εi0 . Since all εi are divisible by ε/(w1w2)

n−k =
ε/(w1w2)

n−2, by Lemma 4.6 we have β − γ ≥ ε/(w1w2)
n−1. Since i0 ∈ I, we know

that εi0 = εmin = ε and pi0 is a non-zero polynomial. By Theorem 4.1, there exists
j ∈ {1, 2, . . . ,m} such that

deg fj ≤
(m− 1)εmin

β − γ
≤ (m− 1)(w1w2)

n−1.

Suppose that the conclusion holds for 2, . . . , k − 1; we prove it for k. If Imax has
only one element, then using a similar argument as above we can get the conclusion.
Thus we may assume that Imax has more than one element, and we may assume
that Imax is a proper subset of I. Then we pick an index j0 ∈ I \ Imax. Define
another parameter (ε′i) as follows:

ε′i =

{
εi + ε/(w1w2)

n−k+1 i = j0,
εi i 	= j0.

Consider the new weight type (�′1, . . . , �
′
n) controlled by parameters (ε′1, . . . , ε

′
n), and

let I ′max = {e : �′e/we is the maximum among all �′i/wi for i = 1, 2, . . . , n}. We claim
that I ′max ⊆ Imax for the following reason. For any i /∈ Imax, we need to consider
the following two cases.

(1) pi is a non-zero polynomial. Fix an index j ∈ Imax; then �i/wi < �j/wj . By
Lemma 6.1(i) (here we set ε = ε/(w1w2)

n−k) we have �′i/wi < �′j/wj , which follows
that i /∈ I ′max.

(2) pi is the zero polynomial. Then ε′i ≤ ε/(w1w2); thus �
′
i ≤ ε/(w1w2). For any

t ∈ Imax ⊂ I, pt is a non-zero polynomial, so εt = ε. Also t 	= j0; thus ε
′
t = εt = ε,

which follows that �′t = ε′t + Q′-deg pt ≥ ε (here the equality may hold because
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Q′-deg pt may be equal to zero). Assume that i ∈ I ′max. Then we have

ε/wt ≤ �′t/wt ≤ �′i/wi ≤ ε/(w1w2wi), for any t ∈ Imax.

Thus w1w2wi ≤ wt for any t ∈ Imax, concluding that w2 = wi = 1 and w1 = wt for
any t ∈ Imax. Since Imax has more than one element by assumption, there exists
t0 ∈ Imax such that t0 ≥ 2, so it follows that wt0 ≤ w2. Thus w1 = wt0 ≤ w2 = 1,
so that w1 = 1; that is to say, w1 = w2 = · · · = wn. Notice that deg pi < wi and
pi(0) = 0 (by Lemma 4.8) for i such that pi is a non-zero polynomial. Thus pi
has to be the zero polynomial for i = 1, 2, . . . , n, i.e., D = 0, and this leads to a
contradiction. Hence the assumption i ∈ I ′max is wrong.

Thus i /∈ I ′max for all i /∈ Imax, which follows that I ′max ⊆ Imax ⊆ I \{j0}. For any
i ∈ I ′max, we have i ∈ Imax; thus pi is a non-zero polynomial. Let I ′ = I\{j0}. Then
the number of elements of I ′ is k − 1 and I ′max ⊆ I ′. By the inductive assumption,
the conclusion is proved. �

Main Theorem A. Let P = C[x1, x2, . . . , xn] be the weighted polynomial ring of n
weighted variables x1, x2, . . . , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn.
Suppose that f1, f2, . . . , fm are m (m ≥ n ≥ 2) weighted homogeneous polynomials
with degrees greater than (m − 1)(w1w2)

n−1 and R = P/(f1, f2, . . . , fm) is an
Artinian algebra. Then there are no non-zero negative weight derivations on R =
P/(f1, f2, . . . , fm).

Proof of Main Theorem A. If the conclusion is not true, suppose D is a non-zero
negative weight derivation on R or equivalently a non-zero negative weight deriva-
tion on P which preserves the ideal (f1, f2, . . . , fm) as in (3.3). We take the new
weight type (�1, . . . , �n) of D controlled by the parameters εi. Here

εi =

{
ε pi is a non-zero polynomial,
0 pi is the zero polynomial,

where ε is a positive real number. It’s clear that �i > 0 for any i such that pi is a
non-zero polynomial and �i = 0 for any i such that pi is the zero polynomial. Thus
pi is a non-zero polynomial for any i ∈ Imax. Let I = {1, 2, . . . , n}, and it’s clear
that Imax ⊆ I. Then by Theorem 6.1 we know that there exists j ∈ {1, 2, . . . ,m}
such that deg fj ≤ (m−1)(w1w2)

n−1, which contradicts the condition that deg fj >
(m− 1)(w1w2)

n−1 for all j. So the conclusion is proved. �

7. Duality for zero-dimensional singularities

In this section we recall the duality theorem for zero-dimensional, singularities,
which is crucial in our proof of Main Theorem C.

Let A be a local analytic C-algebra, i.e., a quotient algebra of the convergent
power series ring H = C{x1, . . . , xn} in n variables over C. We shall denote the
maximal ideal of A by mA and the module of regular holomorphic differential 1-
forms of H by Ω1

H/C
∼= H{dx1, . . . , dxn}.

Let I be an ideal of H and let A = H/I be a quotient algebra of H. One can
define the module Ω1

A/C of Kähler differentials of A over C by the standard exact

sequence of A-modules

(7.1) I/I2
d→ Ω1

H/C ⊗H A → Ω1
A/C → 0,
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where d is given by d(f̄) = dH/C(f̄)⊗ 1 for f̄ ∈ I/I2 and dH/C : H → Ω1
H/C is the

universal differential.
Let us consider the functor DerC(A,−) of C-derivations (from A-modules to A-

modules). There is a fundamental functorial isomorphism DerC(A,−) ∼=
HomA(Ω

1
A/C,−). Let Der(A)=DerC(A,A). Der(A) is the A-module of C-derivations

of A.

Remark 7.1. Suppose that the ideal I is generated by the sequence of functions
f1, . . . , fk ∈ H. Then

Ω1
A
∼= Ω1

H/(

k∑
j=1

fj · Ω1
H +H · dfj).

The local C-algebra A = H/I corresponds to the germ X ⊂ (Cn, 0) with the
dual analytic C algebra OX

∼= A. The modules Ω1
A and Der(A) are usually referred

to as the module of regular holomorphic differential 1-forms and the module of
holomorphic vector fields on the germ X respectively. They are also denoted by
Ω1

X and Der(X).
We will also consider the tangent and cotangent functors of analytic algebras (see

[Pa]) denoted by Ti and T i respectively, i ≥ 0. By definition, for any A-module M
there exist the isomorphisms

T0(A/C,M) ∼= Ω1
A/C ⊗A M, T 0(A/C,M) ∼= DerC(A,M)

and exact sequences of A-modules

0 → T1(A/C,M) → I/I2 ⊗A M
d⊗1m−→ Ω1

H/C ⊗H M → T0(A/C,M) → 0,

0 → T 0(A/C,M) → HomA(Ω
1
H/C ⊗H M,M) → HomA(I/I

2,M)

→ T 1(A/C,M) → 0.

The first sequence is obtained by tensoring (7.1) with M over A. Applying the
functor HomA(−,M) to (7.1), we get the second sequence.

For brevity we shall denote the tangent and cotangent modules Ti(A/C, A) and
T i(A/C, A) by Ti(A) and T i(A) respectively.

Hence

T0(A) ∼= Ω1
A/C, T 0(A) ∼= Der(A), T1(A) ∼= Ker(d).

Moreover, if A = Ared is reduced and an A module M has no embedded associative
primes, then there is an isomorphism (see [KL, (1.4.3)])

T 1(A/C,M) ∼= Ext1A(Ω
1
A/C,M).

This is also true if instead of the above condition on A we assume that the analytic
C-algebra A corresponding to the germ X ⊂ (Cm, 0) has positive depth along its
singular locus.

For convenience we also recall the following assertion.

Proposition 7.1 ([AM, (2.2)]). Let A = H/I be an Artinian complete intersection;
that is, I is generated by a regular H sequence f1, . . . , fn ∈ H. Then the tangent
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and cotangent module Ti(A) and T j(A) have the same dimension for i, j = 0, 1,
i.e.,

dimC Ω1
A/C = dimC T1(A/C, A) = dimC Der(A,A) = dimC T 1(A/C, A).

Definition 7.1. Let f ∈ H be an analytic function with an isolated critical point at
the origin. The ideal I generated by partial derivatives fxi

= ∂f/∂xi, i = 1, . . . , n,
is called the gradient ideal. In this case the H-sequence fx1

, . . . , fxn
is regular so

that A = H/I is an Artinian complete intersection.

Theorem 7.1 ([A2]). Let I be the gradient ideal defined by an analytic function
f ∈ H with an isolated critical point at the origin, A = H/I. Then there exist two
canonical non-degenerate pairings

T 0(A)× T 1(A) −→ C,

T0(A)× T1(A) −→ C.

Remark 7.2. Using elementary properties of tangent cohomology one may easily
calculate an explicit representation of the pairings from the above theorem:

(7.2) Der(A)×An/(Hess(f) ·An) −→ A −→ C

(ν1, . . . , νn)× (a1, . . . , an) �−→
∑
i

νiai �→ C

where

Hess(f) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x2
1

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the last arrow is the projection on the one-dimensional component of the alge-
bra A, which is called the socle that corresponds to the class of Det(Hess(f))=dfx1

∧
· · · ∧ dfxn

/dx1 ∧ · · · ∧ dxn.

8. Some related useful results

Theorem 8.1, which we want to use later, was proved by K. Saito in [Sa2]; see
also [Wie].

Theorem 8.1 ([Sa2]). Let f ∈ OCn,0 be a germ of a holomorphic function which
defines a hypersurface with isolated singularity at 0. Then

(1)

Det(∂2f/∂xi∂xj)i,j=1,...,n /∈ (fx1
, . . . , fxn

)OCn,0

and

mDet(∂2f/∂xi∂xj)i,j=1,...,n ∈ (fx1
, . . . , fxn

)OCn,0

where m is the maximal ideal of OCn,0.
(2) For each g ∈ OCn,0 with

g /∈ (fx1
, . . . , fxn

)OCn,0
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there is an h ∈ OCn,0 such that

hg −Det(∂2f/∂xi∂xj)i,j=1,...,n ∈ (fx1
, . . . , fxn

)OCn,0.

(3) If f is a weighted homogeneous polynomial with weights (w1, . . . , wn) and
degree d, then

Det(∂2f/∂xi∂xj)i,j=1,...,n

is also a weighted homogeneous polynomial with the same weights (w1, . . . , wn) as
f and of degree nd− 2

∑n
i=1 wi.

The following concepts and results enable one to compute the Yau algebras of
many concrete singularities. Let A,B be associative algebras over a field k. Recall
that the multiplication algebra M(A) of A is defined as the subalgebra of endomor-
phisms of A generated by the identity element and left and right multiplications by
elements of A. The centroid C(A) is the set of endomorphisms of A which commute
with all elements of M(A). Clearly, C(A) is a unital subalgebra of End(A). The
following statement is a particular case of a general result from [Bl, Proposition
1.2]. (cf. [Bl]). Let S = A ⊗ B be the tensor product of finite-dimensional unital
associative algebras. Then

DerS ∼= (DerA)⊗ C(B) + C(A)⊗ (DerB).

We will only use this result for commutative unital associative algebras, in which
case the centroid coincides with the algebra itself. Thus for commutative associative
algebras A,B one has:

Theorem 8.2. For commutative associative algebras A,B,

(8.1) DerS ∼= (DerA)⊗B +A⊗ (DerB).

This formula will be used in what follows.
For an ideal J in an analytic algebra S, denote by DerJS ⊆ DerCS the Lie

subalgebra of all σ ∈ DerCS for which σ(J) ⊂ J . We shall use the following
well-known result to compute the derivations.

Theorem 8.3. Let J be an ideal in R = C{x1, . . . , xn}. Then there is a natural
isomorphism of Lie algebras

(DerJR)/(J ·DerCR) ∼= DerC(R/J).

Proof. By definition, there is a map ϕ : DerJR → DerC(R/J) whose kernel contains
J · DerCR. Note that DerCR is a free R-module with basis ∂/∂x1, . . . , ∂/∂xn and
that the coefficient of ∂/∂xi in σ ∈ DerCR is σ(xi). So if σ ∈ Kerϕ, then σ(xi) ∈ J ,
and hence σ ∈ J ·DerCR. This proves injectivity. By a result of Scheja and Wiebe
[SW], any σ̄ ∈ DerC(R/J) lifts to a σ ∈ DerCR, which is then necessarily in DerJR.
This proves surjectivity, and the claim follows. �

9. Weighted homogenous fewnomial isolated singularities

We first recall the setting of the so-called fewnomials introduced in [Kho]. Let
us first establish precise terminology which will be different from the setting of
[Kho], where the term fewnomial was first introduced. Let P be a polynomial in n
variables. We shall say that P is a fewnomial if the number of monomials appearing
in P does not exceed n. Obviously, the number of monomials in P may depend on
the system of coordinates. In order to obtain a rigorous concept we shall only allow
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linear changes of coordinates and say that P (or rather its germ at the origin) is a
k-nomial if k is the smallest natural number such that P becomes a k-nomial after
(possibly) a linear change of coordinates. For linguistic flexibility it is convenient
to say in such a case that the nomiality of P , abbreviated as nom P , is equal
to k. Nomiality may be considered as a sort of elementary complexity measure of
polynomials which appears to be relevant in some problems of enumerative algebraic
geometry [Kho]. An isolated hypersurface singularity (V, 0) is called k-nomial if
there exists an IHS Y analytically isomorphic to V which can be defined by a
k-nomial and k is the smallest such number. It turns out that, except for some
non-interesting cases, a singularity defined by a fewnomial P can be isolated only
if nom P = n, i.e., if P is a n-nomial in n variables. We formulate this result
separately for further reference.

Lemma 9.1 ([Sa1]). We fix an index i ∈ {1, . . . , n}. For an isolated singularity f ,
at least one of the monomials of the form xa

i xj , a ≥ 1, j = 1, . . . , n, appears in the
series f with a non-zero coefficient.

Lemma 9.2 ([Khi]). A k-nomial P in n variables which does not contain mono-
mials of degree less than three cannot have an isolated critical point at the origin if
k < n.

Proof. By Lemma 9.1, for each i, there exists a monomial xa
i xj in P . For each i, fix

a monomial of such form with the minimal j = j(i). Since there are no monomials
of degree two, two monomials of such type chosen for two different numbers i1 	= i2
cannot coincide. This obviously implies that the number of monomials in P cannot
be less than the number of coordinates n. This gives the conclusion. �

Remark 9.1. Using terminology of [AVZ], the requirement that there are no qua-
dratic terms can be expressed by saying that P is of (maximal) corank n at the
origin. The reason why we have to exclude quadratic terms is that otherwise the
formulation given above would not be correct. Indeed, a stabilization of anA1 singu-
larity can be defined by a polynomial in 2k variables of the form x1x2+· · ·+x2k−1x2k

which contains only k monomials. Notice also that Pham polynomials give evident
examples of n-nomials with isolated singularity at the origin of Cn.

We introduce some terminology.

Definition 9.1. We say that an IHS in Cn is a fewnomial if it can be defined by
an n-nomial in n variables, and we say that it is a weighted homogenous fewnomial
isolated singularity if it can be defined by a weighted homogenous fewnomial.

Notice that a direct sum of weighted homogenous fewnomial isolated singularity
is also a weighted homogenous fewnomial isolated singularity. Moreover, according
to (8.1) derivation algebras of direct sums can be easily computed. For this rea-
son our strategy will be to prove the main theorem for certain series of weighted
homogeneous fewnomial isolated singularities and then extend it to direct sums of
singularities from those series. Theorem 9.1 may be deduced from [KS]. For the
sake of the convenience to the reader, we include a short and elementary proof
below.

Theorem 9.1. Let f be a weighted homogeneous fewnomial isolated singularity
with mult(f) ≥ 3. Then f is analytically equivalent to a linear combination of the
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following three series:
Type A. xa1

1 + xa2
2 + · · ·+ x

an−1

n−1 + xan
n , n ≥ 1.

Type B. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1, n ≥ 2.

Type C. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n , n ≥ 2.

Proof. Let us first introduce a lemma which is a crucial part of the proof of the
theorem.

Lemma 9.3. Let f(x1, . . . , xn) be a weighted homogeneous fewnomial which de-
fines an isolated singularity at origin. Then x

ai1
i1

xj(i1), x
ai2
i2

xj(i2), where j(i1) 	= i1,
j(i2) 	= i2, i1 	= i2, and j(i1) = j(i2), cannot appear in the support of f simultane-
ously.

Proof. By Lemma 9.1, for any i ∈ {1, . . . , n}, either xai
i , ai > 1, or xai

i xj(i), j(i) 	= i,
appear in the support of f . Since f(x1, . . . , xn) is a fewnomial, and if there exists
i1, i2 ∈ {1, · · · , n}, such that x

ai1
i1

xj(i1), x
ai2
i2

xj(i2), where j(i1) 	= i1, j(i2) 	= i2, i1 	=
i2, and j(i1) = j(i2), appear in the Supp(f), then f = c1x

ai1
i1

xj(i1) + c2x
ai2
i2

xj(i2) +∑n
k=3 ckx

aik

ik
xj(ik), where ci 	= 0, 1 ≤ i ≤ n, and ik ∈ {1, · · · , n}\{i1, i2}, 3 ≤ i ≤ n.

We claim that f can’t have isolated singularities. This is because when we calculate
∂f/∂xi, 1 ≤ i ≤ n, and set xik , 3 ≤ k ≤ n, to 0, we end up with at most one non-
trivial equation ∂f/∂xj(i1) = 0 for the 2 variables {xi1 , xi2}, because j(i1) 	= i1,
j(i2) 	= i2, and j(i1) = j(i2), so xj(i1) = xj(i2) = 0. Therefore f does not define
an isolated singularity, which contradicts the hypothesis. �

Therefore Theorem 9.1 is an immediate corollary of Lemmas 9.1, 9.2, and 9.3 up
to non-zero coefficients. We can then rescale so all the coefficients can be 1. �

10. Proof of Main Theorem C

Proposition 10.1. Let f = xa1
1 +xa2

2 + · · ·+xan
n be a weighted homogeneous fewno-

mial isolated singularity of type A and let A(f) = C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
)

be the moduli algebra of f . Then there are no non-zero negative weight derivations
on A(f).

Proof. Since

A(f) :=C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
)

=C{x1, . . . , xn}/(a1xa1−1
1 , a2x

a2−1
2 , . . . , anx

an−1
n )

∼=C{x1}/(xa1−1
1 )⊗ C{x2}/(xa2−1

2 )⊗ · · · ⊗ C{xn}/(xan−1
1 ).

By (8.1), it suffices to show that C{x}/(xak−1) has no negative weight derivations.
By Theorem 8.3, it is easy to compute Der(C{x}/(xak−1)) and see that it is spanned
by xi∂x, 1 ≤ i ≤ ak − 2, 1 ≤ k ≤ n. Each of these generators has non-negative
weight. Thus there are no non-zero negative weight derivations on A(f). �

Proposition 10.2. Let f = xa1
1 x2 + xa2

2 x3 + · · · + x
an−1

n−1 xn + xan
n x1, n ≥ 2, be a

weighted homogeneous fewnomial isolated singularity of type B and mult(f) ≥ 4.

A(f) = C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
)

is the moduli algebra of f . Then there are no non-zero negative weight derivations
on A(f).
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In order to prove Proposition 10.2, we first introduce some lemmas.
In the moduli algebra A(f) = C{x1, x2, . . . , xn}/(fx1

, fx2
, . . . , fxn

) we have the
following relations:

xa1
1 = −a2x

a2−1
2 x3,

xa2
2 = −a3x

a3−1
3 x4,

...

xai
i = −ai+1x

ai+1−1
i+1 xi+2,(10.1)

...

x
an−1

n−1 = −anx
an−1
n x1,

xan
n = −a1x

a1−1
1 x2

and

xa1
1 x2 = 0,

xa2
2 x3 = 0,

...(10.2)

x
an−1

n−1 xn = 0,

xan
n x1 = 0.

It is easy to see that A(f) = C{x1, x2, . . . , xn}/(fx1
, fx2

, . . . , fxn
) is a vector space

spanned by the monomial basis {xk1
1 xk2

2 · · ·xkn−1

n−1 xkn
n }, where (k1, k2, . . . , kn) ∈ {0 ≤

ki ≤ ai − 1, 1 ≤ i ≤ n}.

Lemma 10.1. Let f = xa1
1 x2 + xa2

2 x3 + · · · + x
an−1

n−1 xn + xan
n x1 be a weighted ho-

mogeneous fewnomial isolated singularity of type B and mult(f) ≥ 4, with positive
weights w1, . . . , wn. Then wi <

d
3 for 1 ≤ i ≤ n.

Proof. Since mult(f) ≥ 4, ai ≥ 3 for 1 ≤ i ≤ n. It follows from awi + wi+1 =
d, ai ≥ 3 that wi <

d
3 for 1 ≤ i ≤ n. �

The main idea of the proof of Proposition 10.2 is to use duality (see Theorem
7.1 and Remark 7.2). Since the pairing map in Theorem 7.1 is non-degenerate, it
suffices to prove that for any negative weight derivation in Der(A), its pairing with
all elements in A(f)n/Hess(f)A(f)n maps to 0.

First we simplify A(f)n/Hess(f)A(f)n. We can see that the Hessian matrix
Hess(f) of f is of the following form:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(a1−1)x
a1−2
1 x2 a1x

a1−1
1 0 ... 0 anx

an−1
n

a1x
a1−1
1 a2(a2−1)x

a2−2
2 x3 a2x

a2−1
2 ... 0 0

0 a2x
a2−1
2 a3(a3−1)x

a3−2
3 x4 ... 0 0

0 0 a3x
a3−1
3 ... 0 0

.

.

.
.
.
.

.

.

. ...

.

.

.
.
.
.

0 0 0 ... an−1(an−1−1)x
an−1−2

n−1
xn an−1x

an−1−1

n−1

anx
an−1
n 0 0 ... an−1x

an−1−1

n−1
an(an−1)x

an−2
n x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By Theorem 8.1(3), the maximal weight of the monomial base of A(f) is the
class of Det(Hess(f)), which is the socle and has weight nd−2(w1+w2+ · · ·+wn).
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Then we use relations (10.1) and (10.2) to simplify the A(f)n/(Hess(f) ·A(f)n).
We get

A(f)n/(Hess(f) ·A(f)n) ⊆ A(f)/I1 ⊕A(f)/I2 ⊕ · · · ⊕A(f)/In

where Ii = 〈xai−1
i x2

i+1xi−1, x
ai−1
i x2

i+1xi+2, xi−2xi−1x
ai−1
i xi+1〉, 1 ≤ i ≤ n, and

x0 = xn, x−1 = xn−1, xn+1 = x1, and xn+2 = x2.
We describe in detail how we get I1 = 〈xa1−1

1 x2
2xn, x

a1−1
1 x2

2x3, xn−1xnx
a1−1
1 x2〉.

For other Ii, 2 ≤ i ≤ n, the argument is similar. In this case, there are only 3
columns with non-zero first coordinate, i.e., the first, second, and last columns. We
consider the first column, which is

(a1(a1 − 1)xa1−2
1 x2, a1x

a1−1
1 , 0, . . . , 0, anx

an−1
n )T .

By relation (10.2), in A(f), a1x
a1−1
1 is killed by x1x2 and anx

an−1
n is killed by xnx1,

so we multiply lcm(x1x2, x1xn)=x1x2xn with this column to get
(a1(a1 − 1)xa1−1

1 x2
2xn, 0, . . . , 0)

T . Similarly, from the second column, we can get

(a1x
a1−1
1 x2

2x3,0, . . . ,0)
T , and from the last column we can get (anxn−1x

an+1
n ,0, . . . ,0)T ,

which is (anx
a1−1
1 x2xn−1xn, 0, . . . , 0)

T by relation (10.1). Thus we can take I1 =

〈xa1−1
1 x2

2xn, x
a1−1
1 x2

2x3, xn−1xnx
a1−1
1 x2〉.

Proposition 10.3. Let f = xa1
1 x2 + xa2

2 x3 + · · · + x
an−1

n−1 xn + xan
n x1 n ≥ 2 be a

weighted homogeneous fewnomial isolated singularity of type B with positive weights
w1, . . . , wn. Suppose mult(f) ≥ 4. Then wi + maximal weight of monomial bases
of A(f)/Ii ≤ nd− 2(w1 + w2 + · · ·+ wn), 1 ≤ i ≤ n.

Proof. We give the detailed description for i = 1. For other indices 2 ≤ i ≤ n, the
argument is similar.

From the grading on A(f)/I1 = A(f)/(xa1−1
1 x2

2xn, x
a1−1
1 x2

2x3, xn−1xnx
a1−1
1 x2),

since we already know the monomial bases of A(f), it is easy to obtain the candi-
dates for maximal weight of graded bases of A(f)/I1 as follows:

case(B) 1.1. xa1−2
1 xa2−1

2 · · ·xan−1
n ,

case(B) 1.2. xa1−1
1 x2x

a3−1
3 · · ·xan−1−1

n−1 ,

case(B) 1.3. xa1−1
1 x2x

a3−1
3 · · ·xan−2−1

n−2 xan−1
n ,

case(B) 1.4. xa1−1
1 xa2−1

2 xa4−1
4 · · ·xan−1−1

n−1 ,

case(B) 1.5. xa1−1
1 xa3−1

3 · · ·xan−1−1
n−1 xan−1

n .

Lemma 10.2. For case(B) 1.1–case(B) 1.5 above, the weight of the monomial
bases is less than or equal to nd− 2(w1 + · · ·+ wn)− wt(x1).

Proof. Case(B) 1.1. It is obvious that wt(xa1−2
1 xa2−1

2 · · ·xan−1
n ) + wt(x1) = nd −

2(w1 + · · ·+ wn). So the conclusion is true in this case.
Case(B) 1.2. We want to show that

wt(xa1−1
1 x2x

a3−1
3 · · ·xan−1−1

n−1 ) + wt(x1) ≤ nd− 2(w1 + · · ·+ wn),

i.e., (a1−1)w1+w2+(a3−1)w3+ · · ·+(an−1−1)wn−1+w1 ≤ nd−2(w1+ · · ·+wn).
It follows that 2w1 + 2w2 +w3 +wn ≤ 2d from aiwi +wi+1 = d, for 1 ≤ i ≤ n. We
need to show that 2w1 + 2w2 + w3 + wn ≤ 2d. This follows from Lemma 10.1.

Case(B) 1.3. We want to show that wt(xa1−1
1 x2x

a3−1
3 · · ·xan−2−1

n−2 xan−1
n )+wt(x1)

≤ nd − 2(w1 + · · · + wn). Simplifying it as in case 1.2 we get w1 + 2w2 + w3 +
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wn−1 + wn ≤ 2d. We need to show that w1 + 2w2 + w3 + wn−1 + wn ≤ 2d. This
follows from Lemma 10.1.

Case(B) 1.4. We want to show that wt(xa1−1
1 xa2−1

2 xa4−1
4 · · ·xan−1−1

n−1 )+wt(x1)
≤ nd−2(w1+· · ·+wn). Simplifying it as in case 1.2 we get 2w1+w3+w4+wn ≤ 2d.
We need to show that 2w1 + w3 + w4 + wn ≤ 2d. This follows from Lemma 10.1.

Case(B) 1.5. We want to show that wt(xa1−1
1 xa3−1

3 · · ·xan−1−1
n−1 xan−1

n )+wt(x1)
≤ nd− 2(w1+ · · ·+wn). Simplifying it as in case 1.2 we get w1+w2+w3 ≤ d. We
need to show that w1 + w2 + w3 ≤ d. This follows from Lemma 10.1. �

For 2 ≤ i ≤ n, the argument is similar to the above. The candidates for maximal
weight of graded bases of

A(f)/Ii = A(f)/(xi−1x
ai−1
i x2

i+1, x
ai−1
i x2

i+1xi+2, xi−2xi−1x
ai−1
i xi+1), 2 ≤ i ≤ n

are as follows:

case(B) i.1. xa1−1
1 · · ·xai−1−1

i−1 xai−2
i x

ai+1−1
i+1 · · ·xan−1

n ,

case(B) i.2. xai−1
i xi+1x

ai+2−1
i+2 · · ·xai+n−2−1

i+n−2 ,

case(B) i.3. xai−1
i xi+1x

ai+2−1
i+2 · · ·xai+n−3−1

i+n−3 x
ai+n−1−1
i+n−1 ,

case(B) i.4. xai−1
i x

ai+1−1
i+1 x

ai+3−1
i+3 · · ·xai+n−2−1

i+n−2 ,

case(B) i.5. xa1−1
1 · · ·xai−1−1

i−1 xai−1
i x

ai+2−1
i+2 · · ·xan−1

n .

Remark 10.1. Here ai = aj and xi = xj for i ≡ j (mod n).

Lemma 10.3. For case(B) i.1–case(B) i.5 above, the weight of the monomial bases
is less than or equal to nd− 2(w1 + · · ·+ wn)− wt(x1).

Proof. The proof is the same as the above for Lemma 10.2. �

Proposition 10.3 follows from Lemma 10.3 immediately. �

Now we can give the proof of Proposition 10.2.

Proof. Let D ∈ Der(A(f)) be a negative weight derivation. We can write D =∑n
i=1 gi∂xi, where gi ∈ A(f) and wt(gi) < wi. By Proposition 10.3, we have

wt(gi)+maximal weight of monomial bases of

A(f)/Ii < nd− 2(w1 + w2 + · · ·+ wn), 1 ≤ i ≤ n.

By Theorem 8.1(3), the weight of socle is nd − 2(w1 + w2 + · · · + wn). Thus
wt(gi)+maximal weight of monomial bases of A(f)/Ii < wt(socle), which means
the projection map (7.2) is zero. By Theorem 7.1 we conclude that D = 0. Thus
Der(A(f)) has no negative weight derivation. �

Proposition 10.4. Let f = xa1
1 x2+xa2

2 x3+· · ·+x
an−1

n−1 xn+xan
n , n ≥ 2, be a weighted

homogeneous fewnomial isolated singularity of type C. Suppose mult(f) ≥ 5 and n
is even. A(f) = C{x1, . . . , xn}/(fx1

, fx2
, . . . , fxn

) is the moduli algebra of f . Then
there are no non-zero negative weight derivations on A(f).

Remark 10.2. Since our main theorem is true for 2 ≤ n ≤ 4 (see [Ch1]), we can
assume n ≥ 5 in the proof of Propositions 10.4 and 10.5. However, for n ≤ 4 the
proof is almost the same.
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In the moduli algebra A(f) = C{x1, x2, . . . , xn}/(fx1
, fx2

, . . . , fxn
) we have the

following relations:

xa1
1 = −a2x

a2−1
2 x3,

xa2
2 = −a3x

a3−1
3 x4,

...

xai
i = −ai+1x

ai+1−1
i+1 xi+2,(10.3)

...

x
an−2

n−2 = −an−1x
an−1−1
n−1 xn,

x
an−1

n−1 = −anx
an−1
n

and

xa1−1
1 x2 = 0,

xa2
2 x3 = 0,

...(10.4)

x
an−1

n−1 xn = 0,

xan
n = 0.

It is also well known that A(f) = C{x1, x2, . . . , xn}/(fx1
, fx2

, . . . , fxn
) is a vector

space spanned by the monomial basis {xk1
1 xk2

2 · · ·xkn−1

n−1 xkn
n }, where (k1, k2, . . . , kn)

∈ {0 ≤ k1 ≤ a1− 2, 0 ≤ kj ≤ aj − 1 for 2 ≤ j ≤ n} ∪ {k1 = a1− 1, k2 = 0, 0 ≤ k3 ≤
a3 − 2, 0 ≤ kj ≤ aj − 1 for 4 ≤ j ≤ n} ∪ · · · ∪ {k2j−1 = a2j−1 − 1, k2j = 0, for 1 ≤
j ≤ i ≤ n

2 , 0 ≤ k2i+1 ≤ a2i+1 − 2, 0 ≤ kj ≤ aj − 1, for 1 ≤ 2i+ 1 < j ≤ n} ∪ · · · ∪
{k2j−1 = a2j−1 − 1 and k2j = 0 for 1 ≤ j ≤ n

2 }.
Hess(f) is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(a1−1)x
a1−2
1

x2 a1x
a1−1
1

0 ... 0 0

a1x
a1−1
1 a2(a2−1)x

a2−2
2 x3 a2x

a2−1
2 ... 0 0

0 a2x
a2−1
2 a3(a3−1)x

a3−2
3 x4 ... 0 0

0 0 a3x
a3−1
3 ... 0 0

.

.

.
.
.
.

.

.

. ...

.

.

.
.
.
.

0 0 0 ... an−2x
an−2−1

n−2
0

0 0 0 ... an−1(an−1−1)x
an−1−2

n−1
xn an−1x

an−1−1

n−1

0 0 0 ... an−1x
an−1−1

n−1
an(an−1)x

an−2
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lemma 10.4. Let f = xa1
1 x2+xa2

2 x3+· · ·+x
an−1

n−1 xn+xan
n , n ≥ 2, be a weighted ho-

mogeneous fewnomial isolated singularity of type C with positive weights w1, . . . , wn.
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Suppose mult(f) ≥ 3 and n is even. Then

wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

≥ wt(xa1−1
1 x0

2x
a3−2
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

≥ wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−2
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

...

≥ wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−1
5 x0

6 · · ·x
an−3−1
n−3 x0

n−2x
an−1−2
n−1 xan−1

n )

≥ wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−1
5 x0

6 · · ·x
an−3−1
n−3 x0

n−2x
an−1−1
n−1 x0

n).

Remark 10.3. All the monomials above are monomial bases in A(f).

Proof. We just check the first inequality; the other inequalities are similar.

wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

− wt(xa1−1
1 x0

2x
a3−2
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

= −w1 + (a2 − 1)w2 + w3 = d− w1 − w2.

Since mult(f) ≥ 3, wi < d
2 , 1 ≤ i ≤ n, then d − w1 − w2 ≥ 0. Thus the first

inequality is satisfied. �

Lemma 10.5. Let f = xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n , n ≥ 2, be a weighted

homogeneous fewnomial isolated singularity of type with positive weights w1, . . . , wn.
Suppose mult(f) ≥ 4 and n is even. Then for any 1 ≤ i ≤ n,

wi + wt(xa1−1
1 x0

2x
a3−2
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n ) ≤ nd− 2(w1 + · · ·+ wn),

wi + wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−2
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n ) ≤ nd− 2(w1 + · · ·+ wn),

...

wi + wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−1
5 x0

6 · · ·x
an−3−1
n−3 x0

n−2x
an−1−2
n−1 xan−1

n )

≤ nd− 2(w1 + · · ·+ wn),

wi + wt(xa1−1
1 x0

2x
a3−1
3 x0

4x
a5−1
5 x0

6 · · ·x
an−3−1
n−3 x0

n−2x
an−1−1
n−1 x0

n)

≤ nd− 2(w1 + · · ·+ wn).

Proof. Notice that wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n ) = nd−
2(w1 + · · ·+ 2wn). By Lemma 10.4, it suffices to show that, for any 1 ≤ i ≤ n,

wi + wt(xa1−1
1 x0

2x
a3−2
3 xa4−1

4 xa5−1
5 xa6−1

6 · · ·xan−1−1
n−1 xan−1

n )

≤ wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 · · ·xan−1−1
n−1 xan−1

n ) = nd− 2(w1 + · · ·+ 2wn),(10.5)

i.e., d − (wi + w1 + w2) ≤ 0. Since mult(f) ≥ 4, ai ≥ 3, then wi < d
3 . Thus

d− (wi + w1 + w2) ≤ 0. �

Remark 10.4. Lemma 10.5 will help us to prove Proposition 10.5. Explicitly they
will be used to determine the candidates of maximal graded pieces in
A(f)n/Hess(f)A(f)n. Lemma 10.5 tells us we don’t need to consider the monomial
bases of A(f) of the above forms.
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Lemma 10.6. Let f = xa1
1 x2+xa2

2 x3+· · ·+x
an−1

n−1 xn+xan
n , n ≥ 2, be a weighted ho-

mogeneous fewnomial isolated singularity of type C with positive weights w1, . . . , wn

satisfying mult(f) ≥ 5. A(f) = C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
) is the moduli al-

gebra of f . Then wi <
d
4 for all 1 ≤ i ≤ n− 1 and wn ≤ d

5 .

Proof. From a similar argument as in Lemma 10.1, it follows from the definition of
the weights. �

Proposition 10.5. Let f = xa1
1 x2 + xa2

2 x3 + · · · + x
an−1

n−1 xn + xan
n , n ≥ 2, be a

weighted homogeneous fewnomial isolated singularity of type C with positive weights
w1, . . . , wn. Suppose mult(f) ≥ 5 and n is even.

A(f) = C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
)

is the moduli algebra of f . Then for any 1 ≤ i ≤ n, wi, + maximal weight of
monomial bases of A(f)/Ii ≤ nd− 2(w1 + w2 + · · ·+ wn).

Before giving the proof of Proposition 10.5, we need to show several lemmas.
Similarly as before, we can use the above relations (10.3) and (10.4) to simplify

A(f)n/Hess(f)A(f)n.

We obtain (notice that we assume n ≥ 5)

A(f)n/Hess(f)A(f)n ⊆ A(f)/I1 ⊕A(f)/I2 ⊕ · · · ⊕A(f)/In,

where I1 = 〈xa1−2
1 x2

2〉, I2 = 〈xa2−1
2 x3〉, I3 = 〈x2x

a3−1
3 x4, x

a3−1
3 x2

4x5〉, Ii
= 〈xi−1x

ai−1
i x2

i+1, xi−2xi−1x
ai−1
i xi+1, x

ai−1
i x2

i+1xi+2〉 where 4 ≤ i ≤ n−2, In−1 =

〈xan−1−1
n−1 x2

n, xn−3xn−2x
an−1−1
n−1 xn〉, and 〈In =< xn−1x

an−1
n 〉.

For I1 = 〈xa1−2
1 x2

2〉, by Lemmas 10.4 and 10.5, the candidates for maximal weight
of bases of A(f)/I1 are as follows:

case(C) 1.1. xa1−3
1 xa2−1

2 · · ·xan−1
n ,

case(C) 1.2. xa1−2
1 x2x

a3−1
3 · · ·xan−1

n ,

case(C) 1.3. xa1−1
1 xa3−2

3 xa4−1
4 · · ·xan−1

n .

Lemma 10.7. Under the same assumption as in Proposition 10.5, for case(C )
1.1–case(C) 1.3 above, the weights of the monomial bases are less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(x1).

Proof. Case(C) 1.1. It is obvious that wt(xa1−3
1 xa2−1

2 · · ·xan−1
n ) + wt(x1) = nd −

2(w1 + · · ·+ wn). So the conclusion is true in this case.
Case(C) 1.2. Notice that in this case, we want to show that

wt(xa1−2
1 x2x

a3−1
3 · · ·xan−1

n ) + wt(x1) ≤ nd− 2(w1 + · · ·+ wn).

It follows that w1 + 2w2 + w3 ≤ d from aiwi + wi+1 = d, for 1 ≤ i ≤ n − 1 and
anwn = d. We need to show that w1 + 2w2 + w3 ≤ d. This follows from Lemma
10.6.

Case(C) 1.3. We want to show that wt(xa1−1
1 xa3−2

3 xa4−1
4 · · ·xan−1

n )+wt(x1) ≤
nd− 2(w1 + · · · + wn). Simplifying it as in case 1.2 we get 2w1 + w2 ≤ d. This is
obviously true. �
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For I2 = 〈xa2−1
2 x3〉, by Lemmas 10.4 and 10.5, the candidates for maximal weight

of basis of A(f)/I2 are as follows:

case(C) 2.1. xa1−2
1 xa2−2

2 xa3−1
3 · · ·xan−1

n ,

case(C) 2.2. xa1−2
1 xa2−1

2 xa4−1
4 · · ·xan−1

n ,

case(C) 2.3. xa1−1
1 xa3−2

3 xa4−1
4 . · · ·xan−1

n .

Lemma 10.8. Under the same assumption as in Proposition 10.5, for case(C )
2.1–case(C ) 2.3 above, the weights of the monomial bases are less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(x2).

Proof. Case(C) 2.1. It is obvious that wt(xa1−2
1 xa2−2

2 xa3−1
3 · · ·xan−1

n ) + wt(x2)
= nd− 2(w1 + · · ·+ wn). So the conclusion is true in this case.

Case(C) 2.2. Notice that in this case, we want to show that

wt(xa1−2
1 xa2−1

2 xa4−1
4 · · ·xan−1

n ) + wt(x2) ≤ nd− 2(w1 + · · ·+ wn).

We need to show that w2 + w3 + w4 ≤ d. This follows from Lemma 10.6.
Case(C) 2.3. We want to show that wt(xa1−1

1 xa3−2
3 xa4−1

4 · · ·xan−1
n )+wt(x2) ≤

nd− 2(w1 + · · ·+ wn). Simplifying it as in case(C) 2.2 we get w1 + 2w2 ≤ d. This
follows from Lemma 10.6. �

For I3 = 〈x2x
a3−1
3 x4, x

a3−1
3 x2

4x5〉, the candidates for maximal weight of basis of
A(f)/I3 are as follows:

case(C) 3.1. xa1−2
1 xa2−1

2 xa3−2
3 xa4−1

4 · · ·xan−1
n ,

case(C) 3.2. xa1−2
1 xa2−1

2 xa3−1
3 xa5−1

5 · · ·xan−1
n ,

case(C) 3.3. xa1−2
1 xa3−1

3 xa4−1
4 xa6−1

6 xa7−1
7 · · ·xan−1

n .

Lemma 10.9. Under the same assumption as in Proposition 10.5, for case(C )3.1–
case(C ) 3.3 above, the weights of the monomial bases are less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(x3).

Proof. Case(C) 3.1. It is obvious that wt(xa1−2
1 xa2−1

2 xa3−2
3 xa4−1

4 · · ·xan−1
n )+wt(x3)

= nd− 2(w1 + · · ·+ wn). So the conclusion is true in this case.
Case(C) 3.2. Note that in this case, we want to show that

wt(xa1−2
1 xa2−1

2 xa3−1
3 xa5−1

5 · · ·xan−1
n ) + wt(x3) ≤ nd− 2(w1 + · · ·+ wn).

It follows that w1 + 2w2 + w3 ≤ d, which is correct following from Lemma 10.6.
Case(C) 3.3. We want to show that wt(xa1−2

1 xa3−1
3 xa4−1

4 xa6−1
6 xa7−1

7 · · ·xan−1
n )

+wt(x3) ≤ nd− 2(w1 + · · ·+ wn). Simplifying it as in case 3.2 we get w2 + 2w3 +
w5 + w6 ≤ 2d, which is correct following from Lemma 10.6. �

For I4 = 〈x3x
a4−1
4 x2

5, x2x3x
a4−1
4 x5, x

a4−1
4 x2

5x6〉, the candidates for maximal
weight of basis of A(f)/I4 are as follows:

case(C) 4.1. xa1−2
1 xa2−1

2 xa3−1
3 xa4−2

4 xa5−1
5 · · ·xan−1

n ,

case(C) 4.2. xa1−2
1 xa3−1

3 xa4−1
4 x5x

a6−1
6 · · ·xan−1

n ,

case(C) 4.3. xa1−2
1 xa2−1

2 xa4−1
4 x5x

a6−1
6 · · ·xan−1

n ,

case(C) 4.4. xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 xa6−1
6 · · ·xan−1

n ,

case(C) 4.5. xa1−2
1 xa2−1

2 xa4−1
4 xa5−1

5 xa7−1
7 · · ·xan

n .
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Lemma 10.10. Under the same assumption as in Proposition 10.5, for case(C )
4.1–case(C ) 4.3 above, the weights of the monomial bases are less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(x4).

Proof. Case(C) 4.1. It is obvious that wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−2

4 xa5−1
5 · · ·xan−1

n )+
wt(x4) = nd− 2(w1 + · · ·+ wn). So the conclusion is true in this case.

Case(C) 4.2. Note that in this case, we want to show that

wt(xa1−2
1 xa3−1

3 xa4−1
4 x5x

a6−1
6 · · ·xan−1

n ) + wt(x4) ≤ nd− 2(w1 + · · ·+ wn).

It follows that we need to show that w2+w3+w4+2w5+w6 ≤ 2d, which is correct
following from Lemma 10.6.

Case(C) 4.3. We want to show that

wt(xa1−2
1 xa2−1

2 xa4−1
4 x5x

a6−1
6 · · ·xan−1

n ) + wt(x4) ≤ nd− 2(w1 + · · ·+ wn).

Simplifying it as in case 4.2 we get w3 + 2w4 + 2w5 + w6 ≤ d, which is correct
following from Lemma 10.6.

Case(C) 4.4. We want to show that wt(xa1−2
1 xa2−1

2 xa3−1
3 xa4−1

4 xa6−1
6 · · ·xan−1

n )
+wt(x4)≤ nd−2(w1+· · ·+wn). Simplifying it as in case 4.2 we get w4+w5+w6 ≤ d,
which is correct following from Lemma 10.6.

Case(C) 4.5. We want to show that wt(xa1−2
1 xa2−1

2 xa4−1
4 xa5−1

5 xa7−1
7 · · ·xan−1

n )
+wt(x4) ≤ nd− 2(w1 + · · ·+ wn). Simplifying it as in case 4.2 we get w3 + 2w4 +
w6 + w7 ≤ 2d, which is correct following from Lemma 10.6. �

For Ii = 〈xi−1x
ai−1
i x2

i+1, xi−2xi−1x
ai−1
i xi+1, x

ai−1
i x2

i+1xi+2〉, where 4 ≤ i ≤
n− 2, the candidates for maximal weight of bases of A(f)/Ii are as follows:

case(C) i.1. xa1−2
1 xa2−1

2 · · ·xai−1−1
i−1 xai−2

i x
ai+1−1
i+1 · · ·xan−1

n ,

case(C) i.2. xa1−2
1 xa2−1

2 · · ·xai−3−1
i−3 xi−2x

ai−1−1
i−1 xai−1

i xi+1x
ai+2−1
i+2 · · ·xan−1

n ,

case(C) i.3. xa1−2
1 xa2−1

2 · · ·xai−2−1
i−2 xai−1

i xi+1x
ai+2−1
i+2 · · ·xan−1

n ,

case(C) i.4. xa1−2
1 xa2−1

2 · · ·xai−1−1
i−1 xai−1

i x
ai+2−1
i+2 · · ·xan−1

n ,

case(C) i.5. xa1−2
1 xa2−1

2 · · ·xai−2−1
i−2 xai−1

i x
ai+1−1
i+1 x

ai+3−1
i+3 · · ·xan−1

n .

Lemma 10.11. Under the same assumption as in Proposition 10.5, for case(C )
i.1–case(C ) i.5 above, the weight of the monomial bases is less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(xi), where 4 ≤ i ≤ n− 2.

Proof. The proof is the same as I4, with just a little adjustment of the indices. �

For In−1 = 〈xan−1−1
n−1 x2

n, xn−3xn−2x
an−1−1
n−1 xn〉, the candidates for maximal weight

of basis of A(f)/In−1 are as follows:

case(C) (n− 1).1. xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 x

an−1−2
n−1 xan−1

n ,

case(C) (n− 1).2. xa1−2
1 xa2−1

2 · · ·xan−3−1
n−3 x

an−1−1
n−1 xn,

case(C) (n− 1).3. xa1−2
1 xa2−1

2 · · ·xan−4−1
n−4 x

an−2−1
n−2 x

an−1−1
n−1 xn,

case(C) (n− 1).4. xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 x

an−1−1
n−1 .

Lemma 10.12. Under the same assumption as in Proposition 10.5, for case(C )
(n− 1).1–case(C ) (n− 1).3 above, the weights of the monomial bases are less than
or equal to nd− 2(w1 + w2 + · · ·+ wn)−wt(xn−1).
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Proof. Case(C) (n− 1).1. It is obvious that

wt(xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 x

an−1−2
n−1 xan−1

n ) + wt(xn−1) = nd− 2(w1 + · · ·+ wn).

So the conclusion is true in this case.
Case(C) (n− 1).2. Note that in this case, we want to show that

wt(xa1−2
1 xa2−1

2 · · ·xan−3−1
n−3 x

an−1−1
n−1 xn) + wt(xn−1) ≤ nd− 2(w1 + · · ·+ wn).

It follows that wn−2 + 2wn−1 + 2wn ≤ 2d, which is correct following from Lemma
10.6.

Case(C) (n− 1).3. We want to show that

wtxa1−2
1 xa2−1

2 · · ·xan−4−1
n−4 x

an−2−1
n−2 x

an−1−1
n−1 xn) + wt(xn−1) ≤ nd− 2(w1 + · · ·+ wn).

Simplifying it as in case(C) (n−2).2 we get wn−3+wn−2+wn−1+2wn ≤ 2d, which
is correct following from Lemma 10.6.

Case(C) (n − 1).4. We want to show that wt(xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 x

an−1−1
n−1 )

+wt(xn−1) ≤ nd− 2(w1 + · · ·+ wn). Simplifying it as in case(C) (n− 1).2 we get
wn−1 + wn ≤ d, which is correct following from Lemma 10.6. �

For In = 〈xn−1x
an−1
n 〉, the candidates for maximal weight of bases of A(f)/In

are as follows:

case(C)n.1. xa1−2
1 xa2−1

2 · · ·xan−1−1
n−1 xan−2

n ,

case(C)n.2. xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 xan−1

n .

Lemma 10.13. Under the same assumption as in Proposition 10.5, for case(C )
n.1–case(C ) n.2 above, the weights of the monomial bases are less than or equal to
nd− 2(w1 + w2 + · · ·+ wn)−wt(xn)

Proof. Case(C) n.1. It is obvious that wt(xa1−2
1 xa2−1

2 · · ·xan−1−1
n−1 xan−2

n )+ wt(xn)=
nd− 2(w1 + · · ·+ wn). So the conclusion is true in this case.

Case(C) n.2. Note that in this case, we want to show that

wt(xa1−2
1 xa2−1

2 · · ·xan−2−1
n−2 xan−1

n ) + wt(xn) ≤ nd− 2(w1 + · · ·+ wn).

It follows that wn−1 + 2wn ≤ 2d, which is correct following from Lemma 10.6. �

Now we can give the proof of Proposition 10.5 easily.

Proof. Proposition 10.5 follows from Lemmas 10.7, 10.8, 10.9, 10.11, 10.12, and
10.13 immediately. �

Now we can give the proof of Proposition 10.4.

Proof. Let D ∈ Der(A(f)) be a negative weight derivation. We can write D =∑n
i=1 gi∂xi, where gi ∈ A(f) and wt(gi) < wi. By Proposition 10.5, we have

wt(gi)+maximal weight of monomial bases of

A(f)/Ii < nd− 2(w1 + w2 + · · ·+ wn), 1 ≤ i ≤ n.

By Theorem 8.1(3), the weight of socle is nd − 2(w1 + w2 + · · · + wn). Thus
wt(gi)+maximal weight of monomial bases of A(f)/Ii < wt(socle), which means
the projection map (7.2) is zero. From Theorem 7.1 we haveD = 0. Thus Der(A(f))
has no negative weight derivations. �
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Proposition 10.6. Let f = xa1
1 x2+xa2

2 x3+ · · ·+x
an−1

n−1 xn+xan
n n ≥ 2 be a weighted

homogeneous fewnomial isolated singularity of type C. Suppose mult(f) ≥ 5 and n
is odd. A(f) = C{x1, . . . , xn}/(fx1

, fx2
, . . . , fxn

) is the moduli algebra of f . Then
there are no non-zero negative weight derivations on A(f).

Proof. The only difference between Proposition 10.4 and Proposition 10.6 is whether
n is odd or even, which will affect the monomial bases of A(f). In the case of
Proposition 10.4, A(f) = C{x1, x2, . . . , xn}/(fx1

, fx2
, . . . , fxn

) is a vector space

spanned by monomial basis {xk1
1 xk2

2 · · ·xkn−1

n−1 xkn
n }. Here (k1, k2, . . . , kn) ∈ {0 ≤

k1 ≤ a1 − 2, 0 ≤ kj ≤ aj − 1 for 2 ≤ j ≤ n} ∪ {k1 = a1 − 1, k2 = 0, 0 ≤ k3 ≤
a3 − 2, 0 ≤ kj ≤ aj − 1 for 4 ≤ j ≤ n} ∪ · · · ∪ {k2j−1 = a2j−1 − 1, k2j = 0, for 1 ≤
j ≤ i, 0 ≤ k2i+1 ≤ a2i+1 − 2, 0 ≤ aj ≤ aj − 1 for 1 ≤ 2i + 1 < j ≤ n} ∪ · · · ∪
{k2j−1 = a2j−1 − 1 and k2j = 0 for 1 ≤ j ≤ n−1

2 and 0 ≤ kn ≤ an − 2}. However,
the difference doesn’t affect the proof. A similar argument to Proposition 10.4 will
prove Proposition 10.6. �

The following proposition will be used in the proof of Main Theorem C.

Proposition 10.7. Let f(x1, . . . , xn) and g(xn+1, . . . , xm) be holomorphic func-
tions with isolated singularities at the origins of Cn and Cm−n, respectively. Let
A(f), A(g), and A(f + g) be the moduli algebras of f, g, f + g, respectively. If
f(x1, . . . , xn) is a weighted-homogeneous holomorphic function with an isolated sin-
gularity at origin, then A(f + g) ∼= A(f)⊗A(g).

Proof.

A(f + g) :=C{x1, . . . , xm}/(f + g, fx1
, . . . , fxn

, gxn+1
, . . . , gxm

)

=C{x1, . . . , xm}/(g, fx1
, . . . , fxn

, gxn+1
, . . . , gxm

)

∼=C{x1, . . . , xn}/(fx1
, . . . , fxn

)⊗ C{xn+1, . . . , xm}/(g, gxn+1
, . . . , gxm

)

=A(f)⊗A(g).

The second and last equalities come from f being weighted homogeneous. �

Main Theorem C. Let f ∈ C{x1, . . . , xn} be a weighted homogeneous fewnomial
isolated singularity with positive weights w1, w2, . . . , wn and multiplicity at least 5.

A(f) = C{x1, . . . , xn}/(fx1
, fx2

, . . . , fxn
)

is the moduli algebra of f . Then there are no non-zero negative weight derivations
on A(f).

Proof. Since f ∈ C{x1, . . . , xn} is a weighted homogeneous fewnomial isolated sin-
gularity, f is a summation of the following three types:

Type A. xa1
1 + xa2

2 + · · ·+ x
an−1

n−1 + xan
n , n ≥ 1,

Type B. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1, n ≥ 2,

Type C. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n , n ≥ 2.

The moduli algebra A(f) is a tensor product of those moduli algebras of the
above three types from Proposition 10.7. By Theorem 8.2, it suffices to prove that
the moduli algebras of the above three types have no non-zero negative weight
derivations. That is exactly what we have proved in Propositions 10.1, 10.2, 10.4,
and 10.6. Therefore there are no non-zero negative weight derivations on A(f). �
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Math. 14 (1971), 123–142, DOI 10.1007/BF01405360. MR0294699

[Sa2] Kyoji Saito, Einfach-elliptische Singularitäten (German), Invent. Math. 23 (1974), 289–
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[Wie] Hartmut Wiebe, Über homologische Invarianten lokaler Ringe (German), Math. Ann. 179
(1969), 257–274, DOI 10.1007/BF01350771. MR0255531

[Wil] Burkhard Wilking, On fundamental groups of manifolds of nonnegative curvature, Dif-
ferential Geom. Appl. 13 (2000), no. 2, 129–165, DOI 10.1016/S0926-2245(00)00030-9.
MR1783960

[XY] Yi-Jing Xu and Stephen S.-T. Yau, Micro-local characterization of quasi-homogeneous
singularities, Amer. J. Math. 118 (1996), no. 2, 389–399. MR1385285

[Ya1] Stephen S.-T. Yau, Solvability of Lie algebras arising from isolated singularities and non-
isolatedness of singularities defined by sl(2,C) invariant polynomials, Amer. J. Math. 113
(1991), no. 5, 773–778, DOI 10.2307/2374785. MR1129292

[Ya2] Stephen S.-T. Yau, Solvable Lie algebras and generalized Cartan matrices arising from

isolated singularities, Math. Z. 191 (1986), no. 4, 489–506, DOI 10.1007/BF01162338.
MR832806

[YZ1] Stephen S.-T. Yau and Huai Qing Zuo, A sharp upper estimate conjecture for the Yau
number of a weighted homogeneous isolated hypersurface singularity, Pure Appl. Math. Q.
12 (2016), no. 1, 165–181, DOI 10.4310/PAMQ.2016.v12.n1.a6. MR3613969

[YZ2] Stephen S.-T. Yau and Huaiqing Zuo, Derivations of the moduli algebras of
weighted homogeneous hypersurface singularities, J. Algebra 457 (2016), 18–25, DOI
10.1016/j.jalgebra.2016.03.003. MR3490075

The College of Information Science and Technology, Jinan University, Guangzhou

510632, Guangdong, China

Email address: haochen@jnu.edu.cn

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, Peo-

ple’s Republic of China

Email address: yau@uic.edu

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, Peo-

ple’s Republic of China

Email address: hqzuo@mail.tsinghua.edu.cn

https://www.ams.org/mathscinet-getitem?mr=0508121
https://www.ams.org/mathscinet-getitem?mr=0439840
https://www.ams.org/mathscinet-getitem?mr=0498543
https://www.ams.org/mathscinet-getitem?mr=1399041
https://www.ams.org/mathscinet-getitem?mr=2191771
https://www.ams.org/mathscinet-getitem?mr=0294699
https://www.ams.org/mathscinet-getitem?mr=0354669
https://www.ams.org/mathscinet-getitem?mr=0338461
https://www.ams.org/mathscinet-getitem?mr=580572
https://www.ams.org/mathscinet-getitem?mr=638617
https://www.ams.org/mathscinet-getitem?mr=0255531
https://www.ams.org/mathscinet-getitem?mr=1783960
https://www.ams.org/mathscinet-getitem?mr=1385285
https://www.ams.org/mathscinet-getitem?mr=1129292
https://www.ams.org/mathscinet-getitem?mr=832806
https://www.ams.org/mathscinet-getitem?mr=3613969
https://www.ams.org/mathscinet-getitem?mr=3490075

	1. Introduction
	2. Applications
	3. New weight type
	4. Some lemmas for the proof of Main Theorems A and B
	5. Proof of Main Theorem B
	6. Proof of Main Theorem A
	Main Theorem A

	7. Duality for zero-dimensional singularities
	8. Some related useful results
	9. Weighted homogenous fewnomial isolated singularities
	10. Proof of Main Theorem C
	Main Theorem C

	References

