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1. Introduction

Let (X, x) be an isolated surface singularity and f : (M, A) → (X, x) be a resolution, 
where A = f−1(x) is the exceptional set, and K is the canonical divisor on M . Let 
A = ∪n

i=1Ai be the decomposition of A into irreducible components. It is known that 
the resolution dual graph Γ and the link ∂X of the singularity determine each other 
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[16]. So an invariant is topological if it is determined by Γ. The typical topological 
invariants are the Euler characteristic χ(Zmin) and the self-intersection number Z2

min, 
where Zmin is Artin’s fundamental cycle. However, one invariant is topological or not is 
generally difficult to see, for example the plurigenera δm(X, x) (see Definition 2.2) are 
very fundamental analytic invariants. However, in general, it is difficult to see whether 
they are topological or not. The main reason is that these invariants are difficult to 
compute, even if (X, x) is Gorenstein. One of the main contributions of this paper is the 
following result.

Theorem 1.1. Suppose that (X, x) is an isolated Gorenstein surface singularity but not 
a log-canonical singularity. Let f : (M, A) → (X, x) be the minimal good resolution. 
Let P + N be the Zariski decomposition of the divisor K + A. {δm+1(X, x)}m∈N are 
plurigenera. Then

δm+1(X,x) = −m2P 2/2 −mK · P/2 + pg(X,x)

if and only if K + A is f -nef.

Remark 1.1. Under the same conditions in Theorem 1.1, it follows that δm+1(X, x) are 
topological invariants when pg(X, x) is a topological invariant and K + A is f -nef.

One direction in Theorem 1.1 can be improved further.

Corollary 1.1. Suppose that (X, x) is an isolated Gorenstein surface singularity but not a 
quotient singularity. Let f : (M, A) → (X, x) be the minimal good resolution. Let P +N

be the Zariski decomposition of the divisor K + A. If K + A is f -nef, then we have the 
formula

δm+1(X,x) = −m2P 2/2 −mK · P/2 + pg(X,x).

Remark 1.2. Let N∗ denote the set of positive integers. If (X, x) is an isolated quotient 
singularity, then δm(X, x) = 0 for any m ∈ N∗(cf. [24], Theorem 3.9) and P = 0 by 
Theorem 2.4. Thus the equation in Corollary 1.1 still holds.

Let f : (M, A) → (X, x) be a resolution of an isolated surface singularity (X, x) and 
Div(M) denotes the group of divisors on M . Suppose D ∈Div(M), χM (D) is given by

χM (D) := dimCH
0(M \A,OM (D))/H0(M,OM (D)) + h1(M,OM (D)).

Let D be a cycle on M . Then it is not hard to get a formula for χM(D), i.e., χM (D) =
−D · (D −K)/2 + pg(X, x) (cf. Theorem 2.7). However, when D is a divisor on M , the 
formula for χM (D), which is obtained by Morales (cf. Theorem 2.8), is very complicated. 
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A main result used in his proof is the following: for any D ∈ Div(M), Giraud [2] (see 
subsection 2.4) proved that there exists a unique cycle 〈D〉 ∈ ⊕n

i=1ZAi such that
(1) D − 〈D〉 is f -nef,
(2) if D′ is a cycle and D −D′ is f -nef, then 〈D〉 ≤ D′.
In this article, we shall prove the following result.

Theorem 1.2. Let D ∈ Div(M) such that 〈D〉 > 0. Then H0(O〈D〉(D)) = 0 (i.e. D·〈D〉 <
0), thus

H0(M,OM (D − 〈D〉)) = H0(M,OM (D)).

As a corollary of Theorem 1.2, we recover a theorem in Giraud [2].

Corollary 1.2. Let D ∈ Div(M) such that 〈D〉 ≥ 0. Then f∗OM (D) is reflexive, i.e.,

H0(M \A,OM (D)) = H0(M,OM (D)).

In a beautiful paper [21], four vanishing theorems are proved. Specifically, let f :
(M, A) → (X, x) be the minimal good resolution of an isolated surface singularity (X, x), 
with exceptional divisor A =

∑
Ai. Let S denote the rank 2 subbundle of the tangent 

bundle θM of M of derivations vanishing along A. Wahl proved that
(A) H1

A(OM ) = 0;
(B) if (X, x) is rational, then H1

A(OM (A)) = 0;
(C) in characteristic 0, H1

A(S) = 0;
(D) if (X, x) is rational and the characteristic is 0, then H1

A(S(A)) = 0.
These vanishing results play important roles in the deformation theory of singulari-

ties, especially rational ones. In this paper, we pay exceptional attention on the result 
(B) which can be used to test whether a reduced divisor on a deformation of M can 
specialize to a non-reduced divisor on M (cf. [21], Corollary 2.8 and Remark 2.9). It is 
natural to ask whether result (B) can be generalized to more general singularities. In 
this article, we shall introduce two new concepts: strong and weak vanishing property 
(see Definition 4.1). In fact, the vanishing result (B) coincides with the weak vanishing 
property in this paper and it is implied by strong vanishing property. It follows from a 
result of Wahl (cf. Proposition 4.2) that all rational singularities have strong vanishing 
property. We investigate the strong vanishing property for minimally elliptic singularities 
and obtain the following results.

Theorem 1.3. Suppose (X, x) is a minimally elliptic singularity. Let f : M → X be 
the minimal good resolution of the singularity, whose reduced exceptional divisor is A =∑

i Ai, and Z is a positive cycle on M . If Z + A 
= Zmin, then there exists an Ai ⊂ |Z|
with (Z + A) ·Ai < 0 except in the following cases:
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1) (X, x) has the following dual resolution graph,

�−d2

−d1 −d3

� � �
−1

A1

A2

A3

A4

where d3 ≥ d2 ≥ d1 ≥ 2, and 1
d1

+ 1
d2

+ 1
d3

< 1, and with Z = A4 or 2A4 (notice that in 
the case Z = 2A4, then d1 = 2, otherwise Z + A = Zmin); and

2) (X, x) has the following dual resolution graph,

�−3

−2 −d3

� � �
−1

A1

A2

A3

A4

with d3 ≥ 7 and Z = A1 + 3A4.

Corollary 1.3. The following singularities have strong vanishing property:
(1) Cusp singularities,
(2) Simple elliptic singularities,
(3) Gorenstein Du Bois singularities.

Given a singularity (X, x), there are ways to get new singularities (X ′, x′) in The-
orem 1.4. It is interesting to compare invariants and properties of (X, x) and (X ′, x′). 
For example, Watanabe [24] proved that δm(X, x) ≥ δm(X ′, x′) where δm(X, x) is the 
plurigenera. In this article, we shall prove the following comparison theorem about the 
strong vanishing property between two related singularities.

Theorem 1.4. Let f : (M, A) → (X, x) be a minimal good resolution of an isolated surface 
singularity (X, x). Let A′ be a connected cycle such that 0 < A′ ≤ A. Let (X ′, x′) be the 
singularity obtained by contracting A′. If (X, x) has strong vanishing property, then so 
does (X ′, x′).

The paper is organized as follows: we introduce some preliminary knowledge in sec-
tion 2. In section 3 we prove the Theorems 1.1, 1.2, and their corollaries. We introduce 
a new concept in section 4. Theorems 1.3, 1.4 and Corollary 1.3 are proved in section 5.

I would like to thank the anonymous referee for careful reading and providing valuable 
comments on improving the presentation of this paper.

2. Preliminaries

Let M be a nonsingular surface, not necessarily compact. Let D =
∑

aiDi be a 
Q-divisor on M , where Di’s are mutually distinct prime divisors. We put Dred =
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∑
ai �=0 Di. The divisor D is said to be connected if the support of D is connected, 

and said to be positive if D is effective and D 
= 0. If the support of D is compact, then 
we call D a Q-cycle; furthermore if each ai is an integer, then we call D a Z-cycle, or a 
cycle for short.

Let (X, x) be an isolated surface singularity and f : (M, A) → (X, x) a resolution, 
i.e., M is smooth, and f is a biholomorphic isomorphism above X \ {x}. We say that f
is a good resolution if the exceptional divisor A := f−1(x) is a normal crossing divisor. 
A good resolution always exists (and it is not unique). f is called a minimal resolution if 
for any resolution f ′ : M ′ → X there exists a unique morphism g : M ′ → M such that 
f ′ = f ◦ g.

A good resolution f : (M, A) → (X, x) is called a minimal good resolution if for any 
good resolution f ′ : M ′ → X there exists a unique morphism g : M ′ → M such that 
f ′ = f ◦ g. For any surface singularity, there exists a unique minimal good resolution (cf. 
[11], Theorem 5.12).

Let f : (M, A) → (X, x) be a resolution of a normal surface singularity (X, x). Then 
any Q-cycle on M is supported in A. Let A = ∪n

i=1Ai be the decomposition of A into 
irreducible components. We denote by K the canonical divisor on M .

Let D =
∑n

i=1 diAi be a positive cycle on M . |D| = ∪Ai, di 
= 0, denotes the support 
of D. Recall that χ(D) := dimH0(M, OD) − dimH1(M, OD).

Let E be a divisor on M and D a positive cycle on M . Then we have

χ(D) = −D · (D + K)/2 and χ(OD(E)) = D · E + χ(D).

For any positive cycles D and F , we have χ(D + F ) = χ(D) + χ(F ) −D · F .

Definition 2.1. A Q-divisor D on M is said to be f -numerically effective, or f -nef for 
short, if D · Ai ≥ 0 for all Ai. Q-divisors D and E on M are said to be f -numerically 
equivalent, written D ≡ E, if (D −E) ·Ai = 0 for all Ai.

Let (X, x) be a Q-Gorenstein singularity. (X, x) is said to be terminal (resp. canonical, 
log-terminal, log-canonical) if there exists a good resolution f : (M, A) → (X, x) such 
that

KM = f∗(KX) +
∑

aiAi,

with ai > 0 (resp. ai ≥ 0, ai > −1, ai ≥ −1) for all i, where Ai are mutually distinct 
prime divisors supported in A.

We recall a beautiful result of Kawamata.

Theorem 2.1. (Kawamata, [[9], Corollary 1.9]) A surface singularity (X, x) is a log-
terminal singularity if and only if (X, x) is a quotient singularity. In fact, any log-
terminal surface singularity is the quotient with respect to a cyclic group of (C2, 0) or a 
rational double point.
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2.1. Plurigenera

Let (X, x) be a normal isolated singularity of dimension n ≥ 2 and f : (M, A) →
(X, x) a good resolution. Let U = X \ {x}. For any positive integer m, a section ω ∈
Γ(U, OX(mKX)) is regarded as an m-ple holomorphic n-form.

An m-ple holomorphic n-form ω ∈ Γ(U, OX(mKX)) is said to be L2/m-integrable if
∫

W\{x}

(ω ∧ ω̄)1/m < ∞

for any sufficiently small relatively compact neighborhood W of x ∈ X. We denote by 
L2/m(U) the set of L2/m-integrable m-ple holomorphic n-forms on U , which is a subspace 
of Γ(U, OX(mKX)).

Definition 2.2. (Watanabe [24]) For each m ∈ N∗, the m-th L2-plurigenus δm(X, x) of a 
normal isolated singularity (X, x) is defined by

δm(X,x) = dimC
Γ(X \ {x},OX(mKX))

L2/m(X \ {x}) .

It is known that Γ(M, OM (mKM + (m − 1)A)) ∼= L2/m(U) (cf. Sakai [18]). The next 
proposition is obvious and useful for computing the plurigenera.

Proposition 2.1. For any good resolution f : (M, A) → (X, x), we have

δm(X,x) = dimC
Γ(M \A,OM (mKM ))

Γ(M,OM (mKM + (m− 1)A) .

The pg(X, x) = δ1(X, x) was proved by Laufer [12] for surface singularity and Yau 
[25] for higher-dimensional singularity. The plurigenera was systematic studied by Ishii 
(cf. [3–7]) and also studied by the author in [30], [14].

2.2. Minimally elliptic singularities

Let f : (M, A) → (X, x) be a resolution of an isolated surface singularity (X, x) and 
A = ∪n

i=1Ai. Associated to f is a unique fundamental cycle Zmin [1, pp. 131-132] such 
that Zmin > 0, Ai · Zmin ≤ 0 for all Ai and such that Zmin is minimal with respect 
to those two properties. Zmin may be computed from the intersection as follows [12, 
Proposition 4.1, p. 607].

Z0 = 0, Z1 = Ai1 , Z2 = Z1 + Ai2 , . . . , Zj = Zj−1 + Aij , . . . ,

Z� = Z�−1 + Ai� = Zmin
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where Ai1 is arbitrary and Aij · Zj−1 > 0, 1 < j ≤ �.
Recall that a cycle E > 0 is minimally elliptic if χ(E) = 0 and χ(D) > 0 for all cycles 

D such that 0 < D < E.

Theorem 2.2 ([13]). Let f : M → X be the minimal resolution of the normal two dimen-
sional variety X with one singular point x. Let Zmin be the fundamental cycle on the 
exceptional set A = f−1(x). Then the following are equivalent:

(1) Zmin is a minimally elliptic cycle,
(2) Ai · Zmin = −Ai ·K for all irreducible components Ai in A,
(3) χ(Zmin) = 0 and any connected proper subvariety of A is the exceptional set for a 

rational singularity.

In [13], a singularity is called minimally elliptic singularity if it satisfies one of the 
conditions of Theorem 2.2. Minimally elliptic singularity and its generalization were 
intensively studied by Wagreich [23], Laufer [13], Yau ([26–29]) and others. We recall the 
following beautiful result will be used later.

Proposition 2.2 ([13]). Let f : M → X and f ′ : M ′ → X be the minimal resolution and 
minimal good resolution respectively for a minimally elliptic singularity (X, x). Then 
f = f ′ and all the Ai are rational curves except for the following cases:

(i) A is an elliptic curve. f is a minimal good resolution.
(ii) A is a rational curve with a node singularity.
(iii) A is a rational curve with a cusp singularity.
(iv) A is two smooth rational curves which have first order tangential contact at one 

point.
(v) A is three smooth rational curves all meeting transversely at the same point.

In case (ii), the weighted dual graph of the minimal good resolution is

� �
��
��

−w1 −1 with w1 ≥ 5.

In cases (iii)–(v), f ′ has the following weighted dual graph

�−w2

−w1 −w3

� � � with wi ≥ 2, 1 ≤ i ≤ 3.
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2.3. Zariski decomposition

Let (X, x) be a normal surface singularity, f : (M, A) → (X, x) a resolution with 
A = ∪n

i=1Ai, and K the canonical divisor on M . Let D =
∑n

i=1 diAi be a Q-cycle. 
[D] :=

∑
[di]Ai where [d] denotes the greatest integer not more than d.

Since the intersection matrix (Ai · Aj) is negative definite, so for any D ∈ Div(M), 
there exists a unique Q-cycle 

∑n
i=1 diAi such that D ≡

∑n
i=1 diAi. Then the map D �→∑n

i=1 diAi induces a homomorphism of groups

π : Div(M) → ⊕n
i=1QAi.

The intersection number of divisors D1, D2 ∈ Div(M) is defined by

D1 ·D2 = π(D1) · π(D2).

Definition 2.3. Let D be a divisor on M . Then a decomposition π(D) = P +N is called 
a Zariski decomposition of D if the following conditions are satisfied:

(1) P is an f -nef Q-cycle;
(2) N is an effective Q-cycle;
(3) P ·N = 0, i.e., P ·Ai = 0 for all Ai ⊂ |N |.

For any divisor D, there exists a unique Zariski decomposition of D (Sakai [19], 
Theorem A.1).

Theorem 2.3. (Sakai [19], Theorem A.2; [17], Theorem 4.6) Let π(D) = P + N the 
Zariski decomposition of D ∈ Div(M). Then

H1(OM (K + D − [N ])) = 0.

In particular, if D is an f -nef divisor on M , then H1(OM (K + D)) = 0.

We assume that f : (M, A) → (X, x) is the minimal good resolution, and that P +N

is the Zariski decomposition of K +A. Then P and N are computed from the weighted 
dual graph. Note that P 2 = 0 if and only if P = 0.

The following theorem implies that log-canonical surface singularities are character-
ized by their weighted dual graphs.

Theorem 2.4. (Kawamata [10] section 9; Wahl [22] 2.4) A normal surface singularity 
(X, x) is a log-canonical singularity if and only if P = 0. Furthermore we have the 
following:

(1) (X, x) is a log-terminal singularity if and only if P = 0 and Supp(N) = A;
(2) (X, x) is a simple elliptic or cusp singularity if and only if P = N = 0.
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Theorem 2.5. (Watanabe [24], Ishii [4]) Suppose that the singularity (X, x) is Q-Goren-
stein. If (X, x) is log-canonical but not log-terminal, then

δm(X,x) =
{

1 m ≡ 0 (mod r)
0 otherwise

where r is the index of (X, x);

Theorem 2.6. (Ishii [3]) Let (X, x) be a minimally elliptic singularity. Then the following 
are equivalent:

(1) (X, x) is a simple elliptic or cusp singularity;
(2) (X, x) is a log-canonical singularity;
(3) (X, x) is Du Bois;
(4) δm(X, x) = 1 for all m ∈ N∗.

2.4. Riemann-Roch for resolution spaces

We use the notation of the preceding subsection, but do not assume that f : (M, A) →
(X, x) is the minimal good resolution. Let D be a divisor on M , the Euler characterization 
χM (D) is given by

χM (D) = dimCH
0(M \A,OM (D))/H0(M,OM (D)) + h1(M,OM (D)).

Theorem 2.7. (Kato [8]) Let D be a cycle on M . Then

χM (D) = −D · (D −K)/2 + pg(X,x).

Morales [15] generalized the result of Theorem 2.7. Let us review these results.
For any D ∈ Div(M), Giraud [2] show that there exists a unique cycle 〈D〉 ∈ ⊕n

i=1ZAi

such that
(1) D − 〈D〉 is f -nef, and
(2) if D′ is a cycle and if D −D′ is f -nef, then 〈D〉 ≤ D′.
Let D ∈ Div(M), we define C(D) = {F ∈ ⊕n

i=1ZAi | D − F is f -nef}.

Lemma 2.1. Let D and D′ be divisors on M .
(1) If π(D′) ∈ ⊕n

i=1ZAi, then 〈D + D′〉 = 〈D〉 + π(D′).
(2) 〈D − 〈D〉〉 = 0.

Proof. If π(D′) is a cycle, then C(D + D′) = {G + π(D′)| G ∈ C(D)}. Hence (1) holds. 
(2) follows from (1). Q.E.D.

Let E = {D ∈ Div(M)|〈D〉 = 0}. We define a map α : E → Z by α(D) = h1(OM (D)) −
pg(X, x), and a map β : E → Q by β(D) = D · (D −K).
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Theorem 2.8. (Morales [15]) Let D be a divisor on M . Then we have

χM (D) = −D · (D −K)/2 + pg(X,x) + ε(D),

where ε(D) = α(D − 〈D〉) + β(D − 〈D〉)/2.

3. Proofs of Theorems 1.1 and 1.2

We assume that f : (M, A) → (X, x) is the minimal good resolution. Let P + N

be the Zariski decomposition of the divisor K + A, where P is an f -nef cycle. We set 
Lm = m(K + A). With the same notations as in previous subsections.

Lemma 3.1. ([17], Lemma 4.36) Suppose that (X, x) is not a quotient singularity. Let r
be the minimal positive integer such that rN belongs to ⊕ZAi. We put q = m − [m/r]r
and Bq = qN − [qN ]. Then

h1(OM (K + Lm)) = −m2N2/2 −mK ·N/2 + ρ(m),

where ρ(m) = Bq ·Bq/2 + K ·Bq/2 + h0(O[qN ](K + Lq)).

Theorem 3.1. ([17], Theorem 4.37) We have the formula

δm+1(X,x) = −m2P 2/2 −mK · P/2 + ν(m),

where ν is a bounded function. If (X, x) is not a quotient singularity, then

ν(m) = pg(X,x) + ε(K + Lm) − ρ(m).

Lemma 3.2. ([17], Lemma 4.47) Suppose that (X, x) is a Q-Gorenstein but not a log-
canonical singularity. Then we have ρ(r − 1) < 0 if N 
= 0.

Now we prove the theorems in section 1.

Proof of Theorem 1.1. “⇒”. Since (X, x) is not a log-canonical singularity, so (X, x) is 
not a quotient singularity. By Theorem 3.1, we have

δm+1(X,x) = −m2P 2/2 −mK · P/2 + ν(m),

where ν(m) = pg(X, x) + ε(K +Lm) − ρ(m). By assumption, δm+1(X, x) = −m2P 2/2 −
mK ·P/2 + pg(X, x). Thus ε(K +Lm) = ρ(m) for any m ≥ 0. Let r be as in Lemma 3.1. 
Since (X, x) is a Gorenstein singularity, so K + Lr−1 is linearly equivalent to a cycle, 
ε(K + Lr−1) = 0. Hence ρ(r − 1) = 0. By assumption, (X, x) is not a log-canonical 
singularity, thus it follows that N = 0 from Lemma 3.2. This means that K +A is f -nef.
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“⇐”. Let L = K + A, then

χM (K + Lm) = dimCH
0(M \A,OM (K + Lm))/H0(M,OM (K + Lm))

+ h1(M,OM (K + Lm)).

Since K + A is f -nef, then h1(OM (K + Lm)) = 0 by Theorem 2.3. Therefore, it follows 
from Proposition 2.1 that

δm+1 = dimCH
0(M \A,OM ((m + 1)K))/H0(M,OM ((m + 1)K + mA)

= dimCH
0(M \A,OM (K + Lm))/H0(M,OM (K + Lm))

= χM (K + Lm).

Since (X, x) is Gorenstein, so K+Lm is a cycle. K +A is f -nef, this implies K +A = P . 
On the one hand, by Theorem 2.7, we have χM (K + Lm) = −(K + Lm) · Lm/2 +
pg(X, x) = −m2P 2/2 −mK · P/2 + pg(X, x). On the other hand, by Theorem 3.1, we 
have δm+1(X, x) = −m2P 2/2 −mK ·P/2 +ν(m). Therefore ν(m) = pg(X, x) for m ≥ 0. 
Hence δm+1(X, x) = −m2P 2/2 −mK · P/2 + pg(X, x). Q.E.D.

Proof of Corollary 1.1. Notice that if (X, x) is a simple elliptic or cusp singularity, then 
K + A = 0, P = 0 and δm+1(X, x) = 1, m ∈ N (see Theorem 2.6), the corollary 
is obviously true. By Theorem 2.1, Theorem 2.5 and Theorem 2.6, if the (X, x) is a 
Gorenstein singularity and not a quotient singularity, simple elliptic or cusp singularity, 
then (X, x) is not a log-canonical singularity. Thus the corollary follows from Theorem 1.1
immediately. Q.E.D.

Proof of Theorem 1.2. Consider

0 → OM (D − 〈D〉) → OM (D) → O〈D〉(D) → 0.

We have the exact sequence

0 → H0(OM (D − 〈D〉)) → H0(OM (D)) → H0(O〈D〉(D)) → · · · .

Thus it suffices to show H0(O〈D〉(D)) = 0. Since 〈D〉 > 0, so D is not f -nef. Hence there 
exists a component Ai such that D · Ai < 0. Notice that D − 〈D〉 is f -nef, this implies 
(D − 〈D〉) ·Ai ≥ 0. Hence 〈D〉 ·Ai < 0 and thus Ai ≤ 〈D〉. We have the exact sequence

0 → H0(O〈D〉−Ai
(D −Ai)) → H0(O〈D〉(D)) → H0(OAi

(D)) = 0.

Notice that Lemma 2.1 implies that 〈D − Ai〉 = 〈D〉 − Ai. By induction, we obtain 
H0(O〈D〉(D)) = 0. Q.E.D.
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Proof of Corollary 1.2. It is clear that H0(M \A, OM (D)) = H0(M \A, OM (D−〈D〉)). 
If 〈D〉 > 0, it follows from Theorem 1.2 that H0(M, OM (D − 〈D〉)) = H0(M, OM (D)). 
Hence we may assume that 〈D〉 = 0, by Lemma 2.1, (2). Since the vector space

H0(M \A,OM (D))/H0(M,OM (D))

is finite-dimensional, there exists a positive cycle V such that

H0(M \A,OM (D)) = H0(M,OM (D + V )).

Since there exists the exact sequence

0 → OM (D) → OM (D + V ) → OV (D + V ) → 0,

it suffices to show that H0(OV (D + V )) = 0. If D + V is f -nef, then 〈D〉 ≤ −V by the 
definition of 〈D〉: it contradicts that V > 0. Hence there exists a component Ai such 
that (D+ V ) ·Ai < 0. Since D is f -nef, V ·Ai < 0, and thus Ai ≤ V . We have the exact 
sequence

0 → H0(OV−Ai
(D + V −Ai)) → H0(OV (D + V )) → H0(OAi

(D + V )) = 0.

By induction, we obtain H0(OV (D + V )) = 0. Q.E.D.

4. Local Cohomology and vanishing properties

Let f : (M, A) → (X, x) be the minimal good resolution of an isolated surface singu-
larity (X, x), with exceptional divisor A =

∑
i Ai. For a positive cycle D on M , we write 

ND = OD(D).

Proposition 4.1 ([21]). Let F be locally free. Suppose for every cycle D there is an Ai ⊂
|D| so that the natural map

H0(F ⊗ND) → H0(F ⊗OAi
(D)) (4.1)

is zero. Then H1
A(F) = 0.

Proposition 4.1 plays crucial role in the proof of the following Theorem 4.1. The 
strategy is that given D, if one can find Ai ⊂ |D| such that H0(F ⊗OAi

(D)) = 0, then 
(4.1) is zero map. One gets a vanishing theorem.

Theorem 4.1 ([21]). If (X, x) is an isolated rational surface singularity, and f : M → X

is the minimal good resolution with exceptional divisor A =
∑

i Ai, then

H1
A(M,OM (A)) = 0.
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Theorem 4.1 follows from Proposition 4.1 and the following Proposition 4.2 first ob-
served by Wahl [21].

Proposition 4.2. If (X, x) is an isolated rational surface singularity, and f : M → X is 
the minimal good resolution with exceptional divisor A =

∑
i Ai, then for every positive 

cycle Z on M , there is an Ai ⊂ |Z| with (Z+A) ·Ai < 0, i.e., H0(OM (A) ⊗OAi
(Z)) = 0.

Proof. Let Z ′ = Z + A =
∑

riAi, then all ri ≥ 1, and at least one ri > 1. Let di =
−Ai ·Ai. We want an Ai so that ri > 1 and Z ′ ·Ai < 0. We proceed by induction on s, 
the number of components of A, the case s = 1 being obvious. Since the singularity is 
rational, so χ(Z ′) ≥ 1, thus Z ′ · (Z ′ + K) ≤ −2. Thus we have

∑
ri(Z ′ ·Ai + di − 2) ≤ −2.

It implies that there is a component (say A1) with Z ′ · A1 + d1 − 2 ≤ −1, or Z ′ · A1 ≤
1 − d1 ≤ −1 (since all di ≥ 2 for a rational singularity). If r1 > 1, we are done; if 
r1 = 1, then Z ′ ·A1 = (

∑
rjAj) ·A1 = −d1 +

∑
rk, where 

∑
rk is over those components 

intersecting A1. Since 
∑

rk = Z ′ · A1 + d1 ≤ 1, we have that A1 intersects only one 
component (say A2), with r2 = 1. Thus, Z ′−A1 is supported on a divisor (corresponding 
to another singularity, still rational) with a smaller number of components; by induction, 
there is an A3 ⊂ |Z ′ − A1|, with r3 > 1 (hence A3 
= A2) and (Z ′ − A1) · A3 < 0. Since 
A1 ·A3 = 0, we have Z ′ ·A3 < 0, as desired. Q.E.D.

From the proof above, it is natural to introduce the following new concepts.

Definition 4.1. If (X, x) is an isolated normal surface singularity, and f : M → X is the 
minimal good resolution with exceptional divisor A =

∑
i Ai.

(1) If H1
A(M, OM (A)) = 0, then we call (X, x) has weak vanishing property.

(2) If for every positive cycle Z on M , there is an Ai ⊂ |Z| with (Z + A) · Ai < 0, 
then we call (X, x) has strong vanishing property.

5. Proofs of Theorems 1.3 and 1.4

It follows from Proposition 4.1 that strong vanishing property implies weak vanishing 
property. Proposition 4.2 implies a rational singularity has strong vanishing property. 
Since minimally elliptic singularities are the most simple singularities after rational sin-
gularities, so a natural question is whether minimally elliptic singularities have strong 
vanishing property. This is answered in Theorem 1.3 and its corollary.

Proof of Theorem 1.3. Let di = −Ai · Ai. Since X has a minimally elliptic singularity, 
so for all Z > 0, χ(Z) ≥ 0, thus

Z · (K + Z) ≤ 0.
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Let Z ′ = Z + A =
∑s

i=1 riAi, where ri ≥ 1 and with at least one i such that ri > 1.
We claim that if Z+A 
= Zmin, then there exists an Ai ⊂ |Z| such that (Z+A) ·Ai < 0.
Thus we want to show that there exists an Ai so that ri > 1 and Z ′ · Ai < 0. We 

proceed the proof by induction on s, the number of components of A. The case s = 1 is 
obvious.

By Proposition 2.2, there are two cases to be considered:
(a) f is also a minimal resolution and Ai’s are rational.
In this case, we have Zmin = −K (see Theorem 2.2), where K is the canonical cycle. 

Then we have

K ·Ai + A2
i = 2g − 2 = −2.

Since Z ′ · (K + Z ′) ≤ 0, we have

∑
ri(−2 + di + Ai · Z ′) ≤ 0.

Firstly, we assume there exists a component (say A1) such that −2 +d1+A1 ·Z ′ ≤ −1. 
Thus A1 ·Z ′ = (

∑
riAi) ·A1 ≤ 1 − d1 ≤ −1 since f is a minimal resolution, all di ≥ 2. If 

r1 > 1, then we are done; otherwise, (
∑

riAi) · A1 = −d1 +
∑

rk ≤ 1 − d1, where 
∑

rk
are over all components intersecting with A1. Thus 

∑
rk = 1. Therefore A1 intersects 

only one component (say A2), with r2 = 1. Thus |Z ′−A1| has its number of components 
smaller than s and thus, by induction, there is an A3 ⊂ |Z ′ − A1|, with r3 > 1 and 
(Z ′ −A1) ·A3 < 0. Since A1 ·A3 = 0, we have Z ′ ·A3 < 0, as desired.

Secondly, for any 1 ≤ i ≤ s, (K + Z ′) ·Ai = −2 + di + Ai · Z ′ = 0.
We write K + Z ′ =

∑
tiAi. On the one hand, Z + A 
= Zmin, so Z + A 
= −K, 

K + Z ′ 
= 0, thus (K + Z ′)2 < 0. On the other hand, since (K + Z ′) · Ai = 0, we have 
(K + Z ′)2 = (K + Z ′) ·

∑
tiAi = 0. This is a contradiction.

(b) When the minimal resolution does not equal to the minimal good resolution, 
there are five different cases (i)-(v) in Proposition 2.2. Notice that in this case Zmin is 
not necessarily to be the same as −K, since we are not assuming minimal resolution.

In case (i), there is only one component A1 which is an elliptic curve such that 
A1 ·A1 ≤ −1 and −K = Zmin = A1. It is easy to see the validation of the claim.

In case (ii), the weighted dual graph of the minimal good resolution is

� ���
��

−d1 −1
A1 A2

where d1 ≥ 5 and Zmin = A1 + 2A2. If Z + A 
= Zmin, then Z 
= A2. Suppose that 
Z = r1A1 + r2A2, with r1 > 0 or r2 > 1. Consider firstly r1 > 0 and r2 > 0. We have

A1 · (Z + A) = A1 · ((r1 + 1)A1 + (r2 + 1)A2) = −(r1 + 1)d1 + 2(r2 + 1),
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and

A2 · (Z + A) = A2 · ((r1 + 1)A1 + (r2 + 1)A2) = 2(r1 + 1) − (r2 + 1).

We claim that either A1 · (Z + A) ≤ −1 or A2 · (Z + A) ≤ −1. Otherwise, if both 
A1 · (Z +A) ≥ 0 and A2 · (Z +A) ≥ 0, then −(r1 + 1)d1 + 2(r2 + 1) ≥ 0 and 2(r1 + 1) −
(r2 + 1) ≥ 0, thus (4 − d1)(r1 + 1) ≥ 0 which contradicts with d1 ≥ 5.

If r1 > 0 and r2 = 0, then we have

A1 · (Z + A) = A1 · ((r1 + 1)A1 + A2) = −(r1 + 1)d1 + 2 < 0.

If r1 = 0 and r2 > 1, then we have

A2 · (Z + A) = A2 · (A1 + (r2 + 1)A2) = 2 − (r2 + 1) < 0.

Thus the claim is true in this case.
In cases (iii)–(v), the weighted dual graph of the minimal good resolution is

�−d2

−d1 −d3

� � �
−1

A1

A2

A3

A4

where di ≥ 2, 1 ≤ i ≤ 3, and 1
d1

+ 1
d2

+ 1
d3

< 1 (cf. [17], Remark 2.45).
Let Z = r1A1 + r2A2 + r3A3 + r4A4 be a cycle, where r1, r2, r3, r4 ≥ 0 but not all 0. 

We claim that there is an Ai ⊂ |Z| with Ai · (Z + A) < 0. We only need to consider the 
following cases:

(1) r1, r2, r3 > 0, (2) r1 = r2 = r3 = 0,

(3) r1 = 0, r2, r3 > 0, (4) r2 = 0, r1, r3 > 0,

(5) r3 = 0, r1, r2 > 0, (6) r1 = r2 = 0, r3 > 0,

(7) r2 = r3 = 0, r1 > 0, (8) r3 = r1 = 0, r2 > 0.

We first prove the following lemma.

Lemma 5.1. Let Z = r1A1 + r2A2 + r3A3 + r4A4 be a cycle, with r1, r2, r3, r4 ≥ 0 but not 
all 0. Then each one of the following three conditions

1) ri > 0 for i = 1, 2, 3, 4;
2) r4 = 0;
3) r4 > (r1 + r2 + r3) + 2;
implies that there exists an Ai ⊂ |Z| with Ai · (Z + A) < 0.
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Proof. Since

A1 · (Z + A) = −(r1 + 1)d1 + r4 + 1, (5.1)

A2 · (Z + A) = −(r2 + 1)d2 + r4 + 1, (5.2)

A3 · (Z + A) = −(r3 + 1)d3 + r4 + 1, (5.3)

A4 · (Z + A) = −(r4 + 1) + (r1 + 1) + (r2 + 1) + (r3 + 1). (5.4)

For case 1), we claim that there exists i, such that Ai · (Z + A) < 0. If not, then 
Ai · (Z + A) ≥ 0 for i = 1, 2, 3, 4. It follows from (5.1)-(5.4) that

1
d1

+ 1
d2

+ 1
d3

≥ 1,

which contradicts with 1
d1

+ 1
d2

+ 1
d3

< 1.
The case 2) follows from (5.1)-(5.3) easily.
The case 3) follows from (5.4) directly. Q.E.D.

Now we continue with the proof of Theorem 1.3. Without loss of generality, we assume 
that d3 ≥ d2 ≥ d1 ≥ 2. Since 1

d1
+ 1

d2
+ 1

d3
< 1, so we divided it into two cases:

1). d3 ≥ d2 ≥ d1 ≥ 3,
2). d3 ≥ d2 ≥ 3, d1 = 2.
It follows from 2), 3) in Lemma 5.1 that we only need to consider the case when 

0 < r4 ≤ (r1 + r2 + r3) + 2.
In case (1), we have r1, r2, r3 > 0, and r4 > 0. It follows from Lemma 5.1 that the 

claim is true.
In case (2), combining r1 = r2 = r3 = 0 with 0 < r4 ≤ (r1 + r2 + r3) + 2, we have 

r4 = 1 or 2, i.e., Z = A4 or 2A4, A4 · (Z + A) = 1 + 1 + 1 − (r4 + 1) ≥ 0, so the claim 
can’t hold. Thus we get a exceptional case 1) in Theorem 1.3.

In case (3), we have r1 = 0, r2, r3 > 0, and r4 > 0. By contradiction we assume that

A2 · (Z + A) = −(r2 + 1)d2 + r4 + 1 ≥ 0, (5.5)

A3 · (Z + A) = −(r3 + 1)d3 + r4 + 1 ≥ 0, (5.6)

A4 · (Z + A) = −(r4 + 1) + 1 + (r2 + 1) + (r3 + 1) ≥ 0. (5.7)

It follows from (5.5)-(5.7) that 1
d2

+ 1
d3

≥ r4
r4+1 . Since d3 ≥ d2 ≥ 3, so r4 = 1 or 2. 

However it follows from (5.5) that r4 ≥ 5. This is a contradiction. Thus the claim is true.
In case (4), we have r2 = 0, r1, r3 > 0, and r4 > 0. By contradiction we assume that

A1 · (Z + A) = −(r1 + 1)d1 + r4 + 1 ≥ 0, (5.8)

A3 · (Z + A) = −(r3 + 1)d3 + r4 + 1 ≥ 0, (5.9)

A4 · (Z + A) = −(r4 + 1) + (r1 + 1) + 1 + (r3 + 1) ≥ 0. (5.10)
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It follows from (5.8)-(5.10) that 1
d1

+ 1
d3

≥ r4
r4+1 . If d3 ≥ d2 ≥ d1 ≥ 3, then the claim 

is true as in Case (3). If d3 ≥ d2 ≥ 3, d1 = 2, notice that 1
d1

+ 1
d2

+ 1
d3

< 1, so d3 ≥ 7, 
then r4 = 1. However it follows from (5.8) that r4 ≥ 3. This is a contradiction. Thus this 
validates the claim.

In the case (5), we have r3 = 0, r1, r2 > 0, and r4 > 0. By contradiction we assume 
that

A1 · (Z + A) = −(r1 + 1)d1 + r4 + 1 ≥ 0, (5.11)

A2 · (Z + A) = −(r2 + 1)d2 + r4 + 1 ≥ 0, (5.12)

A4 · (Z + A) = −(r4 + 1) + (r1 + 1) + (r2 + 1) + 1 ≥ 0. (5.13)

It follows from (5.11)-(5.13) that 1
d1

+ 1
d2

≥ r4
r4+1 . If d3 ≥ d2 ≥ d1 ≥ 3, then the claim 

is true. If d3 ≥ d2 ≥ 3, d1 = 2, then r4 = 1, 2, 3, 4, or 5. However it follows from (5.12)
that r4 ≥ 5. Thus we have r4 = 5, r2 = 1, r1 = 2, d2 = 3, d1 = 2, d3 ≥ 7, d4 = −1. 
And Z = 2A1 + A2 + 5A4. It is easy to check that Zmin = 3A1 + 2A2 + A3 + 6A4. 
Thus Z +A = Zmin. This contracts with our assumption Z +A 
= Zmin. Therefore this 
validates the claim.

In the case (6), we have r1 = r2 = 0, r3 > 0, and r4 > 0. By contradiction we assume 
that

A3 · (Z + A) = −(r3 + 1)d3 + r4 + 1 ≥ 0, (5.14)

A4 · (Z + A) = −(r4 + 1) + 1 + 1 + (r3 + 1) ≥ 0. (5.15)

It follows from (5.14)-(5.15) that r3 ≤ 3−d3
d3−1 . Since d3 ≥ 3, so r3 ≤ 0 which contradicts 

with the assumption r3 > 0. This validates the claim.
In the case (7), we have r2 = r3 = 0, r1 > 0, and r4 > 0. By contradiction we assume 

that

A1 · (Z + A) = −(r1 + 1)d1 + r4 + 1 ≥ 0, (5.16)

A4 · (Z + A) = −(r4 + 1) + (r1 + 1) + 1 + 1 ≥ 0. (5.17)

It follows from (5.16)-(5.17) that r1 ≤ 3−d1
d1−1 . If d3 ≥ d2 ≥ d1 ≥ 3, then the claim 

is true. If d3 ≥ d2 ≥ 3, d1 = 2, then r1 = 1, r4 = 3. Notice that if d2 ≥ 4, then 
Zmin = 2A1 +A2 +A3 +4A4. Combining the condition Z +A 
= Zmin, we conclude that 
d2 = 3. Thus we get a exceptional case 2) in Theorem 1.3.

In the case (8) we have r1 = r3 = 0, r2 > 0, and r4 > 0. We assume by contradiction 
that

A2 · (Z + A) = −(r2 + 1)d2 + r4 + 1 ≥ 0, (5.18)

A4 · (Z + A) = −(r4 + 1) + 1 + (r2 + 1) + 1 ≥ 0. (5.19)

It follows from (5.18)-(5.19) that r2 ≤ 3−d2 . Then the claim is true. Q.E.D.
d2−1
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Remark 5.1. In Theorem 1.3, if Z +A = Zmin, then in general we can not find Ai ⊂ |Z|, 
such that (Z + A) · Ai < 0. We have only (Z + A) · Ai ≤ 0 for any Ai ⊂ |Z|. We give 
three examples as follows.

In the following weighted dual graphs, the weights −di’s are omitted if di = 2.

Example 1.

� � ��� � �
−7

A1 A2 A3 A4 A5

A6

A7

For this example,

Zmin = 1 2

1
2
3 2 1

i.e., Zmin = A1 + 2A2 + 3A3 + 2A4 + A5 + 2A6 + A7. Suppose Z + A = Zmin, i.e., 
Z = A2 + 2A3 + A4 + A6 and for any Ai ⊂ |Z|, we have (Z + A) ·Ai = 0.

Example 2.

� ��� �−4

A4A1

−3

−3 A2

−3
A3

A5

For this example,

Zmin = 1
1
2
1

1

i.e., Zmin = A1 + A2 + A3 + A4 + 2A5. Suppose that Z + A = Zmin, thus Z = A5 and 
(Z + A) ·A5 = 0.

Example 3.

� � � �� ∗ �∗
�

� � �
A1

−3

−3 A2
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Zmin = 1 2 3
2
4 3

1
2
4 3 2 1

For this example, suppose that Z + A = Zmin, then we know that A1 ⊂ |Z| and 
A1 · (Z + A) = A1 · Zmin = −1.

Before we give the proof of Corollary 1.3, we first recall the definition of cusp sin-
gularities and simple elliptic singularities. Suppose f : (M, A) → (X, x) is the minimal 
resolution. Then (X, x) is called a simple elliptic singularity if A is a nonsingular elliptic 
curve. (X, x) is called a cusp singularity if A is a cycle of nonsingular rational curves 
(see the dual resolution graph below), or a rational curve with a node. It is clear that 
simple elliptic or cusp singularity are minimally elliptic.

−d1

−d2 −d3

−dn−1−dn

where di ≥ 2 for all i = 1, · · · , n (n ≥ 3) and negative definite intersection matrix 
(Ai ·Aj)i,j (or equivalently, 

∑
i(di − 2) > 0).

Corollary 5.1. Cusp singularities have strong vanishing property.

Proof. Let f : (M, A) → (X, x) be the minimal good resolution of the cusp singularity 
(X, x), with exceptional divisor A =

∑
i Ai. If A is a cycle of nonsingular rational curves, 

then by Proposition 2.2, f is also a minimal resolution. So the dual resolution graph is 
a cycle as above. It is easy to calculate that Zmin = A, so for any positive cycle Z
supported on A. We have Z + A 
= Zmin. The condition of the Theorem 1.3 is satisfied. 
The corollary follows immediately from Theorem 1.3. If the minimal resolution of (X, x)
is a rational curve with a node, then the dual resolution graph of minimal good resolution 
is as follows:

� �
��
��

−d1 −1
A1 A2

where d1 ≥ 5. Then the corollary also follows from the proof the Theorem 1.3. Q.E.D.

Corollary 5.2. Simple elliptic singularities have strong vanishing property.
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Proof. Let f : (M, A) → (X, x) be the minimal good resolution of the simple elliptic 
singularity (X, x), with exceptional divisor A = A1. A is a nonsingular elliptic curve. 
The corollary follows from the proof the Theorem 1.3. Q.E.D.

Recall that isolated Du Bois singularities are characterized as follows.

Theorem 5.1. (Steenbrink, [20], (3.6)). Let (X, x) be an isolated singularities and f :
(M, A) → (X, x) a good resolution. Then (X, x) is Du Bois if and only if the natural 
map

Hi(M,OM ) → Hi(A,OA)

is isomorphism for i > 0.

If (X, x) is an isolated Gorenstein surface singularity, then (X, x) is a Du Bois singu-
larity if and only if (X, x) is either rational, simple elliptic or cusp (cf. [3]).

Corollary 5.3. Gorenstein Du Bois singularities have strong vanishing property.

Proof. It follows from the Proposition 4.2, Corollary 5.1 and Corollary 5.2. Q.E.D.

Proof of Corollary 1.3. It follows from the Corollary 5.1, Corollary 5.2 and Corol-
lary 5.3. Q.E.D.

Lemma 5.2. Let f : (M, A) → (X, x) be any resolution of a surface singularity (X, x). 
Let A′ be a connected cycle such that 0 < A′ ≤ A. Then A′ is contractible to a surface 
singularity.

Proof. Suppose that A′ =
∑k

i=1 Ai. Let Z be the fundamental cycle on M . Consider the 
sequence of positive cycles:

Z1 = A1, · · · , Zi+1 = Zi + Aji , · · ·

where ji ∈ {1, · · · , k} and Zi · Aji > 0. Since Zi ≤ Z for each Zi, the sequence will 
end. Hence we obtain the positive cycle Z ′ such that Supp(Z ′) = A′, and Z ′ · Ai ≤ 0
for i = 1, · · · , k. Since the intersection matrix of A is negative definite, Z ′ · Z ′ < 0. 
By Artin’s result (cf. [1], Proposition 2), the intersection matrix of A′ is also negative 
definite. Thus the assertion follows. Q.E.D.

Proof of Theorem 1.4. Let M ′ be a neighborhood of A′ and f ′ : (M ′, A′) → (X ′, x′) a 
morphism, which contracts A′. We assume that X ′ is Stein. If A′ = A, then it is done. 
Therefore we assume that A′ < A. For every positive cycle Z supported on A′, due to 
the (X, x) has strong vanishing property, there is an Ai ⊂ |Z| with (Z + A) · Ai < 0. 
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We claim that (Z + A′) · Ai < 0. Let A − A′ = Aj1 + · · · + Ajs(s ≥ 1). (Z + A) · Ai =
(Z + A′ + Aj1 + · · · + Ajs) · Ai = (Z + A′) · Ai + (Aj1 + · · · + Ajs) · Ai < 0. Since 
Ai ⊂ |Z| ⊂ A′, so (Aj1 + · · · + Ajs) · Ai ≥ 0, then (Z + A′) · Ai < 0. Thus the assertion 
follows. Q.E.D.
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