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Abstract. We consider contracting and expanding curvature flows in

Sn+1. When the flow hypersurfaces are strictly convex we establish
a relation between the contracting hypersurfaces and the expanding

hypersurfaces which is given by the Gauß map. The contracting hy-

persurfaces shrink to a point x0 while the expanding hypersurfaces
converge to the equator of the hemisphere H(−x0). After rescaling, by

the same scale factor, the rescaled hypersurfaces converge to the unit

spheres with centers x0 resp. −x0 exponentially fast in C∞(Sn).
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1. Introduction

We consider contracting and expanding curvature flows in Sn+1. When
the flow hypersurfaces are strictly convex we establish a relation between the
contracting hypersurfaces and the expanding hypersurfaces which is given by
the Gauß map. Consider monotone curvature functions F being defined in
the positive cone Γ+ ⊂ Rn such that

(1.1) F (1, . . . , 1) = 1
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and such that both F and its inverse F̃ are concave. Let M(t) resp. M̃(t) be
solutions of the flows

(1.2) ẋ = −Fν

resp.

(1.3) ẋ = F̃−1ν,

where the initial hypersurfaces M0 resp. M̃0 are strictly convex and where
M̃0 is the polar set of M0, then both flows exist on the maximal time interval
[0, T ∗), the hypersurfaces M̃(t) are the polar hypersurfaces of M(t), and vice
versa, The contracting hypersurfaces shrink to a point x0 while the expand-
ing hypersurfaces converge to the equator of the hemisphere H(−x0). After
rescaling, by the same scale factor, the rescaled hypersurfaces satisfy uniform
estimates in the C∞ topology with uniformly positive principal curvatures.
When the curvature function F of the contracting flow is strictly concave,
see Definition 3.1 on page 6 for a precise definition, or when F = 1

nH, then
the rescaled hypersurfaces of both flows converge to the unit spheres with
centers x0 resp. −x0 exponentially fast in C∞(Sn).

The class of strictly concave curvature functions comprises the appropriate
roots σk, 2 ≤ k ≤ n, of the elementary symmetric polynomials, the functions
of class (K), and hence the inverses σ̃k of the σk, 1 ≤ k ≤ n. Proofs of these
results concerning strictly concave curvature functions are given in Section 3
on page 6. As a byproduct we also obtain a simple proof that the σk are
concave.

Here is a more detailed summary of our results.

1.1. Theorem. Let F ∈ C∞(Γ+) be a symmetric, monotone and homoge-
neous of degree 1 curvature function and assume that both F and its inverse
F̃ are concave. Normalize F such that

(1.4) F (1, . . . , 1) = 1

and consider the curvature flows (1.2) resp. (1.3) with initial smooth and

strictly convex hypersurfaces M0 resp. M̃0, where M̃0 is the polar of M0.
Then both flows exist in the maximal time interval [0, T ∗) with finite T ∗. The
respective flow hypersurfaces are polar sets of each other. The contracting
flow hypersurfaces shrink to a point x0 while the expanding hypersurfaces
converge to the equator of the hemisphere H(−x0). The contracting flow is
compactly contained in the open hemisphere H(x0) for tδ ≤ t < T ∗ while the
expanding flow is contained in H(−x0) for all 0 ≤ t < T ∗.

Introducing geodesic polar coordinate systems with centers in x0 resp. −x0

and writing the flow hypersurfaces as graphs of a function u resp. u∗, then,
for any m ∈ N, we have

(1.5) |u|m,Sn ≤ cmΘ ∀ t ∈ [tδ, T
∗)
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resp.

(1.6) |π2 − u
∗|m,Sn ≤ cmΘ ∀ t ∈ [tδ, T

∗),

where Θ(t, T ∗) is the solution of the flow (1.2) with spherical initial hyper-
surface and same existence interval.

The rescaled functions

(1.7) uΘ−1

resp.

(1.8) (π2 − u
∗)Θ−1

are uniformly bounded C∞(Sn) and the rescaled principal curvatures are uni-
formly positive.

When the curvature function F , governing the contracting flow, is strictly
concave, or when F = 1

nH, then the functions in (1.7) resp. (1.8) converge
to the constant function 1 in C∞(Sn) exponentially fast.

Contracting curvature flows have first been considered by Huisken for the
mean curvature in Euclidean and Riemannian spaces, cf. [14, 15]. We are
adapting his method of proving an exponential decay for the difference of
the principal curvatures to the present situation in order to derive our decay
estimates for the rescaled hypersurfaces. Tso proved that contracting hy-
persurfaces by the Gauß curvature shrinks the hypersurfaces to a point [19],
while Chow proved the contraction to a round point in case of the square root
of the scalar curvature and the n-th root of the Gauß curvature, cf. [5, 6].
Andrews, [2, 3], considered contracting flows for a class of curvature func-
tions in Euclidean and Riemannian spaces and proved convergence to a point,
boundedness of the rescaled hypersurfaces in the C∞ topology and also con-
vergence to a sphere (or spheres in the Riemannian case), though we do not
understand his arguments for the convergence of the rescaled hypersurfaces
and consider his proofs to be incorrect.

Expanding flows, or inverse curvature flows, have been considered in Eu-
clidean and hyperbolic space [8, 11, 12, 18]. Recently, inverse curvature flows
have been studied in Sn+1 by Makowski and Scheuer [17] who proved con-
vergence to a hemisphere in C1,α.

1.2. Remark. Our results for the contracting flows are also valid in Rn+1.

2. Definitions and notations

The main objective of this section is to state the equations of Gauß, Co-
dazzi, and Weingarten for hypersurfaces M in a (n+1)-dimensional Riemann-
ian manifold N . Geometric quantities in N will be denoted by (ḡαβ), (R̄αβγδ),
etc., and those in M by (gij), (Rijkl), etc. Greek indices range from 0 to n
and Latin from 1 to n; the summation convention is always used. Generic
coordinate systems in N resp. M will be denoted by (xα) resp. (ξi). Covari-
ant differentiation will simply be indicated by indices, only in case of possible
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ambiguity they will be preceded by a semicolon, i.e., for a function u in N ,
(uα) will be the gradient and (uαβ) the Hessian, but e.g., the covariant deriv-
ative of the curvature tensor will be abbreviated by R̄αβγδ;ε. We also point
out that

(2.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.
Let M be a C2-hypersurface with normal ν.
In local coordinates, (xα) and (ξi), the geometric quantities of the hyper-

surface M are connected through the following equations

(2.2) xαij = −hijνα

the so-called Gauß formula. Here, and also in the sequel, a covariant deriva-
tive is always a full tensor, i.e.,

(2.3) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hij) is taken with

respect to −ν.
The second equation is the Weingarten equation

(2.4) ναi = hki x
α
k ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

(2.5) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k

and the Gauß equation

(2.6) Rijkl = {hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

When we consider hypersurfaces M ⊂ Sn+1 to be embedded in Rn+2,
we label the coordinates in Rn+2 as (xa), i.e., indices a, b, c, ... always run
through n+ 2 values either from 1 to n+ 2 or from 0 to n+ 1.

At the end of this section let us state some evolution equations satisfied
by solutions of the curvature flows

(2.7) ẋ = −Φν

in a Riemannian space form N = Nn+1 with curvature KN . Here Φ = Φ(F ).

2.1. Lemma. The term Φ evolves according to the equation

(2.8)
Φ′ − Φ̇F ijΦij = Φ̇F ijhikh

k
jΦ

+KN Φ̇F
ijgijΦ,

where

(2.9) Φ′ =
d

dt
Φ
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and

(2.10) Φ̇ =
d

dr
Φ(r).

For a proof see [10, Lemma 2.3.4].
Assume that the flow hypersurfaces are written as graphs in a geodesic

polar coordinate system. Define v by

(2.11) v−1 = 〈 ∂
∂x0

, ν〉

and let η = η(r) be a positive solution of the equation

(2.12) η̇ = −H̄
n
η,

where H̄ is the mean curvature of the slices {x0 = r}, then

(2.13) χ = vη(u)

satisfies the equation

(2.14) χ̇− Φ̇F ijχij = −Φ̇F ijhikhkjχ− 2χ−1Φ̇F ijχiχj + {Φ̇F + Φ}H̄
n
vχ,

cf. [9, Lemma 5.8]

2.2. Lemma. Let N be a space of constant curvature KN , then the second
fundamental form of the curvature flow (2.7) satisfies the parabolic equations

(2.15)

ḣji − Φ̇F
klhji;kl = Φ̇F klhrkh

r
l h
j
i − Φ̇Fhrih

rj + Φhki h
j
k

+ Φ̈FiF
j + Φ̇F kl,rshkl;ih

j
rs;

+KN{Φδji + Φ̇Fδji − Φ̇F
klgklh

j
i}.

and

(2.16)

ḣij − Φ̇F klhij;kl = Φ̇F klhrkh
r
l hij − Φ̇Fhrihrj − Φhki hkj

+ Φ̈FiFj + Φ̇F kl,rshkl;ihrs;j

+KN{Φgij + Φ̇Fgij − Φ̇F klgklhij}.

For a proof see [10, Lemma 2.4.3].

2.3. Lemma. Let hij be invertible and set (h̃ij) = (hij)
−1, then the mixed

tensor h̃ij satisfies the evolution equation

(2.17)

˙̃
hij − Φ̇F klh̃ij;kl =

− Φ̇F klhkrh
r
l h̃
i
j + {Φ̇F − (Φ− f̃)}δij

−KN{Φ̇F + Φ}h̃kj h̃ki +KN Φ̇F
klgklh̃

i
j

− {Φ̇F pq,klhpq;rhkl;s + 2Φ̇F klh̃pqhpk;rhql;s + Φ̈FrFs}h̃ish̃rj .
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3. Curvature functions

3.1. Definition. Let F ∈ C2(Γ ) be a symmetric, homogeneous of degree
1, monotone and concave curvature function. We call F strictly concave, if
the multiplicity of the eigenvalue λ = 0 for D2F (κ) is one for all κ ∈ Γ .

We shall show that the k-th root of the elementary symmetric polynomials
Hk, 2 ≤ k ≤ n, are strictly concave. This will also offer a simple independent
proof of the concavity of the k-th root of Hk.

The Hk are defined in the connected component Γk of the cone

(3.1) {Hk > 0}
containing Γ+. The cones are monotonely ordered

(3.2) Γ+ = Γn ⊂ · · · ⊂ Γ1,

cf. [16, Section 2].

3.2. Theorem. The curvature functions

(3.3) σk = H
1
k

k , 2 ≤ k ≤ n,
are strictly concave.

Proof. The proof relies on the concavity of the functions

(3.4) Qk =
Hk+1

Hk
, 1 ≤ k ≤ n− 1.

A proof of this fact can be found in [16, Theorem 2.5]. There, it also proved
that the Qk are strictly concave in Γ+.

For the proof of the theorem we shall use induction with respect to k. A
proof that σ2 is strictly concave is given in the lemma below.

Thus, let us assume the σk, 2 ≤ k < n − 1, is already strictly concave.
Define

(3.5) F = σk+1,

then

(3.6)
Fij = ( 1

k+1 − 1) 1
k+1H

1
k+1−2

k+1 Hk+1,iHk+1,j

+ 1
k+1H

1
k+1−1

k+1 Hk+1,ij .

Here, the indices denote partial derivatives. Then the concavity of F is
equivalent to the relation

(3.7) Hk+1,ij ≤ (1− 1
k+1 )H−1

k+1Hk+1,iHk+1,j .

We shall prove this inequality by induction and also

(3.8) Hk+1,ijξ
iξj < (1− 1

k+1 )H−1
k+1Hk+1,iξ

iHk+1,jξ
j ∀κ 6∼ ξ ∈ Rn,

where ξ 6= 0 and where κ ∼ ξ means that

(3.9) ξ = λκ.
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Let ϕ be defined by

(3.10) ϕ = Qk,

then

(3.11) Hk+1,ij = ϕijHk + ϕiHk,j + ϕjHk,i + ϕHk,ij .

The argument κ ∈ Γ is obviously an eigenvector of D2F (κ) with eigenvalue
0. Hence, let κ 6∼ ξ ∈ Rn be arbitrary, ξ 6= 0, then we deduce

(3.12)

Hk+1,ijξ
iξj = ϕijξ

iξjHk + 2ϕiξ
iHk,jξ

j + ϕHk,ijξ
iξj

< 2ϕiξ
iHk,jξ

j +
Hk+1

Hk
(1− 1

k )H−1
k (Hk,iξ

i)2,

where we used the concavity of ϕ and the assumption (3.8) for the function
Hk.

From the relation

(3.13) Hk+1,iξ
i = ϕiξ

iHk + ϕHk,iξ
i

we obtain

(3.14) ϕiξ
iHk,jξ

j = H−1
k Hk+1,iξ

iHk,jξ
j − Hk+1

H2
k

(Hk,iξ
i)2

yielding

(3.15)

Hk+1,ijξ
iξj < 2H−1

k Hk+1,iξ
iHk,jξ

j − 2
Hk+1

H2
k

(Hk,iξ
i)2

+
k − 1

k

Hk+1

H2
k

(Hk,iξ
i)2

≤ k
k+1H

−1
k+1(Hk+1,iξ

i)2 +
k + 1

k

Hk+1

H2
k

(Hk,iξ
i)2

− 2
Hk+1

H2
k

(Hk,iξ
i)2 +

k − 1

k

Hk+1

H2
k

(Hk,iξ
i)2

= (1− 1
k+1 )H−1

k+1(Hk+1,iξ
i)2.

The lemma below will complete the proof of the theorem. �

3.3. Lemma. The function σ2 is strictly concave.

Proof. We shall first prove that F = σ2 is concave. We use the same technique
as in the proof of the theorem above and shall verify that the inequality (3.7)
is satisfied for F . Define

(3.16) ϕ =
H2

H
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and let ξ ∈ Rn, then

(3.17)

H2,ijξ
iξj ≤ 2H−1H2,iξ

iHjξ
j − 2

H2

H2
(Hiξ

i)2

≤ 1
2H
−1
2 (H2,iξ

i)2 + 2
H2

H2
(Hiξ

i)2 − 2
H2

H2
(Hiξ

i)2

= 1
2H
−1
2 (H2,iξ

i)2,

hence F = σ2 is concave.
To prove that F is strictly concave, assume there exists 0 6= ξ ∈ Rn such

that

(3.18) Fij(κ)ξj = 0 ∧ κiξ
i = 0.

For simplicity let us define

(3.19) F =
√
H2 − |A|2,

then

(3.20) Fi = F−1(H − κi)

and

(3.21) Fij = −F 3(H − κi)(H − κj) + F−1(1− δij).

Define σ by

(3.22) σ =
∑
i

ξi,

then

(3.23) (σ − ξi)F 2 = (H − κi)Hσ.

Summing over i yields

(3.24) (n− 1)σF 2 = (n− 1)H2σ,

and hence we deduce

(3.25) σ = 0

for otherwise we get a contradiction. But when σ = 0, we infer from (3.23)

(3.26) ξiF 2 = 0,

a contradiction. �

Now, we want to prove that the inverses σ̃k of σk, 1 ≤ k ≤ n, are also
strictly concave. This will follow from the fact that they are of class (K).

3.4. Definition. A symmetric curvature function F ∈ C2,α(Γ+)∩C0(Γ̄+),
positively homogeneous of degree d0 > 0, is said to be of class (K), if

(3.27) Fi =
∂F

∂κi
> 0 in Γ+,
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which is also referred to as F to be strictly monotone,

(3.28) F|∂Γ+ = 0,

and

(3.29) F ij,klηijηkl ≤ F−1(F ijηij)
2 − F ikh̃jlηijηkl ∀ η ∈ S,

or, equivalently, if we set F̂ = logF ,

(3.30) F̂ ij,klηijηkl ≤ −F̂ ikh̃jlηijηkl ∀ η ∈ S,

where F is evaluated at (hij) and (h̃ij) is the inverse of (hij).

Note that we only consider curvature functions which are homogeneous of
degree 1.

3.5. Remark. The inverses σ̃k of σk, 1 ≤ k ≤ n, are of class (K), cf. [10,
Chapter 2.2], especially Lemma 2.2.11.

3.6. Lemma. Let F ∈ (K) be homogenous of degree 1, then F is strictly
concave.

Proof. The Hessian of F satisfies the inequality

(3.31)
∂ 2F

∂κi ∂κj
≤ F−1FiFj − Fiκ−1

j δij ,

cf. [10, inequality (2.2.9)]. The right-hand side is strictly negative definite
unless evaluated for a multiple of κ. Indeed, let κ 6∼ ξ ∈ Rn, ξ 6= 0, then,
using Schwarz’s inequality, we deduce

(3.32)

Fiξ
i =

∑
i

F
1
2
i κ

1
2
i F

1
2
i κ
− 1

2
i ξi

≤
(∑

i

Fiκi
) 1

2
(∑

i

Fiκ
−1
i |ξ

i|2
) 1

2 = F
1
2

(∑
i

Fiκ
−1
i |ξ

i|2
) 1

2 ,

where the inequality is a strict inequality unless

(3.33) κ
− 1

2
i ξi = λκ

1
2
i ∀ i,

or equivalently,

(3.34) ξi = λκi ∀ i.

�



10 CLAUS GERHARDT

4. Polar sets and dual flows

Let M ⊂ Sn+1 be a connected, closed, immersed, strictly convex hyper-
surface given by an immersion

(4.1) x : M0 →M ⊂ Sn+1,

then M is embedded, homeomorphic to Sn, contained in an open hemisphere
and is the boundary of a convex body M̂ ⊂ Sn+1, cf. [7].

Considering M as a codimension 2 submanifold of Rn+2 such that

(4.2) xij = −gijx− hij x̃,

where x̃ ∈ Tx(Rn+2) represents the exterior normal vector ν ∈ Tx(Sn+1), we
proved in [10, Theorem 9.2.5] that the mapping

(4.3) x̃ : M0 → Sn+1

is an embedding of a strictly convex, closed, connected hypersurface M̃ . We
called this mapping the Gauß map of M . More precisely, we proved

4.1. Theorem. Let x : M0 → M ⊂ Sn+1 be a closed, connected, strictly
convex hypersurface of class Cm, m ≥ 3, then the Gauß map x̃ in (4.3) is

the embedding of a closed, connected, strictly convex hypersurface M̃ ⊂ Sn+1

of class Cm−1.
Viewing M̃ as a codimension 2 submanifold in Rn+2, its Gaussian formula

is

(4.4) x̃ij = −g̃ij x̃− h̃ijx,

where g̃ij, h̃ij are the metric and second fundamental form of the hypersurface

M̃ ⊂ Sn+1, and x = x(ξ) is the embedding of M which also represents the

exterior normal vector of M̃ . The second fundamental form h̃ij is defined
with respect to the interior normal vector.

The second fundamental forms of M , M̃ and the corresponding principal
curvatures κi, κ̃i satisfy

(4.5) hij = h̃ij = 〈x̃i, xj〉

and

(4.6) κ̃i = κ−1
i .

If M is supposed to satisfy a curvature equation of the form

(4.7) F |M = f(ν),

where F is a curvature function defined in Γ+, F = F (κi), F symmetric,
monotone, homogenous of degree 1 and smooth (for simplicity), F ∈ C∞(Γ+),

then the polar set M̃ of M satisfies the equation

(4.8) F̃ |M̃ =
1

f(x)
,
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where F̃ is the inverse of F ,

(4.9) F̃ (κi) =
1

F (κ−1
i )

.

One may consider the equation (4.7) and (4.8) to describe dual problems.
This duality is also valid in case of curvature flows.

Let x = x(t, ξ) be a solution of the curvature flow

(4.10) ẋ = −Φν,
where Φ = Φ(r) is a smooth real, strictly monotone function defined on R+

and where the F on the right-hand side of (4.10) is an abbreviation for

(4.11) Φ = Φ(F ).

Assume that the flow in (4.10) with initial strictly convex hypersurface M0

exists on a maximal time interval [0, T ∗) and that the flow hypersurfaces
M(t) are strictly convex. Let us consider the flow as flow in Rn+2, then
(4.10) takes the form

(4.12) ẋ = −Φx̃,
since

(4.13) 〈ẋ, x〉 = 0,

x̃ represents ν in Tx(Rn+2) and

(4.14) Tx(Rn+2) = Tx(Sn+1)⊕ 〈x〉.

We also note that x is the normal to M̃ and that the Weingarten equation
has the form

(4.15) xj = h̃kj x̃k,

cf. [10, Lemma 9.2.4]. Furthermore, we have, cf. [10, equ. (9.2.36)],

(4.16) 〈x, x̃〉 = 0,

and we infer

(4.17) 〈x, ˙̃x〉 = Φ,

(4.18) 〈xj , x̃〉 = 0,

(4.19) 0 = 〈ẋj , x̃〉+ 〈xj , ˙̃x〉,
as well as

(4.20) ẋj = −Φj x̃− Φx̃j
in view of (4.10). Thus, we deduce

(4.21) 〈 ˙̃x, xj〉 = −〈ẋj , x̃〉 = Φj .

Taking (4.17), (4.21) and

(4.22) 〈 ˙̃x, x̃〉 = 0
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into account we finally conclude

(4.23)
˙̃x = Φx+ Φmxm

= Φx+ Φmh̃kmx̃k,

where

(4.24) Φm = gmjΦj .

The corresponding flow equation in Sn+1 has the form

(4.25) ˙̃x = Φν̃ + Φmh̃kmx̃k.

Let t0 ∈ [0, T ∗) and introduce polar coordinates with center in the convex

body defined by M̃(t0), then, for t0 ≤ t < t0 + ε, M̃(t) can be written as
graph over Sn

(4.26) M̃(t) = graph ũ|Sn ,

and we obtain the scalar curvature flow equation

(4.27) ˙̃u =
dũ

dt
= Φṽ−1 + Φmh̃kmũk

by looking at the 0-th component of (4.25), where

(4.28)
ṽ2 = 1 +

1

sin2 ũ
σij ũiũj

≡ 1 + |Dũ|2

and

(4.29) ν̃ = ṽ−1(1,−ˇ̃ui)

such that

(4.30) |Dũ|2 = ˇ̃uiũi.

The partial derivative of ũ with respect to t then satisfies

(4.31)

∂ũ

∂t
= ˙̃u− ũi ˙̃xi

= Φṽ−1 + Φmh̃kmũk + Φṽ−1|Dũ|2 − Φmh̃kmδikũi
= ṽΦ.

This is exactly the scalar curvature equation, by considering the partial de-
rivative of ũ with respect to t, of the flow equation

(4.32) ˙̃x = Φν̃,

where

(4.33) Φ = Φ(F ) = Φ(F̃−1),

F̃ is the inverse of F , i.e., when the M(t) satisfy the inverse curvature flow
equation

(4.34) ẋ =
1

F
ν
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then the polar sets M̃(t) satisfy the direct flow equation

(4.35) ˙̃x = −F̃ ν̃

and vice versa.

4.2. Theorem. Let Φ ∈ C∞(R+) be strictly monotone, Φ̇ > 0, and let
F ∈ C∞(Γ+) be a symmetric, monotone, homogeneous of degree 1 curvature
function such that

(4.36) F |Γ+ > 0

and such that the flows

(4.37) ẋ = −Φ(F )ν

resp.

(4.38) ˙̃x = Φ(F̃−1)ν̃

with initial strictly convex hypersurfaces M0 resp. M̃0 exist on maximal time
intervals [0, T ∗) resp. [0, T̃ ∗), where the flow hypersurfaces are strictly convex.

Let M(t) resp. M̂(t) be the corrsponding flow hypersurfaces then T ∗ = T̃ ∗

and M̂(t) = M̃(t).

Proof. In view of the symmetry involved it suffices to prove

(4.39) T ∗ ≤ T̃ ∗ ∧ M̂(t) = M̃(t) ∀ t ∈ [0, T ∗).

Let Λ be defined by

(4.40) Λ = {T ∈ [0, T ∗) : M̃(t) solves (4.38) ∀ t ∈ [0, T ] }.

Λ is evidently not empty, since a small one-sided neighbourhood of 0 belongs
to Λ in view of the uniqueness of the solution of the scalar curvature flow

(4.41)
∂ũ

∂t
= ṽΦ

with given initial value and the arguments leading to (4.31).
By the same reasoning Λ is obviously open, while the closedness of Λ is

trivial. �

We shall employ this duality by choosing

(4.42) Φ(r) = −r−1,

i.e., we shall study and solve inverse curvature flows and direct curvature
flows simultaneously using their specific properties to our advantage.
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5. First estimates

From now on we assume that both F , F̃ are concave and that

(5.1) F (1, . . . , 1) = F̃ (1, . . . , 1) = 1.

Φ is defined by

(5.2) Φ(r) = −r−1

and we consider the curvature flows

(5.3) ẋ = −Φν

and the dual flow

(5.4) ẋ = F̃ ν

with initial hypersurfaces M0 resp. M̃0. Both flows exist on a maximal time
interval [0, T ∗). Let us start with some important estimates.

5.1. Lemma. Let M(t) be a solution of the flow (5.3), then the principal
curvatures are uniformly bounded during the evolution

(5.5) κi ≤ const.

Proof. Label the κi such that

(5.6) κ1 ≤ · · · ≤ κn.

Then we can pretend that

(5.7) κn = hnn

is smooth and that we apply the parabolic maximum principle to hnn in equa-
tion (2.15) on page 5, for details see the proof of [10, Lemma 3.3.3].

Thus, fix 0 < T < T ∗ and let (t0, ξ0), 0 < t0 ≤ T , be a point such that

(5.8) hnn(t0, ξ0) = sup
t∈[0,T ]

sup
M(t)

hnn.

Then we deduce from (2.15)

(5.9)
0 ≤ Φ̇F klhkihilhnn − Φ̇|hnn|2 − F−1|hnn|2 −KN Φ̇F

ijgijh
n
n

≤ −F−1|hnn|2 −KN Φ̇F
ijgijh

n
n,

a contradiction, i.e., the maximum is attained at t = 0. �

5.2. Lemma. Let M̃(t) be a solution of the flow (5.4), then there exists
0 < ε0 <

1
n such that

(5.10) ε0κ̃n ≤ ε0H̃ ≤ κ̃1

during the evolution, where the principal curvature are labelled

(5.11) κ̃1 ≤ . . . κ̃n
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and where

(5.12) H̃ =
∑
i

κ̃i.

Proof. We apply a maximum principle for tensors which was originally proved
by Hamilton [13, Theorem 9.1] and later generalized by Andrews [4, Theorem
3.2]. Looking at the equation (2.16) on page 5 we deduce that the tensor

(5.13) Tij = h̃ij − ε0H̃g̃ij

satisfies the equation

(5.14)

Ṫij − F̃ klTij;kl = F̃ klh̃krh̃
r
l Tij − 2F̃ h̃ki h̃kj + 2ε0F̃ |Ã|2g̃ij

+ 2KN F̃ (1− ε0n)g̃ij −KN F̃
klg̃klTij

+ F̃ kl,rsh̃kl;ih̃rs;j − ε0F̃ kl,rsh̃kl;ih̃rs;j g̃ij

≡ Nij + Ñij ,

where

(5.15) Ñij = F̃ kl,rsh̃kl;ih̃rs;j − ε0F̃ kl,rsh̃kl;ph̃rs;q g̃pq g̃ij .

Hamilton’s maximum principle then has the form: if the tensor Tij is
strictly positive definite at time t = 0 and if the right-hand side satisfies the
so-called null eigenvector condition, i.e., Tij ≥ 0 and Tijη

j = 0 implies

(5.16) Nijη
iηj + Ñijη

iηj ≥ 0,

then Tij > 0 during the evolution.

However, the term Ñij does not satisfy a null eigenvector condition in
general. Andrews therefore proved in [4, Theorem 3.2] that the conclusion is

still valid if Ñij satisfies the weaker condition

(5.17) Ñijη
iηj + sup

Γ=(Γ rk )

2F̃ kl(2Γ rkTir;kη
i − Γ rkΓ sl Trs) ≥ 0.

Moreover, he proved that the weaker condition is satisfied by the present
tensor Ñij , cf. [4, Theorem 4.1], provided F̃ and F are both concave, cf.
[4, Corollary 2.4]. Hence, the maximum principle can be applied provided
Nij satisfies the null eigenvector condition, which can be easily verified by
choosing coordinates such that

(5.18) g̃ij = δij ∧ ηi = δi1,

using the simple estimate

(5.19) |Ã|2 ≥ 1
nH̃

2

and the fact that KN ≥ 0. Of course ε0 has to be sufficiently small such that
Tij > 0 at time t = 0. �
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6. Contracting flows: Convergence to a point

From now on we are mainly considering contracting flows. To facilitate
notation we drop any tildes, i.e., the curvature function involved is denoted
by F and the flow equation is

(6.1) ẋ = −Fν.

In view of the results in the previous section there exist uniform positive
constants c1 and c2 such that the principal curvatures

(6.2) κ1 ≤ · · · ≤ κn
satisfy the estimates

(6.3) c1 ≤ κ1

and

(6.4) κn ≤ c2κ1.

When the initial hypersurface is a geodesic sphere the flow hypersurfaces
are all spheres with the same center and their radii Θ = Θ(t) satisfy the
equation

(6.5) Θ̇ = −cos Θ

sin Θ
.

The spherical flows exist only for a finite time, hence the flow (6.1) exists
only for a finite time and there exists a spherical flow Θ = Θ(t, T ∗) which
shrinks to a point when t approaches T ∗, where T ∗ is the maximal existence
time for the flow (6.1). These claims can be immediately deduced by looking

at initial spheres M1 resp. M2 such that the initial convex body M̂0, where
M0 is the initial hypersurface of the general flow, satisfies

(6.6) B1 b M̂0 b B2,

where

(6.7) ∂Bi = Mi, i = 1, 2.

Since the corresponding flow hypersurfaces can never touch, in view of the
maximum principle, we conclude that the general flow only exists for a finite
time and that

(6.8) T1 < T ∗ < T2,

where Ti and T ∗ are the lengths of the corresponding maximal time intervals.
By the same argument we also obtain:

6.1. Lemma. Let M(t) be a solution of (6.1) on a maximal time inter-
val [0, T ∗) and represent M(t), for a fixed t ∈ [0, T ∗), as a graph in polar

coordinates with center in x0 ∈ M̂(t),

(6.9) M(t) = graphu(t, ·)),
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then

(6.10) inf
M(t)

u ≤ Θ(t, T ∗) ≤ sup
M(t)

u.

Proof. The sphere with center x0 and radius Θ(t, T ∗) has to intersect M(t)
because of (6.8). Note that, when the relation (6.6) is valid at time t = t0,
then it is also valid for any t ≥ t0 provided the flows exist that long. �

The solution Θ = Θ(t, T ∗) of (6.5) is given by

(6.11) Θ = arccos e(t−T∗),

since

(6.12) (log cos Θ)′ = 1.

Let ρ−(t) resp. ρ+(t) be the inradius resp. circumradius of M̂(t). Choosing
their respective centers as origins of geodesic polar coordinates we deduce
from (6.10)

(6.13) ρ−(t) ≤ Θ(t, T ∗) ≤ ρ+(t),

i.e.,

(6.14) lim
t→T∗

ρ−(t) = 0.

We want to prove that the corresponding limit of ρ+(t) also vanishes. Then,
the flow would shrink to a point.

Let x0 ∈ M̂(t) be arbitrary and consider the corresponding conformally
flat coordinate system

(6.15) ds̄2 =
1

(1 + 1
4r

2)2
{dr2 + r2σijdξ

idξj}.

Write M(t) as graph of u(t) in Euclidean polar coordinates and let κi resp.
κ̃i be the principal curvatures of M(t) when considered as a hypersurface in
Sn+1 resp. Rn+1, then we can prove:

6.2. Lemma. The principal curvatures κ̃i of M(t) are pinched, i.e., there
exists a uniform constant c such that

(6.16) κ̃n ≤ cκ̃1,

where the κ̃i are labelled

(6.17) κ̃1 ≤ · · · ≤ κ̃n.

Proof. The κi and κ̃i are related through the formula

(6.18)
1

1 + 1
4r

2
κi = κ̃i − 1

2

u

1 + 1
4u

2
v−1,

where

(6.19) v2 = 1 + u−2σijuiuj ≡ 1 + |Du|2,
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cf. [10, equ. (1.1.51)]. Hence, we deduce

(6.20) κ̃1 ≥
1

1 + 1
4c

2
0

κ1 ≥
1

1 + 1
4c

2
0

c1 = c′1,

since in view of Lemma 6.3 below

(6.21) u ≤ c0,
where c0 = c0(M0) is a uniform constant, and we conclude further

(6.22) κ̃n ≤ κn + 1
2c0

yielding

(6.23)
κ̃n
κ̃1
≤ (1 +

1

4
c20)

κn
κ1

+
c0
2c′1
≤ (1 +

1

4
c20)c2 +

c0
2c′1

because of (6.4). �

6.3. Lemma. Let x0 ∈ M̂(t) be as above and let M(t) = graphu be a
representation of M(t) in Euclidean polar coordinates, then there exists a
constant c0 = c0(M0) such that the estimate (6.21) is valid for any t ∈ [0, T ∗).

Moreover, for any T ∈ [0, T ∗) and x0 ∈ M̂(T ) ⊂ Sn+1, the flow hypersurfaces
M(t), 0 ≤ t ≤ T , can be represented as graphs in the geodesic polar coordinate
system of Sn+1 with center in x0.

Proof. The convex bodies M̂(t) ⊂ Sn+1 are decreasing with respect to t,
especially, we have

(6.24) M̂(t) ⊂ M̂0 ∀ t ∈ [0, T ∗),

cf. Remark 6.5 below. Since M̂0 is strictly convex its diameter is less than π

(6.25) diamM0 < π − γ, γ > 0.

Hence, any geodesic starting in x0 which is contained in M̂(t) has length less
than π − γ, which in turn implies that the estimate (6.21) should be valid
with c0 = c0(γ).

The second claim of the lemma is an immediate consequence of (6.24) and
(6.25). �

Now, choose x0 ∈ M̂(t) to be the center of the inball of M̂(t) ⊂ Sn+1 with
corresponding inradius ρ−(t) and circumradius ρ+(t), and let ρ̃−(t) resp.

ρ̃+(t) be the inradius resp. circumradius of M̂(t) ⊂ Rn+1. Note that the
center of the Euclidean inball is the center of the polar coordinates.

The pinching estimate (6.16) then implies, cf. [2, Theorem 5.1 and Lemma
5.4],

(6.26) ρ̃+(t) ≤ cρ̃−(t)

with a uniform constant c, hence M̂(t) ⊂ Rn+1 is contained in the Euclidean
ball Bρ̃(0)

(6.27) M̂(t) ⊂ Bρ̃(0), ρ̃ = 2cρ̃−(t).
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Define Θ̃ by

(6.28) Θ̃ = 2 tan
Θ

2
,

then we deduce from (6.10)

(6.29) inf
M(t)

u ≤ Θ̃ ≤ sup
M(t)

u,

where M(t) = graphu is now a representation of M(t) in Euclidean polar
coordinates, concluding further

(6.30) ρ̃(t) = 2cρ̃−(t) ≤ 2cΘ̃.

Choose δ > 0 so small such that

(6.31) 2cΘ̃(t, T ∗) ≤ 1 ∀ |T ∗ − t| ≤ δ,

then

(6.32) ρ̃(t) ≤ 1,

hence, in Sn+1, we have

(6.33) M̂(t) ⊂ Bρ(t)(x0),

where Bρ(t)(x0) is the geodesic ball with center x0 and radius

(6.34) ρ(t) =

∫ ρ̃(t)

0

1

1 + 1
4r

2
= 2 arctan

ρ̃(t)

2
,

i.e.,

(6.35) ρ ≤ ρ̃ ∧ ρ ≥ ρ̃

2
.

Thus, we have proved:

6.4. Lemma. Let Bρ−(t)(x0) ⊂ M̂(t) be an inball, then

(6.36) M̂(t) ⊂ B4cρ−(t)(x0) ∀ t ∈ [T ∗ − δ, T ∗),

where c is the constant in (6.26), or equivalently,

(6.37) ρ+(t) ≤ 4cρ−(t).

Hence, the flow (6.1) converges to a point.

6.5. Remark. The convex bodies M̂(t) converge monotonely, i.e.,

(6.38) t1 < t2 =⇒ M̂(t2) ⊂ M̂(t1),

yielding

(6.39) p ∈ M̂(t) ∀ t ∈ [0, T ∗).
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Proof. It suffices to consider t2 − t1 to be small such that M(t), t ∈ [t1, t2],

can be written as graphs in polar coordinates with center in M̂(t2). Then
u = u(t, ·) satisfies the scalar flow equation

(6.40) u̇ = −Fv < 0.

�

Let us finish this section by proving that the flow hypersurfaces are smooth
and uniformly convex during the evolution.

6.6. Theorem. During the evolution the flow hypersurfaces M(t) are
smooth and uniformly convex satisfying a priori estimates in any compact
subinterval

(6.41) [0, T ] ⊂ [0, T ∗),

where the a priori estimates only depend on M0, F and T .

Proof. It suffices to prove the a priori estimates. Let 0 < T < T ∗, then the
inradius ρ−(t0) satisfies

(6.42) 0 < cΘ(T, T ∗) ≤ ρ−(T )

with a uniform constant independent of T . Indeed, from (6.26) and (6.29)
we infer

(6.43) Θ̃(T, T ∗) ≤ cρ̃−(T ),

where

(6.44) θ(T, T ∗) =

∫ Θ̃(T,T∗)

0

1

1 + 1
4r

2

and

(6.45) ρ−(T ) =

∫ ρ̃−(T )

0

1

1 + 1
4r

2
.

On the other hand, ρ̃−(T ) as well as Θ̃(T, T ∗) are uniformly bounded by the
constant c0, in view of (6.21) and (6.29). The estimate (6.42) is therefore

an immediate consequence of (6.43). Let x0 ∈ M̂(T ) be the center of an
inball and introduce geodesic polar coordinates with center x0. Then, the
coordinate system covers the flow (5.1) as long as 0 ≤ t ≤ T , in view of
Lemma 6.3. Writing the flow hypersurfaces as graphs of a function u(t, ·) we
have

(6.46) 0 < δ ≤ u ≤ π − γ

and hence, due to the convexity of M(t),

(6.47) v2 = 1 + sin−2 uσijuiuj
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is uniformly bounded. Furthermore, we have already proved that the princi-
pal curvatures are uniformly bounded from below

(6.48) 0 < c1 ≤ κi.

Since F is concave it suffices to prove that the κi are also uniformly bounded
from above

(6.49) κi ≤ c2(T ) ∀ 0 ≤ t ≤ T

in order to first apply the Krylov-Safonov and then the Schauder estimates
to obtain the desired a priori estimates.

To derive (6.49) we consider the function

(6.50) χ =
1

sinu
v,

which satisfies the evolution equation (2.14) on page 5. Let χ̃ = χ−1, then χ̃
solves the evolution equation

(6.51) ˙̃χ− F ijχ̃ij = F ijhkih
k
j χ̃− 2F

H̄

n
vχ̃.

Because of (6.46) and the boundedness of v there exists δ > 0 such that

(6.52) χ̃ > 2δ ∀ t ∈ [0, T ]

and hence

(6.53) ϕ = log(χ̃− δ)

is well defined and satisfies the evolution equation

(6.54) ϕ̇− F ijϕiϕj = F ijhkih
k
j

χ̃

χ̃− δ
+ F ijϕiϕj − 2F

H̄

n
v

χ̃

χ̃− δ
.

We are now ready to prove the estimate (6.49). As in the proof of Lemma 5.1
on page 14 we may pretend that hnn = κn, the largest principal curvature, is
a smooth function and look at the point (t0, ξ0), t0 > 0, where

(6.55) w = log hnn − ϕ

assumes its maximum in [0, T ]× Sn.
Applying the maximum principle we obtain

(6.56)

0 ≤ −F ijhkihkj
δ

χ̃− δ
+KN{2F (hnn)−1 − F klgkl}

+ 2F
H̄

n
v

χ̃

χ̃− δ
.

Since F ij is uniformly positive definite and

(6.57) F ≤ chnn,

we deduce w and, hence, hnn is a priori bounded. �
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6.7. Remark. Let δ be the small constant in (6.31) and define

(6.58) tδ = T ∗ − δ,

then we deduce from (6.36)

(6.59) M̂(tδ) ⊂ B8cρ−(tδ)(x0) ∀x0 ∈ M̂(tδ).

Choosing δ even a bit smaller without changing the notation we may also
assume that

(6.60) 8cρ−(tδ) ≤ 8cΘ(tδ, T
∗) < 1.

In view of the a priori estimates in the preceding theorem we shall henceforth
only consider t ∈ [tδ, T

∗).

7. The rescaled flow

We shall first prove that

(7.1) Θ(t, T ∗) sup
M(t)

F ≤ const ∀ tδ ≤ t < T ∗.

The proof will be an adoption of the proof of a similar result in [2, The-
orem 7.5]. Let tδ < t0 < T ∗ be arbitrary and Bρ−(t0)(x0) be an inball of

M̂(t0). Choosing x0 to be the center of a geodesic polar coordinate system
the hypersurfaces M(t) can be represented as graphs

(7.2) M(t) = graphu(t, ·) ∀ tδ ≤ t ≤ t0
such that

(7.3) ρ−(t0) ≤ u(t0) ≤ u(t) ≤ 1,

cf. Remark 6.7.

7.1. Lemma. Let χ be defined as in (6.50) on page 21, then

(7.4) χi = 0 =⇒ ui = 0.

Proof. The function

(7.5) η(r) =
1

sin r

is a solution of the equation

(7.6) η̇ = −H̄
n
η,

where H̄ is the mean curvature of the slices {x0 = r}. Moreover,

(7.7) v−2 = 1− ‖Du‖2

implies

(7.8) vi = −hijujv2 +
H̄

n
uiv,
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where

(7.9) uj = gijui ∧ ‖Du‖2 = gijuiuj .

On the other hand, we deduce from

(7.10) 0 = χi = η̇ui + ηvi = −H̄
n
ηuiv + ηvi

(7.11) vi =
H̄

n
uiv

concluding further

(7.12) hiju
j = 0

and thus ui = 0, since hij is positive definite. �

Let χ̃ = χ−1 as before, then χ̃ is the equivalent of the Euclidean support
function and in view of the estimate (7.3) and Lemma 7.1 there exists a
universal constant ε0 such that

(7.13) 0 < χ̃− 2ε0ρ−(t0) ∀ tδ ≤ t ≤ t0.

We are now able to prove:

7.2. Lemma. There exists a uniform constant c such that

(7.14) Θ(t, T ∗)F ≤ c ∀ tδ ≤ t < T ∗.

Proof. Let t0 ∈ (tδ, T
∗) be arbitrary and consider the function

(7.15) ϕ = logF − log(χ̃− ε0ρ−(t0))

in the interval [tδ, t0]. Define

(7.16) w(t) = sup
M(t)

ϕ,

then w satisfies the differential inequality, cf. (6.54) on page 21,

(7.17)

ẇ ≤ −F ijhkihkj
ε0ρ−(t0)

χ̃− ε0ρ−(t0)
+KNF

ijgij

+ 2F
H̄

n
v

χ̃

χ̃− ε0ρ−(t0)

≤ − 1

F ijgij
F 2 ε0ρ−(t0)

χ̃− ε0ρ−(t0)
+ cKN + cF

1

χ̃− ε0ρ−(t0)
,

where we used that

(7.18)
H̄

n
=

cosu

sinu

and

(7.19) χ̃ = sinuv−1.
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Setting

(7.20) w̃ = ew

we infer

(7.21)
˙̃w ≤ −c̃w̃3ε0ρ−(t0)(χ̃− ε0ρ−(t0)) + cKN w̃ + cw̃2

≤ w̃2{c+ cKN w̃
−1 − c̃ε20ρ−(t0)2w̃},

in view of (7.13).
Hence we conclude

(7.22) sup
t
w̃ ≤ max(w̃(tδ) + 1, cε−2

0 ρ−(t0)−2),

where c is a new uniform constant independent of t0 and tδ. Choosing t0
small enough we obtain

(7.23) w̃(t0)ρ2
−(t0) ≤ cε−2

0

and thus, because of (7.19) and (6.36) on page 19,

(7.24) ρ−(t0) sup
M(t0)

F ≤ cε−2
0

with a different constant c. To complete the proof we use the estimates (6.13)
on page 17 and again (6.36). �

7.3. Corollary. The rescaled principal curvatures κ̃i = θκi satisfy

(7.25) κ̃i ≤ c ∀ tδ ≤ t < T ∗

with a uniform constant.

Proof. From (7.14) we infer

(7.26) c ≥ F̃ = FΘ =
∑
i

F ii κ̃i.

Since F ij is uniformly positive definite because of the pinching estimates, the
result follows. �

Next we want to apply the Harnack inequality to get an estimate from
below for F̃

(7.27) inf
M(t)

F̃ ≥ c > 0 ∀ tδ ≤ t < T ∗.

To convince ourselves that the necessary requirements are fulfilled we first
have to establish some preparatory results.

7.4. Lemma. Let t1 ∈ [tδ, T
∗) be arbitrary and let t2 > t1 be such that

(7.28) Θ(t2, T
∗) = 1

2Θ(t1, T
∗).

Let x0 ∈ M̂(t2) be the center of an inball. Introduce polar coordinates around
x0 and write the hypersurfaces M(t) as graphs

(7.29) M(t) = graphu(t, ·),
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then there exists a positive constant c such that

(7.30) c−1Θ(t2, T
∗) ≤ u(t, ξ) ≤ cΘ(t2, T

∗) ∀ t ∈ [t1, t2],

and hence

(7.31)
umax(t)

umin(t)
≤ c2 ∀ t ∈ [t1, t2],

where

(7.32) umax(t) = sup
M(t)

u ∧ umin(t) = inf
M(t)

u.

Proof. Let Bρ−(t1)(y0) be an inball of M̂(t1), then we infer from (6.36) on
page 19 and (6.13) on page 17

(7.33) M̂(t1) ⊂ B4cρ−(t1)(y0) ⊂ B4cΘ(t1,T∗)(y0) ⊂ B8cΘ(t2,T∗)(y0)

and we deduce further, since

(7.34) M̂(t2) ⊂ M̂(t1),

(7.35) M̂(t1) ⊂ B16cΘ(t2,T∗)(x0).

Hence, we have proved the upper estimate in (7.30). The lower estimate
follows from (6.37) and (6.13), because

(7.36) ρ−(t2) ≤ u(t, ξ) ∀ t ∈ [t1, t2].

�

7.5. Lemma. Under the assumptions of the preceding lemma the quantity

(7.37) v2 = 1 + sin−2 uσijuiuj

is uniformly bounded in [t1, t2]× Sn.

Proof. From [10, inequality (2.7.83)] we obtain

(7.38) v(t, ξ) ≤ eκ̄(umax−umin),

where 0 ≤ κ̄ is an upper bound for the principle curvatures of the slices
{x0 = const} intersecting M(t), hence

(7.39) κ̄ ≤ 1

sinumin
≤ c 1

umin

and

(7.40) v(t, ξ) ≤ ec
(
umax
umin

−1
)
.

Combining this estimate with the one in (7.31) gives the result. �
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7.6. Lemma. Define ϑ by

(7.41) ϑ(r) = sin r

and

(7.42)
ϕ =

∫ u

r2

ϑ−1

= {log(sin r
2 )− log(cos r2 )}∣∣u

r2

,

where, r2 = Θ(t2, T
∗), then ϕ(t, ·) is uniformly bounded in C2(Sn) for any

t1 ≤ t ≤ t2, independent of t1, t2. Furthermore, let Γ kij resp. Γ̃ kij be the
Christoffel symbols of the metrics gij resp. σij, then the tensor

(7.43) Γ kij − Γ̃ kij
is also uniformly bounded independent of t1, t2.

Proof. The C0 and the C1-estimates are due to (7.30) and Lemma 7.5. To
prove the C2-estimates we employ the relation

(7.44) hij = v−1ϑ−1{−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij},
cf. [11, equ. (3.26)], where

(7.45) ϕi = σikϕk

and where the covariant derivatives are with respect to the metric σij . Mul-
tiplying both sides of (7.44) with Θ(t, T ∗) we deduce

(7.46) ‖ϕij‖ ≤ c ∀ t ∈ [t1, t2],

in view of the C1-estimates, (7.30) and (7.25).
To prove the boundedness of (7.43) we choose coordinates such that in a

fixed point Γ̃ kij vanishes. Then Γ kij is a uniformly bounded tensor comprised

of algebraic compositions of v, Dϕ, D2ϕ and σij as one easily checks. �

Let us define a new time parameter

(7.47) τ = − log Θ,

then

(7.48)
dt

dτ
= −Θ

Θ̇
= Θ

sin Θ

cos Θ
.

Let a prime indicate differentiation with respect to τ and a dot with respect
to t, and let us denote scaled quantities by a tilde unless otherwise specified,
e.g., let

(7.49) F̃ = FΘ,

then

(7.50) F̃ ′ = ḞΘ2 sin Θ

cos Θ
− F̃

and we shall prove:
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7.7. Lemma. F̃ satisfies a uniformly parabolic equation of the form

(7.51) F̃ ′ − aijF̃ij + biF̃i + cF̃ = 0

in the cylinder

(7.52) Q(τ1, τ2) = [τ1, τ2]× Sn,
where

(7.53) τi = − log Θ(ti, T
∗),

with uniformly bounded coefficients, and where the covariant derivatives are
with respect to standard metric σij of Sn. The coefficients are bounded inde-
pendently of τi. Since, in view of (7.28)

(7.54) τ2 = τ1 + log 2,

we deduce, by applying the parabolic Harnack inequality,

(7.55) sup
M(t1)

F̃ ≤ c inf
M(t2)

F̃

with a uniform constant c.

Proof. It suffices to prove that F̃ satisfies a uniformly parabolic equations as
indicated. Combining (7.50) and (2.8) on page 4 we immediately deduce, in
view of (7.25) and the pinching estimates, that the only non-trivial term in
the transformation of (2.8) is

(7.56) − F ijF;ijΘ
2 sin Θ

cos Θ
,

where the semicolon indicates covariant derivatives with respect to gij .
Now, using geodesic polar coordinates as in Lemma 7.4, we can express

the metric in the form

(7.57) gij = sin2 u(ϕiϕj + σij),

cf. the definition in (7.42), and we deduce

(7.58) gijΘ2

is uniformly positive definite, in view of (7.30) and Lemma 7.5, hence

(7.59) Θ2F ij = F ikg
kjΘ2

is uniformly positive definite.
Thus, it remains to consider the covariant derivatives, but

(7.60) F;ij = Fij − {Γ kij − Γ̃ kij}Fk,

where Fij are the covariant derivatives of F with respect to σij and Γ kij resp.

Γ̃ kij are the Christoffel symbols with respect to gij resp. σij , hence we infer
from Lemma 7.6

(7.61) − F ijF;ijΘ
2 sin Θ

cos Θ
= −aijF̃ij + biF̃i,

where aij is uniformly positive definite and bi uniformly bounded. �
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7.8. Corollary. The scaled curvatures κ̃i are uniformly bounded from be-
low

(7.62) κ̃i = κiΘ ≥ c > 0.

Proof. Since

(7.63) inf
M(t)

F̃ ≤ inf
M(t)

κ̃n ≤ c inf
M(t)

κ̃1,

where the κ̃i are labelled

(7.64) κ̃1 ≤ · · · ≤ κ̃n,
and t1 ∈ [tδ, T

∗) is arbitrary, it suffices to estimate

(7.65) sup
M(t)

F̃ ≥ c > 0 ∀ t1 ≤ t ≤ t2.

Indeed, let (t, ξ) ∈M(t) be a point such that

(7.66) u(t, ξ) = sup
M(t)

u,

then

(7.67) κi ≥
cosu

sinu

and

(7.68) κ̃i ≥
cosu

sinu
Θ ≥ c > 0,

because of (7.30) and hence

(7.69) sup
M(t)

F̃ ≥ F (κ̃i(t, ξ)) ≥ c > 0.

�

Now, let x0 ∈ Sn+1 be the point the flow hypersurfaces are shrinking to
and introduce geodesic polar coordinates around it. Let

(7.70) M(t) = graphu(t, ·)
and let

(7.71) ũ(τ, ξ) = u(t, ξ)Θ(t, T ∗)−1,

where τ is defined as in (7.47). Then, we can prove:

7.9. Lemma. There exists a uniform constant c such that

(7.72) ũ ≥ c > 0 ∀ τ ∈ Q(τδ,∞),

where

(7.73) τδ = − log(Θ(tδ, T
∗))

and

(7.74) Q(τδ,∞) = [τδ,∞)× Sn.
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Proof. Let us look at the rescaled version of the scalar curvature equation

(7.75) u̇ =
∂u

∂t
= −Fv,

which has the form

(7.76)

ũ′ = u̇
sin θ

cos Θ
+ ũ

= −F̃Θ−1 sin Θ

cos Θ
v + ũ

≤ −2c+ ũ,

in view of Corollary 7.8.
Let us suppose there exists τ0 ≥ τδ and ξ ∈ Sn such that

(7.77) ũ(τ0, ξ) ≤ c,

then

(7.78) ũ′ ≤ −c ∀ τ ≥ τ0,

where ũ is evaluated at (τ, ξ), yielding

(7.79) ũ(τ)− ũ(τ0) ≤ −c(τ − τ0) ∀ τ0 ≤ τ <∞,

a contradiction, hence we conclude

(7.80) ũ ≥ c ∀ (τ, ξ) ∈ Q(τδ,∞).

�

7.10. Lemma. The quantities ũ, v and |Dũ| are uniformly bounded in
Q(τδ,∞), where

(7.81) |Dũ|2 = σij ũiũj .

Proof. (i) Let t ∈ [tδ, T
∗) be arbitrary, and Bρ−(t)(y0) be an inball of M̂(t),

then we infer from (7.33)

(7.82) M̂(t) ⊂ B4cρ−(t)(y0).

On the other hand, x0 ∈ M̂(t) and

(7.83) ρ−(t) ≤ Θ(t, T ∗),

hence

(7.84) M̂(t) ⊂ B8cΘ(t,T∗)(x0)

yielding

(7.85) ũ ≤ 8c.

(ii) From the proof of Lemma 7.5 we immediately deduce that

(7.86) v2 = 1 +
1

sin2 u
σijuiuj ≤ c
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which in turn implies

(7.87) σij ũiũj ≤ c sin2 uΘ−2 ≤ const.

�

7.11. Remark. Let ϕ be such that

(7.88) ϕi =
1

sinu
ui,

then the covariant derivatives of ũ resp. ϕ with respect to σij satisfy the
pointwise estimate

(7.89) ‖ũij‖ ≤ c‖ϕij‖,

hence we conclude that the C2-norm of ũ is uniformly bounded and also the
difference of the Christoffel symbols

(7.90) Γ kij − Γ̃ kij ,

cf. Lemma 7.6 and its proof. Moreover, observing that

(7.91)
sinu

u
= ϑ(u) = ϑ(ũe−τ ) ≥ c0 > 0,

where ϑ is a smooth function such that

(7.92) c0 ≤ ϑ ≤ c−1
0 ∀ t ∈ [tδ, T

∗),

and taking a similar estimate for cosu into account, we conclude from (7.44)

(7.93)
sin Θ

cos Θ
Fv = F ( sin Θ

cos Θh
i
j)v = Φ(x, e−τ , ũ, ũe−τ , Dũ,D2ũ),

where Φ is smooth function with respect to its arguments, monotone and
concave with respect to −ũij , where the covariant derivatives are defined
relative to the standard metric on Sn.

Hence, we deduce, by applying the Krylov-Safonov and Schauder esti-
mates:

7.12. Theorem. The rescaled function ũ satisfies the uniformly parabolic
equation

(7.94) ũ′ = −Φ+ ũ

in Q(τδ, T
∗) and ũ(τ, ·) obeys uniform a priori estimates in C∞(Sn) indepen-

dently of τ .

In the next section we shall prove that ũ converges exponentially fast to
the constant function 1 when F is strictly concave or when F = 1

nH.
Let us also emphasize that the Θκi are not the principal curvatures of

graph ũ, though they are of course related.
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8. Convergence to a sphere

The key estimate for proving that the rescaled hypersurfaces converge to
a sphere is the exponential decay of the quantity

(8.1) |Ã|2 − 1
nH̃

2 = 1
n

∑
i<j

|κ̃i − κ̃j |2.

Huisken proved it in [14, Section 5] by deriving the uniform estimate

(8.2) H−(2−σ){|A|2 − 1
nH

2} ≤ const ∀ t ∈ [0, T ∗),

for the unscaled hypersurfaces, where 0 < σ < 1 is small.
We shall adapt his approach to the present situation where the fact that

we consider general curvature function F creates some additional difficulties.
Some of the estimates, we shall prove below, will be valid for arbitrary curva-
ture functions, or at least for curvature functions we consider in this paper,
but the estimate (8.2) can only be proved for F = 1

nH or F strictly concave.

8.1. Lemma. Let M be a strictly convex hypersurface with pinched prin-
cipal curvatures such that

(8.3) hij ≥ ε0Hgij , ε0 > 0,

and let F be monotone and concave. Then there exists ε > 0, ε = ε(ε0, F ),
such that

(8.4) Z = Fhki hkjh
ij − |A|2F ijhkihkj ≥ 2ε2H2

∑
i<j

|κi − κj |2,

or equivalently,

(8.5) Z ≥ 2ε2F ijhkih
k
j

∑
i<j

(κi − κj)2.

Proof. Huisken proved the lemma for F = H. We consider F to be defined
in Γ+ and set

(8.6) Fi =
∂F

∂κi
.

Let us also label the κi such that

(8.7) κ1 ≤ · · · ≤ κn,
then

(8.8) F1 ≥ · · · ≥ Fn,
because F is concave. Writing

(8.9)
∑
i 6=j

Fiκiκ
3
j =

∑
i<j

Fiκiκ
3
j +

∑
j<i

Fiκiκ
3
j

and

(8.10) −
∑
i6=j

Fiκ
2
iκ

2
j = −

∑
i<j

Fiκ
2
iκ

2
j −

∑
j<i

Fiκ
2
iκ

2
j
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we deduce from (8.4)

(8.11)

Z =
∑
i<j

Fiκiκj(κ
2
j − κiκj) +

∑
j<i

Fiκiκj(κ
2
j − κiκj)

=
∑
i<j

Fiκiκj(κ
2
j − κiκj) +

∑
i<j

Fjκiκj(κ
2
i − κiκj)

≥
∑
i<j

Fjκiκj(κi − κj)2 ≥ εH2
∑
i<j

(κi − κj)2.

�

Since F is concave satisfying F (1, . . . , 1) = 1 we have

(8.12) F ≤ 1
nH,

hence

(8.13) |A|2 − 1
nH

2 ≤ |A|2 − nF 2.

We also need a reverse inequality:

8.2. Lemma. Under the assumptions of the previous lemma there exists
a positive constant c such that

(8.14) |A|2 − nF 2 ≤ c(|A|2 − 1
nH

2).

Proof. The proof will reveal that curvatures need not be positive, it will only
be necessary that

(8.15)
κi
|A|

are compactly contained in the defining cone. To simplify the notation we
shall also assume that F (1, . . . , 1) = n such that we have to prove the in-
equality

(8.16) |A|2 − 1
nF

2 ≤ c(|A|2 − 1
nH

2),

or equivalently,

(8.17) H2 − F 2 ≤ c
∑
i<j

(κi − κj)2.

Let

(8.18) ϕ = H2 − F 2

and consider the convex combination

(8.19) κi(t) = (1− t)κn + tκi,

where the κi are labelled such that

(8.20) κ1 ≤ · · · ≤ κn.
Denote the partial derivatives of ϕ simply by indices, then

(8.21) ϕ(κn, . . . , κn) = 0 ∧ ϕi(κn, . . . , κn) = 0,
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hence we deduce from Taylor’s formula

(8.22) ϕ(κi) = 1
2ϕij(κi(t))(κ

i − κn)(κj − κn)

for some 0 ≤ t ≤ 1 yielding the estimate (8.17), since

(8.23) ϕij = 2HiHj − 2FiFj − 2FFij

is uniformly bounded. �

We are going to estimate the function

(8.24) fσ = F−α(|A|2 − nF 2),

where

(8.25) α = 2− σ

and 0 < σ < 1. We shall also drop the subscript σ simply writing f for the
left-hand side of (8.24).

In order to derive the evolution equation for f we use the relation

(8.26) f = |A|2F−α − nF 2−α

and the equations

(8.27)

(|A|2)′ − F ij |A|2ij = 2F ijhkih
k
j |A|2 − 2F ijhkl;ih

kl
;j

+ 2F kl.rshkl;ihrs;jh
ij

+ 4KNFH − 2KNF
klgkl|A|2,

(8.28)
(F−α)′ − F ijF−αij = −αF ijhkihkjF−α − α(α+ 1)F−α−2F ijFiFj

− αKNF
klgklF

−α

and

(8.29)

(F 2−α)′ − F ijF 2−α
ij = −(α− 2)F ijhkih

k
jF

2−α

− (α− 2)(α− 1)F ijFiFjF
−α

+ (2− α)KNF
klgklF

2−α.

We then obtain

(8.30)

f ′ − F ijfij =

σF ijhkih
k
j f − 2F ij{hkl;iF − hklFi}{hkl;jF − hklFj}F−(2+α)

− σ(1− σ)F ijFiFjF
−2f + 2(α− 1)F−1F ijFifj

+ 4KN{HF − F klgkl|A|2}F−α + σKNF
klgklf

+ 2F kl,rshkl;ihrs;jh
ijF−α,

where we used the relation

(8.31)
F ij{hkl;iF − hklFi}{hkl;jF − hklFj} = F ijhkl;ih

kl
;jF

2

− F ij |A|2iFjF + F ijFiFj |A|2.
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We also need a purely elliptic version of equation (8.30). This can be
achieved by replacing f ′ using the formula

(8.32) ḣij = F j;i + Fhki h
j
k +KNFδ

j
i ,

cf. [10, Lemma 2.3.3]. Hence we deduce

(8.33)

f ′ = 2F−αZ + σF ijhkih
k
j f + (2− α)F ijF;ijF

−1f

− 2F ijF;ij |A|2F−(1+α) − αF−1F ijF;ijf

+ 2{hijF−α − F 1−αnF ij}F;ij + 2hijF;ijF
−α

+ 2KNFHF
−α − αKNF

ijgij |A|2F−α

− (2− α)KNF
ijgijnF

2−α

concluding further

(8.34)

−F ijfij + 2F−αZ =

αF ijF;ijF
−1f − 2{hij − FnF ij}F;ijF

−α − σ(1− σ)F ijFiFjF
−2f

− 2F ij{hkl;iF − hklFi}{hkl;jF − hklFj}F−(2+α)

+ 2(α− 1)F−1F ijFifj + 2KN{FH − F klgkl|A|2}F−α

+ 2F kl.rshkl;ihrs;jh
ijF−α.

Some of the negative terms on the right-hand side can be exploited. First,
we observe that

(8.35) FH − F klgkl|A|2 ≤ 1
nH

2 − |A|2 = − 1
n

∑
i<j

(κi − κj)2.

In case F = 1
nH it is proved in [14, Lemma 2.3 (ii)] that

(8.36) F ij{hkl;iF − hklFi}{hkl;jF − hklFj} ≥
1

2n3
ε2H2|DH|2.

For more general curvature functions this inequality can not be derived. In-
stead we shall consider the last term on the right-hand side of (8.34). If
F = F (κ) is strictly concave in a convex cone Γ ⊂ Rn, then there exists a
positive constant c such that

(8.37) F kl,rshkl;ihrs;j ≤ −c|A|−1|DA|2

provided the normalized vectors

(8.38) |A|−1κ

stay in a compact set K ⊂ Γ . The constant then depends on F and K. The
estimate (8.37) was proved in [2, Lemma 7.12].

In our case the principal curvatures of the flow hypersurfaces are pinched,
hence, the normalized curvatures (8.38) are compactly contained in Γ+, and
we can prove:
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8.3. Lemma. Let the curvature function F satisfy our general assumptions
and assume in addition that it is strictly concave, then there exists a uniform
constant ε > 0 such that

(8.39)
−F ijfij + 2ε2F ijhkih

k
j f ≤ αF−1F ijF;ijf + 2(α− 1)F−1F ijFifj

− 2{hij − FnF ij}F−αF;ij − 2ε2|DA|2F−α.

Proof. The claim immediately follows from (8.5), (8.13), (8.17), (8.35) and
(8.37) and the fact that F is strictly concave. �

8.4. Lemma. There exists a uniform constant c > 0 such that

(8.40) ‖hij − FnF ij‖2 ≤ c
∑
i<j

(κi − κj)2.

Proof. We have

(8.41)

hij − FnF ij = {hij − 1
nHg

ij}+ { 1
nH − Fg

ij}
+ F (gij − nF ij)

≡ I1 + I2 + I3,

where each term can be estimated by the square root of right-hand side of
(8.40).

The estimate for I1 is trivial, I2 can be estimated along the lines of the
proof of Lemma 8.2, while

(8.42) I3 = Fn(F ij(κn, . . . , κn)− F ij(κi))

from which the estimate follows immediately. �

We are now able to prove a crucial estimate:

8.5. Lemma. Let F be strictly concave, then there exists a constant c > 0
such that for any p ≥ 2, any δ > 0 and any 0 ≤ t < T ∗ the estimate

(8.43)

ε2
∫
M

F ijhkih
k
j f

p ≤ {δ−1c(p− 1) + c}
∫
M

F ijfifjf
p−2

+ {δc(p− 1) + c}
∫
M

|DA|2F−αfp−1

is valid.
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Proof. Multiplying inequality (8.39) with fp−1 and integrating by parts we
obtain

(8.44)

(p− 1)

∫
M

F ijfifjf
p−2 + 2ε2

∫
M

F ijhkih
k
j f

p ≤∫
M

F ij,klhkl;jfif
p−1 + α

∫
M

F−1F ijF;ijf
p

− 2

∫
M

{hij − FnF ij}F−αF;ijf
p−1 + 2(α− 1)

∫
M

F−1F ijFifjf
p−1

− 2ε2
∫
M

|DA|2f−αfp−1.

The terms on the right-hand side can be estimated or transformed as follows:

(8.45)

∫
M

F ij,klhkl;jfif
p−1 ≤ δ−1(p− 1)

∫
M

F ijfifjf
p−2

+
δc

p− 1

∫
M

|DA|2fpH−2,

(8.46)

α

∫
M

F−1F ijF;ijf
p = −α

∫
M

F−1F ijFifjpf
p−1

− α
∫
M

F−1F ij,klhkl;jFif
p + αF−2F ijFiFjf

p,

which can be estimated by the right-hand side of (8.43).

(8.47)

−2

∫
M

{hij − FnF ij}F−αF;ijf
p−1 =

2(p− 1)

∫
M

{hij − FnF ij}Fifjfp−2

+ 2{hij − FnF ij}jFiF−αfp−1

− 2α

∫
M

{hij − FnF ij}FjFiF−(1+α)fp−1.

In view of the estimate (8.40) the right-hand side of the preceding equality
can be estimated as desired.

Finally, let us consider

(8.48)

2(α− 1)

∫
M

F−1F ijFifjf
p−1 ≤ c

∫
M

F ijfifjf
p−2

+ c

∫
M

|DA|2H−2fp,

which can be estimated as desired completing the proof of the lemma. �

Now we can show that for large p the Lp-norms of f = f(t, ·) are uniformly
bounded provided σ is small enough.
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8.6. Lemma. Let F be strictly concave, then there exist C1 > 0 and σ0 > 0
such that for all

(8.49) p ≥ cε−2 ∧ σ ≤ min(ε3p−
1
2

1

4c
, σ0),

where c > 1 is the constant in (8.43), the estimate

(8.50) ‖f‖p.M ≤ C1 ∀ t ∈ [0, T ∗)

is valid, where C1 = C1(M0) and σ0 = σ0(F,M0).

Proof. We multiply equation (8.30) with pfp−1 and integrate by parts. Ob-
serving that the terms involving KN add up to be non-positive if σ is small,
σ ≤ σ0, in view of Lemma 8.2, (8.12) and the fact that

(8.51) 1 ≤ F klgkl ≤ c0,

and by applying the estimate

(8.52) F kl,rshkl;ihrs;jh
ijF−α ≤ −2ε2|DA|2F−α

which has already been used in the proof of Lemma 8.3, we obtain

(8.53)

d

dt

∫
M

fp + p(p− 1)

∫
M

F ijfifjf
p−2 + 2ε2p

∫
M

|DA|2F−αfp−1

≤ σp
∫
M

F ijhkih
k
j f

p + 1
2p(p− 1)

∫
M

F ijfifjf
p−2

+ 2
p

p− 1

∫
M

F ijfifjf
p−2

≤ σp
∫
M

F ijhkih
k
j f

p + 1
2p(p− 1)

∫
M

F ijfifjf
p−2

+ c

∫
M

|DA|2F−αfp−1,

where we may choose c to be the same constant that we used in (8.43). Hence,
we deduce, because of (8.49),

(8.54)

d

dt

∫
M

fp + p(p− 1)

∫
M

F ijfifjf
p−2 + ε2p

∫
M

|DA|2F−αfp−1

≤ σp
∫
M

F ijhkih
k
j f

p.

Choosing now

(8.55) σ ≤ min(c−1
0 ε3p−

1
2 , σ0),

where c0 > 0 will be specified below, and

(8.56) δ = εp−
1
2 ,
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we infer from (8.43) that the right-hand side of inequality (8.54) can be
estimated from above by

(8.57)

εp
1
2

c0
{ε2
∫
M

F ijhkih
k
j f

p} ≤

εp
1
2

c0
{δ−1c(p− 1) + c}

∫
M

F ijfifjf
p−2

+
εp

1
2

c0
{δc(p− 1) + c}

∫
M

|DA|2F−αfp−1

= c−1
0 {p(p− 1)c+ εp

1
2 c}

∫
M

F ijfifjf
p−2

+ c−1
0 {ε2(p− 1)c+ εp

1
2 c}

∫
M

|DA|2F−αfp−1

≤ c−1
0 2cp(p− 1)

∫
M

F ijfifjf
p−2

+ c−1
0 2cε2(p− 1)

∫
M

|DA|2F−αfp−1.

�

Choosing

(8.58) c0 = 4c

leads to

(8.59)
d

dt

∫
M

fp ≤ 0 ∀ t ∈ [0, T ∗)

from which the result immediately follows.

8.7. Theorem. Let F be strictly concave or let F = 1
nH then there exist

constants δ > 0 and c0 > 0 depending only on F and M0 such that

(8.60) |A|2 − nF 2 ≤ c0F 2−δ,

or equivalently,

(8.61) |A|2 − 1
nH

2 ≤ c0H2−δ.

Proof. When F = 1
nH we use the estimate (8.36) instead of (8.37) to obtain

the result in Lemma 8.6. Then, in both cases, F strictly concave or F =
1
nH, the further arguments are essentially identical to those in Huisken’s
paper. �

8.8. Remark. In the proof of Lemma 8.5, Lemma 8.6 and Theorem 8.7
we used the fact that the sectional curvature KN satisfies

(8.62) KN ≥ 0
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but only out of convenience. In case of the opposite sign slightly different
arguments would have prevailed, since the terms stemming from the curvature
of the ambient space are of lower order and can be handled fairly easily.

Combining the estimate (8.61) with the regularity result of the rescaled
hypersurfaces we shall prove that the rescaled hypersurfaces converge to a
unit sphere in C∞(Sn) exponentially fast provided F is strictly concave or
F = 1

nH. First, we prove:

8.9. Lemma. Let F be strictly concave or F = 1
nH, let M̃(τ) be the

rescaled hypersurfaces and h̃ij, F̃ , etc. be the rescaled geometric quantities,
then there are positive constants c, δ such that

(8.63)

∫
M̃

|DÃ|2 ≤ ce−δτ ∀ τ0 ≤ τ <∞,

where

(8.64) τ0 = − log Θ(0, T ∗),

and where we emphasize that each geometric quantity is scaled separately by
multiplying or dividing it with appropriate powers of Θ, and by pointing out
that the scaled principal curvature are not the principal curvatures of M̃ . This
caveat applies especially to the integral in (8.63).

Proof. Consider the inequality (8.39), where now f is defined by choosing
σ = 0, i.e.,

(8.65) f = F−2(|A|2 − nF 2).

f is scale invariant, hence we deduce from (8.60) and Corollary 7.8 on page 28

(8.66) f ≤ c0e−δτ ∀ τ ≥ τ0.

All terms in inequality (8.39) scale like F 2, i.e., they are of order two. In-
tegrating over M , using integration by parts and rescaling the resulting in-
equality yields the result in view of (8.40) and (8.66). �

Applying now the interpolation inequalities for Sobolev norms, cf. [1, The-

orem 4.17], we conclude we conclude that |DÃ| decays exponentially fast in
C∞(Sn), hence we conclude

8.10. Lemma. There exists positive constants c, δ such that

(8.67) F̃max − F̃min ≤ ce−δτ ∀ τ ≥ τ0

and

(8.68) ‖DF̃‖ ≤ ce−δτ ∀ τ ≥ τ0.
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Proof. We first estimate the unscaled quantities in M(t)

(8.69) Fmax − Fmin ≤ diamM(t) sup
M(t)

‖DF‖ ≤ cdiamM sup
M(t)

|DA|

to deduce

(8.70) F̃max − F̃min ≤ cdiam M̃ sup
M̃(τ)

|DÃ|,

hence the result. Note that

(8.71) |DÃ|2 = Θ2gijhkl;iΘh
l
k;jΘ

and

(8.72) diam M̃ = diamMΘ−1 ≤ c( inf
M(t)

κ1)−1Θ−1 ≤ const,

in view of Myers’ theorem. �

A similar lemma is also valid for the mean curvature:

8.11. Lemma. There exists positive constants c, δ such that

(8.73) H̃max − H̃min ≤ ce−δτ ∀ τ ≥ τ0.

We are now ready to prove that the rescaled flow hypersurfaces converge
to a sphere, to a geodesic sphere of radius 1.

8.12. Lemma. Let |Dũ| be defined by

(8.74) |Dũ|2 = σij ũiũj ,

then there are positive constants c and δ such that

(8.75) |Dũ| ≤ ce−δτ ∀ τ ≥ τ0.

Proof. Let us look at the scaled scalar curvature equation in (7.76) on page 29

(8.76) ũ′ = −F̃Θ−1 sin Θ

cos Θ
v + ũ.

Define

(8.77) ϕ = log ũ

and

(8.78) w = 1
2 |Dϕ|

2 = 1
2 ũ
−2|Dũ|2,

then

(8.79) ϕ′ = −e−ϕF̃Θ−1 sin Θ

cos Θ
v + 1,

where we note that

(8.80) v2 = 1 +
1

sin2 u
σijuiuj = 1 + ϑ(u)−2σijϕiϕj

cf. (7.91) and (7.92) on page 30.
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Differentiating now (8.79) with respect to ϕkDk we obtain

(8.81) w′ = 2e−ϕw̃F̃Θ−1 sin Θ

cos Θ
v − e−ϕF̃Θ−1 sin Θ

cos Θ
v−1ϑ(u)−2wkϕ

k +R,

whereR decays exponentially in view of (8.68) or other more trivial estimates.
The function

(8.82) wmax = sup
M̃(τ)

w

then satisfies

(8.83)
w′max = 2e−ϕwmaxF̃Θ−1 sin Θ

cos Θ
v +R

≥ 2e−ϕwmaxF̃Θ−1 sin Θ

cos Θ
v − ce−δτ

for almost every τ ≥ τ0, and we deduce

(8.84) (wmax − c
δ e
−δτ )′ ≥ 2e−ϕwmaxF̃Θ−1 sin Θ

cos Θ
v.

Hence,

(8.85) lim
τ→∞

wmax

exists and, because of

(8.86) ∞ >

∫ ∞
τ0

2e−ϕwmaxF̃Θ−1 sin Θ

cos Θ
v ≥ c

∫ ∞
τ0

wmax,

we obtain

(8.87) lim
τ→∞

wmax = 0,

from which we conclude further, in view of (8.84),

(8.88) wmax(τ) ≤ c
δ e
−δτ ∀ τ ≥ τ0.

�

As a corollary we can prove:

8.13. Corollary. The rescaled flow hypersurfaces converge to the unit
sphere in C∞(Sn).

Proof. Let ũk = ũ(τk, ·) be a convergent subsequence in C∞(Sn), then we
deduce from (8.75) that the limit hypersurface is a sphere which is the unit
sphere, since the geodesic spheres with radius Θ intersect the hypersurfaces
M(t) = graphu, cf. (6.10) on page 17. Since any convergent subsequence
converges to the same limit, the corollary is proved. �

Applying now the interpolation inequalities for the Cm-norms we can state:

8.14. Theorem. Let F be strictly concave or F = 1
nH, then the rescaled

function ũ converges in C∞(Sn) to the constant function 1 exponentially fast.
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Let us finally prove that the rescaled F -curvature converges to 1 exponen-
tially fast.

8.15. Lemma. Let F be strictly concave or F = 1
nH, then

(8.89) lim
t→T∗

FΘ = 1.

Proof. For fixed 0 < t < T ∗ let

(8.90) u(t, ξ0) = umax(t).

Then, by applying the maximum principle, we infer that in that point

(8.91) κi ≥
cosu

sinu

and hence

(8.92) lim sup
t→T∗

F̃max ≥ 1

as well as

(8.93) lim inf
t→T∗

F̃max ≥ 1.

Looking at points (t, ξ0), where

(8.94) u(t, ξ0) = umin(t),

we deduce the opposite inequalities for F̃min proving the lemma, in view of
the estimate (8.67). �

8.16. Lemma. Let F be strictly concave or F = 1
nH, then there exist

positive constants c, δ such that

(8.95) |F̃ (τ, ·)− 1| ≤ ce−δτ ∀ τ ≥ τ0.

Proof. We use the evolution equation for F . Let

(8.96) F̃ = FΘ(t, T ∗)

and define

(8.97) F̃max = FmaxΘ(t, T ∗),

where

(8.98) Fmax = sup
M(t)

F.

Then we deduce from (7.50) on page 26

(8.99)
F̃ ′max ≤ F ijhkihkjFmaxΘ2 sin Θ

cos Θ
− F̃max

+KNF
ijgijFmaxΘ2 sin Θ

cos Θ

for almost every τ ≥ τ0.
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We now observe that

(8.100) |Θ− sin Θ| ≤ cΘ2

for small Θ and that

(8.101) F ij − 1
ng

ij ≤ c(
∑
i<j

(κi − κj)2)
1
2 gij

cf. (8.40), and, in view of Lemma 8.2,

(8.102) 1
n |A|

2 − F 2 ≤ c
∑
i<j

(κi − κj)2.

Hence, we conclude

(8.103) F̃ ′max ≤ (F̃ 2
max − 1)F̃max + ce−δτ ∀ τ ≥ τ1,

or equivalently,

(8.104) (F̃max + c
δ e
−δτ )′ ≤ (F̃ 2

max − 1)F̃max ∀ τ ≥ τ1,

where τ1 is sufficiently large such that Θ is small.
Suppose there exists τ2 > τ1 such that

(8.105) F̃max + c
δ e
−δτ < 1

in τ = τ2, then this inequality is valid in a whole neighbourhood of τ2, since
F̃max is Lipschitz continuos, and we deduce from (8.104) that (8.105) is valid
for all τ ≥ τ2 and

(8.106) (F̃max + c
δ e
−δτ )′ ≤ 0 ∀ τ ≥ τ2

leading to the contradiction

(8.107) 1 = lim
τ→∞

(F̃max + c
δ e
−δτ ) ≤ F̃max(τ2) + c

δ e
−δτ2 < 1.

Thus, we conclude

(8.108) F̃max − 1 ≥ − c
δ e
−δτ ∀ τ ≥ τ1.

Defining

(8.109) F̃min = inf
M(t)

FΘ

we deduce by an analogous argument

(8.110) F̃min − 1 ≤ c
δ e
−δτ ∀ τ ≥ τ1.

Combining these two inequalities with inequality (8.67) completes the proof
of the lemma. �
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9. Inverse curvature flows

Let the curvature functions F govern the contracting curvature flows and
their inverses F̃ the expanding flows

(9.1) ẋ = F̃−1ν.

A contracting flow converges to a point x0 ∈ Sn+1 and are thus staying in
the corresponding hemisphere H(x0) for t close to T ∗, i.e., for tδ ≤ t < T ∗,
and hence the corresponding expanding flow stays in the opposite hemisphere
H(−x0) for those values of t and converges to the equator. Since the flow is
expanding, all flow hypersurfaces therefore stay in H(−x0). The respective
flow hypersurfaces are related by the Gauß map.

Fix a curvature F to define a contracting flow and write the flow hy-
persurfaces M(t) as graphs of a function u with respect to geodesic polar
coordinates centered in x0 and write the polar hypersurfaces M(t)∗, which
are the flow hypersurfaces of the corresponding inverse curvature flow, as
graphs of a function u∗ with respect to geodesic polar coordinates centered
in −x0. This coordinate system will cover the inverse curvature flow in the
interval [tδ, T

∗). Then we have:

9.1. Lemma. The functions u, u∗ satisfy the relations

(9.2) umax =
π

2
− u∗min ∀ t ∈ [tδ, T

∗)

and

(9.3) umin =
π

2
− u∗max ∀ t ∈ [tδ, T

∗).

Proof. Let Sr(x0) be a geodesic sphere around x0 of radius r and

(9.4) S∗r (x0) = Sr∗(−x0)

be the polar sphere, then

(9.5)
cos r

sin r
=

sin r∗

cos r∗
,

hence

(9.6) r =
π

2
− r∗.

Since the polar sets of convex bodies M̂i, i = 1, 2, satisfy

(9.7) M̂1 ⊂ M̂2 =⇒ M̂∗2 ⊂ M̂∗1 ,

cf. [10, Corollary 9.2.10], we immediately deduce the relations (9.2) and (9.3)
from (9.7). �

9.2. Corollary. There exists a positive constant c such that

(9.8) c−1 ≤ w = (
π

2
− u∗)Θ−1 ≤ c ∀ t ∈ [tδ, T

∗).
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9.3. Lemma. Let

(9.9) |Dw|2 = σijwiwj ,

then there exists a positive constant such that

(9.10) |Dw|2 ≤ c ∀ t ∈ [tδ, T
∗).

Proof. Let v be defined by

(9.11) v2 = 1 +
1

sin2 u∗
σiju∗i u

∗
j ,

then

(9.12) v ≤ eκ̄(u∗
max−u

∗
min) ∀ t ∈ [tδ, T

∗),

where κ̄ is a positive upper bound for the principal curvature of the slices
{x0 = const} that intersect The flow hypersurfaces, cf. [10, inequality
(2.7.83)], hence we conclude that for fixed t

(9.13)

1

sin2 u∗
σiju∗i u

∗
j = v2 − 1 ≤ e2κ̄(u∗

max−u
∗
min) − 1

≤ c sup
M(t)

cosu∗

sinu∗
(u∗max − u∗min) ≤ cΘ2,

in view of (9.8), hence the result. �

The inverse mean flow exists in the interval [0, T ∗) and is smooth. In

order to prove this, we choose a point y0 ∈ M̂∗0 as the center of a geodesic
polar coordinate system, then this system covers the whole flow, since the
flow hypersurfaces are boundaries of strictly convex bodies. We have C0

and C1-estimates, cf. (9.12), as well as C2-estimates. Furthermore, F̃ is
strictly positive on compact subintervals of [0, T ∗), hence the flow is smooth
on compact subintervals.

For the rescaling process we may therefore restrict our attention to the
interval [tδ, T

∗), where we can write the flow hypersurfaces as graphs in the
coordinate system centered at −x0. For u∗ we have the estimates (9.8) and
(9.10). Using then similar arguments as in the proofs of Lemma 7.6 on page 26
and Theorem 7.12 on page 30 we conclude:

9.4. Theorem. Let u∗ represent an inverse mean curvature flow in Sn+1

in the geodesic polar coordinate system specified above, where the curvature
function and its inverse are both monotone and concave, then u∗ converges
to the constant function π

2 in C∞(Sn) such that for any m ∈ N the estimate

(9.14) |π2 − u
∗|m,Sn ≤ cmΘ ∀ t ∈ [0, T ∗),

is valid. The rescaled functions

(9.15) w = (π2 − u
∗)Θ−1
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are uniformly bounded in C∞(Sn). When the curvature function F of the
corresponding contracting flow is strictly concave, or when F = 1

nH, then
w(τ, ·) converges in C∞(Sn) to the constant function 1 exponentially fast.
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