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0. Introduction.

In a complete (n + l)-dimensional manifold N we want to find closed hy
persurfaces M of prescribed curvature, so-called Weingarten hypersurfaces.
To be more precise, let fi be a connected open subset of JV, / € C2,a(fi), F
a smooth, symmetric function defined in the positive cone r+ C Rn, then
we look for a convex hypersurface M C 0 such that

( 0 . 1 ) F \ M = f ( x ) V z e M ,
where F\m means that F is evaluated at the vector {k%{x)) the components
of which are the principal curvatures of M.

This is in general a fully nonlinear partial differential equation problem,
which is elliptic if we assume F to satisfy

( 0 . 2 ) g > 0 i n T + .

Classical examples of curvature functions F are the elementary symmet
ric polynomials of order fc, H^, defined by

(0.3) Hk = ^2 K*i *'' *** > 1 - k - n'
i \< . . .< i k

H\ is the mean curvature if, H2 is the scalar curvature—for hypersurfaces
in Euclidean space—, and Hn is the Gaussian curvature K.

For technical reasons it is convenient to consider the homogeneous poly
nomials of degree 1

( 0 . 4 ) a k = H \ l k
instead of Hk- Then, the o^'s are not only monotone increasing but also
concave. Their inverses o^ defined through

( 0 - 5 ) a i m ) = — ^ r -
W i )
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7 2 C l a u s G e r h a r d t

share these properties; a proof of this non-trivial result can be found in [12].
o\ is the so-called harmonic curvature G, and, evidently, we have an = an.

To describe the general curvature functions we have in mind, let us define

Definition 0.1. Let F e C0(F+) n G2>a(r+) be a symmetric function,
(positively) homogeneous of degree 1 satisfying

dF
( 0 . 6 ) F i = — > 0 o n T +

and

( 0 . 7 ) F i s c o n c a v e .

Then we say

(i) F is of class (K), if

( 0 . 8 ) F \ d r + = 0 ;

(ii) F is of class (if), if

( 0 . 9 ) i t s i n v e r s e F i s a l s o c o n c a v e ,

and

(0 .10 ) FeC2 'a (A£)C) and 0 < F { i n AC|C ,

where A£)C C r+ is defined through

(0.11) A£iC = {(Ki) : 0 < e < F, 0 < n{ < c}.

(iii) F is of class (H), if

( 0 . 1 2 ) F i s c o n c a v e .

and

( 0 . 1 3 ) F < E C 2 ' a ( r + ) a n d 0 < F { i n f + .

Remark 0.2. Since F{ are homogeneous of degree 0, the condition (0.13)
implies that the Fi are also uniformly bounded in T+.

Remark 0.3. Here are some classical curvature functions which satisfy
the above definitions.
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(i) The 5Vs axe of class (if), and also the inverse of the length of the
second fundamental form

( 0 . 1 4 ) F ( K i ) = *

(P<2)
1/2

(ii) The cr^'s (and their inverses) are of class (H).
(iii) The mean curvature is of class (H).

Our main assumption in the existence proof is a barrier assumption.

Definition 0.4. Let Mi, M<i be strictly convex, closed hypersurfaces in
iV, homeomorphic to Sn and of class G4,a which bound a connected open
subset fi, such that the mean curvature vector of M\ points outside of fi and
the mean curvature vector of M2 points inside of Q,. Mi, M2 are barriers
for (F,/) if

( 0 . 1 5 ) F \ M l < f
and

( 0 . 1 6 ) F \ M 2 > f .

Remark 0.5. In view of the Harnack inequality we deduce from the
properties of the barriers that they do not touch, unless both coincide and
are solutions of our problem. In this case ft would be empty.

Then we can prove

Theorem 0.6. Let N be a space form with curvature Kpj = 0, let F be of
class (K), 0 < / G G2,a(fi) and assume that M\, M2 are barriers for (.F, /),
then the problem

( 0 . 1 7 ) F \ M = f
has a strictly convex solution Mcfi 0/ class G4,a.

Theorem 0.7. Let N be a space form with curvature Kjsf = 0 and F G (if);
let 0 < / G G2,a(fi) be such that log/ is concave and assume that M\, M2
are barriers for (F, /), then the problem

( 0 . 1 8 ) F \ M = /
has a convex solution M C £1 of class C4'01.
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Theorem 0.8. Let N be a space form with curvature Kjy and F G (if); let
f G G2'a(H) satisfy

( 0 . 1 9 ) - K N f g a p + f a l 3 < 0 i n S I

and assume that Mi, M2 are barriers for (F, /), then the problem

( 0 . 2 0 ) F \ M = f

has a convex solution M C ft of class G4,c* if K^ < 0, or—in the case
Kn > 0—if in addition f is strictly positive in ft.

Remark 0.9. In the first part of Theorem 0.8 (Kn < 0) / is not supposed
to be strictly positive in ft. Though, in view of the barrier condition, / has
to be positive in a neighbourhood of Mi. The solution M will be contained
in the support of max(/, 0) and also the assumption (0.19) should only be
valid there.

In a separate paper we considered closed Weingarten hypersurfaces in ar
bitrary Riemannian manifolds with non-positive sectional curvature, cf. [9].
In that paper we have also proved that we can isometrically lift the geomet
ric setting £2, Mi, M2 and / to the universal cover N even in the case of
a space form N with K^ > 0. Thus, we may—and shall—assume in the
following that N is simply connected.

The existence of closed Weingarten hypersurfaces in Rn+1 has been stud
ied extensively in previous papers: the case F = if by Bakelman and Kantor
[2], Treibergs and Wei [14], the case F = if by Oliker [13], Delanoe [5], and
for general curvature functions by Caffarelli, Nirenberg and Spruck [4]. In
all papers—except in [5]—the authors imposed a sign condition for the ra
dial derivative of the right-hand side to prove the existence. This condition
was necessary for two reasons, first to derive the a priori estimates for the
G1-norm and secondly to apply the inverse function theorem, i.e. the kernel
of the linearized operator had to be trivial.

Without this condition the kernel is no longer trivial and the inverse
function theorem of Leray-Schauder type arguments fail.

We therefore use the evolution method to approximate stationary solu
tions. But there is still the difficulty of obtaining the G^estimates: either
one has to impose some artificial condition on the right-hand side, i.e. the
condition depends on the choice of a special coordinate system, or one has to
stay in the class of convex hypersurfaces where the G1-estimates are a trivial
consequence of the convexity, but then the preservation of the convexity has
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to be proved and this can only be achieved for special curvature functions
like the Gaussian curvature, or by assuming / to satisfy the condition (0.19).

The paper is organized as follows: In Section 1 we consider general
curvature functions and state some basic properties.

In Section 2 we formulate the evolution problem and prove short-time
existence.

In Section 3 we derive the evolution equation for some geometric quan
tities like the metric and the second fundamental form.

In Section 4 we prove that the flow stays in ft.
In Section 5 we state the parabolic equations satisfied by h^ resp. v =

y/l + \Du\*.
In Section 6 the G2-estimates are derived, while in Section 7 the conver

gence to a smooth stationary solution is proved.

1. Curvature Functions.

Let F G G2,Q(r+) fl G°(F+) be a symmetric function satisfying the con
ditions (0.6) and (0.7); then, F can also be viewed as a function defined on
the space of symmetric, positive definite matrices <S+, or to be more precise,
at least in this section, let (hij) G 5+ with eigenvalues K;, 1 < i < n, then
define F on S+ by

( 1 . 1 ) F ( h i j ) = F ( K i ) .
^ ^ d F

It is well known, see e.g. [3], that F is as smooth as F and that F%3 = j^
satisfies

( 1 . 2 ) F % ^ = g | & | 2 ,

where we use the summation convention throughout this paper unless oth
erwise stated.

Moreover, if F is concave then F is also concave, i.e.

( 1 . 3 ) F ' j ' % % < 0

for any symmetric (%), where

ohijdhki
An even sharper estimate is valid, namely,
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Lemma 1.1. Let F, F be defined as above, then

(1.5) F**W, = fl^WWi + E f^(^)2'

for any (77^) G «S, where S is the space of all symmetric matrices and where
Fi = 44^-. The second term on the right-hand side of (1.5) is non-positive
and has to be interpreted as a limit if Ki = Kj.

Proof. In [7, Lemma 2] it is shown that
( d F d F \

if F is concave, hence the second term of the right-hand side in (1.5) is
non-positive.

A proof of inequality (1.5) can be found in [9, Lemma 1.1].
We also want to mention that F need not to be defined on the positive

cone, any open, convex cone will do.
For the rest of the paper we shall no longer distinguish between F and

F; instead we shall consider F to be defined both on «S+ and r+.
For (hij) G S+ let (hij) = (/ly)"1* then we have

Lemma 1.2. Let F be a curvature function on T+ and F be its inverse,
and assume that both F and F are concave, then

( 1 . 7 ) F ^ r j i j m + 2 F i k W i r ] i j m > 2 F " 1 ( F ^ - ) 2

for all (rjij) G J.
A proof of the lemma is given in [15, p. 112].
The preceding considerations are also applicable if the Ki are the prin

cipal curvatures of a hypersurface M with metric (fly). F can then be
looked at as being defined on the space of all symmetric tensors (hij) with
eigenvalues Ki with respect to the metric.

dF< w > * * = 5 5
is then a contravariant tensor of second order. Sometimes, it will be con
venient to circumvent the dependence on the metric by considering F to
depend on the mixed tensor

( 1 . 9 ) h ) = g i k h k j .
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Then
dF

( 1 . 1 0 ) F ? = ^{ } l d h )

is also a mixed tensor with contravariant index j and covariant index i.

2. The evolution problem.

Let AT be a complete (n + l)-dimensional Riemannian manifold and M
a closed hypersurface. Geometric quantities in N will be denoted by (gap),
(Rap-ys), etc., and those in M by (fly), (Rijki), etc. Greek indices range
from 0 to n and Latin from 1 to n; the summation convention is always
used. Generic coordinate systems in N resp. M will be denoted by (xa)
resp. (£z). Covariant differentiation will simply be indicated by indices, only
in case of possible ambiguity they will be preceded by a semicolon, i.e. for
a function u on AT, (ua) will be the gradient and (uap) the Hessian, but,
e.g. the covariant derivative of the curvature tensor will be abbreviated by
Rapes' We also point out that

( 2 . 1 ) R a p - y 6 ; i = R o t f 5 ^ 8 \ e x -

with obvious generalizations to other quantities.
If AT is a space of constant curvature, then

( 2 . 2 ) R a P i d = K N ( 9 a - f 9 p 6 " 9 a 8 9 ( 3 j ) -

In local coordinates xa and £* the geometric quantities of the hypersur
face M are connected through the following equations

( 2 . 3 ) x f j = - h i j * "

the so-called Gaufi formula. Here, and also in the sequel, a covariant deriva
tive is always a full tensor, i.e.

(2.4) «5 = «3i-r&«2 + rJrBf4
The comma indicates ordinary partial derivatives.

In this implicit definition (2.3) the second fundamental form (hij) is taken
with respect to — v.
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The second equation is the Weingarten equation

( 2 . 5 ) v ? = h £ x % ,
where we remember that vf is full tensor.

Finally, we have the Codazzi equation

( 2 . 6 ) h i j . k - h i k . j = R a 0 j S ^ a ^ x ] x { = 0 ,

if N is a space of constant curvature, and the Gaufl equation

(2.7) Ri jki = hikhj i - huhjk + Rap<y8xixjxlxi '

We want to prove that the equation

( 2 . 8 ) F = /

has a solution. For technical reasons it is convenient to solve instead of (2.8)
the equivalent equation

( 2 . 9 ) 9 ( F ) = 9 ( f )

where 9 is real function defined on R+ such that

( 2 . 1 0 ) 9 > 0 a n d 9 < 0 .

For notational reasons let us abbreviate

( 2 . 1 1 ) / = * ( / ) •

To solve (2.9) we look at the evolution problem

( 2 1 2 ) * = - t * - / ) "[ Z A Z ) x ( 0 ) = x 0

where xq is an embedding of an initial strictly convex hypersurface Mo dif-
feomorphic to 5n, 9 = 9(F), and F is evaluated for the principal curvatures
of the flow hypersurfaces M(i), or, equivalently, we may assume that F de
pends on the second fundamental form (hij) and the metric (fly) of M(t)\
x(t) is the embedding for M(t).

This is a parabolic problem, so short-time existence is guaranteed—an
exact proof is given below—, and under suitable assumptions we shall be
able to prove that the solution exists for all time and that the velocity tends
to zero if t goes to infinity.
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Consider now a tubular neighbourhood U of the initial hypersurface Mo,
then we can introduce so-called normal Gaussian coordinates xa, such that
the metric in U has the form

( 2 . 1 3 ) d s 2 = d r 2 + fl y d x l d x j

where r = x°, #y = fly(r,a;); here we use slightly ambiguous notation.
A point p G.U can be represented by its signed distance from Mo and its

base point x G Mo, thus p = p(r, x).
Let M C U be a hypersurface which is a graph over Mo, i.e.

( 2 . 1 4 ) M = { ( r , x ) : r = u ( z ) , z G M 0 } .

The induced metric of M, fly, can then be expressed as

(2.15) ftj = 9ij + UiUj

with inverse

(2.16) fl ^ = fl ^ - - - ,v v

where ffi) = (py)"_1 and

(2.17)
u l = g l3U j
v2 = 1 + g^UiUj

The normal vector ^ of M then takes the form

( 2 . 1 8 ) ( i / 0 ) = v - 1 ( l , - t i i )

if x° is chosen appropriately.
From the Gaufi formula we immediately deduce that the second funda

mental form of M is given by

( 2 . 1 9 ) v h i j = - U i j + h131

where

P . 2 0 ) M M I "
is the second fundamental form of the level surfaces {r = const}, and where
the second covariant derivatives of u are defined with respect to the induced
metric.
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At least for small t the hypersurfaces M(t) are graphs over Mo and the
embedding vector looks like

, 9 9 n A t ) = « ( * , * ' ( * ) )

where the £2 are local coordinates for M(t) independent of t.
Furthermore,

(2.22) X ° = U du= ~di + X%Ui

and from (2.12) we conclude

(2.23)
x° =
x{ =

- J)v~l

hence, we obtain

(2.24)
du
~di~ - ( * -- f )v.

This is a scalar equation, which can be solved on a cylinder [0, e] x Mo for
small £, if the principal curvatures of the initial hypersurface Mo are strictly
positive. The equation (2.23) for the embedding vector is then a classical
ordinary differential equation of the form

( 2 . 2 5 ) x = < p ( t , x ) .

We have therefore proved

Theorem 2.1. The evolution problem (2.12) has a solution on a small time
interval [0,e].

3. The evolution equations of some geometric quantities.

In this section we want to show how the metric, the second fundamental
form, and the normal vector of the hypersurfaces M(t) evolve. All time
derivatives are total derivatives.
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Lemma 3.1 (Evolution of the metric). The metric gij of M(t) satis
fies the evolution equation

( 3 . 1 ) 9 i j = - 2 ( * - f ) h i j .

Proof. Let £* be local coordinates for M(t), then

( 3 . 2 ) g i j = V a p x f x ?
and thus

( 3 . 3 ) g i j = I g ^ x f x ] .
On the other hand, differentiating

( 3 . 4 ) x a = - ( $ - J ) v a
with respect to C yields

( 3 . 5 ) i f = - ( $ - 7 ) ^ - ( $ - / ) ! / ?
and the desired result follows from the Weingarten equation.

Lemma 3.2 (Evolution of the normal). The normal vector v evolves
according to

( 3 . 6 ) v = V M ( 9 - f ) = g i j ( 9 - f ) i X j .

Proof. Since v is a unit normal vector we have z> G T(M). Furthermore,
differentiating

( 3 . 7 ) 0 = ( v , X i )
with respect to t, we deduce

( 3 . 8 ) ( ^ X i ) = - ( u , x i ) = ( 9 - f ) i .

Lemma 3.3 (Evolution of the second fundamental form). The se
cond fundamental form evolves according to

(3.9) h> = ($ - f)i + (* - J)h1hPk + ($ - f)Ra0lSuaxfu'rxigkj
and

(3.10) ^ = ($ - f)ij - (* - J)/^- + ($ - J)Rafh6vax!iivixsi.
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Proof. We use the Ricci identities to interchange the covariant derivatives
of v with respect to t and £2

( 3 1 1 ) J t { v t ) = ^ ) i - R % ^ x J x s= g k l { ^ - I ) k i x t + g k l ^ - f ) k x t i - R a p i y x J x s

For the second equality we used (3.6).
On the other hand, in view of the Weingarten equation

(3 .12 ) | W) = j t (hkx t ) = hkxak + hkx%.

Multiplying the resulting equation with gapx^ we conclude

(3.13) h\gkj -(9- J)h\hkj = (9- f)i j + (9- J)Rapl5v«x^x]

or equivalently (3.9).
To derive (3.10), we differentiate

( 3 . 1 4 ) h i j = h k i g k j

with respect to t and use (3.3).

Lemma 3.4 (Evolution of (9 — /)). The term (9 — f) evolves according
to the equation

C K K \ ( * - f ) ' - * F i J ( ® - f k = Q & h i k h j i * - ? ) + ! « ' > * ( * - ? )( ' + * F i i R a f h 6 v a x p i i / ^ J ( $ - / )

where

( 3 . 1 6 ) ( * - / ) ' = ^ ( * - 7 )
and

( 3 . 1 7 ) * = ^ U ( r ) .

Proof. When we differentiate F with respect to t it is advisable to consider
F as a function of the mixed tensor h%j\ then we obtain

( 3 . 1 8 ) ( 9 - f ) ' = 9 F l j h i - f a x < * .

The result now follows from (3.9) and (3.4).
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Corollary 3.5. Let N be a space form then the equation (3.15) takes the
form

men ( * - / ) / - * i ? i i ( * - / )« = 9F^h ikhk j (9 -J ) + Jaya (9 -J )1 ] + K N 9 F i f g i j ( 9 - f )

4. Barriers and a priori estimates in the C°-norm.

In [9, Section 4] we have shown that, if the sectional curvature of the
ambient space N is non-positive or if AT is a space form with positive cur
vature, then, the geometric setting of our problem, i.e. £2, Mi, M2 and /
can be isometricallyjifted to the universal cover. If N is space form with
Kn > 0, then U C N is contained in an open hemisphere. The barriers Mi
are boundaries of convex bodies (Mi) and, if we introduce geodesic polar
coordinates (xa) = (r,xl) = (r,x) around a point in (Mi) such that

( 4 . 1 ) d s 2 = d r 2 + g ^ d x i d x j

then the second fundamental form /iy of a geodesic sphere {r = const} that
intersects U is uniformly positive definite. The M» are graphs over a fixed
geodesic sphere So, Mi = graphUi\s0-

Moreover, let M(t) be a solution of the evolution problem (2.12) in a
maximal time interval I = [0,T*) such that the hypersurfaces are strictly
convex. Then, each M(t) can be represented as a graph over So

( 4 . 2 ) M ( t ) = { ( r , x ) : r = u ( t , x ) , x G S 0 } .

In [9, Section 5] we also proved the following lemmata

Lemma 4.1. Choose as initial hypersurface Mq either M\ or M2, then we
have for the embedding vector x = x(t)

( 4 . 3 ) x ( t ) G n V t e l .

and

Lemma 4.2. LetM(t) be a solution of the evolution problem (2.12) defined
on a maximal interval [0,T*). As initial hypersurface Mq we choose either
M\ or M2; then we obtain

( 4 . 4 ) * - / < 0 V «
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if Mo = Mi, and

( 4 . 5 ) 9 - f > 0 V t

if M0 = M2.

5. The evolution equations for /iy and v.

Let M(t) be a solution of problem (2.12); in [9, Section 7] we derived
the following evolution equations for /iy resp. hlj

Lemma 5.1. Let M(t) be a solution of the problem (2.12), then the second
fundamental form satisfies

h i j -QFUhi j -u = ^F^hkrhJh i j - ^ -nh lhk j -^Fh^hk j
-fapxfx? + faVahij + $FiF)
+$Fkl'r°hkl.tihrs.j + ($ - J)Ra^5vax^x]
+2$FkiRa0lSx?x?xlxsjhrl

( 5 . 1 ) - ^ F k l R a 0 1 s x ? x 0 k x - J x f h r j
- ^ F ^ R ^ s x ^ x ^ x f h l
+$FkVRaMSvaxl3kv'ixslhij
-^>FR^suax^xSj
+^FklRaM&,e{vax{x]x5ixej + vax?xlx]x\)

and

Lemma 5.2. The evolution equation for h\ (no summation over i) has the
form
(5.2)

h\-$Fk%kl = i>Fklhkrhrlhi + (S-f)hkhi-i>Fhkhi
-Ja0X^kgki + favah\ + QFiF4
+$Fkl>rahkl.iihrs.,mgmi
+(*-f)_RaWVax^x5mgmi
+2$FklRa/}lSx?x'!xlxsrngmihrl
-2$F^i?a/M<z£x7a:f/iri
+i>FkiRawvax'3kv'rxjhi
-^FRa0lS^x?^xsmgmi
+i>FklRaPjS>e{»a4x'l4x£m + vax?xlx5mx<i}gmi
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In case N is a space form with curvature Kn, the preceding evolution
equations simplify to

Corollary 5.3. Let N be a space form with curvature Kjy, then equation
(5.1) takes the form

hij - $Fklhij;kl = Q^hkrhlhij - (* - f)hkhkj - $Fhkhkj
-fafiXfx$ + faUa
+$Fkl'rshkl.<ihrs.ij

, , , , - U p x f x ? + f a v * h i j + Q F i F j
y ° - 6 ) , i n H , r s

+KN{($ -f) + $F}9ij - KN^FKlgklhij

and

Corollary 5.4. Let N be a space form with curvature K^, then equation
(5.2) takes the form

t i i - 9 F k % k l = $ F f c v ^ [ ^ H ( $ - / ) ^ i - ^ ^ i
, * ^ - f a p x f x P g k i + f a v « h l + 9 F i F lK } + 9 F k l > r s h k l ] i h r S ] m g m i

+KN{(9 - /) + 9F}St - KN9Fklgklh\

The proof is straightforward, if one observes that FlJ and /iy can be diago-
nalized simultaneously, cf. [9, equ. (1.12)].

Suppose now, that we have introduced geodesic polar coordinates (xa) =
(r, xl) such that the hypersurfaces M(t) are graphs over a geodesic sphere
So- From the relation (2.18) we conclude

,<*\-i( 5 . 5 ) v = y / l + \ D u \ 2 = ( r a v a )

We know, that as long as the hypersurfaces are convex, the quantity v
is uniformly bounded, or more precisely, cf. [9, Lemma 6.1]

Lemma 5.5. Let M = graphu\s0 be a closed convex hypersurface repre
sented in normal Gaussian coordinates then the quantity v = y/l + \Du\2
can be estimated by

( 5 . 6 ) v < c ( H , 5 0 , fl f y - ) -

Furthermore, the function u and the quantity v satisfy the following
evolution equations
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Lemma 5.6. Consider the flow in a normal Gaussian coordinate system
where the M{t) can be written as graphs of a function u(t). Then u resp. v
satisfy the evolution equations

(5.7) u - $FijUij = -($ - JV1 + QFv-1 - $Fijhij
resp.

v - Q F ' v i j = - $ F i j h i k h k j v - 2 v - 1 $ F i j v i v j
+raPvaj/[{$-J)-$F}v2

( 5 . 8 ) + $ F i i R a / 3 j S v a x ? x ] x s k r e x e m g m k v 2
+2$Fiiral3hkx%x?v2
+$F*raMv«x?x]v2 + Jaxamgmkr^kv2

cf. [9, equ. (8.2) resp. Lemma 7.3].
In a simply connected space form we can deduce a considerable simpler

and more aesthetic form of (5.8).
First, we observe that by symmetry

( 5 . 9 ) fl y = h ( r ) a i j ,
where cry is the metric of a geodesic sphere of radius 1. Then, we fix a point
in AT and choose the coordinates (xl) such that in that point

( 5 . 1 0 ) 3 y , * = ° -

Let us calculate the corresponding Christoffel symbols in N. We have

( 5 . 1 1 ) I y = - - t i j = - h i j ,

(5 .12) rS0 = r t = r$ fe = o ,
and

( 5 . 1 3 ) r i , . = 7 5 ,
from which we conclude

Lemma 5.7. In the above coordinate system the covariant derivatives of r
can be expressed as follows

( 5 . 1 4 ) ; . . , = r a 0 = 0
fij = hi j



(5.15)

and

(5.16)

Closed Weingarten Hypersurfaces in Space Forms

' 2

_ir__ro iJ ~ n2 9 i j

mo = —gij

87

rooj = roio = rijk = 0.

r■■ - -TQr — -F°. — 77--

Proof. To prove (5.14), we use \Dr\ = 1 to obtain

( 5 . 1 7 ) 0 = r a p r p = r a 0 = r 0 a

and

(5.18)

The covariant derivatives of the third order are defined by

(5 .19) rap1 = rapn - Ta j rpm - rg77*mQ,

where we already used (5.17). The relation (5.16) now follows immediately
a n d a l s o , ♦

y V
( 5 . 2 0 ) r 0 i j = r i 0 j = h t h m j

and

(5.21) TijO — fHj "i^i hmj-

To complete the proof, we observe that the geodesic spheres are totally
umbilical, i.e.

(5.22)

and hence

(5.23)

hu
H
n h i

j - _ H _ H ^ _hi j — 9 i j > * 9 9 i j '



8 8 C l a u s G e r h a r d t

To derive a simpler version of equation (5.8), let 77 = rj(r) be a positive
solution of

( 5 . 2 4 ) 7 7 = 7 7 , r > 0 ,n
wherever it is defined and set

( 5 . 2 5 ) x = v r j ( u ) .

Then, we can prove

Lemma 5.8. The function x satisfies the evolution equation

X-^F^X i j = -$F i ih ikhk jX-2X-1 i>FVXiX j
( 5 . 2 6 ) . ~ H

+{$F + ($-f)}-vX + faxk'glkUiVX
l b

Proof. Using the same notation as before, we obtain

X-QF^X i j = { v -QFVv i j j r i + i u -QFVu i j j v f ){ ' - 2 r ] § F i : > V i U j - v f i § F l : > U i U j

We then rewrite the equation (5.8) using the expressions in (5.14) to (5.16)
to deduce

v - $ F i j V i j = - $ F i j h i k h k v - 2 v - 1 $ F i j v i v j

+2$FijViUj —
_ n _ ^ _
F T . . . f f

( 5 . 2 8 ) - Q F t i g i j — v - $ F i j U i U j — v

+ ^ \ D u \ 2 [ ( $ - f ) - $ F ]
+2$F—v2 + Jaxkukv2n

where we also took into account that

Vi = -v2hkuk + v%kuk
( 5 - 2 9 ) 2 , f c , H= -v'hiUk + v—Ui

n

Inserting (5.28) and (5.7) in (5.27) and observing that in view of (5.24)

( 5 . 3 0 ) r j = V - - V ,n n
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the equation (5.26) can be easily deduced.
As we have already remarked before, the mean curvature if of the

geodesic spheres in question is uniformly strictly positive.

6. A priori estimates in the G2-norm.

Let M(t) be a solution of the evolution problem (2.12) with initial hyper
surface Mq = Mi or Mo = M2 defined in a maximal time interval I = [0, T*).
We assume M(t) to be represented as the graph of a function u in geodesic
polar coordinates. We know that during the evolution the flow stays in the
compact set fi and that the hypersurfaces are strictly convex—this is con
tained in the definition of the maximal time-interval—, and, hence, Du is
uniformly bounded.

We want to show that the second derivatives of u are uniformly bounded
or equivalently that the principal curvatures of the flow hypersurfaces are
uniformly bounded and positive.

1. The Case of Theorem 0.6.
We first prove

Lemma 6.1. Let F G (K), M0 = Mi, $(t) = logt and KN = 0, then the
principal curvatures of the evolution hypersurfaces are uniformly bounded
from above.

Proof. First, we observe, that

( 6 . 1 ) $ < / o r F < f

in view of the results in Lemma 4.2.
Next, let (p be defined by

( 6 . 2 ) < p = s u p { h i j V W ■ I M I = 1 }

and w by

( 6 . 3 ) w = l o g c ^ + l o g x -

We claim that w is bounded. Let 0 < T < T*, and x0 = x(t0)j 0 < t0 <
T, be a point in M(to) such that

(6.4) snpw < sup{sup w : 0 < t < T} = w(xo)-
M q M ( t )
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We then can introduce a Riemannian normal coordinate system £z at xq G
M(*o) such that at xo = x(to,£o) we have

( 6 . 5 ) fl y = S i j a n d < p = h % .

Let 77 = (rf) be the contravariant vector defined by

( 6 . 6 ) 7 7 = ( 0 , . . . , 0 , 1 )

and set

( 6 . 7 ) 9 - ^ .

(p is well defined in a neighbourhood of (£o,£o)«
Now, define w by replacing (p by !p in (6.3); then w assumes its maximum

at (*o5£o)- Moreover, at (<o,£o) we have

( 6 . 8 ) ? = K

and the spacial derivatives do also coincide; in short, (p satisfies at (£o,£o)
the same differential equation (5.2) as h™. For the sake of greater clarity, let
us therefore treat /i™ like a scalar and pretend that w is defined by

( 6 . 9 ) w = l o g / i £ + l o g x .

At (io>£o) we have w > 0, and, in view of the maximum principle, we
deduce from (5.4) and (5.26)

( 6 . 1 0 ) 0 < - / i £ + c ,

where we have estimated bounded terms by a constant c.
Thus, the principal curvatures are bounded from above.
We further claim that the principal curvatures are uniformly strictly

positive, or equivalently—because of the condition (0.8)—

Lemma 6.2. Under the assumptions of the preceding lemma, we have

( 6 . 1 1 ) 0 < £ 0 < F V t

with a given £q.
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Proof. Consider the function

( 6 . 1 2 ) ™ = l o g ( - ( $ - / ) ) + l o g X .
Let 0 < T < T* and suppose

(6 .13) supw < sup{sup w : 0 < t < T} .
M o M { t )

Then, there is xo = x(to), 0 < to < T, such that

(6 .14) w(x0) = sup{sup w : 0 < t < T} .
M(t)

From (3.19), (5.26) and the maximum principle we then infer

( 6 . 1 5 ) 0 < ( $ - / ) — v + c ,n
i.e. w is a priori bounded.

2. The Case of Theorem 0.7.
First, we obtain by the same arguments as before

Lemma 6.3. Let KN = 0, F G (H), M0 = Mx, $(t) = log*, and 0 <
/ G G2,a(fi), ^/ie7^ the principal curvatures of the evolution hypersurfaces
are bounded from above as long as they are non-negative.

Lemma 6.4. Let KN = 0, F G (H), M0 = Mi, $(t) = logt, and 0 < / G
G2'a(£2), £/&en £/&ere existe eo swc/i f/iaf

( 6 . 1 6 ) 0 < e o < F V i
as /onfl as the evolution hypersurfaces are convex.

It remains to prove that the principal curvatures stay positive during the
evolution. For this achievement we need to know the evolution equation for
the inverse of the second fundamental form.

Lemma 6.5. Let (h1^) = (fry)-1 in contravariant form, then the mixed
tensor (hj) satisfies the evolution equation (no summation over i)

hi-$Fk%kl = -$FklhkrhW + {$f-($-f)}5l
-KN{$F + (* - f)}hkihki + KN$Fklgklh\

( 6 ' 1 7 ) + f a p X ^ h k i h \ - f a U a h \
-{$Frs>klhrs,vhkl,q + 2$Frlhkshrs,vhkl,q
+$FpFq}hpihqi
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Proof. We write

( 6 . 1 8 ) h \ = g i j h i j

and use the rule for differentiation of the inverse of a second order tensor to
obtain the desired result in view of Corollary 5.3 and the evolution equation
of the metric, cf. equation (3.1).

We can then prove

Lemma 6.6. Let KN = 0, F G (H), M0 = Mi; $(i) = log*, and 0 <
/ g G2,a(il) be such that log/ is concave, then there exists a constant A
such that the principal curvatures Ki of the evolution hypersurfaces M(t) are
bounded below by

( 6 . 1 9 ) 0 < e ~ x t < k { .

Proof. Since Mo is strictly convex the inverse h1* is^well-defined during the
evolution. We shall show that the eigenvalues of h1^ (with respect to fly)
grow at most exponential in t.

Define

( 6 . 2 0 ) t p = s u p ^ y W : | | t ? | | = 1 }

and w by

( 6 . 2 1 ) w = i p e ~ x \ A > 0 .

We claim that w is bounded. Let 0 < T < T*, and xq = x(to), 0 < to <
T, be a point in M(to) such that

(6.22) supw < sup{sup w : 0 < t < T} = w(xo).
M o M ( t )

Arguing as in the proof of Lemma 6.1, we introduce Riemannian normal
coordinates f* in xq G M(to) such that

( 6 . 2 3 ) < p ( * o ) = h n

and we may pretend as before that w is defined by

( 6 . 2 4 ) w = K e ~ x t .
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Applying the maximum principle we deduce from (6.17)

( 6 . 2 5 ) 0 < - \ w + c + c w ,

where we used that / is concave, the estimates in Lemma 6.3 and 6.4, and
also the inequality (1.7) to estimate the terms involving the derivatives of
the second fundamental form; we should also point out that, because of the
homogeneity of F,

( 6 . 2 6 ) F i = F k l h k h i .

Thus, the lemma is proved if A is chosen large enough.
3. The Case of Theorem 0.8.
We first consider the case Kn < 0.

Lemma 6.7. Let F G (if), KN < 0, $(t) = t, M0 = Mi, and suppose
that f G C2>a(Tl) satisfies (0.19). Let M(t) be strictly convex solutions
of the evolution problem in a maximal time-interval [0,T*), then there are
constants A and c such that the principal curvatures can be estimated by

( 6 . 2 7 ) e ~ x t < K i < c .

Proof. First, we observe that in view of Lemma 4.2

( 6 . 2 8 ) F < /

and hence

( 6 . 2 9 ) 0 < K i < c ,

because

( 6 . 3 0 ) F = F i j h i j

and FlJ is by assumption uniformly positive definite in T+.
Thus, it remains to prove the lower estimate in (6.27). The proof is

identical to that of Lemma 6.6 with the only exception, that, when we apply
the maximum principle, we have to use the assumption (0.19) in order to
neglect the quadratic terms in w.

Consider now the second part of Theorem 0.8, Kn > 0.
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Lemma 6.8. Let F G (if), KN > 0, $(£) = logt, M0 = M2, and suppose
that 0 < / G G2'a(H). Let M(t) be strictly convex solutions in a maximal
time-interval [0, T*), then there are constants so and c such that

( 6 . 3 1 ) 0 < e 0 < F < c V * .

Proof. First, we obtain from Lemma 4.2

( 6 . 3 2 ) $ > / V t ,

hence, the lower estimate in (6.31). To prove the upper estimate, we define

( 6 . 3 3 ) w = l o g ( $ - / ) + l o g x + A u ,

where A is supposed to be large and x ls ^he function in Lemma 5.8. We
claim that w is bounded from above. Let 0 < T < T*, and xo = x(to),
0 < to < T, be a point in M(<o) such that

(6.34) supw < sup{sup w : 0 < t < T} = w(x0).
M q M { t )

Combining the equations (3.19), (5.26) and (5.7) we conclude from the max
imum principle

0<w-$Fi jWi j < QF*' log($ - f ) i log($ - f ) j
-QFVlogXilogXj

( 6 ' 3 5 ) + ( * - f ) - v + K N * F * > g i j

-A($ - Z)^;"1 - \$Fijhij + cX

Let us first consider the terms involving the derivatives; since Dw = 0
they are equal to

( 6 . 3 6 ) 2 \ $ F i j X i U j X - 1 + \ 2 $ F i j U i U j .

The first term is non-positive, since

FijXiuj = FljViUjT} + r)FljUiUjy
(6 .37) = -F i jhk iUkUj<nv2 + —Fi jU iUjvr ) + r iF i jU iUjV

= -Fijh^ukUjr]v2 < 0

where we used (5.29) and (5.24).
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Thus the right-hand side of inequality (6.35) can be estimated from above
by

( 6 . 3 8 ) ( * - f ) - v - A ( $ - f ) v ~ l + c ( l + A 2 )
To

which yields the desired estimate if A is chosen large enough. Here, we also
used the assumption that F2-7 is uniformly bounded in T+.

Next, let us prove the a priori estimates for the principal curvatures.

Lemma 6.9. Suppose that the assumptions of the preceding lemma are valid
and that in addition f satisfies (0.19), then the principal curvatures of the
evolution hypersurfaces can be estimated by

( 6 . 3 9 ) e ~ x t < K i < c V t

for suitable constants A and c.

The proof is identical to that of Lemma 6.7 since we know already upper
and lower bounds for F.

7. Convergence to a stationary solution.

We are ready to prove the Theorems. Let M(t) be a flow with initial
hypersurface M0 = Mi or M0 = M2. Let us look at the scalar version of
the flow, cf. (2.24),

( 7 . 1 ) | j f = - ( * - / ) « .
This is a scalar parabolic differential equation defined on the cylinder

( 7 . 2 ) Q T * = [ 0 , T * ) x 5 0

with initial value u0 G G4'a(So), where uo = «»,*€ {1,2}. So is a geodesic
sphere equipped with the induced metric. In view of the a priori estimates
we have proved in the preceding sections, we know that

( 7 . 3 ) | u | 2 | o f 5 0 < c

and

( 7 . 4 ) F i s u n i f o r m l y e l l i p t i c i n u
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independent of t. Furthermore, F is concave and thus, we can apply the
regularity results in Krylov [11, Chapter 5.5] to conclude that uniform G2,a-
estimates are valid, leading further to uniform G4,a-estimates in view of the
regularity results for linear operators.

Therefore, the maximal time interval is unbounded, i.e. T* = oo.
Now, integrate (7.1) and observe that the right-hand side has a sign to

obtain

( 7 . 5 ) \ u ( t , x ) - u ( 0 , x ) \ = [ \ $ - f \ v > / | * - / j ,
J O J o

i.e.
POO

( 7 . 6 ) / | * - / |Jo
< oo Vx G So-

Thus, for any x G So there is a sequence tk -» oo such that ($ — /) -* 0.
On the other hand, u(-,x) is monotone and therefore

( 7 . 7 ) l i m u ( t , x ) = u ( x )

exists and is of class G4'a(*S'o) in view of the a priori estimates. We finally
deduce that u is a stationary solution of our problem and that

( 7 . 8 ) l i m ( $ - / ) = 0 .v ' t - + o o
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