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Abstract. We quantize the interaction of gravity with Yang-Mills and

spinor fields, hence offering a quantum theory incorporating all four

fundamental forces of nature. Let us abbreviate the spatial Hamilton
functions of the Standard Model by HSM and the Hamilton function of

gravity by HG. Working in a fiber bundle E with base space S0 = Rn,

where the fiber elements are Riemannian metrics, we can express the

Hamilton functions in the form HG +HSM = HG + t−
2
3 H̃SM if n = 3,

where H̃SM depends on metrics σij satisfying detσij = 1. In the

quantization process, we quantize HG for general σij but H̃SM only

for σij = δij by the usual methods of QFT. Let v resp. ψ be the

spatial eigendistributions of the respective Hamilton operators, then,
the solutions u of the Wheeler-DeWitt equation are given by u = wvψ,

where w satisfies an ODE and u is evaluated at (t, δij) in the fibers.
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1. Introduction

General relativity is a Lagrangian theory, i.e., the Einstein equations are
derived as the Euler-Lagrange equation of the Einstein-Hilbert functional

(1.1)

∫
N

(R̄− 2Λ),

where N = Nn+1, n ≥ 3, is a globally hyperbolic Lorentzian manifold,
R̄ the scalar curvature and Λ a cosmological constant. We also omitted
the integration density in the integral. In order to apply a Hamiltonian
description of general relativity, one usually defines a time function x0 and
considers the foliation of N given by the slices

(1.2) M(t) = {x0 = t}.

We may, without loss of generality, assume that the spacetime metric splits

(1.3) ds̄2 = −w2(dx0)2 + gij(x
0, x)dxidxj ,

cf. [6, Theorem 3.2]. Then, the Einstein equations also split into a tangential
part

(1.4) Gij + Λgij = 0

and a normal part

(1.5) Gαβν
ανβ − Λ = 0,

where the naming refers to the given foliation. For the tangential Einstein
equations one can define equivalent Hamilton equations due to the ground-
breaking paper by Arnowitt, Deser and Misner [1]. The normal Einstein
equations can be expressed by the so-called Hamilton condition

(1.6) H = 0,

where H is the Hamiltonian used in defining the Hamilton equations. In the
canonical quantization of gravity the Hamiltonian is transformed to a partial
differential operator of hyperbolic type Ĥ and the possible quantum solutions
of gravity are supposed to satisfy the so-called Wheeler-DeWitt equation

(1.7) Ĥu = 0

in an appropriate setting, i.e., only the Hamilton condition (1.6) has been
quantized, or equivalently, the normal Einstein equation, while the tangential
Einstein equations have been ignored.

In [6] we solved the equation (1.7) in a fiber bundle E with base space S0,

(1.8) S0 = {x0 = 0} ≡M(0),

and fibers F (x), x ∈ S0,

(1.9) F (x) ⊂ T 0,2
x (S0),
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the elements of which are the positive definite symmetric tensors of order two,
the Riemannian metrics in S0. The hyperbolic operator Ĥ is then expressed
in the form

(1.10) Ĥ = −∆− (R− 2Λ)ϕ,

where ∆ is the Laplacian of the DeWitt metric given in the fibers, R the
scalar curvature of the metrics gij(x) ∈ F (x), and ϕ is defined by

(1.11) ϕ2 =
det gij
det ρij

,

where ρij is a fixed metric in S0 such that instead of densities we are con-
sidering functions. The Wheeler-DeWitt equation could be solved in E but
only as an abstract hyperbolic equation. The solutions could not be split in
corresponding spatial and temporal eigenfunctions.

The underlying mathematical reason for the difficulty was the presence
of the term R in the quantized equation, which prevents the application of
separation of variables, since the metrics gij are the spatial variables. In
a recent paper [12] we overcame this difficulty by quantizing the Hamilton
equations instead of the Hamilton condition.

As a result we obtained the equation

(1.12) −∆u = 0

in E, where the Laplacian is the Laplacian in (1.10). The lower order terms

of Ĥ
(1.13) (R− 2Λ)ϕ

were eliminated during the quantization process. However, the equation
(1.12) is only valid provided n 6= 4, since the resulting equation actually
looks like

(1.14) − (
n

2
− 2)∆u = 0.

This restriction seems to be acceptable, since n is the dimension of the base
space S0 which, by general consent, is assumed to be n = 3. The fibers add
additional dimensions to the quantized problem, namely,

(1.15) dimF =
n(n+ 1)

2
≡ m+ 1.

The fiber metric, the DeWitt metric, which is responsible for the Laplacian
in (1.12) can be expressed in the form

(1.16) ds2 = −16(n− 1)

n
dt2 + ϕGABdξ

AdξB ,

where the coordinate system is

(1.17) (ξa) = (ξ0, ξA) ≡ (t, ξA).

The (ξA), 1 ≤ A ≤ m, are coordinates for the hypersurface

(1.18) M ≡M(x) = {(gij) : t4 = det gij(x) = 1,∀x ∈ S0}.
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We also assumed that S0 = Rn and that the metric ρij in (1.11) is the
Euclidean metric δij . It is well-known that M is a symmetric space

(1.19) M = SL(n,R)/SO(n) ≡ G/K.
It is also easily verified that the induced metric of M in E is isometric to the
Riemannian metric of the coset space G/K.

Now, we were in a position to use separation of variables, namely, we wrote
a solution of (1.12) in the form

(1.20) u = w(t)v(ξA),

where v is a spatial eigenfunction of the induced Laplacian of M

(1.21) −∆Mv ≡ −∆v = (|λ|2 + |ρ|2)v

and w is a temporal eigenfunction satisfying the ODE

(1.22) ẅ +mt−1ẇ + µ0t
−2w = 0

with

(1.23) µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2).

The eigenfunctions of the Laplacian in G/K are well-known and we chose
the kernel of the Fourier transform in G/K in order to define the eigen-
functions. This choice also allowed us to use Fourier quantization similar
to the Euclidean case such that the eigenfunctions are transformed to Dirac
measures and the Laplacian to a multiplication operator in Fourier space.

In the present paper we like to quantize the Einstein-Hilbert functional
combined with the functionals of the other fundamental forces of nature, i.e.,
we look at the Lagrangian functional

(1.24)

J = α−1
N

∫
Ω̃

(R̄− 2Λ)−
∫
Ω̃

1
4γāb̄ḡ

µρ2 ḡλρ1F āµρ1F
b̄
ρ2λ

−
∫
Ω̃

{ 1
2 ḡ
µλγāb̄Φ

ā
µΦ̄

b̄
λ + V (Φ)}

+

∫
Ω̃

{ 1
2 [ψ̃IE

µ
a γ

a(Dµψ)I + ψ̃IE
µ
a γa(Dµψ)I ] +mψ̃Iψ

I},

where αN is a positive coupling constant, Ω̃ b N = Nn+1 and N a globally
hyperbolic spacetime with metric ḡαβ , 0 ≤ α, β ≤ n, where the metric splits
as in (1.3).

The functional J consists of the Einstein-Hilbert functional, the Yang-Mills
and Higgs functional and a massive Dirac term.

The Yang-Mills field (Aµ)

(1.25) Aµ = fc̄A
c̄
µ

corresponds to the adjoint representation of a compact, semi-simple Lie group
G with Lie algebra g. The fc̄,

(1.26) fc̄ = (f āc̄b̄)



A UNIFIED QUANTUM THEORY 5

are the structural constants of g.
We assume the Higgs field Φ = (Φā) to have complex valued components.
The spinor field ψ = (ψIA) has a spinor index A, 1 ≤ A ≤ n1, and a colour

index I, 1 ≤ I ≤ n2. Here, we suppose that the Lie group has a unitary
representation R such that

(1.27) tc̄ = R(fc̄)

are antihermitian matrices acting on Cn2 . The symbol Aµψ is now defined
by

(1.28) Aµψ = tc̄ψA
c̄
µ.

There are some major difficulties in achieving a quantization of the func-
tional in (1.24). Quantizing the Hamilton equations, to avoid the problem
with the scalar curvature term, runs into technical difficulties, even if the
required quantization of the matter fields in curved spacetimes could be
achieved, since the resulting operator would no longer be hyperbolic because
the elliptic parts of the gravitational resp. matter Hamiltonians would have
different signs in case n = 3. This particular problem would not occur when
the Hamilton condition would be quantized. The Hamilton condition has the
form

(1.29) HG +HYM +HD +HH = 0,

where the subscripts refer to gravity, Yang-Mills, Dirac and Higgs. On the
left-hand side are the Hamilton functions of the respective fields. They de-
pend on the Riemannian metrics gij , the Yang-Mills connections and the
spinor and Higgs fields. The main part of the quantized gravitational Hamil-
tonian is a second order hyperbolic differential operator with respect to the
variables gij while the scalar curvature term R is of zero order. Having this
in mind we also apply these categories to the gravitational Hamilton function
where the main part, quadratic in the conjugate momenta, is said to be of
second order and the zero order terms consist of the scalar curvature and the
cosmological constant Λ. Similarly we consider the matter Hamilton func-
tions to be zero order terms with respect to the metric gij , i.e., there is no
qualitative difference by assuming gij to be flat or non-flat, or more precisely,
quantizing a matter Hamiltonian in a curved spacetime when gij is a given,
fixed metric and not a variable is qualitatively the same as quantizing it for
the Euclidean metric, though the task is certainly more difficult.

Thus, the difficulties arising by quantizing the Hamilton condition can
best be explained by considering the Wheeler-DeWitt equation

(1.30) ĤGu = 0 in E,

cf. (1.6), where we wrote Ĥ instead of ĤG. This is a hyperbolic differential
equation which can be expressed by

(1.31) ĤGu = −∆u+ ϕ(R− 2Λ)u = 0,
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where the Laplacian is the Laplacian of the fiber metric (1.16). In the coor-
dinate system (1.17) we get

(1.32) ĤGu = t−m
∂

∂t
(tm

∂u

∂t
)− t−2∆Mu+ t2(R− 2Λ)u,

where M is the hypersurface (1.18). Since M is isometric to the symmet-
ric space (1.19) it is mathematically irresistible to solve (1.32) by applying
separation of variables and using the functions of the Fourier kernel of M as
spatial eigenfunctions v, where v = v(σij), σij are the elements of M . Since

(1.33) gij(x) = t
4
nσij(x)

the critical term R can be expressed as

(1.34) R(gij) = t−
4
nR(σij)

due to the relation between the scalar curvatures of conformal metrics.
Thus, it is obvious that the ansatz

(1.35) u = wv,

where w = w(t) solves an ODE is only possible if R(σij) is constant

(1.36) R(σij) = λ0.

The constant is arbitrary but of course determined by the metrics we are
considering to be important, e.g., in case of a black hole we would choose
σij to be the limit metric of a converging sequence of Cauchy hypersurfaces
of the interior region of the black hole which converge to the event horizon
topologically but the induced metrics of which converge to a Riemannian
metric, cf. [8, 9] or [10, Chapters 4 & 5]. In the present case, where we want
to include the matter fields of the Standard Model we could choose σij = δij .

However, this ansatz implies that the Wheeler-DeWitt equation is not
solved for all (t, σij) but only for the σij satisfying (1.36). Given the simplic-
ity and mathematical beauty of the solution, we are inclined to accept this
restriction.

Let us now consider the quantization of the Hamilton condition (1.29)
taking all Hamilton functions into account. In view of the relation (1.33)
let me propose the following model: If we were able to express the non-
gravitational Hamiltonians as

(1.37) HYM = tpH̃YM , HD = tpH̃D, HH = tpH̃H ,

where the embellished Hamiltonians depend on σij , then, by choosing in
addition n = 3 and σij = δij , these Hamiltonians could be quantized by the
known methods of QFT, if the Lie groups would be chosen appropriately. The
Wheeler-DeWitt equation would then not be solved for all (t, σij) but only
for (t, δij). However, the spatial eigendistributions of the Hamilton operator

ĤG, i.e., the eigendistributions of the Laplacian of M , cf. (1.21), would still
be used but they would be evaluated at σij = δij .
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In Section 4 we shall prove that the expressions in (1.37) are indeed valid
with p = − 2

3 provided n = 3 and provided that the mass term in the Dirac
Lagrangian and the Higgs Lagrangian are slightly modified. The embellished
Hamiltonians are then standard Hamiltonians without any modifications, for
details we refer to Section 4. The Hamilton constraint then has the form

(1.38)

H = HG +HYM +HH +HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

where the subscript SM refers to the fields of the Standard Model or to a
corresponding subset of fields. The solutions of the Wheeler-DeWitt equation

(1.39) Ĥu = 0

can then be achieved by using separation of variables. We proved:

Theorem 1.1. Let n = 3, v = eλ,b0 and let ψ be an eigendistribution of

H̃SM when σij = δij such that

(1.40) −∆Meλ,b0 = (|λ|2 + 1)eλ,b0 ,

(1.41) H̃SMψ = λ1ψ, λ1 ≥ 0,

and let w be a solution of the ODE

(1.42)
t−m

∂

∂t
(tm

∂w

∂t
) +

32

3
(|λ|2 + 1)t−2w +

32

3
α−1
N λ1t

− 2
3w

+
64

3
α−2
N Λt2w = 0

then

(1.43) u = weλ,b0ψ

is a solution of the Wheeler-DeWitt equation

(1.44) Ĥu = 0,

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and to w as the
temporal eigenfunction.

Remark 1.2. We could also apply the respective Fourier transforms to
−∆̃eλ,b0 resp. H̃SMψ and consider

(1.45) wêλ,b0 ψ̂

as the solution in Fourier space, where ψ̂ would be expressed with the help
of the ladder operators.
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The temporal eigenfunctions are analyzed in Section 5. They must satisfy
an ODE of the form

(1.46) ẅ + 5t−1ẇ +m1t
−2w +m2

2t
− 2

3w +m3t
2w = 0,

where

(1.47) m1 ≥
32

3
, m2 ≥ 0, m3 ∈ R.

For simplicity we shall only state the result when m3 = 0 which is tantamount
to setting Λ = 0.

Theorem 1.3. Assume m3 = 0 and m2 > 0, then the solutions of the
ODE (1.46) are generated by

(1.48) J( 3
2

√
m1 − 4 i, 3

2m2t
2
3 )t−2

and

(1.49) J(− 3
2

√
m1 − 4 i, 3

2m2t
2
3 )t−2,

where J(λ, t) is the Bessel function of the first kind.

Lemma 1.4. The solutions in the theorem above diverge to complex in-
finity if t tends to zero and they converge to zero if t tends to infinity.

2. Definitions and notations

Greek indices α, β range from 0 to n, Latin i, j, k from 1 to n and we
stipulate 0 ≤ a, b ≤ n but 1 ≤ a′, b′ ≤ n. Barred indices ā refer to the Lie
algebra g, 1 ≤ ā ≤ n0 = dim g.
γāb̄ is the Cartan-Killing metric.
The Dirac matrices are denoted by γa and they satisfy

(2.1) γaγb + γbγa = 2ηabI,

where ηab is the Minkowski metric with signature (−,+, . . . ,+). γ0 is anti-

hermitian and γa
′

Hermitian.
The indices a, b are always raised or lowered with the help of the Minkowski

metric, Greek indices with the help of the spacetime metric ḡαβ .
The γa act in

(2.2) C2
n+1
2 ,

if n is odd and in

(2.3) C2
n
2 ⊕ C2

n
2 ,

if n is even. In both cases we simply refer to these spaces as

(2.4) Cn1 ,

i.e., the spinor index A has range 1 ≤ A ≤ n1.
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The colour index I has range 1 ≤ I ≤ n2 and hence a spinor field ψIA has
values in

(2.5) Cn1 ⊗ Cn2 .

Finally, a Hermitian form 〈·, ·〉 is antihermitian in the first argument.

3. Spinor fields

The Lagrangian of the spinor field is stated in (1.24). Here, ψ = (ψIA) is
a multiplet of spinors with spin 1

2 ; A is the spinor index, 1 ≤ A ≤ n1, and I,
1 ≤ I ≤ n2, the colour index. We shall also lower or raise the index I with
the help of the Euclidean metric (δIJ).

Let Γµ be the spinor connection

(3.1) Γµ = 1
4ω

b
µ aγbγ

a,

then the covariant derivative Dµψ is defined by

(3.2) Dµψ = ψ,µ + Γµψ +Aµψ.

Let (ebλ) be a n-bein such that

(3.3) ḡµλ = ηabe
a
µe
b
λ,

where (ηab) is the Minkowski metric, and let (Eµa ) be its inverse

(3.4) Eµa = ηabḡ
µλebλ,

cf. [5, p. 246].
The covariant derivative of Eαa with respect to (ḡαβ) is then given by

(3.5) Eαa;µ = Eαa,µ + Γ̄αµβE
β
a

and

(3.6) ω b
µ a = Eλa;µe

b
λ = −Eλa ebλ;µ,

hence the spin connection Γµ can be expressed as

(3.7) Γµ = 1
4ω

b
µ aγbγ

a = 1
4E

λ
a;µe

b
λγbγ

a = − 1
4E

λ
a e
b
λ;µγbγ

a.

We shall first show:

Lemma 3.1. Let ḡαβ be a fixed spacetime metric that is split by the time
function x0, then there exists an orthonormal frame (eaλ) such that

(3.8) e0
k = 0, 1 ≤ k ≤ n,

and

(3.9) ea
′

k;0 = ea
′

,0 − Γ̄λk0e
a′

λ = 0

for all 1 ≤ a′ ≤ n and 1 ≤ k ≤ n.
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Proof. Assume that

(3.10) ḡ00 = −w2,

then define the conformal metric

(3.11) g̃αβ = w−2ḡαβ .

The curves

(3.12) (γα(t, x)) = (t, xi), x ∈ S0,

are then geodesics with respect to g̃αβ . Let (êa
′

λ ), 1 ≤ a′ ≤ n, be an orthonor-
mal frame in T 0,1(S0) ↪→ T 0,1(N) such that

(3.13) êa
′

0 = 0 ∀ 1 ≤ a′ ≤ n.

The êa
′

depend on x = (xi) ∈ S0. Let (ẽa
′

λ )(t, x) be the solutions of the flow
equations

(3.14)

D

dt
ẽa
′

λ = 0,

ẽa
′

λ (0, x) = êa
′

λ (x),

i.e., we parallel transport êa
′

along the geodesics. Setting

(3.15) (ẽ0
λ) = (1, 0, . . . , 0)

the (ẽaλ) are then an orthonormal frame of 1-forms in (N, g̃αβ) such that the
ẽa satisfy

(3.16) ẽaλ:0 = 0 ∀ 0 ≤ a ≤ n,
where we indicate covariant differentiation with respect to g̃αβ by a colon.

Define eaλ by

(3.17) eaλ = wẽaλ,

then the eaλ are orthonormal frames in (N, ḡαβ). The Christoffel symbols Γ̄ γαβ
resp. Γ̃ γαβ are related by the formula

(3.18) Γ̄ γαβ = Γ̃ γαβ − w
−1wαδ

γ
β + w−1wβδ

γ
α − w−1w̌γ g̃αβ ,

where

(3.19) w̌γ = g̃γλwλ.

In view of (3.16) we then infer

(3.20) 0 = ẽa
′

j:0 = ˙̃ea
′

j − Γ̃ k0j ẽa
′

k

and we deduce further

(3.21)

ea
′

j;0 = ẇẽa
′

j + w ˙̃ea
′

j − Γ̄ k0jwẽa
′

k

= ẇẽa
′

j + Γ̃ k0jwẽ
a′

k − Γ̄ k0jwẽa
′

k

= 0

because of (3.18). �
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Subsequently we shall always use these particular orthonormal frames.
We are now able to simplify the expressions for the spin connections

(3.22) Γµ = − 1
4E

λ
a e
b
λ;µγaγ

b.

We have

(3.23)

4Γ0 = −Eλa ebλ;0γbγ
a

= −Eλa e0
λ;0γ0γ

a − Eλa eb
′

λ;0γb′γ
a

= −E0
0e

0
0;0γ0γ

0 − Eia′e0
i;0γ0γ

a′ − E0
0e
b′

0;0γb′γ
0 − Eia′eb

′

i;0γb′γ
a′

= −Eia′e0
i;0γ0γ

a′ − E0
0e
b′

0;0γb′γ
0

in view of Lemma 3.1 and the fact that

(3.24) e0
0;0 = 0.

The matrices γ0γ
a′ and γb′γ

0 are hermitian, since γ0 is antihermitean, γa
′

hermitean and there holds

(3.25) γ0γ
a′ = −γa

′
γ0.

Hence, the quadratic form

(3.26) ψ̃E0
aγ

aΓ0ψ = −iE0
0 ψ̄Γ0ψ

is imaginary and will be eliminated by adding its complex conjugate. Γ0 can
therefore be ignored which we shall indicate by writing

(3.27) Γ0 ' 0.

A similar notation should apply to other terms that will be cancelled when
adding the complex conjugates.

Let us consider Γk:

(3.28)

4Γk = −Eλa ebλ;kγbγ
a

= −Eλa e0
λ;kγ0γ

a − Eλa eb
′

λ;kγb′γ
a

= −E0
0e

0
0;kγ0γ

0 − Eia′e0
i;kγ0γ

a′ − E0
0e
b′

0;kγb′γ
0 − Eia′eb

′

i;kγb′γ
a′ .

The first term on the right-hand side vanishes, since

(3.29) e0
0;k = wk − Γ̄ 0

0kw = 0.

Furthermore, there holds

(3.30) e0
i;k = −Γ̄ 0

ikw = − 1
2 ġikw

−1

and

(3.31) eb
′

0;k = −Γ̄ j0ke
b′

j = − 1
2g
lj ġkle

b′

j ,

yielding

(3.32)
4Γk = 1

2 ġikw
−1Eia′γ0γ

a′ + 1
2w
−1glj ġkle

b′

i γb′γ
0 − Eia′eb

′

i;kγb′γ
a′

= w−1ġikE
i
a′γ0γ

a′ − Eia′eb
′

i;kγb′γ
a′ ,
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since

(3.33) γ0γ
a′ = −γa

′
γ0.

The first term on the right-hand side of (3.32) has to be eliminated because
of the presence of ġik. To achieve this fix a Riemannian metric ρij = ρij(x) ∈
T 0,2(S0) and define the function ϕ by

(3.34) ϕ =

√
det gij
det ρij

and the spinors χ = (χiA) by

(3.35) χ =
√
ϕψ,

then

(3.36) χ̇ =
√
ϕψ̇ + 1

4g
ij ġijχ

and

(3.37) χ,k = 1
2ϕkϕ

−1/2χ+
√
ϕψ,k.

Looking at the real part of the quadratic form

(3.38) iχ̃Eka′γ
a′χ,k

we deduce that

(3.39) χ,k '
√
ϕψ,k.

Moreover, we infer

(3.40)

iψ̃Ekc′γ
c′Γkψ = iψ̄Ekc′γ

0γc
′
Γkψ

= 1
4 iψ̄E

k
c′E

j
a′w
−1ġjkγ

0γc
′
γ0γ

a′ψ

− 1
4 iψ̄E

k
c′E

j
a′e

b′

j;kγ
0γc

′
γb′γ

a′ψ.

We now observe that

(3.41) γ0γc
′
γ0γ

a′ = −γ0γ0γ
c′γa

′
= −γc

′
γa
′
,

hence

(3.42) Ekc′E
j
a′γ

0γc
′
γ0γ

a′ = −Ekc′E
j
a′γ

c′γa
′

= −gjk

and we conclude

(3.43)
iψ̃Eµc γ

cDµψϕ ' −iχ̄χ̇w−1

+ iχ̄Ekc′γ
0γc

′
{χ,k − 1

4E
j
a′e

b′

j;kγb′γ
a′χ+Akχ}

Remark 3.2. The term in the braces is the covariant derivative of χ with
respect to the spin connection Γ̃k

(3.44) Γ̃ b
′

ka′ = 1
4 ω̃

b′

ka′ = − 1
4E

j
a′e

b′

j;kγb′γ
a′

and the Yang-Mills connection (Aµ) satisfying A0 = 0 such that

(3.45) D̃kχ = χ,k + Γ̃kχ+Akχ.
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The gauge transformations for both the Yang-Mills connection as well as for
the spin connection do not depend on x0 but only on x ∈ S0. In case of the
Yang-Mills connection this has already been proved in [7, Lemma 2.6] while

the proof for the spin connection Γ̃k follows from (3.44) and (3.32) if we only
consider Lorentzian metrics of the form

(3.46) ds̄2 = −dt2 + gij(x)dxidxj

in a product manifold N = I × S0, as will be the case after the quantization
of the Dirac field.

Summarizing the preceding results we obtain:

Lemma 3.3. The Dirac Lagrangian can be expressed in the form

(3.47)
LD = i

2 (χ̄I χ̇
I − ˙̄χIχI)w

−1ϕ−1 +miχ̄Iγ
0χIϕ−1

− i
2{χ̄Iγ

0Eka′γ
a′D̃kχ

I − χ̄Iγ0Eka′γ
a′D̃kχI}ϕ−1,

where χ and D̃k are defined in (3.35) resp. (3.45).

4. Quantization of the Lagrangian

We consider the functional

(4.1)

J = α−1
N

∫
Ω̃

(R̄− 2Λ)−
∫
Ω̃

1
4γāb̄ḡ

µρ2 ḡλρ1F āµρ1F
b̄
ρ2λ

−
∫
Ω̃

{ 1
2 ḡ
µλγāb̄Φ

ā
µΦ̄

b̄
λ + V (Φ)}

+

∫
Ω̃

{ 1
2 [ψ̃IE

µ
a γ

a(Dµψ)I + ψ̃IE
µ
a γa(Dµψ)I ] +mψ̃Iψ

I},

where αN is a positive coupling constant and Ω̃ b N .
We use the action principle that, for an arbitrary Ω̃ as above, a solution

(A,Φ, ψ, ḡ) should be a stationary point of the functional with respect to
compact variations. This principle requires no additional surface terms for
the functional.

As we proved in [6] we may only consider metrics ḡαβ that split with
respect to some fixed globally defined time function x0 such that

(4.2) ds̄2 = −w2(dx0)2 + gijdx
idxj

where g(x0, ·) are Riemannian metrics in S0,

(4.3) S0 = {x0 = 0}.
The first functional on the right-hand side of (4.1) can be written in the form

(4.4) α−1
N

∫ b

a

∫
Ω

{ 1
4G

ij,klġij ġklw
−2 +R− 2Λ}wϕ,

where

(4.5) Gij,kl = 1
2{g

ikgjl + gilgjk} − gijgkl
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is the DeWitt metric,

(4.6) (gij) = (gij)
−1,

R the scalar curvature of the slices

(4.7) {x0 = t}

with respect to the metric gij(t, ·), and where we also assumed that Ω̃ is a
cylinder

(4.8) Ω̃ = (a, b)×Ω, Ω b S0,

such that Ω̃ ⊂ Uk for some k ∈ N, where the Uk are special coordinate patches
of N such that there exists a local trivialization in Uk with the properties
that there is a fixed Yang-Mills connection

(4.9) Ā = (Āāµ) = fāĀ
ā
µdx

µ

satisfying

(4.10) Āā0 = 0 in Uk,

cf. [7, Lemma 2.5]. We may then assume that the Yang-Mills connections
A = (Aāµ) are of the form

(4.11) Aāµ(t, x) = Āāµ(0, x) + Ãāµ(t, x),

where (Ãāµ) is a tensor, see [7, Section 2].

The Riemannian metrics gij(t, ·) are elements of the bundle T 0,2(S0). De-
note by E the fiber bundle with base S0 where the fibers F (x) consists of the
Riemannian metrics (gij). We shall consider each fiber to be a Lorentzian
manifold equipped with the DeWitt metric. Each fiber F has dimension

(4.12) dimF =
n(n+ 1)

2
≡ m+ 1.

Let (ξr), 0 ≤ r ≤ m, be coordinates for a local trivialization such that

(4.13) gij(x, ξ
r)

is a local embedding. The DeWitt metric is then expressed as

(4.14) Grs = Gij,klgij,rgkl,s,

where a comma indicates partial differentiation. In the new coordinate sys-
tem the curves

(4.15) t→ gij(t, x)

can be written in the form

(4.16) t→ ξr(t, x)

and we infer

(4.17) Gij,klġij ġkl = Grsξ̇
r ξ̇s.
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Hence, we can express (4.4) as

(4.18) J =

∫ b

a

∫
Ω

α−1
n { 1

4Grsξ̇
r ξ̇sw−1ϕ+ (R− 2Λ)wϕ},

where we now refrain from writing down the density
√
ρ explicitly, since it

does not depend on (gij) and therefore should not be part of the Legendre
transformation. Here we follow Mackey’s advice in [15, p. 94] to always con-
sider rectangular coordinates when applying canonical quantization, which
can be rephrased that the Hamiltonian has to be a coordinate invariant,
hence no densities are allowed.

Denoting the Lagrangian function in (4.18) by L, we define

(4.19) πr =
∂L

∂ξ̇r
= ϕGrs

1

2αN
ξ̇sw−1

and we obtain for the Hamiltonian function ĤG

(4.20)

ĤG = ξ̇r
∂L

∂ξ̇r
− L

= ϕGrs
( 1

2αN
ξ̇rw−1

)( 1

2αN
ξ̇sw−1

)
wαN − α−1

N (R− 2Λ)ϕw

= ϕ−1GrsπrπswαN − α−1
N (R− 2Λ)ϕw

≡ HGw,

where Grs is the inverse metric. Hence,

(4.21) HG = αNϕ
−1Grsπrπs − α−1

N (R− 2Λ)ϕ

is the Hamiltonian that will enter the Hamilton constraint, for details see [10,
Chapter 1.4].

Let us recall that the fibers F can be considered to be Lorentzian mani-
folds, even globally hyperbolic manifolds, equipped with the DeWitt metric
(ϕGij,kl), where ϕ is a time function, cf. [10, Theorem 1.4.2]. In the fibers
we can introduce new coordinates, (ξa) = (ξ0, ξA) ≡ (t, ξA) , 0 ≤ a ≤ m, and
1 ≤ A ≤ m, such that

(4.22) t =
√
ϕ

and (ξA) are coordinates for the hypersurface

(4.23) M = {ϕ = 1} = {ξ0 = 1}.

The Lorentzian metric in the fibers can then be expressed in the form

(4.24) ds2 = −16(n− 1)

n
dt2 + t2GABdξ

AdξB ,

where (GAB) is a Riemannian metric on M which is independent of t. When
we work in a local trivialization of the bundle E the coordinates (ξA) are
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independent of x. The time coordinate t is also independent of x, cf. [6,
Lemma 1.8]. Moreover, the fiber elements (gij) can be expressed in the form

(4.25) gij = t
4
nσij ,

where (σij) is an element of M , i.e.,

(4.26) t(σij) = 1,

or equivalently,

(4.27) detσij = det ρij .

Next, let us look at the Yang-Mills Lagrangian which can be expressed as

(4.28) LYM = 1
2γāb̄g

ijÃāi,0Ã
b̄
j,0w

−1ϕ− 1
4FijF

ijwϕ.

Let E0 be the adjoint bundle

(4.29) E0 = (S0, g, π,Ad(G))

with base space S0, where the gauge transformations only depend on the
spatial variables x = (xi). Then the mappings t→ Ãāi (t, ·) can be looked at
as curves in T 1,0(E0)⊗ T 0,1(S0), where the fibers of T 1,0(E0)⊗ T 0.1(S0) are
the tensor products

(4.30) g⊗ T 0,1
x (S0), x ∈ S0,

which are vector spaces equipped with metric

(4.31) γāb̄ ⊗ gij .
For our purposes it is more convenient to consider the fibers to be Riemannian
manifolds endowed with the above metric. Let (ζp), 1 ≤ p ≤ n1n, where
n0 = dim g, be local coordinates and

(4.32) (ζp)→ Ãāi (ζp) ≡ Ã(ζ)

be a local embedding, then the metric has the coefficients

(4.33) Gpq = 〈Ãp, Ãq〉 = γāb̄g
ijÃāi,pÃ

b̄
j,q.

Hence, the Lagrangian LYM in (4.28) can be expressed in the form

(4.34) LYM = 1
2Gpq ζ̇

pζ̇qw−1ϕ− 1
4FijF

ijwϕ

and we deduce

(4.35) π̃p =
∂LYM

∂ζ̇p
= Gpq ζ̇

qw−1ϕ

yielding the Hamilton function

(4.36)

ĤYM = πpζ̇
p − LYM

= 1
2Gpq(ζ̇

pw−1ϕ)(ζ̇qw−1ϕ)wϕ−1 + 1
4FijF

ijwϕ

= 1
2G

pqπ̃pπ̃qwϕ
−1 + 1

4FijF
ijwϕ

≡ HYMw.
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Thus, after introducing a normal Gaussian coordinate system such that w =
1, the Hamiltonian that will enter the Hamilton constraint equation is

(4.37) HYM = 1
2ϕ
−1Gpqπ̃pπ̃q + 1

4FijF
ijϕ.

Combining, now, (4.22), (4.25) and (4.33) we infer that the Yang-Mills
Hamiltonian can be expressed as

(4.38) HYM = t
4
n−2G̃pqπ̃pπ̃q + 1

4FijF
ijt2−

8
n ,

where the indices in the last term are raised with respect to the metric σij ,
i.e.,

(4.39) F ij = σikσjlFkl.

In case n = 3 the exponents of t in (4.38) are equal

(4.40)
4

3
− 2 = 2− 8

3
= −2

3

and we can write

(4.41)
HYM = t−

2
3 {G̃pqπ̃pπ̃q + 1

4FijF
ij}

≡ t− 2
3 H̃YM .

Moreover, if (σij) as well as (ρij) would be equal to the Euclidean metric

(δij), then the quantization of H̃YM would be achieved by known methods
of QFT.

Hence, we shall try to express the Hamiltonians of the other physical forces
like the Dirac and Higgs Hamiltonians, when evaluated for

(4.42) σij = ρij = δij

and in case n = 3 in the form

(4.43) HD = t−
2
3 H̃D

resp.

(4.44) HH = t−
2
3 H̃H

such the quantization of the spatial Hamiltonian

(4.45) H̃YM + H̃D + H̃H

would be well known, and in the end, all spatial Hamiltonians of the Standard
Model could be incorporated.

Let us first consider the Dirac Hamiltonian. In the Dirac Lagrangian LD,
defined in equation (3.47) on page 13, the volume density

√
g is missing, i.e.,

in order to define the Hamiltonian we have to multiply the Lagrangian with√
g or, since we would like to work with functions instead of densities, we

have to multiply the Lagrangian with ϕ.
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In addition we shall also consider—at least locally—a normal Gaussian
coordinate system such that w = 1. Then, the final Dirac Lagrangian has
the form

(4.46)
LD = i

2 (χ̄I χ̇
I − ˙̄χIχI) +miχ̄Iγ

0χI

− i
2{χ̄Iγ

0Eka′γ
a′D̃kχ

I − χ̄Iγ0Eka′γ
a′D̃kχI},

The spinorial variables χIA are anticommuting Grassmann variables. They
are elements of a Grassmann algebra with involution, where the involution
corresponds to the complex conjugation and will be denoted by a bar.

The χIA are complex variables and we define its real resp. imaginary parts
as

(4.47) ξIA = 1√
2
(χIA + χ̄IA)

resp.

(4.48) ηIA = 1√
2i

(χIA − χ̄IA).

Then,

(4.49) χIA = 1√
2
(ξIA + iηIA)

and

(4.50) χ̄IA = 1√
2
(ξIA − iηIA).

With these definitions we obtain

(4.51)
i

2
(χ̄I χ̇

I − ¯̇χIχI) =
i

2
(ξAI ξ̇

I
A + ηAI η̇

I
A).

Casalbuoni quantized a Bose-Fermi system in [3, section 4] the results of
which can be applied to spin 1

2 fermions. The Lagrangian in [3] is the same
as the main part our Lagrangian in (4.46) on page 18, and the left derivative
is used in that paper, hence we are using left derivatives as well such that
the conjugate momenta of the odd variables are, e.g.,

(4.52) πAI =
∂L

∂ξ̇IA
= − i

2
ξAI ,

and thus the conclusions in [3] can be applied.
The Lagrangian has been expressed in real variables—at least the impor-

tant part of it—and it follows that the odd variables ξIA, η
I
A satisfy, after

introducing anticommutative Dirac brackets as in [3, equ. (4.11)],

(4.53) {ξAI , ξJB}∗+ = −iδJI δAB ,

(4.54) {ηAI , ηJB}∗+ = −iδJI δAB ,
and

(4.55) {ξAI , ηJB}∗+ = 0,

cf. [3, equ. (4.19)].
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In view of (4.49), (4.50) we then derive

(4.56) {χ̄AI , χJB}∗+ = −iδJI δAB ,

where χ̄AI are the conjugate momenta.
Canonical quantization—with h̄ = 1—then requires that the correspond-

ing operators χ̂IA, ˆ̄χBJ satisfy the anticommutative rules

(4.57) [χ̂IA, ˆ̄χBJ ]+ = i{χIA, χ̄BJ }∗+ = δIJδ
B
A

and

(4.58) [ ˆ̄χAI , ˆ̄χBJ ]+ = [χ̂IA, χ̂
J
B ]+ = 0,

cf. [2, equ. (3.10)] and [3, equ. (5.17)].
From (4.46) we then deduce that the spinorial Hamilton function is equal

to

(4.59)
HD = i

2{χ̄Iγ
0Eka′γ

a′D̃kχ
I − χ̄Iγ0Eka′γ

a′D̃kχI}
−miχ̄Iγ0χI .

When we try to quantize this Hamilton function then the vielbein ea
′

k and
its inverse Eka′ will correspond to a given element gij(x) in the fiber F which
can be expressed as in (4.25) and we deduce that the vielbein

(4.60) ẽa
′

k = t−
2
n ea

′

k

and its inverse

(4.61) Ẽka′ = t
2
nEka′

correspond to the metric σij . Furthermore, the covariant derivative D̃kχ
I is

independent of t, in view of (3.44) and (3.45) on page 12. Thus, the Hamilton
function HD can expressed as

(4.62)
HD = t−

2
3

(
i
2{χ̄Iγ

0Ẽka′γ
a′D̃kχ

I − χ̄Iγ0Ẽka′γ
a′D̃kχI}

)
−miχ̄Iγ0χI ,

i.e., the main part has already the form that we looked for in (4.43), provided
n = 3, only the mass term spoils the necessary configuration. To overcome
this setback we either have to omit the mass term or to modify it by multi-
plying the mass term in (1.24) on page 4 with the factor

(4.63) ϕ−
1
n ,

where ϕ is defined in (3.34) on page 12. Note that ϕ = 1 if

(4.64) gij = ρij = δij

as is the case in QFT. Anyway, either by omitting or by modifying the mass
term the Dirac Hamilton function can be expressed in the required form

(4.65) HD = t−
2
3 H̃D,

where the underlying Riemannian metric is σij provided n = 3.
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The remaining Hamiltonian is the Hamiltonian of the Higgs field. The
Higgs Lagrangian is defined by

(4.66) LH = − 1
2 ḡ
αβγabΦ

a
αΦ

b
β − V (Φ),

where V is a smooth potential. We assume that in a local coordinate sys-
tem Φ has real coefficients. The covariant derivatives of Φ are defined by a
connection A = (Aaµ) in E1

(4.67) Φaµ = Φa,µ + facbA
c
µΦ

b.

As in the preceding section we work in a local trivialization of E1 using the
temporal gauge, i.e.,

(4.68) Aa0 = 0,

hence, we conclude

(4.69) Φa0 = Φa,0.

Expressing the density g as in (3.34) on page 12 we obtain Lagrangian

(4.70) LH = 1
2γabΦ

a
,0Φ

b
,0ϕ− 1

2g
ijγabΦ

a
i Φ

b
jϕ− V (Φ)ϕ,

where, again, we used local coordinates such that w = 1. In order to apply
our approach, outlined in (4.44), we have to modify the Lagrangian. Instead
of the above Lagrangian we have to consider

(4.71) LHmod = { 1
2γabΦ

a
,0Φ

b
,0 − 1

2g
ijγabΦ

a
i Φ

b
j}ϕ1+γ1 − V (Φ)ϕ1+γ2 .

Let us define

(4.72) pa =
∂LH

∂Φ̇a
, Φ̇a = Φa,0,

then we obtain the Hamilton function

(4.73)
HHmod = paΦ̇

a − LH
= 1

2γ
abpapbϕ

−(1+γ1) + 1
2g
ijγabΦ

a
i Φ

b
jϕ

1+γ1 + V (Φ)ϕ1+γ2 .

After quantization the gij are elements of the fiber F , i.e.,

(4.74) gij = t
4
nσij .

If n = 3, then γ1 has to be chosen such that

(4.75) − 2(1 + γ1) = −4

3
+ 2(1 + γ1) = −2

3

which is the case if

(4.76) γ1 = −2

3
.

For γ2 we obtain

(4.77) 2(1 + γ2) = −2

3
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yielding

(4.78) γ2 = −4

3
.

Thus, the Hamilton function of the modified Higgs field has the required
form

(4.79) HHmod = t−
2
3 H̃Hmod,

where

(4.80) H̃Hmod = 1
2γ

abpapb + 1
2σ

ijγabΦ
a
i Φ

b
j + V (Φ)

is a standard Hamiltonian of a Higgs field in QFT by choosing σij = δij and
Φ, V (Φ) as well as the Yang-Mills connection appropriately.

Combining the four Hamilton functions in (4.20), (4.38), (4.79) and (4.62)
the Hamilton constraint has the form

(4.81)

H = HG +HYM +HH +HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

where we omitted the subscript mod and where SM refers to the fields of the
Standard Model or to a corresponding subset of fields.

The Hamiltonian

(4.82) HG = αNϕ
−1Grsπrπs − α−1

N (R− 2Λ)ϕ

we quantize as in our former papers [6] and [11] to obtain

(4.83) HG = −αN∆− α−1
N Rt2 + 2α−1

N Λt2,

where the Laplacian is the Laplacian of the metric (4.24) acting in the fibers
F of E. The Laplacian acts on smooth functions u of the form u = u(gij).
Choosing the Gaussian coordinate system (ξa) = (t, ξA) such that the fiber
metric has form as in (4.24), then, the hyperbolic term −∆u can be expressed
as

(4.84) −∆u =
n

16(n− 1)
t−m

∂

∂t
(tm

∂u

∂t
)− t−2∆̄u,

where ∆̄ is the Laplacian of the hypersurface

(4.85) M = {t = 1}.

Using separation of variables we consider functions u which are products

(4.86) u(t, ξA) = w(t)v(ξA),

where v is a spatial eigenfunction, or eigendistribution, of the Laplacian ∆̄

(4.87) − ∆̄v = λv.

The hypersurface

(4.88) M = {ϕ = 1}
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can be considered to be a subbundle of E, where each fiber M(x) is a hy-
persurface in the fiber F (x) of E. We shall use the same notation M for
the subbundle as well as for the hypersurface and in general we shall omit
the reference to the base point x ∈ S0. Furthermore, we specify the metric
ρij ∈ T 0,2(S0), which we used to define ϕ, to be equal to the Euclidean metric
such that in Euclidean coordinates

(4.89) ϕ2 =
det gij
det δij

= det gij .

Then, it is well-known that each M(x) with the induced metric (GAB) is a
symmetric space, namely, it is isometric to the coset space

(4.90) G/K = SL(n,R)/SO(n),

cf. [4, equ.(5.17), p. 1123] and [14, p. 3]. The eigenfunctions in symmetric
spaces, and especially of the coset space in (4.90), are well-known, they are the
so-called spherical functions. One can also define a Fourier transformation
for functions in L2(G/K) and prove a Plancherel formula, similar to the
Euclidean case, cf. [13, Chapter III]. Also similar to the Euclidean case we
shall use the Fourier kernel to define the eigenfunctions, or eigendistributions,
cf. [12, Section 5].

Let

(4.91) G = NAK

be an Iwasawa decomposition of G, where N is the subgroup of unit upper
triangle matrices, A the abelian subgroup of diagonal matrices with strictly
positive diagonal components and K = SO(n). The corresponding Lie alge-
bras are denoted by

(4.92) g, n, a and k.

Here,

(4.93)

g = real matrices with zero trace

n = subspace of strictly upper triangle matrices with zero diagonal

a = subspace of diagonal matrices with zero trace

k = subspace of skew-symmetric matrices.

The Iwasawa decomposition is unique. When

(4.94) g = nak

we define the maps n,A, k by

(4.95) g = n(g)A(g)k(g).

We also use the expression logA(g), where log is the matrix logarithm. In
case of diagonal matrices

(4.96) a = diag(a1, . . . , an)
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with positive entries

(4.97) log a = diag(log ai),

hence

(4.98) A(g) = elogA(g).

Remark 4.1. (i) The Lie algebra a is a (n-1)-dimensional real algebra,
which, as a vector space, is equipped with a natural real, symmetric scalar
product, namely, the trace form

(4.99) 〈H1, H2〉 = tr(H1H2), Hi ∈ a.

(ii) Let a∗ be the dual space of a. Its elements will be denoted by Greek
symbols, some of which have a special meaning in the literature. The linear
forms are also called additive characters.

(iii) Let λ ∈ a∗, then there exists a unique matrix Hλ ∈ a such that

(4.100) λ(H) = 〈Hλ, H〉 ∀H ∈ a.

This definition allows to define a dual trace form in a∗ by setting for λ, µ ∈ a∗

(4.101) 〈λ, µ〉 = 〈Hλ, Hµ〉.

(iv) The Lie algebra g is a direct sum

(4.102) g = n + a + k.

Let Eij , 1 ≤ i < j ≤ n, be the matrices with component 1 in the entry (i, j)
and other components zero, then these matrices form a basis of n. For H ∈ a,
H = diag(xi), the Lie bracket in g, which is simply the commutator, applied
to H and Eij yields

(4.103) [H,Eij ] = (xi − xj)Eij ∀H ∈ a.

Hence, the Eij are the eigenvectors for the characters αij ∈ a∗ defined by

(4.104) αij(H) = xi − xj .
Here, Eij is said to be an eigenvector of αij , if

(4.105) [H,Eij ] = αij(H)Eij ∀H ∈ a.

The eigenspace of αij is one-dimensional. The characters αij are called the
relevant characters, or the (a, n) characters. They are also called the positive
restricted roots.

The Fourier theory in X = G/K which we have summarized in [12, Section
6] uses the functions

(4.106) eλ,b(x) = e(iλ+ρ) logA(x,b), (λ, b) ∈ a∗ ×B, x ∈ X,
as the Fourier kernel, where

(4.107) B = K/M.
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Here, M is the centralizer of A in K and ρ a special character with norm

(4.108) 〈ρ, ρ〉 =
1

12
(n− 1)2n,

cf. [12, Lemma 1]. If n = 3 then

(4.109) |ρ|2 = 1.

For a precise definition of A(x, b) ∈ A we refer to [12, p.19], where also
references to the corresponding mathematical literature are given, especially
to Helgason’s book [13, Chapter III].

The Fourier transform for functions f ∈ C∞c (X,C) is then defined by

(4.110) f̂(λ, b) =

∫
X

f(x)e(−iλ+ρ) logA(x,b)dx

for λ ∈ a∗ and b ∈ B, or, if we use the definition in (4.106)

(4.111) eλ,b(x) = e(iλ+ρ) logA(x,b),

by

(4.112) f̂(λ, b) =

∫
X

f(x)eλ,b(x)dx.

The functions eλ,b are real analytic in x and are eigenfunctions of the Lapla-
cian, cf. [13, Prop. 3.14, p. 99],

(4.113) − ∆̃eλ,b = (|λ|2 + |ρ|2)eλ,b,

where

(4.114) |λ|2 = 〈λ, λ〉,

cf. (4.101), and similarly for |ρ|2. We also denote the Fourier transform by
F such that

(4.115) F(f) = f̂ .

Its inverse F−1 is defined in R(F) by

(4.116) f(x) =
1

|W |

∫
B

∫
a∗
f̂(λ, b)|c(λ)|−2dλdb,

where c(λ) is Harish-Chandra’s c-function, W is the Weyl group and

(4.117) |W | = cardW,

the number of elements in W , in our case |W | = n!.
In equation (4.113) we identified

(4.118) ∆̃ = ∆M = ∆X .

In [12] we finally dropped the embellishment and simply wrote ∆ when re-
ferring to the above Laplacian but at the moment we refrain from doing so
in order to avoid confusion.
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We shall consider the eigenfunctions eλ,b as tempered distributions of the
Schwartz space S (X) and shall use their Fourier transforms

(4.119) êλ,b = δ(λ,b) = δλ ⊗ δb
as the spatial eigenfunctions of

(4.120) F(−∆) = m(µ) = (|µ|2 + |ρ|2),

which is a multiplication operator, such that

(4.121) F(−∆)êλ,b = m(µ)êλ,b = (|λ|2 + |ρ|2)êλ,b,

cf. [12, Section 6] for details.
Looking at the Fourier transformed eigenfunctions

(4.122) êλ,b = δλ ⊗ δb
it is obvious that the dependence on b has to be eliminated, since there is
neither a physical nor a mathematical motivation to distinguish between eλ,b
and eλ,b′ . We discarded the integration over B in [12, Section 6] and picked
instead a special element b0 ∈ B, namely,

(4.123) b0 = eM, e = id ∈ K,

and only consider the eigenfunctions eλ,b0 with corresponding Fourier trans-
forms

(4.124) δλ ≡ δλ ⊗ δb0 = êλ,b0 , λ ∈ a∗.

For a justification, see [12, Lemma 4] and the arguments preceding the ref-
erenced Lemma.

The eigenfunctions eλ,b0 depend on the characters λ ∈ a∗, but not all
characters are physically relevant. For a definition of the physically relevant
characters let me cite [12, Remark 2, p. 18]:

Remark 4.2. The characters αij , 1 ≤ i < j ≤ n, in (4.106) will represent
the elementary gravitons stemming from the degrees of freedom in choosing
the coordinates

(4.125) gij , 1 ≤ i < j ≤ n,

of a metric tensor. The diagonal elements offer in general additional n degrees
of freedom, but in our case, where we consider metrics satisfying

(4.126) det gij = 1,

only (n− 1) diagonal components can be freely chosen, and we shall choose
the first (n− 1) entries, namely,

(4.127) gii, 1 ≤ i ≤ n− 1.

The corresponding additive characters are named αi, 1 ≤ i ≤ n− 1, and are
defined by

(4.128) αi(H) = hi,
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if

(4.129) H = diag(h1, . . . , hn).

The characters αi, 1 ≤ i ≤ n − 1, and αij 1 ≤ i < j ≤ n, will represent the
(n+2)(n−1)

2 elementary gravitons at the character level. We shall normalize
the characters by defining

(4.130) α̃i = ‖Hαi
‖−1αi

and

(4.131) α̃ij = ‖Hαij‖−1αij

such that the normalized characters have unit norm, cf. (4.101).

We can now define the corresponding forms in a∗ with arbitrary energy
levels:

Definition 4.3. Let λ ∈ R+ be arbitrary. Then we consider the characters

(4.132) λα̃i ∧ λα̃ij ,

where we recall that the terms embellished by a tilde refer to the corre-
sponding unit vectors. Then the eigenfunctions representing the elementary
gravitons are eλα̃i,b0 and eλα̃ij ,b0 .

The corresponding eigenvalue with respect to −∆̃ is |λ|2 + |ρ|2, where by
a slight abuse of notation |λ|2 = λ2 and |ρ|2 = 〈ρ, ρ〉. Note that |ρ|2 = 1 if
n = 3, cf. (4.109).

We would also like to define a zero-point energy eigenfunction by choosing
λ ∈ a∗ = 0. The corresponding eigenfunction would be e0,b0 satisfying

(4.133) − ∆̃e0,b0 = |ρ|2e0,b0 = e0,b0 .

if n = 3.

We are now able to quantize the Hamiltonian H in (4.81). For brevity
we denote the quantized Hamiltonians, which are operators, by using the
same symbols as for the Hamilton functions. The Hamilton operator HG we
express as in (4.83)

(4.134)
HGu = αN

n

16(n− 1)
t−m

∂

∂t
(tm

∂w

∂t
)v − αN t−2w∆̄v

− α−1
N t2−

4
nR(σij)wv + 2α−1

N Λt2wv,

where we used the separation of variables in (4.86), the form of the metric in
(4.25), namely,

(4.135) gij = t
4
nσij

and the relation between the scalar curvatures of conformal metrics

(4.136) R(g) = t−
4
nR(σ).

.
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Let us recall that for the quantization of H̃SM we shall specify σij = δij ,
such that the spatial eigendistributions, or approximate eigendistributions,
ψ satisfying

(4.137) H̃SMψ = λ1ψ, λ1 ≥ 0

can be derived by applying standard methods of QFT. We then solve the
Wheeler-DeWitt equation

(4.138) Hu = 0

not for all (t, σij) ∈ R+ ×M but only for (t, δij), where t > 0 is arbitrary.
Thus, we shall solve

(4.139) − ∆̃v = (|λ|2 + |ρ|2)v

by using

(4.140) v = eλ,b0

for arbitrary σij ∈M , but we shall evaluate eλ,b0 only at σij = δij . Further-
more, we observe that for x = gK ∈ X and b = kM ∈ B we have

(4.141) A(x, b) = A(gK, kM) = A(k−1g),

cf. [12, equ. (202), p. 18], hence, if b = b0, i.e., if k = e = id then

(4.142) A(x, b0) = A(g).

Moreover, let

(4.143) π : G/K →M

be the isometry, then

(4.144) π(gK) = gg∗,

where g∗ is the adjoint. Thus, if g = (δij) = e we infer

(4.145) σij = δij ∈M =⇒ eλ,b0(σij) = 1,

and we have proved:

Theorem 4.4. Let n = 3, v = eλ,b0 and let ψ be an eigendistribution of

H̃SM when σij = δij such that

(4.146) − ∆̃eλ,b0 = (|λ|2 + 1)eλ,b0 ,

(4.147) H̃SMψ = λ1ψ, λ1 ≥ 0,

and let w be a solution of the ODE

(4.148)
t−m

∂

∂t
(tm

∂w

∂t
) +

32

3
(|λ|2 + 1)t−2w +

32

3
α−1
N λ1t

− 2
3w

+
64

3
α−2
N Λt2w = 0

then

(4.149) u = weλ,b0ψ
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is a solution of the Wheeler-DeWitt equation

(4.150) Hu = 0,

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and to w as the
temporal eigenfunction.

Remark 4.5. We could also apply the respective Fourier transforms to
−∆̃eλ,b0 resp. H̃SMψ and consider

(4.151) wêλ,b0 ψ̂

as the solution in Fourier space, where ψ̂ would be expressed with the help
of the ladder operators.

In the next section we shall analyze the temporal eigenfunctions.

5. Temporal eigenfunctions

The temporal eigenfunctions have to satisfy the ODE (4.148) or equiva-
lently

(5.1)
ẅ + 5t−1ẇ +

32

3
(|λ|2 + 1)t−2w +

32

3
α−1
N λ1t

− 2
3w

+
64

3
α−2
N Λt2w = 0,

where we used that m = 5, since we assume n = 3. Let us denote the other
constants in front of the three lower order terms by m1, m2

2 resp. m3, then
the ODE looks like

(5.2) ẅ + 5t−1ẇ +m1t
−2w +m2

2t
− 2

3w +m3t
2w = 0,

where

(5.3) m1 ≥
32

3
, m2 ≥ 0, m3 ∈ R.

The ODE (5.2) has two linearly independent solutions which are smooth and
defined for all t > 0. However, if m2 as well as m3 are both different from
zero, then the solution cannot be expressed by known functions like variants
of the Bessel functions. Only if this is not valid the solutions can be expressed
by known functions.

Theorem 5.1. Assume m3 = 0 and m2 > 0, then the solutions of the
ODE (5.2) are generated by

(5.4) J( 3
2

√
m1 − 4 i, 3

2m2t
2
3 )t−2

and

(5.5) J(− 3
2

√
m1 − 4 i, 3

2m2t
2
3 )t−2,

where J(λ, t) is the Bessel function of the first kind.
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Proof. We used Mathematica to obtain these solutions. The verification that
these functions are indeed solutions is straightforward. �

Lemma 5.2. The solutions in the theorem above diverge to complex in-
finity if t tends to zero and they converge to zero if t tends to infinity.

Proof. The results can be derived by looking at a series expansion of the
corresponding Bessel functions near the origin resp. near infinity. �

Next, let us consider the solutions when m2 = 0 and m3 6= 0. Then we
distinguish two cases m3 > 0 resp. m3 < 0. For a better distinction we shall
express m3 in the form

(5.6) m3 = m2
4, m4 > 0,

in the first case and as

(5.7) m3 = −m2
4, m4 > 0,

in the second case.

Theorem 5.3. Assume m2 = 0 and m3 > 0, then the solutions of the
ODE (5.2) are generated by the functions

(5.8) J( 1
2

√
m1 − 4 i, 1

2m4t
2)t−2

and

(5.9) J(− 1
2

√
m1 − 4 i, 1

2m4t
2)t−2,

where J(λ, t) is the Bessel function of the first kind.

Similarly we obtain in the second case:

Theorem 5.4. Assume m2 = 0 and m3 < 0, then the solutions of the
ODE (5.2) are generated by the functions

(5.10) I( 1
2

√
m1 − 4 i, 1

2m4t
2)t−2

and

(5.11) I(− 1
2

√
m1 − 4 i, 1

2m4t
2)t−2,

where I(λ, t) is the modified Bessel function of the first kind. In Mathematica
this function is denoted by BesselI[λ, t].

The arguments in the proof of Theorem 5.1 also apply in case of Theo-
rem 5.3 and Theorem 5.4.

Lemma 5.5. The solutions in Theorem 5.3 resp. Theorem 5.4 diverge to
complex infinity if t tends to zero as well as if t tends to infinity.

Proof. Same arguments as in the proof of Lemma 5.2 apply. �
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6. Conclusions

The temporal eigenfunctions in the theorems of the previous section all
become unbounded if t → 0, which can be described as a big bang on a
quantum level. Furthermore, if we consider t < 0, then the functions

(6.1) w̃(t) = w(−t), t < 0,

also satisfy the ODE (5.1) for t < 0, if we replace t−
2
3 by |t|− 2

3 , i.e., they are
also temporal eigenfunctions if the light cone in E is flipped.

Thus, we conclude

Theorem 6.1. The quantum model we derived for gravity combined with
the forces of the Standard Model can be described by products of spatial and
temporal eigenfunctions of corresponding self-adjoint operators with a contin-
uous spectrum.

We have a zero-point energy state as a spatial eigendistribution of the
gravitational Hamiltonian with smallest eigenvalue |ρ|2 = 1 which could be
considered to be the source of the dark energy.

Furthermore, we have a big bang singularity in t = 0. Since the same
quantum model is also valid by switching from t > 0 to t < 0, with appropriate
changes to the temporal eigenfunctions, one could argue that at the big bang
two universes with different time orientations could have been created such
that, in view of the CPT theorem, one was filled with matter and the other
with anti-matter.

Remark 6.2. One of the reviewers raised two questions. First, he won-
dered about the logic to combine a low energy event, the quantization of the
fields of the Standard Model with a flat metric, with an high energy event, the
quantization of gravity. As we have already pointed out in the introduction a
unified quantization of gravity and matter fields leads to a hyperbolic equa-
tion of second order in a fiber space, where the main part of the hyperbolic
operator acts in the fibers. The zero order terms of the operator contains
the contributions of the quantized matter Hamiltonian and the interaction of
gravity with matter fields occurs with the help of the fiber variables (t, σij).
The metric σij is used in the quantization of the matter fields. Looking at
the spatial eigenfunction v of the gravitational Hamiltonian and its eigen-
value, which expresses the energy, then, the eigenvalue is independent of the
metric σij at which v is evaluated and only the evaluation point is relevant
for the interaction, i.e., even if a non-flat metric σij would have been used
in the quantization of the matter fields the contribution to the unified oper-
ator would not have changed qualitatively. Furthermore, as we have already
mentioned in the introduction, due to the scalar curvature term R we cannot
expect to solve the Wheeler-DeWitt equation for all (t, σij) if we use sepa-
ration of variables, instead, we have to choose metrics with constant scalar
curvature. Thus, we opted for σij = δij , also out of necessity because we
could not quantize the matter field in a curved spacetime.
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The second interaction with respect to the variable t, the quantum time,
is realized in the ODE, where the contributions by the spatial gravitational
resp. matter eigenfunctions and also by the cosmological constant Λ have
a power of t as a multiplicative factor with different exponents. For small
t the gravitational energy dominates because of the factor t−2, for larger t
the matter energy dominates because the factor t−

2
3 , and if Λ 6= 0, then the

cosmological constant dominates for very large t because of the factor t2.
This is also reflected in the results of Lemma 5.2 and Lemma 5.5 on page 29.

The second question raised concerned the QFT renormalizability in this
unified setting.

The quantization of gravity takes place in the fibers of E while the quan-
tization of the matter fields takes place in the base space S0 = Rn which we
equipped with the Euclidean metric for this task. Hence, the usual renormal-
ization techniques can be used to deal with infinities. The fibers are ignored
in this process.

Remark 6.3. The Academic Editor of the journal also requested some
observational predictions of the theory presented in this paper.

In Theorem 6.1 we already offered possible answers to two open questions,
namely, the source of the dark energy and why is matter dominating anti-
matter.

The big bang is only predicted by the singularity of the Friedmann model,
a classical theory. In this paper the big bang is predicted on a quantum level
which is a more appropriate level because the big bang is certainly a quantum
event.

Powerful gravitational waves might be caused by quantum gravitational
forces like the collision of two black holes. If this is the case then they
should satisfy an ODE similar to that we analyzed in Section 5. The patterns
produced by the wave detectors should be similar to the plots produced by the
solutions of the ODE in (5.1) on page 28, though the scalar curvature term
does not appear in the ODE since R(δij) = 0 and in the case of black holes
R would be constant but different from zero, i.e., the ODE should contain a
term, probably positive, with the factor t

2
3 and most likely no contribution

by the Standard Model fields.
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