
A UNIFIED QUANTIZATION OF GRAVITY AND OTHER
FUNDAMENTAL FORCES OF NATURE IMPLIES A BIG

BANG ON THE QUANTUM LEVEL

CLAUS GERHARDT

Abstract. In a recent paper we presented a model for a unified quan-
tization of gravity with other fundamental sources of nature. After
quantization we had to solve a Wheeler-DeWitt equation which was
a hyperbolic equation in a fiber bundle which was equipped with a
Lorentzian metric with a time function t ranging from 0 to infinity.
The Lorentzian metric had a big bang singularity in t = 0 and the co-
efficients of the hyperbolic operator also inherited this singularity. The
solutions of the Wheeler-DeWitt equation were products of spatial and
temporal eigenfunctions and in order to prove that these solutions also
experience a big bang singularity in t = 0 the temporal eigenfunctions
w(t) had to become unbounded if t tends to 0. In our former paper
this was only proved in special cases where w could be expressed with
the help of Bessel functions but not in general. In the present paper
we prove that also in the general case the temporal solutions become
unbounded near t = 0, or more precisely: limt→0(|w|2 + t2|ẇ|2) = ∞
and lim supt→0|w|2 = ∞.
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1. Introduction

In a recent paper [2] we presented a unified quantization of gravity and the
fundamental forces of the Standard Model. We worked in a fiber bundle E
with base space S0 = R3 where the fiber elements were Riemannian metrics.

Date: January 27, 2023.
2000 Mathematics Subject Classification. 83,83C,83C45.
Key words and phrases. quantization of gravity, quantum gravity, big bang, asymp-

totic behaviour near a singularity, solutions of the Wheeler-DeWitt equation, Prüfer
substitution.

1



2 CLAUS GERHARDT

The gravitational Hamilton operator ĤG works in the fibers and the (spatial)
Hamilton operator of the Standard Model ĤSM works in the base space S0.
Let v resp. ψ be spatial eigendistributions of the respective Hamiltonians
then the solutions u of the Wheeler-DeWitt equation can be written as a
product

(1.1) u = wvψ,

where w = w(t) satisfies an ODE

(1.2) ẅ +mt−1w + µ0t
−2w +m2t

− 2
3w +m3t

2w = 0 ∀t > 0.

Here

(1.3) µ0 =
32

3
(|λ|2 + 1).

(1.4) m2 =
32

3
α−1
n λ1,

(1.5) m3 =
64

3
α−2
N Λ

and

(1.6) m = 5,

where (|λ|2 + 1)is the eigenvalue of v, λ1 ≥ 0 the eigenvalue of ψ, Λ ∈ R a
cosmological constant and αN > 0 a coupling constant, cf. [2, equ. (41)].

The solution w of the ODE is referred to as a temporal eigenfunction
defined in R+. The ODE has a singularity in t = 0 and the behaviour of w(t)
when t tends to 0 will decide if this singularity is a big bang singularity on a
quantum level.

The solutions of the equation (1.2) with given initial values w(t0), ẇ(t0)
at t0 ∈ R+ exist for all time t > 0 and are smooth. In general they cannot
be expressed by known functions. However, if m2 or m3 are equal to zero
then the corresponding solutions w can be expressed with the help of Bessel
functions and hence it could be proved that

(1.7) lim sup
t→0

|w| = ∞,

cf. [2, Section 5].
In the present paper we want to prove that the singularity in t = 0 is

always a big bang singularity and not only in the special cases mentioned
above. Let us rewrite the ODE (1.2) in the form

(1.8) ẅ +mt−1w + t−2{µ0 +m2t
2−− 2

3 +m3t
4}w = 0 ∀ t > 0,

then we look at the more general equation

(1.9) ẅ +mt−1w + t−2(µ0 + q0(t))w = 0 ∀ t > 0

and we shall prove:
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Theorem 1.1. Let us assume that the constants m,µ0 and the real func-
tion q0 ∈ C1(R+) have the properties

(1.10) m > 1,

(1.11) 1 < µ0 −
(m− 1)2

4
≡ 1 + γ, γ > 0,

and

(1.12) lim
t→0

q0(t) = 0.

Then any non-trivial solution w of (1.9) satisfies

(1.13) lim
t→0

(|w|2 + t2|ẇ|2) = ∞

as well as

(1.14) lim sup
t→0

|w|2 = ∞.

Note that the differential operator in (1.9) is symmetric with respect to
the bilinear form

(1.15) ⟨u, v⟩ =
∫ ∞

0

uvtmdt, u, v ∈ C∞
c (R+),

since

(1.16) ẅ +mt−1ẇ = t−m ∂

dt
(tmẇ).

2. Proof of Theorem 1.1

We first simplify the ODE by using the ansatz

(2.1) w(t) = t−
m−1

2 φ(log t).

Defining the variable

(2.2) τ = log t, t > 0,

we denote the derivatives with respect to τ by primes. Thus, we obtain

(2.3) ẇ = t−
m−1

2 φ′t−1 − m−1
2 t−

m−1
2 −1φ

and

(2.4) ẅ = t−
m−1

2 −2φ′′ −mt−
m−1

2 −2φ′ + m−1
2 (m−1

2 + 1)t−
m−1

2 −2φ

from which we conclude, in view of (1.9) on page 2,

(2.5) φ′′ + {µ0 − (m−1)2

2 + q0}φ = 0.

Let us define

(2.6) q = µ0 − (m−1)2

2 + q0 = 1 + γ + q0,
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cf. (1.11). Moreover, it will be convenient to switch from the variable τ to
−τ and then rename −τ to τ such that τ is now defined by

(2.7) τ = − log t,

thus,

(2.8) t→ 0 ⇐⇒ τ → ∞.

We then consider the equation (2.5) for large τ

(2.9) τ ≥ τ0 >> 1

such that

(2.10) q − 1 ≥ γ

2
> 0 ∀ τ ≥ τ0,

where we used the assumption (1.12) on page 3.
In order to analyze the asymptotic behaviour of φ when τ tends to infinity

we shall employ the so-called Prüfer Substitution, i.e., we rewrite the equation

(2.11) φ′′ + qφ = 0, τ ≥ τ0,

as a system of first order equations and switch to polar coordinates (r, θ) such
that

(2.12) φ′(τ) = r(τ) cos θ(τ)

and

(2.13) φ(τ) = r(τ) sin θ(τ).

Then we conclude, in view of (2.11),

(2.14)
r′(τ) = −(q − 1)r(τ) cos θ(τ) sin θ(τ)

= −(q − 1)r(τ) 12 sin 2θ(τ) ∀ τ ≥ τ0

and

(2.15)
θ′(τ) = q(τ) sin2 θ(τ) + cos2 θ(τ)

= (q − 1) sin2 θ(τ) + 1 ∀ τ ≥ τ0,

for details we refer to [1, p. 91]. In view of (2.10) we obtain

(2.16) θ′(τ) ≥ 1 ∀ τ ≥ τ0,

i.e., θ is a diffeomorphism of class C2. Moreover, we can estimate

(2.17) θ′(τ) ≤ (q − 1) + 1 = 1 + γ + q0 ≤ 1 + 2γ ∀ τ ≥ τ0,

if τ0 is large enough because of (1.12).
The flow (2.15) has solution of class C2 for given initial values at τ0.

Since we want to prove Theorem 1.1 for any non-trivial solution w, we have
to analyze the asymptotic behaviour of φ for two linearly independent real
valued solutions φ and φ̃ of (2.11). Let (r, θ) resp. (r̃, θ̃) be the corresponding
polar coordinates and let k0 ∈ N be arbitrary then we set

(2.18) θ(τ0) = 2k0π
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and

(2.19) θ̃(τ0) = 2k0π +
π

2

yielding, in view of (2.12) and (2.13),

(2.20) φ(τ0) = 0,

(2.21) φ′(τ0) = r(τ0)

and

(2.22) φ̃(τ) = r̃(τ0),

(2.23) φ̃′(τ0) = 0.

Choosing now

(2.24) r(τ0) = r̃(τ0) = 1,

we conclude that φ, φ̃ are linearly independent.
In the following we shall only consider φ since the arguments for φ̃ are

identical. The asymptotic behaviour of φ is then determined by r. From
(2.14) and (2.18) we infer

(2.25) log r(τ) = log r(τ)− log r(τ0) = −1

2

∫ τ

τ0

(q − 1) sin 2θ(s)ds.

Introducing a new integration variable

(2.26) x = 2θ(s)

such that

(2.27) dx = 2θ′ds = 2{(q − 1) sin2 θ + 1},
because of (2.15), we observe that the right-hand side of (2.25) is equal to

(2.28) −1

4

∫ 2θ(τ)

2θ(τ0)

sinx

sin2 1
2x+ 1

q−1

dx.

We now employ

(2.29)
1

q − 1
− 1

γ
=
γ − q + 1

(q − 1)γ
= − q0

(q − 1)γ

and infer

(2.30)

sinx

sin2 1
2x+ 1

q−1

− sinx

sin2 1
2x+ 1

γ

= sinx

1
q−1 − 1

γ

(sin2 1
2x+ 1

q−1 )(sin
2 1

2x+ 1
γ )

= − sinx

(sin2 1
2x+ 1

q−1 )(sin
2 1

2x+ 1
γ )

q0
(q − 1)γ

= fq0,



6 CLAUS GERHARDT

where f is a uniformly bounded function in {τ ≥ τ0}. Hence we deduce

(2.31) −1

4

∫ 2θ(τ)

2θ(τ0)

sinx

sin2 1
2x+ 1

q−1

dx = −1

4

∫ 2θ(τ)

2θ(τ0)

sinx

sin2 1
2x+ 1

γ

dx+R,

where R satisfies the estimate

(2.32) |R| ≤ c sup
[τ0,∞)

|q0|(τ − τ0) ∀ τ ≥ τ0,

in view of (2.17). The constant c is independent of τ0 if τ0 is large enough.
The integral on the right-hand side of (2.31) is equal to

(2.33) −1

4

(
log (sin2 θ(τ) + 1

γ )− log (sin2 θ(τ0) +
1
γ )
)

and hence uniformly bounded in [τ0,∞). Thus, we infer from (2.25), (2.28),
(2.31) and (2.32)

(2.34) r(τ) ≥ ctϵ ∀ τ ≥ τ0,

where the constant c depends on τ0 and where 0 < ϵ can be chosen arbitrarily
small depending on τ0, in view of the assumption (1.12) on page 3. Let us
also recall that

(2.35) τ = − log t.

We are now ready to prove the claim (1.13) on page 3. First we use

(2.36) w(t) = t−
(m−1)

2 φ(− log t)

and (2.13) to express w2 in the form

(2.37) w2 = t−(m−1)φ2 = t−(m−1)r2(τ) sin2 θ(τ)

as well as

(2.38)
t2ẇ2 = t2{−m−1

2 t−
m−1

2 −1φ− t−
m−1

2 −1φ′}2

= t−(m−1)r2(τ){m−1
2 sin θ(τ) + cos θ(τ)}2.

Here we also used (2.14). Combining these relations yields

(2.39) w2 + t2ẇ2 = t−(m−1)r2(τ){sin2 θ(τ) +
(
m−1
2 sin θ(τ) + cos θ(τ)

)2}.
The term in the braces is strictly positive

(2.40) sin2 θ(τ) +
(
m−1
2 sin θ(τ) + cos θ(τ)

)2 ≥ c0 > 0 ∀ τ ≥ τ0

as can be immediately verified by setting x = θ(τ) and considering the sum
above in the interval [0, 2π]. The claim (1.13) then follows from the estimate
(2.34) if τ0 is large enough such that ϵ can be chosen

(2.41) 0 < ϵ < m− 1.

Finally, let us prove the claim (2.14) by choosing in (2.13) a sequence

(2.42) tk = e−τk , τk → ∞,
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such that

(2.43) θ(τk) = 2kπ +
π

2
, k0 ≤ k ∈ N.

For these arguments we obtain

(2.44) φ′(τk) = 0

and

(2.45) r2(τk) = φ2(τk)

which, together with (2.37) and (2.39), implies the result and completes the
proof of Theorem 1.1.

3. The oscillation behaviour of temporal eigenfunctions near
the big bang

Writing a real valued temporal eigenfunction in the form (2.36) on page 6
it is evident that the corresponding function

(3.1) φ = φ(τ), τ0 ≤ τ <∞,

is responsible for the oscillation. Let us recall that φ satisfies the ODE

(3.2) φ′′ + qφ = 0 ∀ τ ∈ [τ0,∞)

which is a special type of the so-called Sturm-Liouville equations. For solu-
tions of these equations we can apply the Sturm comparison theorem which
we shall cite for the special equations we have in mind:

Theorem 3.1 (Sturm Comparison Theorem). Suppose that

(3.3) q(τ) ≥ q̃(τ) ∀ τ ∈ [a, b]

and let φ resp. φ̃ be non-trivial solutions of the equations

(3.4) φ′′ + qφ = 0

resp.

(3.5) φ̃′′ + q̃φ̃ = 0

in the interval [a, b]. If φ̃ satisfies

(3.6) φ̃(a) = φ̃(b) = 0,

then there exists τ ∈ (a, b] such that

(3.7) φ(τ) = 0,

i.e., between two zeros of φ̃ there exists at least one zero of φ.
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A proof of the theorem can be found in [1, p. 95].
We shall compare φ with solutions φ̃ corresponding to constant q̃. The

zeros of theses functions are well known. Indeed, let

(3.8) q̃ = µ2,

where 0 < µ is a constant, then sin(µτ) and cos(µτ) are solutions of equation
(3.5).

Let q be the function defined in (2.6) on page 3, namely,

(3.9) q(τ) = 1 + γ + q0(τ)

and let 0 < ϵ < γ be arbitrary but small. Then there exists a constant 0 < c1
such that

(3.10) q̃ = µ2 = 1 + γ − ϵ < q(τ) ∀ τ > c1.

Similarly there exists a constant c2 > 0 such that

(3.11) q̃ = µ2 = 1 + γ + ϵ > q(τ) ∀ τ > c2.

Therefore, in view of the Sturm comparison theorem, we can state

Theorem 3.2. The oscillation behaviour near the big bang of the solutions
w(t) in Theorem 1.1 is asymptotically equal to the behaviour of the solutions
of the ODE

(3.12) ẅ +mt−1w + µ0t
−2w = 0 ∀ t > 0.
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