
TRACE CLASS ESTIMATES AND APPLICATIONS

CLAUS GERHARDT

Abstract. We prove trace class estimates for self-adjoint elliptic oper-

ators defined in Rn or R+. These estimates are also applicable when a
physical system is governed by a wave equation by employing separation

of variables to obtain corresponding temporal and spatial Hamiltonians.

It is shown, in one important example, that the resulting Hamiltonians
are of trace class such that quantum statistics can be applied to the

system.
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1. Introduction

Consider a physical system that can be described by a separable Hilbert
space H and a self-adjoint operator H assuming that H has a pure point
spectrum. If one wants to apply quantum statistics to this system, then, for
any β > 0, the operator

(1.1) e−βH

has to be of trace class in H, or, if H is extended to the corresponding
symmetric Fock space F+(H), the extended operator in (1.1) has to be of
trace class in F+(H). In case H is a Schrödinger operator or, more generally,
a self-adjoint elliptic operator in a bounded domain of Rn with homogenous
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boundary conditions, it is well-known that the operator in (1.1) is of trace
class because of Weyl’s asymptotic behaviour formula for the eigenvalues λj ,

(1.2) λj ∼ Cn(
j

V
)

2
n ,

where Cn is the so-called Weyl constant, V the Euclidean volume of the
domain and the λj are labelled such that

(1.3) λ1 ≤ λ2 ≤ · · ·
We prefer to start the numbering with j = 0 instead of j = 1, though this is
of course irrelevant as far as the asymptotic formulas are concerned, but it
might become relevant if more precise estimates are considered. Hence, when
citing estimates the labelling in (1.3) will always be assumed.

Weyl used variational methods and properties of the Green’s function to
obtain the asymptotic estimates, cf. [12] and also [2, Kap. VI.4]. Li and Yau
proved a lower bound

(1.4) λj ≥
nCn
n+ 2

(
j

V
)

2
n

assuming the eigenvalues to be positive; they used the heat kernel for this
estimate, cf. [10].

In case of unbounded domains we do not know of any asymptotic or lower
estimates which would imply the operator in (1.1) to be of trace class—apart
from special cases, when the eigenvalues are explicitly known.

In this paper we shall consider self-adjoint elliptic differential operators
defined in R+ or Rn, n ≥ 2, and shall prove, by imposing reasonable assump-
tions, that the operator in (1.1) is of trace class. The proof will not rely on
showing either asymptotic or explicit lower estimates but we shall instead
construct explicit majorants the existence of which will infer

(1.5) tr(e−βH) <∞.
One crucial ingredient in the proof is a generalization of Maurin’s Hilbert-
Schmidt type embedding theorem, cf. [11, Theorem 1, p. 336], to unbounded
domains with special weighted measures combined with an interpolation in-
equality involving the norm of the target space of the Hilbert-Schmidt em-
bedding.

These new trace class estimates can especially be applied when the physical
system is defined by a wave equation, which is either obtained by a classical
description or is the result of a (first) quantization process. In either case it
is worthwhile to use, if possible, a separation of variables to split a solution
u of the wave equation into a product

(1.6) u(t, x) = w(t)v(x)

and then finding temporal and spatial self-adjoint operators H0 resp. H1

such that one of them has a pure point spectrum with eigenvalues λi while,
for the other operator, it is possible to find corresponding eigendistributions
for each of the eigenvalues λi. Assuming, e.g., that H0 has a pure point
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spectrum with corresponding mutually orthogonal eigenfunctions wi and H1

has smooth eigendistributions vij satisfying

(1.7) H1vij = λivij ∀ j
then

(1.8) uij = wivij

would be solutions of the wave equation. Weyl used this approach to analyze
the radiation of a black body, cf. [12, Kap. 6], though in this case the spatial
Hamiltonian H1 had a pure point spectrum and the temporal Hamiltonian
H0, which was just the classical harmonic oscillator,

(1.9) H0w = −ẅ,
had only a continuous spectrum.

We are especially interested in a wave equation which we obtained, in our
model of quantum gravity, as the result of a canonical quantization process
applied to a globally hyperbolic spacetime with a cosmological constant. This
wave equation has the form

(1.10)
1

32

n2

n− 1
ü− (n− 1)t2−

4
n∆u− n

2
t2−

4
nRu+ nt2Λu = 0,

and is defined in a quantum spacetime

(1.11) N = R+ × S0,

where S0 is a n-dimensional, n ≥ 3, Cauchy hypersurface of the original
spacetime, or, in case of black holes, the smooth limit of Cauchy hypersur-
faces. The Laplacian and the scalar curvature correspond to the metric σij in
S0, cf. [5, Theorem 6.9], where we derived this wave equation after a canonical
quantization process, see also [4]. The cosmological constant Λ is supposed
to be negative. We applied this model to a Schwarzschild-AdS resp. Kerr-
AdS black hole and to a globally hyperbolic spacetime with an asymptotic
Euclidean Cauchy hypersurface. In all three cases we obtained a sequence of
smooth functions as solutions of the wave equation which are a product of
temporal eigenfunctions and spatial eigendistributions.

In case of the globally hyperbolic spacetime with an asymptotically Eu-
clidean Cauchy hypersurface the solutions to the wave equation can be ex-
pressed in the form

(1.12) uij = wivij , i ∈ N, 1 ≤ j ≤ m ≤ ∞,
where the wi are the eigenfunctions of a temporal Hamilton operator H0

(1.13) H0wi = λiwi

and the λi have multiplicity one such that

(1.14) 0 < λ0 < λ1 < · · ·
and for each fixed i the, at most countably many, vij generate an eigenspace

(1.15) Eλi ⊂ S ′(S0)
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of a spatial Hamiltonian H1, i.e.,

(1.16) H1vij = λivij .

We have

(1.17) vij ∈ C∞(S0) ∩S ′(S0).

In case of the black holes the description is a bit more complicated and
we refer the reader to Section 4, where it is also proved that the trace class
estimates can be applied to both the temporal as well as to the spatial Hamil-
tonian.

Let us now give a more detailed summary of our results. First, for the
general trace class estimates. We consider eigenvalue problems in Rn, n ≥ 2.
Let A be the linear elliptic operator

(1.18) Au = −Di(a
ijDju) + b(x)u,

where

(1.19) aij , b ∈ L∞loc(Rn),

aij is symmetric and we assume there exists a0 > 0 such that

(1.20) a0|ξ|2 ≤ aijξiξj ∀ ξ ∈ Rn

and that there exists R0 > 1 and positive p, c1 such that

(1.21) c1|x|p ≤ b(x) ∀ |x| ≥ R0.

Then, we proved:

1.1. Theorem. The operator A is essentially self-adjoint in H = L2(Rn)
with a pure point spectrum

(1.22) λ0 < λ1 ≤ λ2 ≤ · · ·
Let H be its self-adjoint extension then, for any β > 0,

(1.23) e−βH

is of trace class in H.

Next, let us consider a Sturm-Liouville operator A in R+ of the form

(1.24) Au = −(au′)′ + bu,

where a dot or a prime indicates differentiation, and corresponding eigenvalue
problems

(1.25) Au = λϕ0u,

where the coefficients a, b and the function ϕ0 are all measurable and locally
bounded in R+, and b is even locally bounded in [0,∞), and they satisfy

(1.26) a(t) ≥ a0 > 0 ∀ t ∈ R+,

and there exist positive constants c1, c2, p, r and t0 > 1 such that

(1.27) b(t) ≥ c1tp ∀ t ≥ t0,



TRACE CLASS ESTIMATES AND APPLICATIONS 5

(1.28) ϕ0(t) ≤ c2tr ∀ t ≥ t0,
and

(1.29) 0 < r < p,

where the function ϕ0 is also positive almost everywhere. Then we proved:

1.2. Theorem. The eigenvalue problem

(1.30) Au = λϕ0u

has countably many solutions (λi, wi) such that

(1.31) λ0 < λ1 < λ2 < · · ·
and the wi form an ONB in

(1.32) H = L2(R+, dµ),

(1.33) dµ = ϕ0dt.

The operator

(1.34) ϕ−1
0 A

is essentially self-adjoint in H. Let H0 be its self-adjoint extension then, for
any β > 0,

(1.35) e−βH0

is of trace class in H.

Finally, let us describe the results with respect to the wave equation (1.10).
In Section 4 we shall prove that the wave equation can be expressed in the
form

(1.36) ϕ0(H0u−H1u) = 0,

where u = u(t, x) is a smooth function, x ∈ S0 and

(1.37) ϕ0(t) = t2−
4
n .

H0 is an operator which satisfies the assumptions in the previous theorem
and in Section 5 we shall define an abstract Hilbert space H, where the
eigendistributions of H1 form an ONB, such that H0 and H1 have the same
eigenvalues but with different multiplicities. H1 is also essentially self-adjoint
in H. Let H̃1 be the unique self-adjoint extension of H1, namely its closure,
then we shall prove that for any β > 0

(1.38) e−βH̃1

is of trace class in H. In addition H̃1 satisfies

(1.39) H̃1 ≥ λ0I, λ0 > 0.

Let

(1.40) H ≡ dΓ (H̃1)
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be the canonical extension of H̃1 to the symmetric Fock space

(1.41) F = F+(H),

then

(1.42) e−βH

is of trace class in F because of (1.38) and (1.39), cf. [1, Prop. 5.2.27]. Hence
we can define the partition function

(1.43) Z = tr(e−βH),

the density operator

(1.44) ρ = Z−1e−βH

and the von Neumann entropy

(1.45) S = − tr(ρ log ρ) = logZ + βE,

where E is the average energy and β > 0 the inverse temperature

(1.46) β = T−1.

Here is a summary of the results derived in Section 5:

1.3. Theorem. (i) Let β0 > 0 be arbitrary, then, for any

(1.47) 0 < β ≤ β0,

we have

(1.48) lim
Λ→0

E =∞

as well as

(1.49) lim
Λ→0

S =∞,

where the limites are uniform in β.
(ii) Let β0 > 0 be arbitrary, then, for any

(1.50) β ≥ β0,

we have

(1.51) lim
|Λ|→∞

E = 0

as well as

(1.52) lim
|Λ|→∞

S = 0,

where the limites are uniform in β.

The behaviour of Z with respect to Λ is described in the theorem:
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1.4. Theorem. Let β0 > 0 be arbitrary, then, for any

(1.53) 0 < β ≤ β0,

we have

(1.54) lim
Λ→0

Z =∞

and for any

(1.55) β0 ≤ β

the relation

(1.56) lim
|Λ|→∞

Z = 1

is valid. The convergence in both limites is uniform in β.

1.5. Remark. The first part of Theorem 1.3 reveals that the energy be-
comes very large for small values of |Λ|. Since this is the energy obtained
by applying quantum statistics to the quantized version of a black hole or
of a globally hyperbolic spacetime—assuming its Cauchy hypersurfaces are
asymptotically Euclidean—a small negative cosmological constant might be
responsible for the dark matter, where we equate the energy of the quantized
universe with matter. As source for the dark energy density we consider the
eigenvalue of the density operator ρ with respect to the vacuum vector η

(1.57) ρη = Z−1η,

i.e., the dark energy density should be proportional to Z−1.

In Section 6 we also applied quantum statistics to the quantized version
of a Friedmann universe and proved:

1.6. Theorem. The results in the last two theorems and the conjectures
in the remark above are also valid, if the quantized spacetime N = Nn+1,
n ≥ 3, is a Friedmann universe without matter but with a negative cosmolog-
ical constant Λ and with vanishing spatial curvature. The eigenvalues of the
spatial Hamiltonian H1 all have multiplicity one.

1.7. Remark. Let us also mention that we use Planck units in this paper,
i.e.,

(1.58) c = G = ~ = KB = 1.



8 CLAUS GERHARDT

2. Trace class estimates in R+

Let us first consider a Sturm-Liouville operator A in R+ of the form

(2.1) Au = −(au′)′ + bu,

where a dot or a prime indicates differentiation, and corresponding eigenvalue
problems

(2.2) Au = λϕ0u,

where the coefficients a, b and the function ϕ0 are all measurable and locally
bounded in R+, and b is even locally bounded in [0,∞), and they satisfy

(2.3) a(t) ≥ a0 > 0 ∀ t ∈ R+,

and there exist positive constants c1, c2, p, r and t0 > 1 such that

(2.4) b(t) ≥ c1tp ∀ t ≥ t0,

(2.5) ϕ0(t) ≤ c2tr ∀ t ≥ t0,

and

(2.6) 0 < r < p,

where ϕ0 is also assumed to be positive almost everywhere (a.e.), and where
the specification

(2.7) ∀ t ≥ t0
means

(2.8) a.e. in {t ≥ t0}

when used in connection with measurable functions which are not assumed
to be continuous.

We define the bilinear forms

(2.9) B(u, v) = 〈Au, v〉 =

∫
R+

{aū′v′ + būv}

and

(2.10) K(u, v) =

∫
R+

ϕ0ūv

for

(2.11) u, v ∈ C∞c (R+,C),

and we denote the corresponding quadratic forms by B(u) resp. K(u).

2.1. Lemma. Define

(2.12) b0(t) =

{
0, 0 ≤ t < t0,

b(t), t0 ≤ t,
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and

(2.13) B0(u) =

∫
R+

{a|u′|2 + b0|u|2},

then, for any ε > 0, there exists cε such that

(2.14) ‖u‖22 =

∫
R+

|u|2 ≤ εB0(u) + cεK(u) ∀u ∈ C∞c (R+).

Proof. This compactness lemma is well-known. However, we give a short
proof for the convenience of the reader. We argue by contradiction and
assume there would exist ε > 0 and a sequence

(2.15) uk ∈ C∞c (R+)

such that

(2.16) ‖u‖22 > εB0(uk) + kK(uk).

Without loss of generality we may assume that

(2.17) ‖uk‖22 = 1.

Hence the uk would be uniformly bounded in the Sobolev space

(2.18) H1,2(J)

with norm

(2.19) ‖u‖21,2 =

∫
J

(|u′|2 + |u|2),

for any bounded interval

(2.20) J b [0,∞),

and we would deduce

(2.21) lim
k→∞

K(uk) = 0.

Moreover, by applying the Sobolev embedding theorem, we would know that
a subsequence, not relabelled, would converge strongly in any

(2.22) L2(J,C)

to a function u. In view of Fatou’s lemma, we would also infer

(2.23) K(u) ≤ limK(uk) = 0

and thus

(2.24) u ≡ 0.
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But this would lead to a contradiction, since, for any m > t0, we would have

(2.25)

1 =

∫ m

0

|uk|2 +

∫ ∞
m

|uk|2

≤
∫ m

0

|uk|2 + c−1
1 m−p

∫ ∞
m

b0|uk|2

≤
∫ m

0

|uk|2 + c−1
1 m−p lim supB0(uk)

yielding

(2.26) 1 ≤ c−1
1 m−p lim supB0(uk) ≤ c−1

1 m−pε−1 ∀m ≥ t0,
in view of (2.16) and (2.17). �

As an immediate corollary we obtain

2.2. Corollary. There exists a positive constant c0 such that

(2.27) ‖u‖2 ≡ ‖u‖22 ≤ B(u) + c0K(u) ∀u ∈ C∞c (R+)

and

(2.28)
1

2
B0(u) ≤ B(u) + c0K(u) ∀u ∈ C∞c (R+).

Proof. Since b is bounded in I = [0, t0] we conclude, in view of (2.14),

(2.29)

B(u) ≥ B0(u)− c‖u‖22
≥ B0(u)− cεB0(u)− ccεK(u)

= (1− cε)B0(u)− ccεK(u)

≥ ‖u‖22 − c0K(u),

if we choose

(2.30) ε =
1

2c
and c0 appropriately, proving both estimates. �

In view of the Poincaré inequality on bounded intervals, we also conclude
that there exists c > 0 such that

(2.31) ‖u‖21,2 ≤ cB0(u) ∀u ∈ C∞c (R+).

2.3. Definition. We define the Hilbert space H1 as the completion of
C∞c (R+) with respect to the scalar product defined by the bilinear form

(2.32) B + c0K,

cf. Corollary 2.2, and we denote this scalar product by the symbol

(2.33) 〈·, ·〉1
and corresponding norm

(2.34) ‖·‖1.
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The Hilbert space H is defined by

(2.35) H = L2(R+, dµ),

where

(2.36) dµ = ϕ0(t)dt.

The corresponding scalar product is K and it is also characterized by the
symbol

(2.37) 〈·, ·〉
and corresponding norm

(2.38) ‖·‖.

Using the arguments in the proof of Lemma 2.1, the results of Corollary 2.2
and the assumptions (2.5) and (2.6) we immediately obtain:

2.4. Lemma. The embedding

(2.39) j : H1 ↪→ H
is compact, i.e., if uk ∈ H1 converges weakly to u

(2.40) uk ⇁ u,

then

(2.41) j(uk)→ j(u).

We conclude further that the generalized eigenvalue problem

(2.42) B(u, v) = λK(u, v) ∀ v ∈ H1

can be solved by a variational process which goes back to Courant-Hilbert
[2, Kap. 6]. We describe it in the following theorem:

2.5. Theorem. Let H be a complex, separable Hilbert space, B and K
sesquilinear, symmetric forms on H and assume there exists a positive con-
stant c0 such that

(2.43) B + c0K

is an equivalent scalar product in H. K is also supposed to be a compact form
in H, i.e.,

(2.44) uk ⇁ u =⇒ K(uk)→ K(u).

Then the eigenvalue problem

(2.45) B(u, v) = λK(u, v) ∀ v ∈ H1

has countably many eigenvalues with finite multiplicities. If we label the
eigenvectors such that

(2.46) λ0 ≤ λ1 ≤ · · ·
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then

(2.47) lim
i→∞

λi =∞,

and

(2.48) − c0 < λ0.

There exists a sequence of corresponding eigenvectors ui which are complete
in H satisfying

(2.49) K(ui, uj) = δij

and

(2.50) B(ui, uj) = λiK(ui, uj)

as well as the expansion

(2.51) B(u, v) =
∑
i

λiK(u, ui)K(ui, v)

and

(2.52) K(u, v) =
∑
i

K(u, ui)K(ui, v).

The pairs (λi, ui) are defined by the variational problems

(2.53)
λi = inf{ B(u)

K(u)
: 0 6= u ∈ H, K(u, uj) = 0 ∀ 0 ≤ j ≤ i− 1 }

= B(ui, ui).

This theorem is well-known. A proof can be found in [3, Theorem 1.6.3].
We apply this theorem to the previously defined Hilbert space H1 and

the bilinear (sesquilinear) forms B and K. Let (λi, wi) be the corresponding
pairs of eigenvalues and eigenvectors, then the wi satisfy the ODE

(2.54) Awi = λiϕ0wi

in the weak sense. The operator

(2.55) Ã = ϕ−1
0 A

is symmetric in

(2.56) H = L2(R+, dµ), dµ = ϕ0dt,

and the wi are eigenfunctions of Ã

(2.57) Ãwi = λiwi.

The equation (2.54) is equivalent to

(2.58) ϕ0Ãwi = λiϕ0wi

and Ã, with domain

(2.59) D(Ã) = 〈wi : i ∈ N〉 ⊂ H,
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is essentially self-adjoint as will be proved later, Lemma 5.1 on page 37, in a
more general setting. We denote its unique self-adjoint extension by H0.

We shall now prove that

(2.60) e−βH0 , β > 0,

is of trace class in H.
First, we need two lemmata:

2.6. Lemma. The embedding

(2.61) j : H1 ↪→ H0 = L2(R+, dµ̃),

where

(2.62) dµ̃ = (1 + t)−2dt,

is Hilbert-Schmidt.

Proof. Maurin was the first to prove that the embedding

(2.63) Hm,2(Ω) ↪→ L2(Ω),

where

(2.64) Ω ⊂ Rn

is a bounded domain, is Hilbert-Schmidt provided

(2.65) m >
n

2
,

cf. [11, Theorem 1, p. 336]. We adapt his proof to the present situation.
Let w ∈ H1, then, assuming w is real valued,

(2.66)
|w(t)|2 = 2

∫ t

0

ẇw ≤ 2

∫ ∞
o

|ẇ|2 +
1

2

∫ ∞
0

|w|2

≤ c‖w‖21
for all t > 0, where ‖·‖1 is the norm in H1. To derive the last inequality in
(2.66) we used Corollary 2.2. The estimate

(2.67) |w(t)| ≤ c‖w‖1 ∀ t > 0

is of course also valid for complex valued functions from which infer that, for
any t > 0, the linear form

(2.68) w → w(t), w ∈ H1,

is continuous, hence it can be expressed as

(2.69) w(t) = 〈ϕt, w〉,
where

(2.70) ϕt ∈ H1

and

(2.71) ‖ϕt‖1 ≤ c.
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Now, let

(2.72) ei ∈ H1

be an ONB, then

(2.73)

∞∑
i=0

|ei(t)|2 =

∞∑
i=0

|〈ϕt, ei〉|2 = ‖ϕt‖21 ≤ c2.

Integrating this inequality over R+ with respect to dµ̃ we infer

(2.74)

∞∑
i=0

∫ ∞
0

|ei(t)|2dµ̃ ≤ c2

completing the proof of the lemma. �

2.7. Lemma. Let wi be the eigenfunctions of H0, then there exist positive
constants c and γ such that

(2.75) ‖wi‖1 ≤ c|λi + c0|γ‖wi‖0 ∀ i ∈ N,

where ‖·‖0 is the norm in H0.

Proof. We have, in view of (2.32) and (2.5),

(2.76)

‖wi‖21 = (λi + c0)

∫ ∞
0

ϕ0(t)|wi|2

≤ (λi + c0)

{∫ t0

0

ϕ0(t)|wi|2 + c2

∫ ∞
t0

tr|wi|2
}
.

To estimate the second integral in the braces we exploit the assumptions (2.4)
and (2.6) and choose m so large that

(2.77) r ≤ p− p

m
,

and hence,

(2.78) tr ≤ tp−
p
m ∀ t ≥ t0 > 1.

Then, choosing small positive constants δ and ε, we apply Young’s inequality,
with

(2.79) q =
p

p− pδ
=

1

1− δ
and

(2.80) q′ = δ−1

to estimate the integral from above by

(2.81)

1

q
εq
∫ ∞
t0

{
tp−

p
m (1 + t)

p
m−pδ

}q|wi|2
+

1

q′
ε−q

′
∫ ∞
t0

(1 + t)−( pm−pδ)q
′
|wi|2.
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Choosing, now, δ so small such that

(2.82) (
p

m
− pδ)δ−1 > 2

the preceding integrals can be estimated from above by

(2.83)
1

q
εq
∫ ∞
t0

(1 + t)p|wi|2 +
1

q′
ε−q

′
∫ ∞

0

(1 + t)−2|wi|2

which in turn can be estimated by

(2.84)
1

q
εqc‖wi‖21 +

1

q′
ε−q

′
‖wi‖20,

in view of (2.27).
The first integral in the braces on the right-hand side of (2.76) can be

estimated by

(2.85)

∫ t0

0

ϕ0(t)|wi|2 ≤
1

2
c(1 + t0)2ε2

∫ ∞
0

|wi|2

+
1

2
ε−2

∫ ∞
0

(1 + t)−2|wi|2

≤ c̃ε2‖wi‖21 +
1

2
ε−2‖wi‖20,

because of (2.27).
Choosing now ε, γ and c appropriately the result follows. �

We are now ready to prove:

2.8. Theorem. Let β > 0, then the operator

(2.86) e−βH0

is of trace class in H, i.e.,

(2.87) tr(e−βH0) =

∞∑
i=0

e−βλi = c(β) <∞.

Proof. In view of Lemma 2.6 the embedding

(2.88) j : H1 ↪→ H0

is Hilbert-Schmidt. Let

(2.89) wi ∈ H
be an ONB of eigenfunctions, then

(2.90)
e−βλi = e−βλi‖wi‖2 = e−βλi |λi + c0|−1‖wi‖21

≤ eβc0e−β(λi+c0)|λi + c0|−1c|λi + c0|2γ‖wi‖20,

in view of (2.75), but

(2.91) ‖wi‖20 = ‖wi‖21 ‖w̃i‖20 = (λi + c0)‖w̃i‖20,
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where

(2.92) w̃i = wi‖wi‖−1
1

is an ONB in H1, yielding

(2.93)

∞∑
i=0

e−βλi ≤ cβ
∞∑
i=0

‖w̃i‖20 <∞,

since j is Hilbert-Schmidt. �

3. Trace class estimates in Rn

Let us now consider eigenvalue problems in Rn, n ≥ 2, and let A be the
linear elliptic operator

(3.1) Au = −Di(a
ijDju) + b(x)u,

where

(3.2) aij , b ∈ L∞loc(Rn),

aij is symmetric and there exists a0 > 0 such that

(3.3) a0|ξ|2 ≤ aijξiξj ∀ ξ ∈ Rn

and there exists R0 > 1 and positive p, c1 such that

(3.4) c1|x|p ≤ b(x) ∀ |x| ≥ R0.

Then, we look at the eigenvalue problem

(3.5) Au = λu.

This eigenvalue problem can be solved by similar, if not identical, arguments
as in the case of the Sturm-Liouville operator.

We define the bilinear forms

(3.6) B(u, v) =

∫
Rn
aijDiūDjv

and

(3.7) K(u, v) =

∫
Rn
ūv

in C∞c (Rn,C), and one can easily prove the analogues of Corollary 2.2 on
page 10 and Theorem 2.5 on page 11, i.e., there exists c0 > 0 such that

(3.8) B + c0K ≥ K,
K is compact relative to B + c0K, and there exists countably many pairs
(λi, ui) of eigenvalues with corresponding eigenfunctions satisfying the prop-
erties specified in Theorem 2.5, and we shall now prove that

(3.9) e−βH , β > 0,

is of trace class, where

(3.10) H = Ā
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is the unique self-adjoint extension of A. We recall that A satisfies the esti-
mate (2.28) on page 10 which can be rephrased as

(3.11) A+ c0 ≥
1

2
{−Di(a

ijDj) + b0},

where

(3.12) b0(x) =

{
0, |x| ≤ R0,

b(x), |x| > R0.

The right-hand side of (3.11) is a strictly positive operator. Since eigenvalues,
obtained by the variational process described in Theorem 2.5, also satisfy a
minimax principle, cf. e.g., [3, Theorem 1.6.4], we conclude that

(3.13) µi ≤ λ̃i ∀ i ∈ N,
where µi are the ordered eigenvalues of the operator on the right-hand side
of (3.11) and λ̃i the ordered eigenvalues of A+ c0. Hence, it suffices to prove
that

(3.14)

∞∑
i=0

e−βµi <∞.

For reasons that will become apparent later, we shall derive trace class esti-
mates for the operator

(3.15) Ãu = −α0∆u+ Θu,

where

(3.16) α0 =
a0

2
,

(3.17) Θ(x) =
c1
2
η0|x|p0 ,

(3.18) p0 = min(p, 1)

and η0 is a cut-off function such that

(3.19) η0(x) =

{
0, |x| ≤ R0,

1, |x| ≥ 2R0.

We emphasize that

(3.20) Θ ≤ 1

2
b0

and hence, due to the inequalities (3.3) and (3.11),

(3.21) A+ c0 ≥ Ã.

Therefore, it will suffice to prove that Ã is a trace class operator. To simplify
notations let us also drop the tilde and let us write A for the operator in
(3.15), i.e.,

(3.22) Au = −α0∆u+ Θu.
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Furthermore, the previous definitions of the bilinear form B and the Hilbert
space H1 are also adopted while the Hilbert space H is now L2(Rn). A is
essentially self-adjoint in H with domain

(3.23) D(A) = 〈ui : i ∈ N〉,
where ui are a sequence of mutually orthogonal eigenfunctions of A

(3.24) Aui = λiui.

Note that

(3.25) 0 < λ0 < λ1 ≤ λ2 ≤ · · ·
We shall first prove that the eigenfunctions of A are smooth with uniformly
bounded norms

(3.26) ‖ui‖2m,2 =
∑
|α|≤m

∫
Rn
|Dαu|2

in the usual Sobolev spaces Hm,2(Rn).

3.1. Theorem. Let u ∈ Hm−1,2(Rn)∩H1 be a weak solution of the equa-
tion

(3.27) − α0∆u+ Θu = f,

where f ∈ Hm−2,2(Rn), m ≥ 2, and assume that

(3.28) ‖u‖2m−1,2 +
∑

|α|≤m−2

∫
Rn

Θ|Dαu|2 ≤ c‖f‖2m−3,2,

then u ∈ Hm,2(Rn) and

(3.29) ‖u‖2m,2 +
∑

|α|≤m−1

∫
Rn

Θ|Dαu|2 ≤ c‖f‖2m−2,2,

where the constants c depend on m,Θ, p0, n and α0.

Proof. We shall prove the theorem by induction. First, in the lemma below
we shall prove that the theorem is valid for m = 2. Thus, let us assume that
the theorem is correct for m = q ≥ 2 and show that it is then also valid for
m = q + 1.

Fix 1 ≤ k ≤ n and define

(3.30) v = Dku.

Differentiating (3.27) we obtain

(3.31) − α0∆v + Θv = Dkf −DkΘu ≡ f̃ .
We observe that

(3.32) f̃ ∈ Hq−2,2(Rn)

and that

(3.33) ‖f̃‖2q−2,2 ≤ c‖f‖2q−1,2,
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because

(3.34)

‖DkΘu‖2q−2,2 ≤ c{‖u‖q−2,2 +
∑
|α|≤q−2

Θ|Dαu|2}

≤ c{‖u‖q,2 +
∑
|α|≤q−1

∫
Rn

Θ|Dαu|2}

≤ c‖f‖2q−2,2

in view of the definition of Θ and (3.29). Applying then the induction hypoth-
esis for m = q we conclude that the theorem is also valid for m = q + 1. �

3.2. Lemma. The preceding theorem is valid for m = 2, i.e., any weak
solution u ∈ H1 of

(3.35) − α0∆u+ Θu = f

satisfies the estimates (3.28) and (3.29), where we note that

(3.36) H−1,2(Rn) = {Dig
i + g0 : g0, g

i ∈ L2(Rn) }

is the dual space of H1,2(Rn) and

(3.37) L2(Rn) ↪→ H−1,2(Rn) ⊂ H′1.

The equation (3.35) has also a unique solution which can be found by min-
imizing a functional if we consider f and u to be real valued. Of course we
then also obtain a solution for complex valued f .

Proof. First, the existence of a solution u ∈ H1 of (3.35) satisfying

(3.38) B(u) = 〈Au, u〉 ≤ c‖f‖2

is obvious, since

(3.39) K(v) = ‖v‖2

is compact relative to B, and for real valued f and v and ε > 0 we have

(3.40)
|〈f, v〉| ≤ 1

2
ε‖v‖2 +

1

2
ε−1‖f‖2

≤ 1

2
ελ−1

0 B(v) +
1

2
ε−1‖f‖2,

where 0 < λ0 is the smallest eigenvalue of A. It then immediately follows
that the variational problem

(3.41) J(v) = B(v)− 2〈f, v〉 → min ∀ v ∈ H1

has a unique solution u, which is also a weak solution of the corresponding
Euler-Lagrange equation, and that u satisfies (3.38) which is equivalent to
(3.28) for m = 2.

Secondly, to prove (3.29) for m = 2 we note that

(3.42) u ∈ C∞(Rn),
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in view of the interior L2-estimates, since A is uniformly elliptic with smooth
coefficients. Hence, choosing a cut-off function η

(3.43) 0 ≤ η ∈ C∞c (Rn)

such that

(3.44) |Dη| ≤ 2

and 1 ≤ k ≤ n we have

(3.45) Dkuη
2 ∈ H1,2(Rn).

Multiplying (3.35) by

(3.46) −Dk(Dkuη2),

where we use summation convention, integrating by parts and employing
some trivial estimates, we deduce

(3.47)

α0

2

∫
Rn
|D2u|2η2 +

1

2

∫
Rn

Θ|Du|2η2

≤ c{‖f‖2 + ‖u‖21,2 +

∫
Rn

Θ|u|2} ≤ c‖f‖2,

where we also used (3.38), (3.44) and where the symbol c may represent
different constants. Since η is an arbitrary cut-off function, only subject to
(3.44), the result follows. �

As a corollary to Theorem 3.1 and Lemma 3.2 we obtain

3.3. Theorem. Let f ∈ Hm−2,2(Rn), m ≥ 2, then the equation

(3.48) Au = −α0∆u+ Θu = f

has a unique solution u ∈ Hm,2(Rn) ∩H1 satisfying

(3.49) ‖u‖2m,2 +
∑

|α|≤m−1

∫
Rn

Θ|Dαu|2 ≤ c‖f‖2m−2,

where c depends on m,n,Θ, p0 and α0.
Moreover, the eigenfunctions u satisfying

(3.50) Au = λu

are smooth and the Hm,2-norm can be estimated by

(3.51) ‖u‖2m,2 ≤ cmλm‖u‖2 ∀m ≥ 1,

where cm also depends on the smallest eigenvalue λ0 of A.

Proof. It suffices to prove the last estimate, which can be deduced from (3.49)
by induction

(3.52) ‖u‖2m,2 ≤ cλ2‖u‖2m−2 ≤ cλ2λm−2‖u‖2 = cλm‖u‖2.
The proof for m = 1 follows from

(3.53) ‖u‖21,2 ≤ c(1 + λ−1
0 )B(u) = c(1 + λ−1

0 )λ‖u‖2.
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�

3.4. Lemma. Let H2m(Rn), m ≥ 1, be the completion of C∞c (Rn,C) with
respect to the scalar product

(3.54) 〈Amu,Amv〉 =

∫
Rn
AmūAmv,

then

(3.55) ‖u‖22m,2 ≤ c‖Amu‖2 ∀u ∈ H2m(Rn),

(3.56) ‖Am−1u‖2 ≤ c‖Amu‖2 ∀u ∈ H2m(Rn),

and the eigenfunctions of A are complete in H2m(Rn) for any m ≥ 1. Fur-
thermore, if the eigenfunctions are mutually orthogonal in L2(Rn) then they
are also mutually orthogonal in H2m(Rn) and vice versa.

Proof. We prove the first estimate by induction.

”
(3.55)“ The estimate is valid for m = 1, in view of Theorem 3.3.

Suppose the estimate is valid for q ≥ 1 and let u be test function, then

(3.57)

‖u‖22(q+1),2 ≤ c‖Au‖
2
2q,2

≤ c‖Aq(Au)‖2

= c‖Aq+1u‖2,
where we used Theorem 3.3 in the first inequality and the induction hypothe-
sis in the second.

”
(3.56)“ Let m ≥ 1, then

(3.58) ‖Am−1u‖2 ≤ λ−1
0 〈AAm−1u,Am−1u〉 ≤ λ−1

0 ‖Amu‖ ‖Am−1u‖.
It remains to prove the completeness of the eigenfunctions ui obtained

in Theorem 2.5 on page 11. They are complete in H1 but also in L2(Rn)
because of the Parseval’s identity (2.52).

If they were not complete in H2m(Rn) for some m, then there would exist
0 6= u ∈ H2m(Rn) such that

(3.59) 0 = 〈Amu,Amui〉 = 〈u,A2mui〉 = λ2m
i 〈u, ui〉 ∀ i ∈ N,

hence we would infer

(3.60) u = 0;

a contradiction. �

The elliptic operator A with

(3.61) D(A) = C∞c (Rn) ⊂ H = L2(Rn)

is essentially self-adjoint, for a proof see Lemma 5.1 on page 37. Let us denote
its unique self-adjoint extension by the same symbol since the domain of the
extension is H2(Rn). We are almost ready to prove the trace class estimates
for A but we need to additional lemmata.
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3.5. Lemma. Let H0 be the Hilbert space

(3.62) H0 = L2(Rn, dµ)

where

(3.63) dµ = (1 + |x|)−(n+1),

then the embedding

(3.64) j : H2m(Rn) ↪→ H0

is Hilbert-Schmidt provided m > n
2 .

Proof. As in the proof of Lemma 2.6 on page 13 we adapt Maurin’s original
proof for bounded subsets of Rn to the present situation. Let ϕ be a real
valued test function

(3.65) ϕ ∈ C∞c (Rn)

and S the differential operator

(3.66) S = D1 ◦D2 ◦ · · · ◦Dn,

then

(3.67) ϕ2(x) =

∫ x1

−∞
· · ·
∫ xn

−∞
S(ϕ2).

The integrand can be expressed in the form

(3.68) S(ϕ2) =
∑

|α|+|β|=n

cαβD
αϕSβϕ

with multiindices α, β and constants cαβ , where some constants may be zero.
Hence, we deduce

(3.69) |ϕ|2 ≤ c‖ϕ‖2n,2 ∀ϕ ∈ C∞c (Rn).

This estimate is of course also valid for complex valued u ∈ H2m(Rn).
Now, let m > n

2 and let ei be an ONB in H2m(Rn) consisting of eigen-
functions of A, then, for any x ∈ Rn, the map

(3.70) u→ u(x), u ∈ H2m(Rn),

is continuous, because of (3.69) and (3.55), hence it can be expressed in the
form

(3.71) u(x) = 〈Amϕx, Amu〉 ∀u ∈ H2m(Rn),

where

(3.72) ϕx ∈ H2m(Rn)

and

(3.73) ‖Amϕx‖ ≤ c
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is uniformly bounded independent of x. If we choose especially u = ei then,
for any x ∈ Rn,

(3.74)

∞∑
i=0

|ei(x)|2 =

∞∑
i=0

|〈Amϕx, Amei〉|2 = ‖Amϕx‖2 ≤ c2.

Integrating now with respect to measure in (3.63) completes the proof of the
lemma. �

The next lemma is analogous to Lemma 2.7 on page 14.

3.6. Lemma. Let ui be an eigenfunction of A with eigenvalue λi, then
there exist positive constants c and γ such that

(3.75) ‖ui‖21 = B(ui) = λi‖ui‖2 ≤ cλγi ‖ui‖
2
0,

where c, γ are independent of ui and ‖·‖0 is the norm in H0.

Proof. We have

(3.76) B(ui) =

∫
Rn
{α0|Dui|2 + Θ|ui|2} = λi‖ui‖2.

Moreover, we know, in view of (3.17) and (3.19), that

(3.77) Θ(x) ≥ 1

2
c1|x|p0 ∀ |x| ≥ 2R0 > 1,

where p0 > 0. Choosing small positive δ, ε and applying Young’s inequality
with

(3.78) q =
p0

p0 − p0δ
=

1

1− δ
and

(3.79) q′ = δ−1

to estimate the L2-norm on the right-hand side of (3.76) from above by

(3.80)
1

q
εq
∫
Rn

(1 + |x|)p0 |ui|2 +
1

q′
ε−q

′
∫
Rn

(1 + |x|)−p0(1−δ)δ−1

|ui|2.

Choosing δ so small that

(3.81) p0δ
−1 > n+ 2

we deduce

(3.82) ‖ui‖2 ≤ c
1

q
εqB(ui) + c

1

q′
ε−q

′
‖ui‖20

leading immediately to the desired estimate by choosing ε appropriately. �

Now we can prove:



24 CLAUS GERHARDT

3.7. Theorem. Let A be the elliptic differential operator

(3.83) Au = −α0∆u+ Θu,

then

(3.84) e−βA, β > 0,

is of trace class in L2(Rn), i.e.,

(3.85)

∞∑
i=0

e−βλi <∞.

Proof. Let (ui) be an ONB of eigenfunctions of A in H = L2(Rn) and let
m > n

2 , then

(3.86)

e−βλi = e−βλi‖ui‖2 = e−βλiλ−1
i B(ui)

≤ e−βλiλ−1
i cλγi ‖ui‖

2
0

≤ e−βλiλ−1
i cλγi ‖A

mui‖2‖ũi‖20
= ce−βλiλ2m+γ−1

i ‖ũi‖20,

(3.87) ũi =
ui

‖Amui‖

and where we also used the estimate (3.75) to derive the first inequality in
(3.86).

Hence, we infer

(3.88) e−βλi ≤ cβ‖ũi‖20,

where

(3.89) cβ = c sup
t>0

e−βtt2m+γ−1,

and we finally conclude

(3.90)

∞∑
i=0

e−βλi ≤ cβ
∞∑
i=0

‖ũi‖20 <∞,

because the embedding

(3.91) j : H2m(Rn) ↪→ H0

is Hilbert-Schmidt, in view of Lemma 3.5. �
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4. The Hamiltonians governing quantum gravity

In three recent papers we applied our model of quantum gravity to a
globally hyperbolic spacetime with an asymptotically Euclidean Cauchy hy-
persurface [7] and to a Schwarzschild-AdS [6] resp. Kerr-AdS black hole [8].
In all three cases the quantized model had the same structure, namely, it
consisted of special solutions to a wave equation

(4.1)
1

32

n2

n− 1
ü− (n− 1)t2−

4
n∆u− n

2
t2−

4
nRu+ nt2Λu = 0,

in a quantum spacetime

(4.2) N = R+ × S0,

where S0 is a n-dimensional, n ≥ 3, Cauchy hypersurface of the original
spacetime, or, in case of black holes, the smooth limit of Cauchy hypersur-
faces. The Laplacian and the scalar curvature correspond to the metric σij in
S0, cf. [5, Theorem 6.9], where we derived this wave equation after a canonical
quantization process. The special solutions are a sequence of smooth func-
tions which are a product of temporal and spatial eigenfunctions of elliptic
operators, where the spatial eigenfunctions are eigendistributions.

In case of the globally hyperbolic spacetime with an asymptotically Eu-
clidean Cauchy hypersurface the solutions to the wave equation can be ex-
pressed in the form

(4.3) uij = wivij , i ∈ N, 1 ≤ j ≤ m ≤ ∞,
where the wi are the eigenfunctions of a temporal Hamilton operator H0

(4.4) H0wi = λiwi

and the λi have multiplicity one such that

(4.5) 0 < λ0 < λ1 < · · ·
and for each fixed i the at most countably many vij generate an eigenspace

(4.6) Eλi ⊂ S ′(S0)

of a spatial Hamiltonian H1, i.e.,

(4.7) H1vij = λivij .

We have

(4.8) vij ∈ C∞(S0) ∩S ′(S0).

In the two remaining cases of the black holes the special solutions are labelled
by three indices

(4.9) uijk = wiζijkϕj ,

where the wi are the same temporal eigenfunctions as before, the ϕj are the
eigenfunctions of an elliptic operator A on a smooth compact Riemannian
manifold (M,σij), where topologically

(4.10) M ' Sn−1,
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at least in the physically interesting cases, i.e.,

(4.11) Aϕj = µ̃jϕj ,

(4.12) µ̃0 < µ̃1 ≤ µ̃2 ≤ · · ·
The ϕj form a mutually orthogonal basis of L2(M). For a Schwarzschild-AdS
black hole we know that

(4.13) µ̃0 ≤ 0,

and for a Kerr-AdS black hole this condition can be assured by assuming that
the rotational parameter a is small enough such that the scalar curvature of
σij is positive. Let us emphasize that we considered in [8] Kerr-AdS black
holes of odd dimensions

(4.14) dimN = 2m+ 1, m ≥ 2,

and assumed that all rotational parameters ai are equal

(4.15) ai = a 6= 0 ∀ 1 ≤ i ≤ m.
The ζijk are eigendistributions in S ′(R) satisfying

(4.16) − ζ ′′ijk = ω2
ijζijk, k = 1, 2,

where

(4.17) ζij1(τ) =
1√
2π
eiωijτ

and

(4.18) ζij2(τ) =
1√
2π
e−iωijτ ,

where

(4.19) ωij ≥ 0

is defined by the relation

(4.20) λi = µ̃j + ω2
ij ,

i.e., for any i ∈ N we look for all j satisfying

(4.21) µ̃j ≤ λi
and then choose ωij ≥ 0 satisfying (4.20). Let Ni be the set of integers such
that the µ̃j satisfy (4.21), then the smooth functions

(4.22) ζijkϕj

are mutually orthogonal in L2(M,σij)—for fixed i and k; note that we only
have two different eigendistributions ζijk, if

(4.23) ωij > 0,

otherwise we have only one. The eigendistributions ζij1 and ζij2 are also
considered to be

”
orthogonal“ since their Fourier transforms

(4.24) ζ̂ijk = δ±ωij
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have disjoint supports.
Finally, the smooth functions uijk in (4.9) can be considered to be mutually

orthogonal since uijk and ui′j′k′ are mutually orthogonal in

(4.25) L2(R+, dµ)⊗ L2(M),

where

(4.26) dµ = t2−
4
n dt,

if

(4.27) ωij = ωi′j′ ∧ k = k′

and as tempered distributions otherwise.
The uijk are eigendistributions for both the temporal Hamiltonian H0 as

well as for the spatial Hamiltonian H1 with the same eigenvalues λi, where
now the eigenvalues have finite multiplicities different from 1 by definition
of the eigendistributions and the uijk also solve the wave equation, since the
wave equation can be expressed as

(4.28) ϕ0(H0u−H1u) = 0,

where u = u(t, x) is a smooth function

(4.29) x ∈ S0 = R ×M

and

(4.30) ϕ0(t) = t2−
4
n .

In Section 5 we shall prove that we can define an abstract Hilbert space H,
where the eigendistributions uijk resp. uij in (4.3) form a basis of mutually
orthogonal unit vectors such that the Hamiltonian H1 can be defined on
the dense subspace, which is the algebraic span of the basis vectors, as an
essentially self-adjoint operator. Let H̃1 be its unique self-adjoint extension,
namely its closure, then we shall prove that for any β > 0

(4.31) e−βH̃1

is of trace class in H. In addition H̃1 satisfies

(4.32) H̃1 ≥ λ0I, λ0 > 0.

The temporal eigenfunctions wi solve the equation

(4.33) H0wi = λiwi,

where

(4.34) H0wi = ϕ−1
0 (− 1

32

n2

n− 1
ẅi + nt2|Λ|wi),

which is equivalent to

(4.35) − 1

32

n2

n− 1
ẅi + nt2|Λ|wi = λiϕ0wi,
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i.e., it is one of the Sturm-Liouville eigenvalue problems which we considered
in (2.2) on page 8, where now

(4.36) Au = − 1

32

n2

n− 1
ü+ nt2|Λ|u,

(4.37) b(t) = nt2|Λ|

and

(4.38) ϕ0(t) = t2−
4
n .

The eigenvalues are obtained by looking at the generalized eigenvalue problem

(4.39) B(u, v) = λK(u, v) ∀ v ∈ H1,

where

(4.40) B(u, v) = 〈Au, v〉

and

(4.41) K(u, v) =

∫
R+

t2−
n
4 ūv,

cf. Theorem 2.5 on page 11, where now

(4.42) c0 = 0.

Hence, the assumptions of Theorem 2.8 on page 15 are all satisfied and we
conclude

4.1. Theorem. Let β > 0 and let H0 be the Hamiltonian in (4.34), then
the operator

(4.43) e−βH0

is of trace class L2(R+, dµ).

There is also a spatial Hamiltonian H1, which, in the case of the black holes
considered, is a direct product of a classical harmonic oscillator in R and an
elliptic operator A on a compact, smooth Riemannian manifold M = Mn−1,
n ≥ 3, with metric σij , where A has the form

(4.44) Aϕ = −(n− 1)∆ϕ− n

2
Rϕ

and the Laplacian is the Laplacian in M and R the scalar curvature of the
metric. A is self-adjoint with domain

(4.45) D(A) = H2,2(M) ⊂ L2(M),

where

(4.46) Hm,2(M), m ∈M,
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are the usual Sobolev spaces with norm

(4.47) ‖ϕ‖2m,2 =
∑
|α|≤m

∫
M

|Dαϕ|2.

A has a pure point spectrum with countable many eigenvalues µ̃j with finite
multiplicities and mutually orthogonal eigenfunctions ϕj such that

(4.48) µ̃0 < µ̃1 ≤ · · ·
and

(4.49) lim
j
µ̃j =∞.

We want to prove that

(4.50) e−βA, β > 0,

is of trace class in L2(M).
The proof of this result will follow the arguments in Section 3 very closely.

4.2. Lemma. Let m > n−1
2 , then the embedding

(4.51) j : Hm,2(M) ↪→ L2(M)

is Hilbert-Schmidt.

Proof. This result is due to Maurin and its proof is identical with the proof
of Lemma 2.6 apart from some obvious modifications. �

We also need the lemma:

4.3. Lemma. Let m ∈ N, then there exists cm > 0 such that

(4.52) ‖ϕ‖22m,2 ≤ cm(‖Amϕ‖2 + ‖ϕ‖2)

and the bilinear form

(4.53) 〈Amϕ,Amψ〉0 + 〈ϕ,ψ〉0
defines an equivalent scalar product in H2m,2(M), where

(4.54) 〈ϕ,ψ〉0 =

∫
M

ϕ̄ψ.

Proof. Let

(4.55) f ∈ Hm,2(M)

and

(4.56) ϕ ∈ H2,2(M)

a solution of

(4.57) Aϕ = f,

then it is well-known that

(4.58) ϕ ∈ Hm+2,2(M)
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and there exists c̃m such that

(4.59) ‖ϕ‖m+2,2 ≤ c̃m(‖f‖m,2 + ‖ϕ‖0).

The constant c̃m also depends on A and M . Using this estimate the relation
(4.52) can be easily proved by induction. �

Now, we are ready to prove:

4.4. Theorem. Let A be the self-adjoint operator in (4.44), then

(4.60) e−βA

is of trace class in L2(M) for any β > 0.

Proof. Let m > n−1
4 and equip H2m,2(M) with the scalar product (4.53)

such that

(4.61) ‖ϕ‖22m,2 = 〈Amϕ,Amϕ〉0 + 〈ϕ,ϕ〉0,
then any eigenfunctions ϕi, ϕj of A satisfy

(4.62) 〈ϕi, ϕj〉0 = 0 =⇒ 〈ϕi, ϕj〉2m,2 = 0.

Let (ϕj) be an ONB of eigenfunctions of A in L2(M) and define

(4.63) ϕ̃j = ϕi‖ϕj‖−1
2m,2,

then the ϕ̃j form an ONB in H2m,2(M) and we conclude

(4.64)
e−βµ̃j = e−βµ̃j‖ϕj‖20 = e−βµ̃j‖ϕj‖22m,2 ‖ϕ̃j‖20

= e−βµ̃j (1 + |µ̃j |2m)‖ϕ̃j‖20 ≤ cβ‖ϕ̃j‖20
yielding

(4.65)

∞∑
j=0

e−βµ̃j ≤ cβ
∞∑
j=0

‖ϕ̃j‖20 <∞

in view of Lemma 4.2. �

With the help of the preceding lemma we can now prove that, in case of
the black holes, the spatial Hamiltonian H1 has the property that

(4.66) e−βH1

is of trace class for all β > 0, where we still have to define an appropriate
Hilbert space.

We have

(4.67) H1v = −v̈ −Av,
where we write v as product

(4.68) v(τ, x) = ζ(τ)ϕ(x)

with

(4.69) τ ∈ R ∧ x ∈M = Mn−1,
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where A is the differential operator in (4.44). Let ϕj be the eigenfunctions
of A with eigenvalues µ̃j , then, for any eigenvalue λi we define

(4.70) Ni = {j ∈ N : µ̃j ≤ λi}

and ωij ≥ 0 such that

(4.71) ω2
ij + µ̃j = λi.

Note that

(4.72) 0 ∈ Ni ∀ i ∈ N,

since

(4.73) µ̃0 ≤ 0.

Let

(4.74) ζijk, k = 1, 2,

be the tempered distributions

(4.75) ζij1 =
1√
2π
eiωijτ

and

(4.76) ζij2 =
1√
2π
e−iωijτ ,

where this distinction only occurs for

(4.77) ωij > 0.

Let ζ̂ijk be the Fourier transform of ζijk, then

(4.78) ζ̂ij1 = δωij ∧ ζ̂ij2 = δ−ωij

such that these tempered distributions are considered to be mutually
”
or-

thogonal“. The smooth functions

(4.79) uijk = ζijkϕj

satisfy

(4.80) H1uijk = λiuijk.

Label the eigenvalues of H1 including their multiplicities and denote them
by λ̃i. Then

(4.81)

∞∑
i=0

e−βλ̃i ≤ 2

∞∑
i=0

e−βλin(λi) = 2

∞∑
i=0

e−
β
2 λie−

β
2 λin(λi),

where

(4.82) n(λi) = #Ni.
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4.5. Lemma. Let β0 > 0 be arbitrary, then, for any

(4.83) 0 < β0 ≤ β

and for any i ∈ N, the estimate

(4.84) e−
β
2 λin(λi) ≤ c(β) ≤ c(β0),

where c(β0) also depends on A but is independent of i ∈ N.

Proof. Each Ni is the disjoint union

(4.85) N ′i ∪̇N ′′i ,

where

(4.86) N ′i = {j ∈ Ni : µ̃j ≤ 0}

and N ′′i is its complement. The operator A has only finitely many eigenvalues
which are non-positive, i.e.,

(4.87) #N ′i ≤ n0 ∀ i ∈ N,

hence

(4.88)

e−
β
2 λini(λi) ≤ n0 +

∑
j∈N ′′i

e−
β
2 λi ≤ n0 +

∑
j∈N ′′i

e−
β
2 µ̃j

≤ n0 +
∑
j≥n0

e−
β
2 µ̃j

= n0 +
∑
j≥n0

e−
β
2 µ̃j (1 + |µ̃|2mj ) ‖ϕ̃j‖20

≤ n0 + c(β)

∞∑
j=0

‖ϕ̃j‖20 <∞,

where we used (4.64). The estimate for the Hilbert-Schmidt norm of the
embedding

(4.89) j : Hm,2(M)→ L2(M)

depends on A, since we used the equivalent norm given in (4.61), and

(4.90) c(β) = sup
t>0

e−
β
2 t(1 + t2m).

�

4.6. Corollary. The sum on the left-hand side of (4.81) is finite and hence

(4.91) e−βH1 , β > 0,

is of trace class provided we can define a Hilbert space H such that the
eigendistributions form a complete set of eigenvectors in H and H1 is es-
sentially self-adjoint in H.
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Proof. The first claim follows immediately by combining (4.88) and Theo-
rem 2.8. In Lemma 5.1 on page 37 we shall define the Hilbert space H and
shall prove that H1 is essentially self-adjoint in H and that the eigendistri-
butions form a complete set of eigenvectors in H. �

The elliptic operator A also depend on Λ, since the underlying Riemannian
metric depends on it. The estimates in the preceding lemma remain valid
provided |Λ| remains in a compact subset of R, since the operator A is then
still uniformly elliptic and smooth. However, when

(4.92) |Λ| → ∞,
then the relation (4.52) is no longer valid and a more sophisticated analysis
is necessary to achieve a corresponding estimate. Let us treat the cases
Schwarzschild-AdS and Kerr-AdS black holes separately.

For a Schwarzschild-AdS black hole the operator A can be written in the
form

(4.93) A = r−2
0 Ã,

where r0 is the black hole radius and

(4.94) Ãϕ = −(n− 1)∆̃ϕ− n

2
R̃ϕ.

Here, the Laplacian and the scalar curvature R̃ refer to the corresponding
quantities of Sn−1 with the standard metric, cf. [6, equ. (2.12) and (2.14)].

The eigenfunctions of A are the eigenfunctions of Ã. Let µj be the eigenvalues

of Ã and µ̃j the eigenvalues of A, then

(4.95) µ̃j = r−2
0 µj .

From the definition of the black hole radius

(4.96) mr
−(n−2)
0 = 1 +

2

n(n− 1)
|Λ|r2

0

it is evident that

(4.97) lim
|Λ|→∞

r0 = 0

and also

(4.98) lim
|Λ|→∞

|Λ|r2
0 =∞,

though the latter result is only needed when we shall treat the Kerr-AdS
case.

We can now prove:

4.7. Lemma. Let β0 > 0 be arbitrary and |Λ0| so large that

(4.99) r0 < 1 ∀ |Λ| > |Λ0|,
then for any i ∈ N, any β ≥ β0 and any |Λ| > |Λ0|

(4.100) e−
β
2 λin(λi) ≤ c(β) ≤ c(β0),
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where c(β0) also depends on Ã but is independent of |Λ| and i ∈ N.

Proof. We follow the proof of Lemma 4.5 but use Ã instead of A to define an
equivalent norm in Hm,2(M),

(4.101) M = Sn−1.

Then, we infer, cf. (4.88),

(4.102)

e−
β
2 λini(λi) ≤ n0 +

∑
j∈N ′′i

e−
β
2 λi ≤ n0 +

∑
j∈N ′′i

e−
β
2 µ̃j

≤ n0 +
∑
j≥n0

e−
β
2 µ̃j

= n0 +
∑
j≥n0

e−
β
2 µ̃j (1 + |µ|2mj ) ‖ϕ̃j‖20

≤ n0 + c(β)

∞∑
j=0

‖ϕ̃j‖20 <∞.

Here, we used

(4.103) µ̃j = r−2
0 µj > µj > 0.

�

Let us now look at Kerr-AdS black holes. In [8, equ. (2.50)] we described
the metric σij on M = Sn−1

(4.104)

ds2
M =

r2 + a2

1− a2l2
(
δijdµ

idµj + µ2
i δijdϕ

idϕj
)

+ a2 (1 + l2r2)(r2 + a2)

r2(1− a2l2)2
µ2
iµ

2
jdϕ

idϕj .

Here

(4.105) n = 2m, m ≥ 2,

and the coordinates µi, 1 ≤ i ≤ m are subject to the constraint

(4.106)

m∑
i=1

µ2
i = 1.

They are the latitudinal coordinates of Sn−1 and the ϕi, 1 ≤ i ≤ m, are the
azimuthal coordinates. The metric

(4.107) δijdµ
idµj + µ2

i δijdϕ
idϕj

is the standard metric of Sn−1. The constant r is the radius of the event
horizon, a 6= 0 the rotational parameter and

(4.108) l2 = − 1

m(2m− 1)
Λ.
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The relation

(4.109) a2l2 < 1

is assumed. We also require that a is small enough such that the scalar
curvature R of the metric σij is positive. We can write the metric as a
conformal metric

(4.110) σij =
r2 + a2

1− a2l2
σ̃ij .

Let us also note that the Schwarzschild-AdS black hole is obtained by setting
a = 0 and that

(4.111) lim
a→0

r = r0,

is the Schwarzschild black hole radius.
In order to prove the analogue of Lemma 4.7 we assume that, when

(4.112) |Λ| → ∞,

a is supposed to be so small that

(4.113) lim
|Λ|→∞

|Λ|a2 = 0

and

(4.114) lim
|Λ|→∞

|Λ|r2 =∞,

and we emphasize that these assumptions are always satisfied if a = 0, cf.
(4.98). If these are satisfied, then the operator A can be expressed in the
form

(4.115) A =
1− a2l2

r2 + a2
Ã,

where Ã converges uniformly in C∞(M) to the operator Ã in (4.94), i.e.,

for large |Λ|, Ã is uniformly elliptic and smooth such that the number of

non-positive eigenvalues n0(Ã) is bounded from above by the n0 of the limit
operator

(4.116) n0 ≥ lim sup
|Λ|→∞

n0(Ã),

since n0 is upper semi-continuous as it is well-known.

4.8. Lemma. Under the assumptions (4.113) and (4.114) the results of
Lemma 4.7 are also valid for the Kerr-AdS black hole, i.e., there exists |Λ0| >
0 such that for all

(4.117) |Λ| > |Λ0|

and for any β satisfying

(4.118) 0 < β0 ≤ β,
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where β0 is arbitrary,

(4.119) e−
β
2 λin(λi) ≤ c(β0)

uniformly in i ∈ N, |Λ| and β.

Proof. The proof is identical to the proof of Lemma 4.7 by using the fact
that the special Hm,2(M) norm

(4.120) 〈Ãmϕ, Ãmϕ〉0 + 〈ϕ,ϕ〉0,

with different m than used to express the dimension of M , is uniformly
equivalent to the standard Hm,2(M) norm, hence the Hilbert-Schmidt norm
of the embedding

(4.121) j : Hm,2(M) ↪→ L2(M)

is uniformly bounded. We also relied on

(4.122) µ̃j =
1− a2l2

r2 + a2
µj > µj > 0

for j ∈ N ′′i . �

Finally, let us derive the last result in this section.

4.9. Lemma. Let λi be the temporal eigenvalues depending on Λ and let
λ̄i be the corresponding eigenvalues for

(4.123) |Λ| = 1,

then

(4.124) λi = λ̄i|Λ|
n−1
n .

Proof. Let B and K be the bilinear forms defined in (4.40) resp. (4.41), where
B corresponds to the cosmological constant Λ, and let B1 be the form with
respect to the value

(4.125) |Λ| = 1.

Moreover, let us denote the corresponding quadratic forms by the same sym-
bols, then we have

(4.126)
B(ϕ)

K(ϕ)
= |Λ|

n−1
n
B1(ϕ)

K(ϕ)
∀ 0 6= ϕ ∈ C∞c (R+).

To prove (4.126) we introduce a new integration variable τ on the left-hand
side

(4.127) t = µτ, µ > 0,

to conclude

(4.128)
B(ϕ)

K(ϕ)
= µ−4n−1

n
B1(ϕ)

K(ϕ)
∀ 0 6= ϕ ∈ C∞c (R+).
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provided

(4.129) µ = |Λ|− 1
4 .

The relation (4.126) immediately implies (4.124). �

5. The partition function

We first define the partition function for the black holes and shall later
show that the definitions and results are also applicable in case of the quan-
tized globally hyperbolic spacetimes with a negative cosmological constant
and asymptotically Euclidean Cauchy hypersurfaces.

We define the partition function by using the spatial Hamiltonian H1 of
the quantized black holes, Kerr or Schwarzschild, which is now defined in the
separable Hilbert space H generated by the eigendistributions

(5.1) uijk = wiζijkϕj

which are smooth functions satisfying the eigenvalue equations

(5.2) H1uijk = λiuijk

as well as

(5.3) H0uijk = λiuijk,

where H0 is the temporal Hamiltonian.
In order to explain how the eigendistributions can generate a Hilbert space

let us relabel the eigenfunctions and the eigenvalues by (ui, λ̃i) such that

(5.4) H1ui = λ̃iui

and

(5.5) H0ui = λ̃iui,

i.e., the multiplicities of the eigenvalues are now included in the labelling and
the ordering is no longer strict

(5.6) λ̃0 ≤ λ̃1 ≤ λ̃2 ≤ · · · .
To define the Hilbert space H we simply declare that the eigendistributions
are mutually orthogonal unit eigenvectors, hence defining a scalar product in
the complex vector space H′ spanned by these eigenvectors. We define the
Hilbert space H to be its completion.

5.1. Lemma. The linear operator H1 with domain H′ is essentially self-
adjoint in H. Let H̄1 be its closure, then the only eigenvectors of H̄1 are
those of H1.

Proof. H1 is obviously densely defined, symmetric and bounded from below

(5.7) H1 ≥ λ̃0I > 0.

Since λ̃0 > 0, the eigenvectors also span R(H1), i.e., R(H1) is dense. Let

(5.8) w ∈ H
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be arbitrary, and let

(5.9) H1vi ∈ R(H1)

be a sequence converging to w, then vi is a Cauchy sequence, because

(5.10) λ̃0‖vi − vj‖2 ≤ 〈H1vi −H1vj , vi − vj〉 ≤ ‖H1vi −H1vj‖ ‖vi − vj‖,
hence

(5.11) R(H̄1) = H
and H̄1 is the unique s.a. extension of H1.

It remains to prove that H̄1 has no additional eigenvectors. Thus, let u be
an eigenvector of H̄1 with eigenvalue λ

(5.12) H̄1u = λu,

and let

(5.13) E(λ̃i) ⊂ H′, i ∈ N,
be the eigenspaces of H1. Let us first assume that there exists j such that

(5.14) λ = λ̃j ,

but

(5.15) u /∈ E(λ̃j).

Without loss of generality we may assume

(5.16) u ∈ E(λ̃j)
⊥.

However, this leads to a contradiction, since then

(5.17) u ∈ E(λ̃i)
⊥ ∀ i ∈ N,

and hence

(5.18) u ∈ H′⊥

which implies u = 0.
Thus, let us assume

(5.19) λ 6= λ̃i ∀ i ∈ N,
but then (5.17) is again valid leading to the known contradiction. �

5.2. Remark. In the following we shall write H1 instead of H̄1.

5.3. Lemma. For any β > 0 the operator

(5.20) e−βH1

is of trace class in H. Let

(5.21) F ≡ F+(H)

be the symmetric Fock space generated by H and let

(5.22) H = dΓ (H1)
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be the canonical extension of H1 to F . Then

(5.23) e−βH

is also of trace class in F

(5.24) tr(e−βH) =

∞∏
i=0

(1− e−βλ̃i)−1 <∞.

Proof. The first part of the lemma has already been proved in Corollary 4.6
on page 32. This property can now be rephrased as

(5.25) tr(e−βH1) =

∞∑
i=0

e−βλ̃i <∞.

The second assertion is well known, since

(5.26) H1 ≥ λ̃0I > 0,

and the properties (5.25) and (5.26) imply (5.24), cf. [1, Proposition 5.2.7]
and [9, Volume II, p. 868], where the equation (5.24) is also proved. �

We then define the partition function Z by

(5.27) Z = tr(e−βH) =

∞∏
i=0

(1− e−βλ̃i)−1

and the density operator ρ in F by

(5.28) ρ = Z−1e−βH

such that

(5.29) tr ρ = 1.

The von Neumann entropy S is then defined by

(5.30)

S = − tr(ρ log ρ)

= logZ + βZ−1 tr(He−βH)

= logZ − β ∂ logZ

∂β

≡ logZ + βE,

where E is the average energy

(5.31) E = tr(Hρ).

E can be expressed in the form

(5.32) E =

∞∑
i=0

λ̃i

eβλ̃i − 1
.

Here, we also set the Boltzmann constant

(5.33) KB = 1.
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The parameter β is supposed to be the inverse of the absolute temperature
T

(5.34) β = T−1.

In view of Lemma 4.9 on page 36 we can write the eigenvalues λi in the form

(5.35) λi = λ̄i|Λ|
n−1
n ,

where λ̄i are the eigenvalues corresponding to |Λ| = 1. Hence, Z, S, and E
can also be looked at as functions depending on β and Λ, or more conve-
niently, on (β, τ), where

(5.36) τ = |Λ|
n−1
n ,

since the λ̃i can also be expressed as

(5.37) λ̃i = λj = λ̄j |Λ|
n−1
n ,

where j is different from i

(5.38) j ≤ i,

because of the multiplicities of λ̃i. Let emphasize that the multiplicities also
depend on Λ, hence it is best to simply note that

(5.39) λ̃0 = λ0 = λ̄0|Λ|
n−1
n

and that the λ̃i are ordered. We shall never use the relation (5.37) explicitly
in the proofs of the subsequent theorems and lemmata referring to (5.35)
instead.

5.4. Theorem. (i) Let β0 > 0 be arbitrary, then, for any

(5.40) 0 < β ≤ β0,

we have

(5.41) lim
Λ→0

E =∞

as well as

(5.42) lim
Λ→0

S =∞,

where the limites are uniform in β.
(ii) Let β0 > 0 be arbitrary, then, for any

(5.43) β ≥ β0,

we have

(5.44) lim
|Λ|→∞

E = 0

as well as

(5.45) lim
|Λ|→∞

S = 0,

where the limites are uniform in β.
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Proof.
”
(i)“ We first observe that

(5.46) E =

∞∑
i=0

λ̃i

eβλ̃i − 1
≥
∞∑
i=0

λi
eβλi − 1

Now, let m ∈ N be arbitrary, then

(5.47) E ≥
m∑
i=0

λi
eβλi − 1

=

m∑
i=0

λ̄iτ

eβλ̄iτ − 1

and

(5.48)
lim inf
τ→0

E ≥ lim
τ→0

m∑
i=0

λ̄iτ

eβλ̄iτ − 1

= (m+ 1)β−1 ≥ (m+ 1)β−1
0

yielding

(5.49) lim
Λ→0

E =∞

uniformly in β.
Since Z ≥ 1, the relation (5.42) follows as well.

”
(ii)“ We estimate E from above by

(5.50)

E =

∞∑
i=0

λ̃ie
−βλ̃i

1− e−βλ̃i
=

∞∑
i=0

λ̃ie
− β2 λ̃ie−

β
2 λ̃i(1− e−βλ̃i)−1

≤ (1− e−β0λ̃0)−1c(β0)

∞∑
i=0

e−
β
2 λ̃i ,

where we used (5.43) and

(5.51) λ̃ie
− β2 λ̃i ≤ sup

t>0
te−

β
2 t = c(β) ≤ c(β0).

Furthermore, we know that

(5.52)

∞∑
i=0

e−
β
2 λ̃i ≤ c̃(β)

∞∑
i=0

e−
β
4 λi

≤ c̃(β0)

∞∑
i=0

e−
β0
4 λi ,

cf. Lemma 4.7 on page 33 and Lemma 4.8 on page 35, hence we obtain

(5.53) E ≤ (1− e−β0λ̄0τ )−1c(β0)c̃(β0)

∞∑
i=0

e−
β
4 λ̄iτ

deducing further

(5.54) lim sup
τ→∞

E ≤ c(β0)c̃(β0) lim
τ→∞

∞∑
i=0

e−
β
4 λ̄iτ = 0
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uniformly in β and hence

(5.55) lim
τ→∞

E = 0.

It remains to prove that S vanishes in the limit. We have

(5.56)

Z =

∞∏
i=0

(1− e−βλ̃i)−1 =

∞∏
i=0

(1 + e−βλ̃i(1− e−βλ̃i)−1)

≤ exp{(1− eβ0λ̃0)−1
∞∑
i=0

e−βλ̃i},

where we used the inequality

(5.57) log(1 + t) ≤ t ∀ t ≥ 0

in the last step.
Applying then the arguments preceding the inequality (5.54) we conclude

(5.58) lim
τ→∞

Z = 1

uniformly in β. �

5.5. Remark. The first part of the preceding theorem reveals that the
energy becomes very large for small values of |Λ|. Since this is the energy ob-
tained by applying quantum statistics to the quantized version of a black hole
or of a globally hyperbolic spacetime—assuming its Cauchy hypersurfaces are
asymptotically Euclidean—a small negative cosmological constant might be
responsible for the dark matter, where we equate the energy of the quantized
universe with matter. As source for the dark energy density we conjecture
that the dark energy density should be proportional to the eigenvalue of the
density operator ρ with respect to the vacuum vector η

(5.59) ρη = Z−1η,

which is Z−1.

The behaviour of Z with respect to Λ is described in the theorem:

5.6. Theorem. Let β0 > 0 be arbitrary, then, for any

(5.60) 0 < β ≤ β0,

we have

(5.61) lim
Λ→0

Z =∞

and for any

(5.62) β0 ≤ β
the relation

(5.63) lim
|Λ|→∞

Z = 1

is valid. The convergence in both limites is uniform in β.
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Proof.
”
(5.60)“ Let m ∈ N be arbitrary, then

(5.64)

Z ≥
∞∏
i=0

(1− e−βλi)−1 =

∞∏
i=0

(1− e−βλ̄iτ )−1

≥
m∏
i=0

(1− e−β0λ̄iτ )−1

and we infer

(5.65) lim
τ→0

Z = lim inf
τ→0

Z =∞.

”
(5.63)“ This limit relation has already been proved in (5.58). �

Let us now consider the quantized globally hyperbolic spacetimes with an
asymptotically Euclidean Cauchy hypersurface. The eigenspaces

(5.66) Eλi ⊂ S ′(S0)

of H1 are separable but they are in general not finite dimensional as can be
seen by the following counterexample

(5.67) H1 = −∆

in Rn. The eigenspaces

(5.68) Eλi , λi > 0,

contain the tempered distributions

(5.69) ei〈k,x〉, k ∈ Sn−1
λi

.

As a Hamel basis they generate a vector space the dimension of which is
equal to the cardinality of Sn−1. Of course, as a Schauder basis the functions
with

(5.70) k ∈ D ⊂ Sn−1
λi

,

where D is countable and dense, generate a dense subspace.
This example indicates that not all eigendistributions of H1 might be phys-

ically relevant. Contrary to the cases of the black holes, where the selection of
eigenvectors and eigendistributions was a natural process, only the temporal
eigenvectors are naturally selected in the present situation and of course at
least one matching spatial eigendistribution to obtain a solution of the wave
equation. Hence, we could use H0 to define the partition function. However,
we believe this choice would be too restrictive, and we shall instead stipulate
that we only pick at most

(5.71) c|λi|p

spatial eigendistributions in Eλi , where c and p are arbitrary but fixed con-
stants, i.e., we assume that

(5.72) n(λi) ≤ c|λi|p ∀ i ∈ N.
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With this assumption it becomes evident that the results and conjectures of
Theorem 5.4, Remark 5.5 and Theorem 5.6 are also valid in case of globally
hyperbolic spacetimes with asymptotically Euclidean hypersurfaces.

6. The Friedmann universes with negative cosmological
constants

In [5, Remark 6.11] we observed that, if the Cauchy hypersurface S0 is a
space of constant curvature and if the wave equation (4.1) on page 25 is only
considered for functions u which do not depend on x, then this equation is
identical to the equation obtained by quantizing the Hamilton constraint in
a Friedman universe without matter but including a cosmological constant.
The equation is then the ODE

(6.1)
1

32

n2

n− 1
ü− n

2
Rt2−

4
nu+ nt2Λu = 0, 0 < t <∞,

where R is the scalar curvature of S0. We cannot apply our previous ar-
guments to the solutions of this ODE. However, if we consider instead the
more general equation (4.1), where u is also allowed to depend on x, which
certainly is more general and accurate, then the previous arguments can be
applied if the curvature κ̃ of S0 vanishes

(6.2) κ̃ = 0.

The scalar curvature, which is equal to

(6.3) R = n(n− 1)κ̃,

then vanishes too and

(6.4) S0 = Rn.

We are now in the situation which we analyzed at the end of the previous
section, where now the spatial Hamiltonian is

(6.5) H1 = −(n− 1)∆

and some spatial eigendistributions are shown in (5.69) on page 43. However,
since we consider the quantized version of a Friedmann universe we shall look
for radially symmetric eigendistributions, i.e., we look for smooth functions
v = v(x) satisfying

(6.6) v(x) = ϕ(r)

such that

(6.7) ∆v = ϕ̈+ (n− 1)r−1ϕ̇ = −µ2ϕ in r > 0,

where µ > 0. Obviously, it is sufficient to assume µ = 1, because, if ϕ is an
eigenfunction for µ = 1, then

(6.8) ϕ̃(r) = ϕ(µr)

is an eigenfunction for the eigenvalue µ2. Therefore, let us choose µ = 1.
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We shall express the solution ϕ with the help of a Bessel function Jν . Let
ψ be a solution of the Bessel equation

(6.9) ψ̈ + r−1ψ̇ + (1− r−2ν2)ψ = 0,

where

(6.10) ν =
n− 2

2
,

then the function

(6.11) ϕ(r) = r−νψ

satisfies

(6.12) rϕ̈+ (2ν + 1)ϕ̇+ rϕ = 0,

which is equivalent to (6.7) with µ = 1. The Bessel equation (6.9) has the
two independent solutions Jν and Yν , the Bessel functions of first kind resp.
of second kind. It is well known that the functions

(6.13) r−νJν

can be expressed as a power series in the variable r2, cf. [2, equ. (21), p. 420],
i.e., the function

(6.14) v(x) = ϕ(r) = r−νJν

is smooth in Rn, while the functions

(6.15) r−νYν

have a singularity in r = 0. Hence, there exists exactly one smooth radially
symmetric solution v of the eigenvalue equation

(6.16) −∆v = λ2v, λ > 0,

which is given by

(6.17) v = (λr)−νJν(λr).

This solution also vanishes at infinity, hence it is uniformly bounded and a
tempered distribution.

A solution of the wave equation (4.1) on page 25, in case of a quantized
Friedmann universe, is therefore given by a sequence

(6.18) ui = wi(t)vi(x), i ∈ N,

where wi is a temporal eigenfunction and vi a spatial eigenfunction. The
ui are also eigenfunctions for the temporal Hamiltonian as well as for the
spatial Hamiltonian. Each eigenvalue has multiplicity one. We have therefore
proved:
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6.1. Theorem. The results in Theorem 5.4, Remark 5.5 and Theorem 5.4
are also valid, if the quantized spacetime N = Nn+1, n ≥ 3, is a Friedmann
universe without matter but with a negative cosmological constant Λ and with
vanishing spatial curvature. The eigenvalues of the spatial Hamiltonian H1

all have multiplicity one.
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