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Abstract

We study rooted cluster algebras and rooted cluster morphisms which were introduced
in [?] recently and cluster structures in 2-Calabi-Yau triangulated categories. An example
of rooted cluster morphism which is not ideal is given, this clarifies a doubt in [?]. We
introduce the notion of freezing of a seed and show that an injective rooted cluster morphism
always arises from a freezing and a subseed. Moreover, it is a section if and only if it arises
from a subseed. This answers the Problem 7.7 in [?]. We prove that an inducible rooted
cluster morphism is ideal if and only if it can be decomposed as a surjective rooted cluster
morphism and an injective rooted cluster morphism. For rooted cluster algebras arising
from a 2-Calabi-Yau triangulated category C with cluster tilting objects, we give an one-
to-one correspondence between certain pairs of their rooted cluster subalgebras which we
call complete pairs (see Definition ??) and cotorsion pairs in C.
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Cotorsion pair; Cluster structure.
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1 Introduction

Cluster algebras were introduced by Sergey Fomin and Andrei Zelevinsky in [?] with the aim
of giving an algebraic frame for the study of the canonical bases of quantum groups and the
total positivity in algebraic groups. The further developments were made in a series of papers
[2, 2, ?]. It has turned out that these algebras have been linked to various areas of mathematics,
for example, Poisson geometry, algebraic geometry, discrete dynamical system, Lie theory and
representation theory of finite dimensional algebras.

After a number of studies of the cluster algebras in a combinatorial framework, it seems that a
construction of a categorical framework is necessary. In [?], the authors introduced a category
Clus of rooted cluster algebras (see Definition ??) of geometry type with non-invertible coeffi-
cients. The only difference between a rooted cluster algebra and a cluster algebra is the emphasis
of the initial seed in the rooted cluster algebra. The morphisms in this category, which are called
the rooted cluster morphisms (see Definition ??), are ring homomorphisms which commute with
the mutations of rooted cluster algebras. Those bijective morphisms, which are called cluster
automorphisms, are also studied in [?, 2, 2, 2, 2, 2, ?]. In this paper, we study rooted cluster
algebras, rooted cluster morphisms furthermore, and rooted cluster subalgebras. In particular we
answer some questions appeared in [?] and give a relation between complete pairs (see Definition
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??) of rooted cluster subalgebras of rooted cluster algebras arising from 2-Calabi-Yau triangu-
lated categories and cotorsion pairs in these categories. The relation between complete pairs
(see Definition ??) of rooted cluster subalgebras of rooted cluster algebras arising from stably
2-Calabi-Yau Frobenius categories and cotorsion pairs in these categories will be given in [CZZ].
We introduce the main results and the structure of the paper as follows:

We study rooted cluster morphisms and ideal rooted cluster morphisms in Section ??. In sub-
section ??, we recall the definitions of rooted cluster algebras and rooted cluster morphisms. In
subsection ??, we consider the ideal rooted cluster morphism, which is a special rooted cluster
morphism such that its image coincides with the rooted cluster algebra of its image seed (see
Definition-Proposition ??(1)). In general, a rooted cluster morphism is not ideal, we give such an
example (Example ??), which clarifies a doubt in [?] (compare Problem 2.12 in [?]). Note that
Gratz also obtains this result in [?]. Then we prove in Theorem ?? that three kinds of important
rooted cluster morphisms are ideal. Further, we show that ideal rooted cluster morphisms have
some nice properties. It is shown in Theorem ??(2) that an ideal rooted cluster morphism is a
composition of a surjective rooted cluster morphism and an injective rooted cluster morphism. In
Theorem ?? we prove that the inverse statement is also true for an inducible rooted cluster mor-
phism, that is, the rooted cluster morphism which is induced from a ring homomorphism between
the corresponding ambient rings (see Definition 2?).

In subsection ??, we introduce the decompositions of an ice valued quiver and of an extended
skew-symmetrizable matrix. And then we decompose a seed by decomposing the corresponding
exchange matrix at the beginning of subsection ??. Under these decomposition, the tensor de-
composition of a rooted cluster algebra is described in Theorem ??. Then we introduce the notion
of freezing of a seed in Definition ?? by freezing some initial exchangeable variables.

Subsection ?? is devoted to study the rooted cluster subalgebras of a rooted cluster algebra. Given
a seed X and a freezing Xy of Z, it is proved in Definition-Proposition ?? that the rooted cluster
algebra A(X) is a rooted cluster subalgebra of A(X), that is, there is an injective rooted cluster
morphism from AXy) to A(X). Example ?? shows that some special subseeds also give root-
ed cluster subalgebras. In fact, we prove in Theorem ?? that for a given rooted cluster algebra
A(Z), each of its rooted cluster subalgebra A(X’) comes from a freezing and a subseed, and the
corresponding injection from A(X’) to A(T) is a section if and only if the image seed f(¥X') is a
subseed of X. The last statement answers the Problem 7.7 in [?].

By using the results in Section ??, the second purpose of the paper is to establish a relation
between the rooted cluster subalgebras of rooted cluster algebras arising from 2-Calabi-Yau tri-
angulated categories with cluster tilting subcategories and the cotorsion pairs in these categories.
Recall that cluster categories were firstly introduced in [?] (see also [?] for type A,) as a categori-
fication of cluster algebras. The stable module categories of the preprojective algebras of Dynkin
type were considered for a similar purpose [?, ?]. Both of these categories are 2-Calabi-Yau tri-
angulated categories with cluster tilting subcategories. The cluster structure given by the cluster
tilting subcategories is defined in [?] and also be studied in [?]. A 2-Calabi-Yau triangulated
category with a cluster structure can be viewed as a categorification of cluster algebras associated
to the cluster tilting subcategories. There are many works on this topic, see survey papers and
references cited there [?, ?]. A cotorsion pair in a triangulated category was introduced in [?], see



also in [?], and studied in [?, 2, 2, 2, 2, 2, ?] and many others furthermore. We recall some basic
definitions and results on cotorsion pairs in subsection ??.

In subsection ??, we show that for a functorially finite rigid subcategories J in a 2-Calabi-Yau
triangulated category C with a cluster structure, the subfactor triangulated category ~7[1]/7 in-
herits a cluster structure from C. Subsection ?? is devoted to study the cluster substructures in
cotorsion pairs. We prove in Theorem ?? that in a 2-Calabi-Yau triangulated category C with a
cluster structure given by its cluster tilting subcategories, if the core J of a cotorsion pair can be
extended as a cluster tilting subcategory, then both the torsion subcategory and the torsionfree
subcategory in the cotorsion pair have cluster substructures.

By using the cluster map ¢ defined in [?], we prove in Theorem ?? that there is a bijection be-
tween cotorsion pairs with core 7 C 7 and complete pairs of rooted cluster subalgebras of A(7")
with coefficient set ¢(J), where 7 is a cluster tilting subcategory in C. Finally, by gluing inde-
composable components of A(7 1), we classify the cotorsion pairs with core J in C.

2 Rooted cluster morphisms

2.1 Preliminaries of rooted cluster morphisms

Cluster algebras were introduced in [?]. For the convenience of studying morphisms between
cluster algebras, in [?], the authors introduced rooted cluster algebras of geometry type with non-
invertible coefficients by fixing an initial seed of the cluster algebras. We recall basic definitions
and properties on rooted cluster algebras and rooted cluster morphisms in this subsection.

Definition 2.1. [?]

1. A seed is a triple ¥ = (ex, fx, B) where ex = {x1,x2,- - -, x,} is a set with n elements and
x = ex LUfX = {x1,x2,- - -, x;n} is a set with m elements. Here m > n are positive integers
or countable cardinality. B = (byy)xxex € Mxxex(Z) is a locally finite integer matrix with a
skew-symmetrizable submatrix B consisting of the first n rows.

2. AseedY = (ex',fX',B’) is called a subseed of a given seed X = (ex, fx, B), if ex’ C ex,
fx’ C fx and B’ = Blex’ LUfX'], where Blex’ LfX’] is a submatrix of B corresponding to the
subset ex’ LI fX’.

3. A seed X°P = (ex,fx, —B) is called the opposite seed of a given seed T = (ex, fx, B).

The set x is the cluster of X. The elements in x (ex and fx respectively) are the cluster variables
(the exchangeable variables and the frozen variables respectively) of X. The matrix B is called
the exchange matrix of X. It is an extended skew-symmetrizable integer matrix with the principal
part B skew-symmetrizable. We say a seed £ = (ex, fx, B) trivial if the set ex is empty. The
rational function field ¥y = Q(x1, x2, - - -, x;,,) is called the ambient field of X.

Given a seed X and an exchangeable variable x of X, we can produce a new seed by a mutation
defined as follows:



Definition 2.2. [?]. The seed u,(X) = (u(ex), u,(fx), u,(B)) obtained by the mutation of X in the
direction x is given by:

1. uy(ex) = (ex \ {x}) LU {x"} where

xx' = l_l yb«"x + l_l y_b«”.

YEX ; YeX ;
by >0 byx<0

2. uy(fx) = fx.
3. ux(B) = (b;z)xxex € Mxxex(Z) is given by

b = —by; ifx=yorx=z;
b by: + 3(Ibyxlby + byulby:l)  otherwise.

Now, we recall the definition of rooted cluster algebras as follows:

Definition 2.3. (/?], Definition 1.4). Let = (ex, fx, B) be a seed.

1. A sequence (xi1,--- ,x;) is called X-admissible if x| is exchangeable in X and x; is exchange-
ablein uy, , o--- oy, (Z) for every 2 < i < l. Denote by Mut(Z) = {uy, o -+ oy () | n >
0 and (x1,--- , x,) is Z-admissible} the mutation class of X.

2. A pair (Z,A) is called a rooted cluster algebra with initial seed ¥, where A is the Z-
subalgebra of Ty, given by :

A=Z|x|xe€ U x'|.
(ex’,fx’,B’)eMut(X)

We call the clusters of seeds in Mut(Z) the clusters of (£, A). The cluster variables (the exchange-
able variables and the frozen variables respectively) in these clusters are called cluster variables
(the exchangeable variables and the frozen variables respectively) of (X, A). In particular, the
cluster (cluster variable respectively) of X is called the initial cluster (cluster variable respective-
ly) of (X, A). The elements in the multiplicative group freely generated by frozen variables of
(%, A) are called the coefficients of (X, A). We denote by Zx the set of cluster variables in (X, A).
We always write (Z, A) as A(Z) for simplicity. Note that for a trivial seed X = (0, fx, B), the as-
sociated rooted cluster algebra is just the polynomial ring Z[fx]. We refer the readers to [?] for
more examples of rooted cluster algebras. Cluster algebras have many remarkable properties, for
example, the Laurent phenomenon. In fact, because the only difference between rooted cluster
algebras and cluster algebras is the emphasis of the initial seeds in rooted cluster algebras, these
properties are also true for rooted cluster algebras.

Theorem 2.4. ([?],Theorem 3.1)([?],Proposition 11.2). Given a seed T = (ex,fx, B) with x =
ex Lfx = {x1, -, x ) U{Xps1,- -, Xm). Let Lyz := Z[xfl,--- X Xpits o+, Xl be the local-
ization of polynomial ring Z[x1,- - , Xn] at x1,--+ , x,. Then

2c () Lvz ad ADC () Lyz

¥’ eMut(X) >’ eMut(X)



Definition 2.5. . ([?] Definition 2.2). Let T = (ex,fx,B) and ¥’ = (ex’,fx’, B’) be two seeds.
Denote by x = ex LI fx and x’ = ex’ U fX'. A ring homomorphism f : AX) — AX') is called a
rooted cluster morphism if
(CM1) f(ex)cex'UZ;
(CM2) f(fx)cx' UZ;,
(CM3) Forevery (f,2,X')-biadmissible sequence (xi,--- ,x;), we have p1y, 0 --- o (1, 5(y) =
Ko © <+ © Uree)x (f) for any y in X, where gy o -+ o e (f()) = f(¥)
when f(y) is an integer. Here a (f,%,%')-biadmissible sequence (x1,--- , x;) is a Z-
admissible sequence such that (f(xy),--- , f(x1)) is ¥’ -admissible.

After introduced morphisms between rooted cluster algebras in [?], the authors proved that these
rooted cluster morphisms consist the set of morphisms of a category Clus with the objects given
by rooted cluster algebras. This category has countable coproducts but no products. And in
this category, the monomorphisms coincide with the injections but not all the epimorphisms are
the surjections. They also introduced the following ideal rooted cluster morphisms to get better
understanding of rooted cluster morphisms.

Definition-Proposition 2.6. Given two seeds ¥ = (ex,fx,B) and ¥’ = (ex’,fx',B’) with x =
ex Lfx and X' = ex’ UfX'. Let f : A(X) — AX') be a rooted cluster morphism.

1. ([?],Definition2.8). The image seed of X under f is f(£) = (ex’ N f(ex),x' N f(x) \
ex’ N f(ex), B'[x' N f(x)]).

2. ([?], Lemma 2.10, Definition 2.11). We have A(f(X)) C f(AX)). If the equality holds,
then f is called an ideal rooted cluster morphism.

Now we define rooted cluster subalgebras, which is a modified version and a slight generalization
of subcluster algebras defined in [?] (see Remark ?? for concrete relation of these two definitions).
We will study rooted cluster subalgebras in subsection ?? and rooted cluster subalgebras arising
from a cotorsion pair in a 2-Calabi- Yau triangulated category in section ??.

Definition 2.7. If there is an injective rooted cluster morphism f from A(X) to A(X'), then we
call A(X) a rooted cluster subalgebra of A(X).

0 1 0 1 0
-1 0 ||andX =|(x1,x2,x3),0,] =1 0 1 |].
0 -1 0 -1 0

It is easy to check that the identity f on Fx = Ty = Q(x1,x2, x3) induces a rooted cluster
morphism [’ from AX) to AX"). Since f is injective, f’ is also injective. Therefore A(X) is a
rooted cluster subalgebra of AY').

Example 1. Given two seeds

X= [(Xl, x2), (x3),

Example 2. Given a seed X = (ex,fx, B), let ¥’ = (ex',fX', B") be a subseed of X. Then the
natural injection from ex’ U fX’ to ex U fX induces an injective ring morphism j from Ly 7 to
Ls 7. If jinduces a rooted cluster morphism f from A(X") to AX), then f is injective and AX)
is a rooted cluster subalgebra of A(X). We will show in Theorem ??(4) when the injection j
induces a rooted cluster morphism f.



2.2 Ideal rooted cluster morphisms

This subsection is devoted to ideal rooted cluster morphisms. For a seed ¥ = (ex, fx, B) with

X =exUfx ={x;, -+, x,} U{Xps1,- -+, X}, we introduce Lz g := Q[xi—'l, R

as the ambient ring of the rooted cluster algebra A(X).

7-xl’l+]9“' ,xm]

Definition 2.8. Given T = (ex,fx, B) and ¥’ = (ex’,fx’, B’) be two seeds with x = ex U fX and
X =ex UfX'. Let f : AXX) —» ARX') be a rooted cluster morphism.

1. We call f inducible if it can be lifted as a ring homomorphism between the corresponding
ambient rings.

2. We call f explicit if it is uniquely determined by the images of the initial cluster variables.
More precisely, if there is a rooted cluster morphism f’ from A(X) to A(X') coinciding with
f on the initial cluster variables, then f = f’.

It is easy to see that a rooted cluster morphism is inducible if and only if the image of any initial
exchangeable cluster variable is not zero. By the definitions, an inducible rooted cluster morphis-
m is explicit. Conversely, we state the following problem.

Problem 1: Whether any explicit rooted cluster morphism is inducible or not?

There exists rooted cluster morphism which is not explicit, see the following example.

Example 3. Consider the seed

1
-1 0
2 =|(x1,x2), (x3, x4),
(1, %2), (3, %0), | (0
0 0
1
and the rooted cluster algebra A(X) = Z[x1, x2, X3, X4, ‘;;Vz , x'x—+2x3, %] Define a map
X1 = 0
X2 = -1
X3 = 0
f; X4 B Xy
1+x;
o Y
X1+X3 N 0
x
X1+X3+X2X3 — _1

X1X2

where y is any given element in A(X). One can easily check that this map induces a ring homo-
morphism from A(X) to itself. Moreover, there is no (f, X, X)-biadmissible sequence, thus f is a
rooted cluster morphism. Because the image of the cluster variable lzi can be chosen as any

1
element in A(X), this rooted cluster morphism is not explicit.

The following example shows that not all the rooted cluster morphisms are ideal. This clarifies a
double in [?].



Example 4. Consider the rooted cluster morphism f in Example ??. Let y = x;, then we have
fAR)) = Z[x1, x2] and
f&) = (@, (x1), [0D.
Therefore
A(fE)) = Z[x]

so that A(f(X)) & f(AX)) and thus f is not ideal.

We notice that this counterexample is not an explicit rooted cluster morphism and therefore the
degree of freedom in choosing the images of cluster variables is increased significantly. Thus we
state the following problem which can be viewed as an improved version of Problem 2.12 in [?].

Problem 2: Whether every explicit rooted cluster morphism is ideal or not?

In [?], the authors raised a problem that characterize rooted cluster morphisms which are ideal.
We have the following answers in several important cases.

Theorem 2.9. Given two seeds ¥ = (ex,fx,B) and ¥’ = (ex’,fX’, B’) with x = ex U fX and
X =ex UfX. Let f : AX) — ARX') be a rooted cluster morphism. Then f is ideal if one of
the following conditions is satisfied:

1. f(ex) C ex’;
2. fisinducible and X is finite acyclic;

3. fisinducible and surjective.

Proof. 1. From the Definition-Proposition??(2), it is sufficient to show that f maps the clus-
ter variables of A(X) to A(f(X)). Because f(ex) C ex’, each Z-admissible sequence
is (f,X,X")-biadmissible. Thus for each cluster variable y = py, o --- 0 uy, o ty, 5(x)
in A(X), where the sequence (xi,---,x;) is X-admissible and x € x, we have f(y) =
Hf(xp) © O Mf(xy) © Mrx)x (f(x)) because of (CM3). Itis clear that (xi,-- -, x;) can also be
viewed as a (f, Z, f(X))-biadmissible sequence. Now we prove that

HfGe) © =+ © Hf(xy) © M, s (F(X)) = fpcg) © -+ 0 f(xy) © L), ) (f(X))

and then f(y) belongs to A(f(X)). Inductively, it is only need to show the case of [ = 1.

If x # x1, then s s (f(x) = fux, =(x)) = f(x). Therefore f(x) # f(x1) and prr(x)y, ) (f (X)) =

FO) =ty z(F0). In fact, if £(x) = f(x1), then iy z(f(x) = “EHHLED where
m(x") and my(x’) are monomials of X" \ f(x;), and not equal to f(x) since the algebraic
independence of the initial cluster variables, thus a contradiction.



If x = x1, since f is inducible, we have

1
f(/Jxl,Z(xl)) :f ; 1—[ f(y)byxl + 1—[ f(y)_b)"‘l
yex yex ;

by, >0 by, <0

= f(io [T o+ ] ot

yEX 5 yEX 5
by >0 byx, <0
On the other hand,
! bl’f(') _b:f( )
Mf(xl),z/(f(xl)):m l_[ z e + ]_[ z Jo) and
1 zex’ zex’
bopepy>0 B gy <0
1 b'fw(x ) _b}'@)ﬂx )
s 0) = o= [ ro)meos ] oo
1 vex,f(y)ex’ ; vex,f(y)ex’ ;
Yirap™0 Yoo <0

Then from f(uy, x(x1)) = prx,)s (f(x1)) and the algebraic independence of the initial clus-
ter variables, we have

[sor= [] #o0 . [Jort= [] o o

yEX ; zex’ ; YEX €X'
, ’
byx >0 bzf(xl )>0 by <0 bzf(xl )<O
— 4 ,
r[ f(y)byxl — r[ z bz_/(xl ) . l—[ f(y) —byx1 = l—l szf()fl )
yex zex YEX ; zex’ ;
byg, >0 B4y <0 byxy <0 b pey>0

No matter for which case, the above equalities show that the factors of the right hand
monomials in these equalities are of the form f(y) with y € x. Thus we have equalities

l—[ Feen = l—[ ORI l_[ e = 1_[ o) o or

/zex’ ; ye/x, fOex’ ; ,zex/ ; yelx, fO)ex’ ;
b pey>0 Yywrap™0 b ey <0 Yrwrap<0
l_[ 7 P = l_[ ) o n Fen = l_[ F(y) o
e yegc,f(y)EX’ ; & y€lx,f(y)ex’ ;
by <0 Yrwrap™0 b pepy>0 b <0

respectively. Thus p s s/ (f(x1)) = trex, ) (f(x1)). Therefore for each x € x we have

M.z (F(0)) = M), e (f(X)). )



2. Because X is finite acyclic, it follows from Theorem1.20 in [?] that A(X) is finite gen-
erated and equal to Z[xy,- - , Xm, Uy, (X1), - -, iy, (xn)], Where ex = {x1,x2,- - -, x,} and
X = {x1,x2, * -, Xn}. Thus to prove that f(AX)) € A(f(X)), it is only need to show
that f(uy(x;)) € A(f(X)) for any x; € ex. In fact, if f(x;)) € ex’, then f(u,(x;) =
Hreos (F(x0) = propre(f(x) € A(f(X)) from the equality (1). If f(x;) € Z, then
we have

1 j TOxx;
fnen = oS || | seots [ ] re],

XEX ; XEX
byx;>0 byx;<0

since f is inducible. Therefore f(uy,(x;)) belongs to A(f(X)).

3. It follows from Lemma 3.1 [?] that f(£) = ¥’. Thus we have f(AX)) C AEX’) = A(f (X))
and f is ideal.
O

Remark 2.10. In fact, by checking the proof of Lemma 3.1 [?], one can easily notice that it
missed a condition that f should be inducible.

2.3 Ice valued quivers

In this subsection, we recall ice valued quivers and their relations with extended skew- symmetriz-
able matrices (compare [?]). Although these contents are standard, we write them down here for
the convenience of the readers. Then we decompose ice valued quivers and extended skew- sym-
metrizable matrices, which will be used to decompose rooted cluster algebras and rooted cluster
morphisms in the next subsection.

Definition 2.11. A valued quiver is a triple (Q, v, d) where

1. O = (Qo, Q1) is a locally finite, simple-laced quiver without loops nor 2—cycles. Denote
by Qo ={1,2,--- ,n} with n the cardinality of Qo which maybe a countable number;

2. v : Q1 — N2 s a function, which maps each arrow « to a non-negative number pair

(@)1, v(@)2);

3. d: Qo — Z% is a function such that for each vertex i and each arrow « : i — j, we have
d@v(a)1 = v(@)d()).

A valued quiver (Q,v,d) with v(a); = v(a), for each arrow « in Qg is called an equally valued
quiver. An equally valued quiver (Q, v, d) corresponds to an ordinary quiver Q’ in the following
way: Q’ has the vertex set Qgp, and there are v(a); = v(a), number of arrows from i to j for
any vertices i,j € Qp and @ : i — j. It is easy to check that the above correspondence gives
a bijection between the set of equally valued quivers and the set of ordinary quivers without
loops nor 2-cycles. Given a valued quiver (Q, v,d) with Qg = {1, 2, -- ,n}, we associate a matrix
B = (bjj)nxn € Muxn(Z) as follows:

0 if there is no arrow between i and j ;
bij =3 v(a)n if there is an arrow @ : i — j ;
—v(a),; ifthereisanarrowa:j—i.



Let D = (d;ij)nxn € Muxn(N) be the diagonal matrix with d;; = d(i), i € Qo, then by Definition
??(3), B is a skew-symmetrizable matrix in the sense of DB skew-symmetric. Conversely, one
can construct a valued quiver from a skew-symmetrizable matrix, we refer to [?] for more details,
and it is easy to check that these procedures give a bijection between the valued quivers with
vertex set {1,2,--- ,n} and the skew-symmetrizable integer matrices with rank n.

Definition 2.12. An ice valued quiver Q = (Qy, Q1) is a quiver without loops nor 2-cycles, where
1. Qo =Qju Qg ={1,2,--- ,n}U{n+1,--- ,m} with m > n be positive or countable;

2. the full subquiver Q¢ = (Qg, OF) of Q is a valued quiver;
3. there are no arrows between vertices in Qg.

The subquiver Q° is called the principal part of Q. The vertices in O are called the exchangeable

vertices while the vertices in Qg are called the frozen vertices. For the ice valued quiver Q =
(Qo, O1), the associated matrix B = (b;j)mxn € Muxn(Z) consists of the following two parts. The
principal part of the first n rows is given by the skew-symmetrizable matrix associated with the
valued quiver Q°. Given two vertices i € Qg and j € Qf, the elements in the last m — n rows are
as follows:

b= 4 M if there are n;; arrows from i to j ;
Y —n;;  if there are n;; arrows from jtoi.

It is easy to see that the above procedure is reversible and gives a bijection between the ice valued
quivers with vertex set Qp = O U Qg ={1,2,---,n}U{n+1,--- ,m} and the m X n extended
skew-symmetrizable integer matrices. Using this correspondence, we define the mutation of an
ice valued quiver by the matrix mutation defined in Definition ??(3). Then the mutation of an ice
valued quiver at an exchangeable vertex produces a new ice valued quiver which has the same
vertices as the original quiver has. We now introduce the following

Definition 2.13. An ice valued quiver Q is called indecomposable, if it is connected and the
principal part Q° is also connected.

It is not hard to see that an ice valued quiver is indecomposable if and only if the corresponding
extended skew-symmatrizable matrix is indecomposable in the following sense.

Definition 2.14. An extended skew-symmatrizable matrix B = (b;j)uxn is called indecomposable,
if it satisfies the following conditions,

1. forany 1 < s #t < m, there exists a sequence (ig = 8,11, i = ) with 1 < iy, i1, -, ij <m

such that b;;,,, # 0 foreach0 < j<I1-1;

2. forany 1 < s # t < n, there exists a sequence (iy = §,1i1,- -, i =) with 1 <y, i1, -, <n
such that b;,,, # 0 forany 0 < j<I1-1.

Definition-Proposition 2.15. We decompose an ice valued quiver Q as a collection {Q1, Q», - - - O}
of indecomposable ice valued quivers in a unique way. These quivers are called indecomposable
components of Q.

10



Proof. Given an ice valued quiver Q, we denote by Q¢, ;, --+, Qf all the connected components
of Q°, where r maybe a countable number. For each component Q¢, 1 < i < 7, we associate an ice
valued quiver Q; as a full subquiver of Q, the exchangeable vertices are the vertices of Q7 while
the frozen vertices are those frozen vertices of Q which connected to some vertices in Q¢ directly.

It is clear that Q; is indecomposable, and the decomposition is unique. m|

We also have the following matrix version of Definition-Proposition ??.

Definition-Proposition 2.16. We decompose an extended skew-symmatrizable matrix B as a col-
lection {B1, By, - - - B;} of indecomposable extended skew-symmatrizable matrices in a unique way.
These matrices are called indecomposable components of B.

Example 5. Given an ice valued quiver Q :

\j//\6

12— 2.

There are three indecomposable components of Q by decomposing it at frozen vertices 3 and 4 as
Sfollows:

0 : —6~—1.

The inverse process of the decomposition is the following gluing of ice valued quivers. Given two
ice valued quivers Q" = (Qy, Q}) and Q" = (Q, Q}), denote by (Q¢,V',d’) and (Q"*,v",d"”)
the principal parts of Q' and Q" respectively. Let A’ and A”” be two subsets of Qz)f and ng
respectively. Assume that there is a bijection f from A’ to A” and we identify A’ and A" as A
under this bijection. We define a quiver Q = (Qo, Q1), where Qp = (0 \ A") U (Q7 \ A”) UA and
the arrows in Q1 come from Q] and Q. More precisely, there is an arrow @ : i — jfor i, j € Qo
if and only if there is an arrow a : i — jin Q] or Q7.

Proposition 2.17. The quiver Q constructed above is an ice valued quiver where the principal

244

part is a full subquiver of Q corresponding to Q(° U Q¢ and the functions v and d are given by:

[ V() ifaeQf
v(a) - { VN(CZ) lfa’ c Qli/e :

di = { dl:/ lfl < Q(:)/ee
d’ ifieQf°.
We call Q the gluing of Q" and Q"' along f (or A).
Proof. This can be checked straightforward. |

Similarly, the gluing of extended skew-symmatrizable matrices can also be defined.
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2.4 Tensor decomposition and freezing

Recall that a seed is essentially determined by its exchange matrix, which is extended skew-
symmetrizable. Then we decompose a seed as follows by decomposing the corresponding ex-
change matrix.

Definition 2.18. Let X be a seed with the exchange matrix B. Denote by {B1, By, - - - , By} the set
of indecomposable components of B.

1. The seed X is said to be indecomposable if B is indecomposable.

2. The decomposition of X is a set Ind(X) = {Z1,%,,--+ ,%;}, where each Z;, 1 < i < I,
is a subseed of X corresponding to B;. We call each ¥;, 1 < i < t, an indecomposable
component of . Note that t could be a countable number.

As an inverse process of decomposition, we glue seeds at frozen variables by gluing the corre-
sponding matrix as defined in the above subsection.

Remark 2.19. 1. A cutting of a seed along separating families of frozen variables is defined
in [?] (Definition 7.2).1t is not hard to see that the decomposition of a seed at frozen vari-
ables is obtained by cuttings repeatedly.

2. It is also easy to see that an amalgamated sum along glueable seeds, which is defined in
[?] (Definition 4.11), is in fact a special case of a glue of seeds defined above. Comparing
with the amalgamated sum, in our sense, any two seeds are glueable along each bijection
between some frozen variables in these two seeds since we don’t care about connections
between frozen variables.

From now on to the end of this subsection, we fix the following settings. Let ¥ = (ex, fx, B)
be a seed with x = ex LI fx and B = (by))xxex- We denote by Ind(X) = {Z1,X, - ,%;} the set
of indecomposable components of X, where for each 1 < i < ¢, the seed %; is (ex;, fx;, B;) with
X; = ex; LI fx; and B; = (biy)xixexi, and Z5, is the set of cluster variables of ;. Let A(X)) ®z
AZp) Q7 -+ - @z A(X,) be the tensor algebra of the rooted cluster algebras A(X;), 1 < i < ¢
Then there is a quotient algebra A(X) ®z A(Xy) ®z - - - ®z A(Z,)/Z by identifying the elements
1@l 19x"®1---®land 1®1---1®x/"®1---®1 for any x € fx with x € x; N x; for
some 1 < i, j < t. Now we state one of the main theorems in this subsection as follows:

Theorem 2.20. 1. For each X; € Ind(X), the canonical injection j; : X; — X induces an
injective rooted cluster morphism from AX;) to AX). Thus AX;) is a rooted cluster
subalgebra of AX).

2. The set Zs of cluster variables of X coincides with the disjoint union |_|§:1( Zs \ ) | fx
3. The ring homomorphism
Ji Lx089 L5080 8 L30 = Lro

which is given by x1 @ X @ -+ Q@ x; V> ji1(x1)jo(x2) - - - ji(xy) for any x; € x;(1 < i < 1),
induces a ring isomorphism:

Ji AE) ®z A(Xp) @z -+ - @z AXy) /T — AX).
We call A(Z1) @z A(Xp) ®z - - - @7 A(X,)/ I the tensor decomposition of A(X).

12



Proof. 1. Itis clear that the map j; : x; — x lifts as a ring homomorphism from L5, g to Lz o
which satisfies (CM1) and (CM2). Note that each X;-admissible sequence (xi, x2,- - , X;)
is clearly (j;, Z;, X)-biadmissible, thus to prove that j; induces a homomorphism from A(%;)
to A(X) and satisfies (CM3), it is sufficient to show the equality uy, o --- o uy, 5,(y) =
My, © -+ 0y, =(y) for any X;-admissible sequence (xy, x2,-- -, x;) and any cluster variable
y € X;. Again, we prove the equality by induction on /. The case of / = 0 is clear. Assume
that/ = 1. If y # x1, then uy, 5,(y) =y = px, 5(»). If y = x1, then we have

sy = | [ % [Tt |= | [T 2+ [ 97 [=sasten

XEX; § XEX; § XEX XEX |
b, >0 b, <0 b)rxl >0 bxxl <O

exy vy
where the second equality follows from the definition of the indecomposable component.
Thus py, 5,(y) = py, =(v) for any cluster variable y € x;. When / = 2, it is clear that u,, (Z;)
is an indecomposable component of u,, (¥). Then similar to the case of / = 1, it can be
shown that for any cluster variable 1, (v) € ftx, (S, fxyyuy, 80 (Hrs ) = fagy, (i 0)):

thus we have Mxy © My, 3, ()’) = ﬂxz,/lxl (Zi)(luxl (Y)) = ﬂxz,ﬂxl (Z)(,le ()’)) = Mx, © ,le,z()’)- Finauy’
we inductively prove the equality in this way.

2. It follows from the proof of the above assertion that the set 25 contains the set | ['_, (2%, \
fx;) | |fx. Note that any cluster variable of A(X) is of the form py, o --- o puy, x(y), where

(x1, x2, -+, x7) is a X-admissible sequence and y € x is a cluster variable of £. Assume that
y € x; and {x,l} be the maximal subset of {xk} | With x;, € x; and i; < iy foreach 1 <7<
¢ < s. Then we have My @ 0 fty w(¥) = fy, O Op i =, (y) since %; is an indecomposable

component of ¥. Thus the inverse inclusion is valid and 2y = |_|§:1( s, \ Ix) | | £x.

3. Firstly, it is easy to see that j is a ring homomorphism and induces a surjective ring homo-
morphism j from AZ) @z A(X))Qz - - - @7 A(X;) to A(X) due to the assertion 2. Secondly,
the kernel Ker()) of jis T and thus we get the conclusion. In fact, Ker(j) = I is because
Ker(j) =

O

Example 6. Consider the ice valued quiver Q and its indecomposable components Q; (1 <i<3)
in Example ??. Denote by A and A; (1 < i < 3) the rooted cluster algebras corresponding to Q
and Q; (1 < i < 3) respectively. The ambient rings of A and A; (1 < i < 3) are respectively as
follows:

L£=0QLx", x5 w2 x5, 1],
L = Q! x5 x5, 1],
Lo = Q[xE', xg, xol,
L3 =Qx", 62 xp0l.
Let j: L1 ®q L2 ®q L3 — L be a ring homomorphism with
Xi, i=1,2,5,6,7;

Jxi) =4 x3, i=3,9,10;
X4, i=4,8.
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Then from above theorem, it induces a ring isomorphism j : A; ®z Ay @z Az/I — A, where
IT=<x30101-1®x01,x30101-101Q0x10,u®1®1-10x3®1 >.

Definition 2.21. Let ¥ = (ex,fx, B) be a seed and ex( be a subset of ex. The seed Xy = (ex \
exo, fx U exo, By) is called the freezing of X at exo, where By is obtained from B by deleting the
columns corresponding to the elements in exo.

Example 7. Consider the seed

0 -2 6
1 0 -3 and its ice valued quiver
2 2 0

2

/N

1,2 2,3

/ AN

X= [(Xl, X2,X3), D,

1 62 —=13.
Let
0 -2
Xr=1(x1,x),(x3),] 1 0
-2 2

be the freezing of X at the exchangeable cluster variable x3. Then the corresponding ice valued

quiver is
2
/ \
1,2
Y
l—

where we have framed the frozen vertex.

Definition-Proposition 2.22. The natural bijection j from the cluster variables of Xy to the clus-
ter variables of X induces an injective rooted cluster morphism from A(Zyr) to AX). Thus A(XZy)
is a rooted cluster subalgebra of A(X). We call A(Xy) the freezing of A(X) at exq.

Proof. Firstly, it is clear that j lifts as an injective ring homomorphism from Ly, g to Ly g which
satisfies (CM1) and (CM2). Secondly, each X;-admissible sequence (xi, x2,- -, x;) is clearly
(j, Zr, X)-biadmissible. Then similar to the proof of Theorem ??(1), (CM3) is also valid. So we
are done. |

2.5 Injections and specializations

In this subsection, we characterize injective rooted cluster morphisms and define the general
specialization.

Given two seeds Zg and X. Let g : A(Zg) — A(X) be an injective rooted cluster morphism.
Then from the injectivity, g induces an injection from the set Xy, of initial cluster variables in
A(Xp) to the set xy of initial cluster variables in A(X). In fact, for any x € xy, if g(x) = n € Z,
then we have g(n) = g(x) = n and a contradiction to the injectivity of g. Thus there is no harm to
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assume that Xy = (exg, fxo Ll exo, Bp) and X = (ex( LI ex; LI ex,, Xy LI x|, B) where g is an identity
on Xz, = exo L fxo Ll ex;. We define X = (exo U exy, fxo L fX| LI exp, By) as the freezing of X
at ex; and X; = (exy, fx; Ll ex;, By) as a subseed of ;. Denote by Ind(Zy) (Ind(X;) and Ind(X)
respectively) be the set of indecomposable components of £y (X; and X respectively).

Theorem 2.23. Let A(Xy) be a rooted cluster subalgebra of A(X) under an injective rooted
cluster morphism g : A(Xy) — A(X) with notations as above.

1. If the seed X is indecomposable, then ¥y (or 28’7 ) is an indecomposable component of Xy,
and the seed Xy is obtained by gluing Xy (or ng )and X1 along ex;.

2. There is a bijection h from Ind(Zo)UInd(Z;) to Ind(X ) such that W(X') = X’ or h(X') = X'°P
foreachX € Ind(Zo) and W(X') = ¥ for each ¥’ € Ind(¥) .

3. There is a rooted cluster isomorphism A(Xg) = A(g(Xp)).
4. The injection g is a section if and only if ex; is an empty set, that is, X is a subseed of X.

Proof. 1. For each exchangeable cluster variable x € exp, we have

ux(X)=i [T+ [] ™

YeXy) YeXy
0 0
by,>0 by, <0

in A(Xy), where b?,x entries in By. Then by viewing g as an identity on the set Xy, due to

(CM3), we have the equalities:

1 0 10 1 _
p I_l N l_[ Y7 | = 8(a(®) = prgen(8(x) = o ]_[ e l_[ P,

YEXs, ; YEXs, ; YeXs, VEXs,
b9.>0 59, <0 byx>0 byx<0

where by, entries in B and Xy f(: Xy as a set) is the set of cluster variables of X¢. Thus a
cluster variable y of Xr is connected with x in X if and only if it belongs to Xy, and is
connected with x in Xy, and moreover, b?,x = by, or ng = —by,. Finally, one of the two
seeds Xy and Egp is a subseed of X by the connectivity of Zy. Again by the connectivity,
one of these two seeds is an indecomposable component of X .

2. For each indecomposable component ¥’ in Ind(Xy), the composition of the morphism g
and the natural injection from A(X’) to A(Xy) induces an injective rooted cluster morphism
from AX’) to A(X). Thus ¥’ or ¥°P can be viewed as an indecomposable component of
2 from the first statement. It is clear that Ind(X) is a subset of Ind(Xy), thus we have
an injection & : Ind(Zp) U Ind(X1) — Ind(X) satisfies the properties we want. For the
bijectivity, it is only need to notice that the set of exchangeable cluster variables arising
from the seeds in Ind(Xy) U Ind(X,) contains the set of exchangeable cluster variables of
PP

3. This assertion is clear.
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4. This easily follows from the fact that it is forbidden in a rooted cluster morphism from

mapping an initial exchangeable variable to a frozen one.
]

Remark 2.24. 1. The above theorem allows us to find out all the rooted cluster subalgebras

of a given rooted cluster algebra up to isomorphism. The third part shows that the root-
ed cluster subalgebra in the sense of Definition ?? coincides with the subcluster algebra
defined in section IV.1[?] up to a rooted cluster isomorphism.

The fourth part of the above theorem answers the Problem 7.7 in [?]; more precisely, an
injective rooted cluster morphism g is a section if and only if g(X¢) is a subseed of ¥'.

The following two theorems describe the relations between ideal rooted cluster morphisms and
injective rooted cluster morphisms.

Theorem 2.25. Given two seeds ~ = (ex,fx, B) and ¥’ = (ex’,fx’, B’) with x = ex U fx and
x =ex' UfX. Let f : A(X) - ARX') be a rooted cluster morphism.

1.

Proof.

The rooted cluster algebra A(f(X)) is a rooted cluster subalgebra of AX') under the
natural injection on the initial cluster variables.

If f is ideal then it is a composition of a surjective rooted cluster morphism and an injective
rooted cluster morphism.

1. We consider the image seed f(Z) = (ex'Nf(ex),x’ N f(x)\ex' N f(ex), B’ [x'Nf(x)])
and the freezing Z’ = (ex’\ ex, fx’ Uex(, B’ ) of ¥’ at ex, where ex;, = {f(x) € ex’|x € fx}.
Then by a same argument used in the proof of Theorem ""(1) there exists no y € ex such
that f(y) € ex(. Thus f(ex) Nex; = @ and ex’ N f(ex) C ex’ \ ex(, X' N f(x) \ ex’ N f(ex) C
fx" L ex(). Therefore the seed f(X) is a subseed of Z}. Given an exchangeable variable
x1 of f(X), we can assume that x; = f(x) for some x € ex. Then we have the following
equalities:

Flex(x) = |_[ e [ ]y || = |—| for+ [T rort=|.

VEX ; VEX ; VEX ; YEX ;
byx>0 byx<0 byy>0 by,<0

ﬂx1,2’(x1)—— rl ylylxl+ l_l )’1 bl and

1€X 5 ]EX 5

1 by -b
My, fz)(X1) = o l_[ yout l—[ yo

y1€§’ﬂf(X) ; y16>f’ﬂf(X) ;
by1~¥1>0 b.vm<0

Because f is a rooted cluster morphism, we have f(u,x(x)) = py, 3 (x1). Then by a similar
trick used in the proof of Theorem ?2(1) we get uy, r)(X1) = py, 5/(x1). Thus for each
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yi € X" with by ,, # 0, we have y; € x' N f(x). Therefore, f(X) is a glue of some
indecomposable components of E’f. Finally, A(f(X)) is a rooted cluster subalgebra of
ﬂ(Z}.) and thus a rooted cluster subalgebra of A(X’).

2. Because f is ideal, it induces a surjective rooted cluster morphism f’ : AX) — A(f(X)).
It follows from the above assertion that j : A(f(X)) — A(X’) is an injective rooted cluster
morphism. Thus f is a composition of rooted cluster morphisms f” and j.

|

Theorem 2.26. Let f : AX) — AX') be an inducible rooted cluster morphism. Assume that
it is a composition of rooted cluster morphisms ' : AX) —» AX") and "’ : AX") - AEZ),
where f' is surjective and "' is injective. Then AX") = A(f (X)) and f is ideal.

Proof. Note that f” is a surjective inducible rooted cluster morphism because f is inducible.
Then from Theorem ??, f” is ideal and thus f’(A(X)) = A(f’(X)). On the one hand, f'(X) = "
from Lemma 3.1 in [?]. On the other hand, we have f"/(AX"”)) = A(f” (X)) because f”’ is
injective and thus ideal due to Corollary 4.5 in [?]. Therefore there are equalities f(AX)) =
I (AR) = /(A (X)) = f(AE")) = A(f”(Z")). Thus to prove that f is ideal, that is,
fAEZ) = A(f(D)), it is only need to show that A(f"" (X)) € A(f(Z)). Let x € xp(s) be a
cluster variable of f”/(X”) and assume that y € x5~ is a cluster variable such that f”’(y) = x. By
Lemma 3.1 in [?], there is a cluster variable y* € Xy such that f’(y’) = y. Then x = f()’) € Xyx)
and thus Xy C X(x). Similarly, we have ex (s C exy). Therefore A(f" (X)) € A(f(X))
and f is ideal. The rooted cluster isomorphism AX") = A(f(X)) is clear. O

For a rooted cluster algebra, we introduce the following notion of complete pairs of subalgebras
with given coefficients.

Definition 2.27. Let ¥ = (ex,fx, B) be a seed and Xy be the freezing of X at a subset ex’
of ex. Denote by fX( the set of isolated frozen variables of Xy. Let X1 = (exy,fxy, By) and
2y = (exo,fxo, By) be two subseeds of Zy. We call the pair (A(X1), A(X2)) a complete pair of
subalgebras of A(X) with coefficient set £x Ll ex’ if the following conditions are satisfied:

1. both Xy and X, are gluings of some indecomposable components of Ly,
2. ex; Nexy = 0 and ex = ex; Ll ex; LI ex’;
3. fxy C fx; N fxs.

In the rest of this subsection, we consider the specialization of a seed at some cluster variables.
Let ¥ = (ex, fx, B) be a seed with x = ex LI fx. Let X’ = ex’ LI fX’ be a subset of x with ex” C ex
and fx’ C fx. Denote by X’ = (ex’, fx’, B’) the subseed of .

Definition 2.28. The map f : x — x’ U Z is called a specialization of £ at x \ X', which is given
by:

x ifxex;

n ifxex\x.

|
If the map f induces a rooted cluster morphism f from A(Z) to AX’), then we call f the special-

ization of rooted cluster algebra AX) at x \ X'. If x\ X' = {x} for some x, then we call f a simple
specialization.
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The simple specialization is also defined in [?] and it is needed that f(x) # 0 for x € x \ X'. Itis
well-known that if x is frozen, then specializing x to 1 induces a rooted cluster morphism from
AZ) to A(X'), see for instance [?]. Generally we have the following analogue:

Proposition 2.29. Let f be a specialization defined as above. Assume that ex’ = ex and f(x) = 1
for all cluster variables x € X\ X', then the map f induces a rooted cluster morphism f from
AE) to AX).

Proof. Similar to the case of simple specialization defined in [?]. |

3 Relations with cluster structures in 2-Calabi-Yau triangulated cat-
egories

In this section, we consider the cluster substructure of a functorially finite extension-closed sub-
category in a 2-Calabi-Yau triangulated category which has a cluster structure given by cluster
tilting subcategories. We establish a connection between functorially finite extension-closed sub-
categories, cluster substructures and rooted cluster subalgebras.

3.1 Preliminaries of 2-Calabi-Yau triangulated categories

Let k be an algebraically closed field. Let C be a triangulated category, and we always assume that
it is k-linear, Hom-finite and Krull-Schmidt. Denote by [1] the shift functor in C. C is called 2-
Calabi-Yau if there is a bifunctorial isomorphism Extlc(X, Y) = DExtIC(Y, X) for all objects X and
Y in C, where D = Homy(—, k) is the k-duality. For a subcategory 8 of C, we always mean that 8
is a full additive category which closed under direct sums, direct summands and isomorphisms.
Denote by ind8 the set of isomorphism classes of indecomposable objects in B. For an object X
in C, we denote by addX the subcategory additive generated by X. For a set X of isomorphism
classes of indecomposable objects in C, we denote by addX the subcategory additive generated
by X. In this way, we have for a subcategory 8, 8 = add(ind®B). For subcategories 8 and D
with indB (N indD = 0, we denote by B & D the subcategory add(indB U indD). A subcategory
B of C is called contravariantly finite if for each object C in C, there exist an object B € B
and a morphism f € Homg¢(B, C) such that the morphism f- : Homg(—, B) — Homg(—, C) is
surjective on B, where f- maps any morphism g € Homg(B’, B) to fg for each B’ € 8. Here, f is
called a right B-approximation of the object C. Moreover, if f : B — C has no direct summand
of the form D — 0 as complex, we say f right minimal. A convariantly finite subcategory, a
left approximation and a left minimal map are defined in a dual way. If a subcategory is both
contravariantly finite and convariantly finite, then we call it functorially finite. A functorially
finite subcategory 7 of C is called a cluster tilting subcategory if the following conditions are
satisfied:

1. 7 isrigid, that is, Exté(T, T"=0forall T, T € T,
2. For an object X € C, X € 7 if and only if Exté(X, T)y=0forany T € 7.

An object T in C is called a cluster tilting object if 7 = addT is a cluster tilting subcategory.
The cluster tilting subcategories in a 2-Calabi-Yau triangulated category have many remarkable
properties. For example the property given in the following
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Lemma 3.1. (Theorem 5.3 [?]) Let T be a cluster tilting subcategory in a 2-Calabi-Yau trian-
gulated category C and T be an indecomposable object in T. Then there is a unique (up to
isomorphism) indecomposable object T' # T in C such that up(T") := add(indT \ {T} U {T"}) is
a cluster tilting subcategory in C, where T’ and T form two triangles:

L E S T T and

7S E LT

with minimal right add(ind7 \ {T})-approximation g and t and minimal left add(ind7T \ {T})-
approximation f and s.

The subcategory ur(7) is the mutation of 7 at T'. The first triangle is the right exchange triangle
of T in 7~ and the second one is the left exchange triangle of T in 7. We say that a cluster tilting
subcategory 7’ is reachable from 77, if it can be obtained by a finite sequence of mutations from
7. A rigid object in C is called reachable from 7 if it belongs to a cluster tilting subcategory
which is reachable from 7. Denote by R(7") the subcategory of C additive generated by rigid
objects in C which are reachable from 7.

For a cluster tilting subcategory 7, one can associate it a quiver Q(7") as follows: the vertices
of O(7") are the isomorphism classes of indecomposable objects in 7 and the number of arrows
from T; to T is given by the dimension of the space irr(T;,T;) = rad(T;, Tj)/radz(Ti, T)) of
irreducible morphisms , where rad(, ) is the radical in 7. The existence of the exchange triangles
for each indecomposable object in 7~ guarantees that Q(7) is a locally finite quiver.

The cluster structure of a triangulated category is defined in [?] and also be studied in [?]. For the
general definition of a cluster structure, we refer to [?]. In our settings, we use Theorem II 1.6 in
[?] to define the cluster structure.

Definition 3.2. We say that C has a cluster structure given by its cluster tilting subcategories if
the quiver Q(7°) has no loops nor 2-cycles for each cluster tilting subcategory T of C.

We recall the definitions of cotorsion pairs, t-structures and relative cluster tilting subcategories
in cotorsion pairs from [?, ?, 2, 2, ?].

Definition 3.3. 1. A pair (2", %) of functorially finite subcategories of C is called a cotorsion
pair ifExtlc(ﬂi”, %) =0and

C=Z=«%[1]:={ZeC|TAatriangleX — Z — Y[1] — X[1]inCwithX € Z',Y € ¥}.

We call the subcategory X (% respectively) the torsion subcategory (torsionfree subcate-
gory respectively) of (Z', %) and I = X N the core of (2, ¥).

2. [?, ?] A cotorsion pair (2", %) in C is called a t-structure if 2 is closed under [1](equiv-
alently % is closed under [-1]).

3. [?] Let Z be a subcategory of C. A functorially finite subcategory D of X is called a
X -cluster tilting subcategory provided that for an object D of 2", D € D if and only if
Exté,(X, D) = 0 (thus Ext(l;.(D, X) = 0) for any object X € Z'.
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Remark 3.4. 1. The conditions in the definition of cotorsion pairs (Z , %) above is stronger
than the usual one [?]), here we always assume that 2~ and % are functorially finite. For
2—Calabi-Yau triangulated categories with cluster tilting objects, it was proved that for
any cotorsion pairs (2, %) in the usual sense [?], X and & are functorially finite.

2. It can be easily derived from the 2-Calabi-Yau property of C that if (2", %) is a cotorsion
pair of C, then (¥, Z") is also a cotorsion pair. Due to the symmetry, 2 and % possess
similar properties. Thus for the convenience, we only state definitions and properties about
torsion subcategory Z" in the following.

3.2 Cluster structures in subfactor triangulated categories

Let 7 be a functorially finite rigid subcategory in C. Then the subfactor category C’ =+ I[1]/1
is a 2-Calabi-Yau triangulated category with triangles and cluster tilting subcategories induced
from triangles and cluster tilting subcategories of C respectively (Theorem 4.2 in [?]). For an
object X € +7[1], we denote also by X the object in the quotient category C’. For a morphism
f € Home(X1, X,) with X1, X, € L7[1], we denote by f the residue class of f in the quotient
category C’. Now assume that C has a cluster structure, we show in this subsection that the
subfactor category ~7[1]/1 inherits the cluster structure from C.

Lemma 3.5. Let T be a cluster tilting subcategory in C' and T be an indecomposable object in
T . Then T @ I is a cluster tilting subcategory of C.

1. Let triangles
T —E—T —T() and

T"— E —T—T(1)

be the exchange triangles of T in T, where (1) is the shift functor in C'. Then in the
triangulated category C the exchange triangles of T in T @ I are of the forms

% T—Eeol —T —T[1] and
T" —E ol —-T—Tl],
where I and I’ are both in 1.

2. Let triangles
T—Eol —T — T[] and

" —Eeol -T—T[l]

be the exchange triangles of T in T & I, where I and I’ are both in I, and E and E’ have
no direct summands in I. Then in the triangulated category C’, they respectively induce

T —E—T —T() and
T"—E —T—TX)

as the exchange triangles of T in T .
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Proof. 1. It follows from [?](Theorem 4.9) that 7 & 1 is a cluster tilting subcategory of C.

Because T = E — T" — T(1) is a triangle in C’, from the triangulated structure of C’
(see section 4 in [?]), we have the following commutative diagram of morphisms between
triangles in C

(a1 a)

* T L5 Eel, — T'eolL — T[I]
by
I l(bz) ! ||
T 5 Iy — T — T[],

where « is a left J-approximation in C, and I and I, are in 7. We claim that (a; ay) is
a left add(ind(7 @ 1) \ {T'})-approximation in C. Let Ty be an indecomposable object in
add(ind(7 @ I) \ {T}) and f be a morphism in Hom¢(T, Ty). If Ty € 7, then there exists
g € Homg(lp, Tp) such that f = ga because « is a left J-approximation. Thus we have
f = ga1by + gaxb,, that is, f factor through (a; ap). If Ty € add(ind7 \ {T'}), then there
exists h € Homgr (E, To) such that f ha1 since ap is a left add(ind7 \ {T})-approximation
in C’. Thus there exists a morphism f factor through I such that f = ha; + f' in C.
Then from the discussion above, f” and thus f factor through (a; a;). It follows that
(a; ap) is a left add(ind(7 @ 1) \ {T})-approximation in C. Therefore the right exchange
triangle of T in 7 & 1 is a direct summand of the triangle % as a complex. Note that each
indecomposable direct summand of E is not in addl, then it belongs to the middle term of
the right exchange triangle of 7' in 7~ @ J. Therefore the right exchange triangle of T is of
the form of triangle . Similarly we can prove the case of the left exchange triangle of T’
n7 e/r.

2. The rlght exchange triangle T E @& — T’ — TI[1] in C induces an triangle

T —> E — T"— T(1)inC’[?]. Itis easy to see that a; is a minimal left add(ind7 \{T'})-
approximation in C’ due to (a1, a;) is a minimal left add(ind(7” @ I') \ {T})-approximation

a
in C. Therefore by the uniqueness of the minimal left approximation, 7 S E—T —
T(1) is the right exchange triangle of 7" in 7. Similarly we can prove the case of the left
exchange triangle.
O

Proposition 3.6. The subfactor category *I[11/I has a cluster structure.

Proof. Let 7 be a cluster tilting subcategory of C’, then it follows from the above lemma that the
quiver Q(7") is a full subquiver of Q(7 @ 1) by deleting vertices given by isomorphism classes
of indecomposable objects in 7. Thus Q(7") has no loops nor 2-cycles since C has a cluster
structure. Therefore C’ has a cluster structure. O

3.3 Cluster substructures in cotorsion pairs

In [?], the authors studied the cotorsion pairs in a 2-Calabi- Yau triangulated category with cluster
tilting objects and give a classification of cotorsion pairs in the category. For a 2-Calabi-Yau tri-
angulated category C with a cluster tilting subcategory, we have the following analogy of Propo-
sition 5.3 in [?]. Before state the proposition, we recall a result in [?], which is a key point in the
following study of cluster substructures in cotorsion pairs.
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Lemma 3.7. (Proposition I12.3 [?]) Let (Z°,%) be a cotorsion pair of C. Then the core I =
2 N Y is a functorially finite rigid subcategory and there is a decomposition of triangulated
category *I[11/T = X |Te % /1.

Proposition 3.8. Let (27, %) be a cotorsion pair of C with core I = 2" N %Y. Assume that there
is a cluster tilting subcategory T contains I as a subcategory (this is true if C has a cluster tilting
object[?, ?, ?]). Then

1. Any cluster tilting subcategory T containing I as a subcategory can be uniquely written
asT' =T, &I &T,, suchthat T, &1 isa X -cluster tilting subcategory and T, & I
isa?/- cluster tilting subcategory.

2. Any Z -cluster tilting subcategory is of the form T, & I, where T =T, ® I &7, isa
cluster tilting subcategory of C and T, & I is a % -cluster tilting subcategory.

3. The correspondence T' — T, ® I ® T, gives a bijection between the cluster tilting
subcategories in C containing I as a subcategory and the pairs of the X -cluster tilting
subcategories and the %/ -cluster tilting subcategories.

Proof. Because 7 C 7 and 7 is rigid, we have 7~ C + 7[1]; moreover due to the decomposition
LIN)/IT =Z]Te%|I,T canbe decomposed as 74 @ T in the quotient category +7[1]/7,
where To € 2 and To C #. ThusinC, 7 = T & 1 & To. By using the decomposition
LIM11/T = 2T ® %/1, the proof of (1) is similar to the proof of Proposition 5.3(1) in [?].
For the statement (2), note that the existence of the cluster tilting subcategory 4~ guarantees that
any 2 -cluster tilting subcategory can be extended as a cluster tilting subcategory in C. In fact,
it is clear that any 2"-cluster tilting subcategory contains I as a subcategory, and let 77, & I
be such a 2 -cluster tilting subcategory. Then we claim that 77, is a cluster tilting subcategory
in 27/1. Let X be an object in 2"/7, because 7,- & I is contravariantly finite in 2", there
exist an object T € 77,- ® I and a morphism f € Hom¢(T, X) such that f- : Home(—,T) —
Homg¢(—, X) is surjective on 77, @ 7. Then it is easy to check that I : Homy )7 (-, T) —
Hom g7/ 7(—, X) is surjective on 77,-. Therefore 77, is contravariantly finite in 2°/Z. Similarly,
7 is convariantly finite and thus functorially finite in 2°/7. Let X be an object in 2°/1
such that Ext! 21(T,X) = Oforany T € TVZZ' We now prove that X € 7’;{. In fact, from
Ext!s 71y 7(T, X) = Ext! o/ 7(T, X) = 0, we have Ext!¢(T, X) = 0 due to Lemma 4.8 in [?]. Then
we have Ext'o(7,X) = 0 for any T € 7" @ I since Ext'c(I,X) = 0 for any I € 7. Then
XeTy,elsinceT), &lisa - cluster tilting subcategory in 2°. Therefore X belongs to
T o We have proved the claim. Note that 7o @ 7 is a % -cluster tilting subcategory in % from
the statement (1), then by a similar argument, 7 is a cluster tilting subcategory in /7. Then
from Lemma ??, it is clear that Téy @® T is a cluster tilting subcategory in ~7[1]/Z. Therefore
7} ® 1 @ T o is a cluster tilting subcategory in C (Theorem 4.9 in [?]). Finally the statement (3)
follows from (1) and (2). O

Definition 3.9. For a 2 -cluster tilting subcategory T, & I in 2, we define Q(T ", & I) as an
ice quiver with the exchangeable vertices given by the isomorphism classes of indecomposable
objects in T, and the frozen vertices given by the isomorphism classes of indecomposable ob-
Jjects in I. For two vertices T; and T j (not both the frozen vertices), the number of arrows from T;
to T} is given by the dimension of irreducible morphism space irr(T;, Tj) in T, & I.

Now we state the main result in this subsection.
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Theorem 3.10. Let C be a 2-Calabi-Yau triangulated category with a cluster tilting subcategory
and (2", %) be a cotorsion pair of C with core I = X" NY . Assume that there is a cluster tilting
subcategory in C contains I as a subcategory. If the cluster tilting subcategories in C forms a
cluster structure, then the 2 -cluster tilting subcategories form a cluster structure of Z  with
coefficient subcategory I: it is a cluster substructure of C in the sense of section I1.2[?], more
precisely, the following conditions are satisfied:

1. For each Z -cluster tilting subcategory T4 & I in 2 and an indecomposable object T
in Ty, there is a unique (up to isomorphism) indecomposable object T # Ty in 2~ such
that Ty & 1 := add(indT - \ {To} U{T}) ® I is a 2 -cluster tilting subcategory in 2.

2. In the situation of (1), there are triangles
To L Eol -5 T) — To[1] and
T, -5 E ol — Ty — TY[1]
in X', where g and t are minimal right (T 2= N T"),-) ® I-approximation and f and s are
minimal left (T 2> N T)-) ® I-approximation. The subcategory ur(To @ 1) =T, &1

is called the mutation of T 9~ ® I at Ty. These two triangles are called the right exchange
triangle and the left exchange triangle of Ty in T 9 ® I respectively.

3. For each X -cluster tilting subcategory T o ® I in 2, there are no loops nor 2-cycles in
the ice quiver Q(7 9 ® 1).

4. In the situation of (1), passing from Q(T o @ 1) to Q(T}[ ® 1) is given by the Fomin-
Zelevinsky mutation at the vertex of Q(T o~ ® 1) corresponding to T.

5. There is a subcategory B of C such that ur, o o o ur, (T2 ® I) ® B is a cluster tilting
subcategory in C for any finite sequence of mutations ur, o oo ur,(To © 1) of To @ 1.

Proof. 1. From Proposition??, we can assume that each .2 -cluster tilting subcategory is of
the form 7o @ 7, where 7 = T4 @& I ® T4 is a cluster tilting subcategory in C with
Tw €Y. Let

To-L E@l -5 T)— Toll]  and @)
T, -5 E el — Ty — T[] 3)

be the exchange triangles of 7 in C with I € 1 and E and E’ have no direct summands in
7. Then from Lemma ??, they induce exchange triangles

f g
Ty — E — T(’) — To(l) and 4)

T} 5 E' 5 To — TY(1) (5)
in the subfactor category ~7[1]/7 respectively. Moreover we have E € T4 & I in the
triangle (2?), this is because *7[1]/7 = 2 /I ® % /I and thus any morphism from 7T
to 7o factor through 7. Similarly, E’ € T4 & I in the triangle (??). Since 2 /I is a
triangulated subcategory of + 7[1]/Z, the triangles (??) and (??) are both in 2" /T and thus
T} belongs to 2". Because 7, ® I @ Ty is a cluster tilting subcategory in C, 77,- & 1 is
a 2 -cluster tilting subcategory due to Proposition??. The uniqueness of 77,- & I comes
from the uniqueness of 77,- & 7 & 7. We have proved the statement.
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2.

34

It is only need to show that in the triangles (??) and (??), g and ¢ are minimal right (72~ N
T )@ I -approximation and f and s are minimal left (72 N7",-) ® I -approximation. This
easily follows from the fact that (??) and (??) are the exchange triangles.

. We claim that the arrows between any two vertices (not both frozen) in the ice quiver

O(T 9 @ 1) are coincide with the arrows between these vertices in the quiver Q(77). In
fact, given vertices Ty and T, in the ice quiver Q(7 2 ® 1) with Ty exchangeable, by
unifying the vertices in the quiver and the isomorphism classes of indecomposable objects
in the subcategory, the proof of the statement (2) shows that 7 2- @ 7 and 7 have the same
exchange triangles at T, thus the number of arrows from T to 7 and the number of arrows
from T to Ty in the quivers Q(7 2~ @ 1) and Q(7") are all determined by the degree of T
in E® I and E’ & I’ respectively. Thus the conclusion follows from the assumption that C
has a cluster structure.

We can prove this similar to the proof of Theorem I1.1.6 in [?].

. Let B8 = T be the subcategory of % in the proof of statement (1). Note that any finite

mutation pur, o oour, (72 ®71) is a cluster tilting subcategory in 2"/, then from the proof
of Proposition??, ur, o o o ur (79 ® I) ® Ty is a cluster tilting subcategory in C.
O

Cluster structures and rooted cluster algebras

In this subsection, we fix the following settings. We always assume that C is a 2-Calabi- Yau trian-
gulated category with a cluster structure given by its cluster tilting subcategories. Let (:Z°, %) be
a cotorsion pair of C with core 7 = 2" N%, where we assume that 7 is a subcategory of a cluster
tilting subcategory 7 in C. Then Proposition ?? guarantees that we can write 7 =T @1 & T o
with 749 @1 being 2 -cluster tilting and 7o &1 being % -cluster tilting. We collect the following
notations which we use in this subsection.

Q(7) : the quiver of the cluster tilting subcategory 7.
O(T 9 & I) : the ice quiver of the 2 -cluster tilting subcategory 74 & 1.
OTw @ 1) : the ice quiver of the % -cluster tilting subcategory 7o @ 1.

Q(7T7) : the ice quiver by freezing the vertices in Q(7") which are determined by the iso-
morphism classes of the indecomposable objects in 7.

Q(7 \ I) : the quiver of the cluster tilting subcategory 7 \ 7 in the subfactor triangulated
category +7[1]/1.

The rooted cluster algebras corresponding to the above quivers are denoted by A7), AT 2~ ®
D), AT» & 1), A(T 1) and AT \ I) respectively.

R(T") : the subcategory of C additive generated by rigid objects which are reachable from
7 by a finite number of mutations, where the mutation is defined in Subsection ??.

R(T 2 @ 1) : the subcategory of C additive generated by rigid objects which are reach-
able from 74 @ 7 by a finite number of mutations, where the mutation is defined in
Theorem??(2).
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o R(To @ 1) : the subcategory of C additive generated by rigid objects which are reachable
from 7o @ 7 by a finite number of mutations.

e R(77) : the subcategory of C additive generated by rigid objects which are reachable from
7 by a finite number of mutations, where the mutations are not at the indecomposable
objects in the subcategory J.

e R(7 \ I) : the subcategory of C additive generated by rigid objects which are reachable
from 7~ \ 7 by a finite number of mutations in the subfactor triangulated category +7[1]/7,
where we view these reachable rigid objects as objects in C.

Then from Lemma ??, it is not hard to see that indR(77) = indR(7 \ 1) U indZ. We have a
sequence R(T ¢ @ 1) C R(T7) C R(T) of inclusions, where the first one follows from Theorem
??(2) and the second one is clear. Denote by iy : R(T 9 @) —» R(T7y)and iy : R(T1) = R(T)
the natural embedding functors under the above inclusions. We define a canonical functor p :
R(T7) = R(7 \ I), which is an identity on R(7" \ 1) and maps an object in 7 to zero object.

The cluster map, which is called the cluster character in [?], is defined in [?]. One can use it to
transform a cluster structure in C to a cluster algebra. We recall the following definition of cluster
map from [?] and [?] in our settings. For more details, we refer to [?] and [?].

Definition 3.11. Denote by Q(Xy) the rational function field of Xg-, where Xg is the indetermi-
nate set which is indexed by the isomorphism classes of indecomposable objects in T. A map ¢
from R(T") to Q(Xq) is called a cluster map if the following conditions are satisfied:

1. For the object M = M’, we have o(M) = o(M").

2. For any indecomposable object T; in T, we have o(T;) = x; where x; € Xq is the element
indexed by T;.

3. For any M and N in R(T") with dimExté,(M, N) =1 (thus dimExté,(N, M) = 1), we have
o(M)p(N) = (V) + (V") where V and V' are in the non-split triangles

M—V—N— M[1] and
N—V — M— N[1].
4. For any M and N in R(T"), we have (M & N) = o(M)@p(N). In particular, ¢(0) = 1.

Then the cluster map ¢ constructs a connection between a cluster structure (cluster substructure
respectively) of C and the rooted cluster algebras (the rooted cluster subalgebras respectively).
More precisely, we have the following proposition, where the first statement can be proved similar
to the proof of Proposition 2.3 in [?] and the second one can be easily derived from the first one
and Theorem??. The last one clearly follows from the first one.

Proposition 3.12.  [. The map ¢ induces a surjection from the set of isomorphism classes of
indecomposable objects in R(T") onto the set of cluster variables in A(T"), and also induces
a surjection from the set of cluster tilting subcategories reachable from T onto the set of
clusters of A(T).
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2.

The map ¢ induces a surjection ¢\ from the set of isomorphism classes of indecomposable
objects in R(T 2~ & 1) onto the set of cluster variables in A(T 9~ ® 1), and also induces a
surjection from the set of 2 -cluster tilting subcategories reachable from T 9 & I onto the
set of clusters of A(T 2~ & 1).

The map ¢ induces a surjection @, from the set of isomorphism classes of indecomposable
objects in R(T 1) onto the set of cluster variables in A(T 1), and also induces a surjection
from the set of cluster tilting subcategories reachable from T~ by finite number of mutations
not at indecomposable objects in I onto the set of clusters of A(T ).

From Theorem ??, the subfactor category *7[1]/1 inherits a cluster structure. By viewing R(7\
T) as a subcategory in ~7[1]/Z, we denote by ¢’ the cluster map from R(7 \ I) to AT \ I).
Now we state our main result in this section.

Theorem 3.13. Under the above settings,

1.

2.

The rooted cluster algebras A(T o ®1 ) and A(T » ®1) are both rooted cluster subalgebras
of A(T 1) and thus rooted cluster subalgebras of A(T). Moreover, A(T 1) is the glue of
AT g ®1)and ATw ®T) at o(T).

Any rooted cluster subalgebra of A(T") with coefficient set ¢(I) such that I is functorially
finite in C is of the form AT 9 ® 1), where T g9 & I is X’ -cluster tilting in a cotorsion
pair (X, %) with core 1.

The correspondence (X7, %) — (AT g ®1), ATz & 1)) gives the following bijection:
{cotorsion pairs in C with core I}

i

{complete pairs of rooted cluster subalgebras of A(T") with coefficient set ¢(I) such that

I is functorially finite in C}.
This bijection induces the following bijection:
{t-structures in C}
()
{complete pairs of rooted cluster subalgebras of A(T") without coefficients}.

The specialization at ¢(1) induces a rooted cluster surjection nt from A(T 1) to AT \ I).
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5. We have the following commutative diagram:

R\ 1)
R
RT 9 o1) AT \T) ) ¢
~O
2 AT7) —— AT)
/

AT 1)
where j| and j, are injections arising from subalgebras in the first statement.

Proof. 1. On the one hand, from Theorem ??, the quiver Q(7 2 @ 7) is a full subquiver of
O(T 7). On the other hand, from the decomposition of the triangulated category * 7[1]/1 =
Z'|T & % /1, the morphisms between objects in 7 ¢ and 74 factor through 7 and thus
in the quiver Q(77) there are no arrows between the vertices in ind7 o~ and the vertices
in ind7 s . Therefore Q(T 4 @ I) is a glue of some connected components of Q(7 7).
Thus from Theorem ??, A(7 2 & 1) is a rooted cluster subalgebras of A(7 7). Similarly,
AT » & 1) is a rooted cluster subalgebras of A(77). Moreover, it is clear that A(7 1)
is a glue of A(T2 & I) and A(Tx @ 1) along ¢(1). Since A(T7) is a rooted cluster
subalgebra of A(7") by Definition-Proposition??, A(T 2 & 1) and A(T o & 1) are rooted
cluster subalgebras of A(T).

2. From Theorem ??, any rooted cluster subalgebra of A(7") with coefficient set ¢(7) is of the
form AT’ & I) where 7’ @ I C 7, and in the quiver Q(7"), there are no arrows between
vertices in ind7’ and vertices in ind7 \ ind(T' & I). Let 7" = add(indT \ ind(7’ & I))
be a subcategory of C. Now we consider the pair (7’,7 ") in the subfactor category
+7[1]/1, which is a 2-Calabi-Yau triangulated category since I is functorially finite in C.
Note that 77 @ 7 is a cluster tilting subcategory in *7[1]/7 and Hom. 71,7 (7", 7") =
Hom. 711 7(7",7’) = 0. Thus we have *7[1]/7 = (T" & T") =« (T'"{(1) ® T"(1)) =
T =T (LyeT" «T" (1) = C1 ®C, as a decomposition of triangulated category by Propo-
sition 3.5[?]. Let w :* ZI[1] —»* I[1]/1 be the natural projection. Then because (Cy,C>)
is a cotorsion pair in +7[1]/1 with core {0}, (27, %) = (m~(C1), 7 (Cy)) is a cotorsion
pair in C with core 7 by Theorem 3.5[?]. It is clear that 7’ & I is Z'-cluster tilting.

3. The first assertion follows from above statements (1) and (2). The second assertion follows
from the fact that (27, %)) is a t-structure if and only if 7 = {0} (Proposition 2.9 [?]).

4. It is easily follows from Lemma ?? that Q(7 \ 7) is a full subquiver of Q(7 ) by deleting
all the frozen vertices. Therefore the conclusion follows from Proposition ??.

5. Note that the maps ¢1, ¢> and ¢’ are all induced by ¢, and the injections iy, i, j; and js,
the surjection p and 7 are all canonical, thus the commutative diagram is natural valid.
O
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Remark 3.14. 1. If C has a cluster tilting object, then any rigid subcategory I is additive
generated by an object in C[?, ?]. Thus I is functorially finite in C. Therefore there is a
bijection between the following two sets:

{cotorsion pairs in C with core I}

()
{complete pairs of rooted cluster subalgebras of A(T") with coefficient set p(1)}.

In this case, each rooted cluster subalgebra A(T o ® 1) of A(T) has a 2-Calabi-Yau
categorification by the stably 2-Calabi-Yau category 2  in the sense of [?, ?].

2. It follows from above statement that if a rooted cluster algebra A(X) has a 2-Calabi-Yau
categorification by a 2-Calabi-Yau triangulated category with a cluster tilting object, then
any rooted cluster subalgebra of A(X) has a 2-Calabi-Yau categorification by a stably
2-Calabi-Yau category.

Corollary 3.15. Under the settings assumed at the beginning of this subsection, we unify the
following six kinds of decompositions:

1. The decomposition of the triangulated category ~I[1]/1 in the sense of Proposition 11.2.3
in[?].

2. The decomposition of the cluster tilting subcategory T in+I[1]/I in the sense of Definition
3.3in[?].

3. The decomposition of the ice quiver Q(7 1) in the sense of Definition-Proposition ??.
The decomposition of the exchange matrix B(T 1) in the sense of Definition-Proposition ??.

The decomposition of the seed (T 1) in the sense of Definition ??.

ISAREN PN

The decomposition of the rooted cluster algebra A(T 1) in the sense of Theorem ??.

Proof. 1t is proved in Theorem 3.10 [?] that the first two decompositions are unified. We have
proved in subsections ?? and ?? that the last four decompositions are unified. It can be directly
derived from definitions that the decompositions of 7~ and Q(7 1) are unified. |

It follows from Theorem ?? and Corollary ?? that we can classify the cotorsion pairs in C with
core I by gluing indecomposable components of A(7 1) (or equivalently of Q(77) , of B(77) and
of X(71) respectively). In fact, each way of gluing all the indecomposable components of A(7 1)
to a complete pair of rooted cluster subalgebras of A(7 ) with coeflicient set ¢(J) gives a unique
cotorsion pair in C with core 7.
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