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Abstract

For a d−Calabi-Yau triangulated category C with a d−cluster tilting subcategory T ,
the decomposition of C is determined by the decomposition of T satisfying ”vanishing
condition” of negative extension groups, namely, C = ⊕i∈ICi where Ci, i ∈ I are trian-
gulated subcategories, if and only if T = ⊕i∈ITi where Ti, i ∈ I are subcategories with
HomC(Ti[t],T j) = 0,∀ 0 ≤ t ≤ d − 2 and i , j. This induces that for any two cluster tilting
objects T,T ′ in a 2−Calabi-Yau triangulated category C, the Gabriel quiver of the endomor-
phism algebra EndCT is connected if and only if so is that of EndCT ′. As an application, we
prove that indecomposable 2−Calabi-Yau triangulated categories with cluster tilting objects
have no non-trivial t-structures and no non-trivial co-t-structures. This allows us to give a
classification of torsion pairs in those triangulated categories, and to determine further the
hearts of torsion pairs in the sense of Nakaoka, which are equivalent to the module categories
over the endomorphism algebras of the cores of the torsion pairs. We also discuss the relation
between mutations of torsion pairs and mutations of cluster tilting objects.

Key words. Calabi-Yau triangulated category; d−cluster tilting subcategory; (co)torsion pair;
t-structure; mutation of cotorsion pair, heart.

Mathematics Subject Classification. 16E99; 16D90; 18E30

1 Introduction

Torsion pairs (equivalently, cotorsion pairs) give a way to construct the whole categories from
certain special subcategories. They are important in the study of triangulated categories and
abelian categories. We recall the definition here. Let X ,Y be (additive) subcategories in a
triangulated category C with shift functor [1]. The pair (X ,Y ) is called a torsion pair in C
provided the following conditions are satisfied:

1. Hom(X,Y) = 0 for any X ∈X , Y ∈ Y ; and

2. for any C ∈ C, there is a triangle X → C → Y → X[1] with X ∈X ,Y ∈ Y .

This notion introduced by Iyama-Yoshino [IY], see also [KR], is the triangulated version of the
notion with the same name in abelian categories introduced by Dickson [Di] (see the introduction
to [ASS] for further details). The notion of torsion pairs unifies the notion of t-structures in
the sense of [BBD], co-t-structures in the sense of Pauksztello [P] (see [Bon] for another name
”weight structure”), and the notion of cluster tilting subcategories (objects) in the sense of Keller-
Reiten [KR], see also [BMRRT].
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Torsion pairs are important in the study of the algebraic structure and geometric structure of tri-
angulated categories. Iyama and Yoshino [IY] use them to study the mutation of cluster tilting
subcategories in triangulated categories, see also [KR, BR]. Nakaoka [N] uses them to unify
the construction of abelian categories appearing as quotients of triangulated categories by cluster
tilting subcategories [BMR, KR, KZ], and the construction of abelian categories as hearts of t-
structures [BBD]. There is a relation between t-structures and stability conditions in triangulated
categories, see [Bri] for details. As one of important special cases, cluster tilting objects (or sub-
categories) appeared naturally in the study on the categorification of cluster algebras [BMRRT].
They have many nice algebraic properties and combinatorial properties which have been used in
the categorification of cluster algebras and studied in recent years (see the surveys [K2, Re] and
the references therein). In this categorification, the cluster tilting objects in the cluster category
of an acyclic quiver (or more general a quiver with potential) correspond to the clusters of the
corresponding cluster algebra.
Cluster tilting subcategories in triangulated categories are the torsion classes of some special tor-
sion pairs. A triangulated category (even a 2−Calabi-Yau triangulated category) may not admit
any cluster tilting subcategory [KZ, BIKR]. In contrast, it always admits torsion pairs, for exam-
ple, the trivial torsion pair: (the whole category, the zero category). In a triangulated category C
with shift functor [1], when (X ,Y ) is a torsion pair, we call the pair (X ,Y [−1]) a cotorsion
pair, and call the subcategory X

⋂
Y [−1] the core (denoted by I) of this cotorsion pair (and of

the corresponding torsion pair (X ,Y )). It follows that (X ,Y ) is a cotorsion pair in C if and
only if (X ,Y [1]) is a torsion pair.
Recently there are several works on the classification of torsion pairs (or equivalently, cotorsion
pairs) in a 2−Calabi-Yau triangulated category. Ng gives a classification of torsion pairs in the
cluster category of type A∞ [Ng] by Ptolemy diagrams of an ∞−gon P∞. Holm-Jørgensen-
Rubery [HJR1] gives a classification of torsion pairs in the cluster category CAn of type An via
Ptolemy diagrams of a regular (n + 3)−gon Pn+3. They also do the same thing for cluster tubes
[HJR2]. In [ZZ2], we define the mutations of torsion pairs to produce new torsion pairs by
generalizing the mutation of cluster tilting subcategories [IY], and show that the mutation of
torsion pairs has the geometric meaning when the categories have a geometric model. In [ZZZ],
together with Zhang, we give the classification of (co)torsion pairs in the (generalized) cluster
categories associated with marked Riemann surfaces without punctures. For classification of
torsion pairs in an abelian category, we refer to the recent work of Baur-Buan-Marsh [BBM].
In this paper, we show that an indecomposable 2−Calabi-Yau triangulated category C with a
cluster tilting object has only trivial t-structures, i.e. (C, 0), or (0,C). For this, we prove the fact
that the decomposition of C is determined by the decomposition of cluster tilting subcategories.
This decomposition result holds for arbitrary d−Calabi-Yau triangulated categories, where d > 1
is an integer. As an application of the result on t-structures, we give a classification of (co)torsion
pairs in C and determine the hearts of (co)torsion pairs in the sense of Nakaoka [N], which are
equivalent to the module categories over the endomorphism algebras of their cores. We also
discuss the relation between mutation of (co)torsion pairs [ZZ2] and mutation of cluster tilting
objects.
This paper is organized as follows: In Section 2, some basic definitions and results on (co)torsion
pairs are recalled. In Section 3, the definition of decomposition of triangulated categories is
recalled. The decomposition of d−cluster tilting categories is defined, which is not only the
decomposition of additive categories, but also with some additional vanish condition on negative
extension groups; and for d = 2, this condition is empty. An example is given to explain in
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general the decomposition of triangulated categories is not determined by that of cluster tilting
subcategories. It is proved that for any d−Calabi-Yau triangulated category, its decomposition
is determined by the decomposition of a d−cluster tilting subcategory. In Section 4, the first
main result is that the indecomposable 2−Calabi-Yau triangulated categories with cluster tilting
objects have no non-trivial t-structures (Theorem 4.1). This allows us to give a classification of
(co)torsion pairs in these categories (Theorem 4.4), which is the second main result in this section.
In Section 5, we discuss the relation between mutation of cotorsion pairs and mutation of cluster
tilting objects. For any cotorsion pair (X ,Y ) with core I, any basic cluster tilting object T
containing I as a direct summand can be written uniquely as T = TX ⊕ I ⊕ TY such that TX ⊕ I
(or TY ⊕ I) is cluster tilting in X (Y respectively), which we shall define in this section, and
any triple (M, I,N) of objects M, I,N in C with the property above gives a cluster tilting object
M ⊕ I ⊕N containing I as a direct summand in C. The mutation of such T in the indecomposable
object T0 can be made inside TX ⊕ I or TY ⊕ I, depending on that T0 is a direct summand of TX

or TY respectively, if T0 is not a direct summand of I. If T0 is a direct summand of I, then the
mutation T ′ of T in T0 is the cluster tilting object which can be written as T ′ = T ′X ′ ⊕ I′ ⊕ T ′Y ′ ,
where (X ′,Y ′) is the mutation of (X ,Y ) and I′ is the core of (X ′,Y ′). In the final section,
for any cotorsion pair (X ,Y ) with core I in a 2−Calabi-Yau triangulated category C with cluster
tilting objects, we prove that the heart H of (X ,Y ), defined by Nakaoka, is equivalent to the
module category over the endomorphism algebra EndI.

2 Preliminaries

Throughout this paper, k denotes a field. When we say that C is a triangulated category, we always
assume that C is a Hom-finite Krull-Schmidt k−linear triangulated category over k. Denote by [1]
the shift functor of C, and by [-1] the inverse of [1]. By a subcategoryD, we mean thatD is a full
subcategory of C which is closed under isomorphisms, finite direct sums and direct summands.
In this sense,D is determined by the set of indecomposable objects in it. By X ∈ C, we mean that
X is an object of C. We denote by addX the additive closure generated by the object X, which
is a subcategory of C. Sometimes, we identify an object I with the subcategory addI. Moreover,
if a subcategory D is closed under [1], [-1] and extensions, then D is a triangulated subcategory
of C (in fact it is a thick subcategory). We call that a triangulated category C has a Serre functor
provided there is an equivalent functor S such that HomC(X,Y) � DHomC(Y, S X), which are
functorially in both variables, where D = Homk(−, k). If the Serre functor is [d], an integer, C
is called a d−Calabi-Yau (d−CY, for short) triangulated category. We always use Hom(X,Y) to
denote Hom-space of objects X,Y in C. We denote by Extn(X,Y) the space Hom(X,Y[n]).
For a subcategory X of C, denoted by X ⊂ C, let

X ⊥ = {Y ∈ C | Hom(X,Y) = 0 for any X ∈X }

and
⊥X = {Y ∈ C | Hom(Y, X) = 0 for any X ∈X }.

For two subcategories X ,Y , by Hom(X ,Y ) = 0, we mean that Hom(X,Y) = 0 for any X ∈X
and any Y ∈ Y . Similar for the notation Extn(X ,Y ) = 0. A subcategory X of C is said to be a
rigid subcategory if Ext1(X ,X ) = 0. Let

X ∗ Y = {Z ∈ C | ∃ a triangle X → Z → Y → X[1] in C with X ∈X ,Y ∈ Y }.
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It is easy to see that X ∗ Y is closed under taking isomorphisms and finite direct sums. A
subcategory X is said to be closed under extensions (or an extension-closed subcategory) if
X ∗X ⊂ X . Note that X ∗ Y is closed under taking direct summands if Hom(X ,Y ) = 0
(Proposition 2.1(1) in [IY]). Therefore, X ∗ Y can be understood as a subcategory of C in this
case.
We recall the definition of (co)torsion pairs in a triangulated category C from [IY, N].

Definition 2.1. Let X and Y be subcategories of a triangulated category C.

1. A pair (X ,Y ) of subcategories of C is called a torsion pair if Hom(X ,Y ) = 0 and
C = X ∗ Y . The subcategory I = X

⋂
Y [−1] is called the core of the torsion pair.

2. The pair (X ,Y ) is called a cotorsion pair if

Ext1(X ,Y ) = 0 and C = X ∗ Y [1].

The subcategory I = X
⋂

Y is called the core of the cotorsion pair (X ,Y ).

3. A t-structure (X ,Y ) in C is a cotorsion pair such that X is closed under [1] (equivalently
Y is closed under [−1]). In this case X

⋂
Y [2] is an abelian category, which is called the

heart of (X ,Y ) [BBD, BR]. A t-structure (X ,Y ) is called stable if X is closed under
[−1] (equivalently Y is closed under [1]).

4. A co-t-structure (X ,Y ) in C is a cotorsion pair such that X is closed under [−1] (equiv-
alently Y is closed under [1]) [Bon, P].

5. The subcategory X is said to be a cluster tilting subcategory if (X ,X ) is a cotorsion
pair [KR, KZ, IY]. We say that an object T is a cluster tilting object if addT is a cluster
tilting subcategory.

Remark 2.2. A pair (X ,Y ) is a cotorsion pair if and only if (X ,Y [1]) is a torsion pair. In any
case, the core I is a rigid subcategory of C.

Remark 2.3. (C, 0) and (0,C) are t-structures in C, which are called trivial t-structures. They
are also co-t-structures and are called trivial co-t-structures in C.

Lemma 2.4. [ZZ1] Let (X ,Y ) be a cotorsion pair in C with core I. Then

1. (X ,Y ) is a t-structure if and only if I = 0

2. X is a rigid subcategory if and only if X = I

3. X is a cluster tilting subcategory if and only if X = I = Y .

Recall that a subcategory X is contravariantly finite in C, if any object M ∈ C admits a right
X −approximation f : X → M, which means that any map from X′ ∈ X to M factors through
f . The left X −approximation of M and covariantly finiteness of X can be defined dually. X is
called functorially finite in C if X is both covariantly finite and contravariantly finite in C. Note
that if (X ,Y ) is a cotorsion pair, then X = ⊥(Y [1]), Y = (X [−1])⊥, and it follows that X
(or Y ) is a contravariantly (covariantly, respectively) finite and extension-closed subcategory of
C. We note that addX is functorially finite in C for any object X ∈ C.

4



Let (X ,Y ) be a cotorsion pair with core I in a triangulated category C. Denote by H the
subcategory (X [−1] ∗ I)

⋂
(I ∗ Y [1]). The image ofH under the natural projection C → C/I,

which denoted by H , is called the heart of the cotorsion pair (X ,Y ). It is proved by Nakaoka
that the heartH is an abelian category, see [N] for more detailed construction.

3 Decompositions of Calabi-Yau triangulated categories

In this section, we discuss how the decomposition of a triangulated category is determined by that
of a cluster tilting subcategory. We recall the definition of d−cluster tilting subcategories from
[KR, IY] in the following:

Definition 3.1. Let C be a triangulated category, d > 1, an integer.

1. A subcategory T of C is called d−rigid provided Exti(T ,T ) = 0 for all 1 ≤ i ≤ d − 1.

2. A d− rigid subcategory T is called d−cluster tilting provided that T is functorially finite,
and satisfies the property: T ∈ T if and only if Exti(T ,T ) = 0 for all 1 ≤ i ≤ d − 1 if and
only if Exti(T,T ) = 0 for all 1 ≤ i ≤ d − 1.

3. An object T is called a d−cluster tilting (respectively d−rigid) object if addT is d−cluster
tilting (respectively d−rigid).

The main examples of d−cluster tilting subcategories are d−cluster tilting subcategories in d−cluster
categories (see [IY, T, Zhu]). Other examples can be found in [K1, BIKR]. Note that when d = 2,
the d−cluster tilting subcategories (or d−cluster tilting objects) are called cluster tilting subcate-
gories (cluster tilting objects respectively).

Definition 3.2. Let C be a triangulated category, and Ci, i ∈ I be triangulated subcategories of
C. We call that C is a direct sum of triangulated subcategories Ci, i ∈ I, provided that

1. Any object M ∈ C is a direct sum of finitely many objects Mi ∈ Ci;

2. Hom(Ci,C j) = 0,∀ i , j.

In this case, we write C = ⊕i∈ICi. We say C is indecomposable if C cannot be written as a direct
sum of two nonzero triangulated subcategories.

Definition 3.3. Let T be a d−cluster tilting subcategory of a triangulated category C, and Ti, i ∈
I, be subcategories of T . We call that T is a direct sum of subcategories Ti, i ∈ I, provided that

1. Any object T ∈ T is a direct sum of finitely many objects Ti ∈ Ti;

2. Hom(Ti,T j) = 0,∀ i , j;

3. Hom(Ti[k],T j) = 0,∀ i , j, 1 ≤ k ≤ d − 2;

In this case, we write T = ⊕i∈ITi. We say T is indecomposable if T cannot be written as a direct
sum of two nonzero subcategories.

Remark 3.4. When d = 2, the third condition is empty.
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The following example shows that there are indecomposable d−CY triangulated categories ad-
mitting d−cluster tilting subcategories, those cluster tilting subcategories can be decomposed as
sum of subcategories satisfying the conditions 1, 2, but not 3 in Definition 3.3.

Example 1. Let Q : 3 → 2 → 1 be the quiver of type A3 with linear orientation, and C be the
4−cluster category of Q, i.e. C = Db(kQ)/τ−1[3] (compare [K1]). Let P1, P2, P3 be the inde-
composable projective modules associated to the vertices of Q, and S 1, S 2, S 3 the corresponding
simple modules. Then T = P1 ⊕ P2 ⊕ P3 is a 4−cluster tilting object, P1 ⊕ P3 is an almost
complete 4−cluster tilting object, it has 4 complements (compare [Zhu, T]), one is P2, the others
are S 3, S 3[1], and S 3[2]. Denote by T = add(P1 ⊕ P3 ⊕ S 3[1]), which is a 4−cluster tilting
subcategory of C. Set T1 = add(P1 ⊕ P3), T2 = addS 3[1]. Both are subcategories of T . It is
easy to see that T ,T1,T2 satisfy the first two conditions of Definition 3.3, but not the third one:
an easy computation shows Hom(P3[1], S 3[1]) , 0. We note that this 4−cluster category C is
indecomposable.

We will discuss the relation between the decomposition of triangulated categories and the decom-
position of d−cluster tilting subcategories. Firstly we look at two examples:

Example 2. Let Q be a connected quiver without oriented cycles, and C = Db(kQ) the bound-
ed derived category of kQ. It is an indecomposable triangulated category. We know T =

add{τn[−n]kQ | n ∈ Z } is a cluster tilting subcategory containing infinitely many indecomposable
objects in C. Let Ti = add{τi[−i]kQ} for i ∈ Z. It is easy to check that T = ⊕i∈ZTi.

Example 3. Let Q be a connected quiver without oriented cycles, F = τ−1[1] an automorphism
of the derived category Db(kQ). The repetitive cluster category of Q is defined for any positive
integer m, namely, the orbit triangulated category C = Db(kQ)/(Fm) [K1]. It is an indecompos-
able triangulated category. Let m = 2. Then kQ ⊕ F(kQ) is a cluster tilting object in C. Let
T = add(kQ⊕F(kQ)), T1 = add(kQ), T2 = add(F(kQ)). Then T is a cluster tilting subcategory
and T = T1 ⊕ T2.

The two examples above show that in general the indecomposable triangulated category may
admit a decomposable d−cluster tilting subcategory. In the following, we will prove that the
decomposition of d−CY triangulated categories is determined by the decomposition of d−cluster
tilting subcategories. Recall that a k−linear triangulated category C is d−CY if [d] is the Serre
functor.

Proposition 3.5. Let C be a d−CY triangulated category with a d−cluster tilting subcategory T .
Suppose that T = ⊕i∈ITi with Tis nonzero subcategories. Then Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1], i ∈ I
are triangulated subcategory of C and C = ⊕i∈I(Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]).

Note that by Proposition 2.1 [IY], Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1], i ∈ I, are closed under direct
summands, so they are subcategories of C. We divide our proof into several steps:

Lemma 3.6. Under the same assumption as in Proposition 3.5, every object X in C has a decom-
position X = ⊕i∈IXi with finite many nonzero Xi ∈ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1], i ∈ I. In particular,
every indecomposable object of C lies in some Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1], i ∈ I.

Proof. Since T = ⊕i∈ITi is a d−cluster tilting subcategory, by Corollary 3.3 in [IY], for each
indecomposable object X in C, there are d triangles:

X(n) f (n)

→ ⊕i∈J B(n−1)
i → X(n−1) → X(n)[1], n = 1, · · · , d,
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where J is a finite subset of I, B(n−1)
i ∈ Ti, X(0) = X and X(d) = 0. Then X(d−1) � ⊕i∈J B(d−1)

i . We
want to prove that X � ⊕i∈JXi with Xi ∈ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1].
Assume that X(n) � ⊕i∈JX(n)

i with X(n)
i ∈ Ti ∗Ti[1] ∗ · · · ∗Ti[d− 1− n] for some 1 ≤ n ≤ d− 1. By

Definition 3.3, Hom(Ti[k],T j) = 0 for i , j, 0 ≤ k ≤ d − 1 − n ≤ d − 2, then Hom(X(n)
i ,T j) = 0

for j , i. So f (n) is a diagonal map, say


f1 0 0

0
. . . 0

0 0 f|J|

, where fi : X(n)
i → B(n−1)

i . Extend each fi

to triangle:

X(n)
i

fi
→ B(n−1)

i → X(n−1)
i → X(n)

i [1].

Then we have that X(n−1) � ⊕i∈JX(n−1)
i and X(n−1)

i ∈ Ti ∗Ti[1] ∗ · · · ∗Ti[d−n], i ∈ J. By induction
on n (from d − 1 to 0), X = X(0) � ⊕i∈JX(0)

i with X(0)
i ∈ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1].

�

Lemma 3.7. Under the same assumption as in Proposition 3.5, Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] =⋂
j,i

2d−2⋂
k=1

⊥T j[k] holds for any i ∈ I.

Proof. By Definition 3.3, Hom(Ti,T j[l]) = 0 and Hom(T j,Ti[l]) = 0, for −(d−2) ≤ l ≤ d−1, i ,
j. Then for 0 ≤ m ≤ d−1, 1 ≤ k ≤ d−1, we have that Hom(Ti[m],T j[k]) � Hom(Ti,T j[k−m]) =

0 due to −(d − 2) ≤ k−m ≤ d − 1, and Hom(Ti[m],T j[d + k− 1]) � DHom(T j[k− 1],Ti[m]) = 0
as −(d − 2) ≤ m− k + 1 ≤ d − 1. So Hom(Ti ∗ Ti[1] · · · ∗ Ti[d − 1],T j[k]) = 0 for 1 ≤ k ≤ 2d − 2,

i , j. That is, Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] ⊂
⋂
j,i

2d−2⋂
k=1

⊥T j[k].

Fix an element i ∈ I. Let X be an object satisfying Hom(X,T j[k]) = 0 for 1 ≤ k ≤ 2d − 2, j , i.
By Lemma 3.6, X has a decomposition X = ⊕ j∈JX j, X j ∈ T j ∗ T j[1] ∗ · · · ∗ T j[d − 1], for some
finite subset J of I. Then there is a triangle

M → X j → N → M[1]

with M ∈ T j,N ∈ T j[1]∗ · · · ∗T j[d−1]. If j , i, we have that Hom(M, X j) = 0 by Hom(T j, X) �
DHom(X,T j[d]) = 0 and that Hom(X j,N) = 0 by Hom(X,T j[1] ∗ · · · ∗ T j[d − 1]) = 0. Therefore
X j � 0. Hence X � Xi ∈ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. �

Lemma 3.8. Under the same assumption as in Proposition 3.5, all Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1],
i ∈ I, are triangulated subcategories of C.

Proof. Let X → Z → Y → X[1] be a triangle with X,Y ∈ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. By Lemma
3.7, we have that for 1 ≤ k ≤ 2d − 2, j , i, Hom(X,T j[k]) = 0 and Hom(Y,T j[k]) = 0, and then
Hom(Z,T j[k]) = 0. By Lemma 3.7 again, we have that Z ∈ Ti ∗Ti[1] ∗ · · · ∗ Ti[d− 1]. Therefore,
Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] is closed under extensions.
For any i, Ti,Ti[1], · · · ,Ti[d − 1] are included in Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. We claim that Ti[d]
is a subcategory of Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. Otherwise, there is an indecomposable object of
Ti, say X, such that X[d] is not an object of Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. Then by Lemma 3.6, X[d]
is in T j ∗ T j[1] ∗ · · · ∗ T j[d − 1] for some j , i. Note that Hom(X, X[d]) � DHom(X, X) , 0
which contradicts with Hom(Ti,T j ∗ T j[1] ∗ · · · ∗ T j[d − 1]) = 0 by Lemma 3.7 and d−CY
property. Thus, we have proved that Ti[d] is included in Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. Hence
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(Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1])[1] ⊂ Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1], that is, Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]
is closed under [1]. Dually, one can prove that Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] is closed under [-1].
Therefore, Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] is a triangulated subcategory of C. �

Proof of Proposition 3.5. It is sufficient to verify that Hom(Ti∗Ti[1]∗· · ·∗Ti[d−1],T j∗T j[1]∗· · ·∗
T j[d−1]) = 0, for i , j. By Lemma 3.8, (Ti∗Ti[1]∗· · ·∗Ti[d−1])[−1] = Ti∗Ti[1]∗· · ·∗Ti[d−1],
then Hom(Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1],T j) = Hom((Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1])[−1],T j) =

Hom(Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1],T j[1]) = 0 for i , j, where the last equality is due to Lemma
3.7. Then Hom(Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1],T j ∗ T j[1] ∗ · · · ∗ T j[d − 1]) = 0.

The following lemma is a generalization of Remark 2.3 in [ZZ1].

Lemma 3.9. Let C be a triangulated category and T be a d−rigid subcategory of C satisfying
C = T ∗ T [1] ∗ · · · ∗ T [d − 1]. Then T is a d−cluster tilting subcategory of C.

Proof. Note that (T ,T [1] ∗ · · · ∗ T [d − 1]) and (T ∗ · · · ∗ T [d − 2],T [d − 1]) form two torsion
pairs. So T is contravariantly finite in C and T [d] is covariantly finite in C. Therefore T is
functorially finite in C. Take an object X in C with Hom(X,T [t]) = 0 for 1 ≤ t ≤ d − 1. Then
Hom(X,T [1] ∗ · · · ∗ T [d − 1]) = 0. Hence X ∈ T . Similar proof for X ∈ T if Hom(T , X[t]) = 0
for 1 ≤ t ≤ d − 1. Hence T is d−cluster tilting in C. �

Now we prove our main result in this section.

Theorem 3.10. Let C be a d−CY triangulated category with a d−cluster tilting subcategory T .
Then C is a direct sum of indecomposable triangulated subcategories Ci, i ∈ I if and only if
the d−cluster tilting subcategory T is a direct sum of indecomposable subcategories Ti, i ∈ I.
Moreover Ci = Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1] and Ti is a d−cluster tilting subcategory in Ci, i ∈ I.

Proof. We first show the ”only if” part. By the definition of direct sums of triangulated subcat-
egories, any object T in T has a decomposition T = ⊕i∈JTi with J a finite subset of I, Ti ∈ Ci

and Hom(Ti[k],T j) = 0 for 0 ≤ k ≤ d − 2, i , j. Then T = ⊕i∈ITi where Ti = T
⋂
Ci. By

Definition 3.2, for any object X ∈ Ci, Hom(X,T j[k]) = 0 for j , i and any k. Then by Lemma
3.7, X ∈ Ti ∗ Ti[1] ∗ · · · ∗ T [d − 1]. Hence Ci = Ti ∗ Ti[1] ∗ · · · ∗ T [d − 1]. By Lemma 3.9, Ti is a
d−cluster tilting subcategory of Ci. It follows from the indecomposability of Ci and Proposition
3.5 that Ti is indecomposable.
To prove the ”if” part. Let Ci = Ti ∗ Ti[1] ∗ · · · ∗ Ti[d − 1]. It follows from Proposition 3.5 that
Cis are triangulated categories and there is a decomposition C = ⊕i∈ICi. By Lemma 3.9, Ti is a
d−cluster tilting subcategory in Ci. If Ci is not indecomposable, say Ci = C′i ⊕ C

′′
i with nonzero

triangulated subcategories C′i ,C
′′
i , then by the proof of the “only if” part, we have Ti = T ′i ⊕ T ′′i ,

and C′i = T ′i ∗ T
′
i [1] ∗ · · · ∗ T ′i [d − 1],C′′i = T ′′i ∗ T

′′
i [1] ∗ · · · ∗ T ′′i [d − 1]. It follows that T ′i ,T

′′
i

are nonzero subcategories, a contradiction to the indecomposability of Ti. The other assertion
follows from Lemma 3.9. �

We give a simple example for d = 2.

Example 4. Let Q be the quiver:4 → 3 → 2 → 1, and C = CQ, the cluster category of Q whose
Auslander-Reiten quiver is the following:
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We take X = add(E), ⊥(X[1]) = add({E, P3, P4[1], P4, I2, P1[1], S 2, S 3}) By [IY], the subquotient
category ⊥(X[1])/X = add({P3, P4[1], P4, I2, P1[1], S 2, S 3}) is triangulated, and 2−CY. This sub-
quotient category admits cluster tilting objects, for example, the object T = P4[1] ⊕ P3 ⊕ S 3. We
have that in this subquotient category, addT = add(S 3) ⊕ add(P3 ⊕ P4[1]). Then by Theorem
3.10, this subquotient category ⊥(X[1])/X = add({S 2, S 3}) ⊕ add({P3, P4[1], P4, I2, P1[1]}), in
which, the first direct summand is equivalent to the cluster category of type A1, the second one is
equivalent to the cluster category of type A2.

Corollary 3.11. Let C be a d−CY triangulated category admitting a d−cluster tilting subcategory
T . Then C is indecomposable if and only if T is indecomposable.

Corollary 3.12. Let C be a d−CY triangulated category, T and T ′ be two d−cluster tilting
subcategories. Then T is indecomposable if and only if T ′ is indecomposable.

Corollary 3.13. Let C be a d−CY triangulated category with a d−cluster tilting object T . Then
C is a direct sum of finitely many indecomposable triangulated subcategories Ci, i = 1, · · ·m.
Moreover the cluster tilting object T is a direct sum of Ti, i = 1, · · · ,m such that Ci = addTi ∗

addTi[1] ∗ · · · ∗ addTi[d − 1] and Ti is d−cluster tilting in Ci.

Proof. Any triangulated category can be decomposed as a direct sum of triangulated subcate-
gories. For the d−CY triangulated category C with a d−cluster tilting object T , the number of
direct summands of the decomposition of C is finite since that the number of indecomposable di-
rect summands of T is finite. Then we have the decomposition of C = ⊕m

i=1Ci. The other assertion
follows directly from Theorem 3.10.

�

For the special case of d = 2, i.e., C is 2−CY triangulated category with a cluster tilting object
T , the decomposition of C corresponds to the partition of connected components of the Gabriel
quiver of End(T ).

Definition 3.14. A basic rigid object T in C is called connected provided T cannot written as
T = T1 ⊕ T2 with property that Ti , 0, and Hom(Ti,T j) = 0, for i , j ∈ {1, 2}. Any cluster
tilting object in C can be decomposed as a direct sum of connected summands: T = ⊕m

i=1Ti with
Ti being connected. We call such decomposition a complete decomposition of T .

Every C can be decomposed uniquely to a direct sum of nonzero indecomposable triangulated
subcategories. We call this decomposition is the complete decomposition of C and denote by
ns(C) the number of indecomposable direct summands of such decomposition of C. For a cluster
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tilting object T in C, the Gabriel quiver of End(T ) is denoted by ΓT and the number of connected
components of ΓT is denoted by nc(ΓT ). Note that the complete decomposition of T corresponds
to the connected components of Gabriel quiver of the 2−CY tilted algebra End(T ). So by applying
the theorem above, we have the following result immediately.

Corollary 3.15. Let C be a 2−CY triangulated category admitting a cluster tilting object T . Then
the number nc(ΓT ) of connected components of the quiver ΓT is equal to ns(C). In particular, C
is indecomposable if and only if ΓT is connected.

Corollary 3.16. Let C be a 2−CY triangulated category and let T,T ′ be cluster tilting objects in
C. Then ΓT is connected if and only if ΓT ′ is connected.

Proof. ΓT is connected⇔ C is indecomposable⇔ ΓT ′ is connected. �

Remark 3.17. Let (S ,M) be a marked surface and nc(S ) denote the number of connected com-
ponents of S . Then nc(S ) = ns(C(S ,M)) (compare [ZZ2]).

4 Classification of Cotorsion pairs in 2-Calabi-Yau categories

From now on, except Proposition 4.6, we always suppose that the triangulated category C is
2−Calabi-Yau (2−CY for short), i.e. [2] is the Serre functor of C. The main examples of 2−CY
triangulated categories are the followings:

1. Cluster categories of hereditary abelian k−categories in the sense of [BMRRT] (also [CCS]
for type A); and generalized cluster categories of algebras with global dimension at most 2
(including the case of quivers with potentials) in the sense of Amoit [Am]. All these 2−CY
triangulated categories have cluster tilting objects.

2. The stable categories of preprojective algebras of Dynkin quivers. They also have cluster
tilting objects [GLS, BIRS].

3. The cluster category of type A∞. It has cluster tilting subcategories, which contains in-
finitely many indecomposable objects [KR, HJ, Ng].

4. The bounded derived categories Db(mod f .l.Λ) of modules with finite length over preprojec-
tive algebras Λ of non-Dynkin quivers. They have no cluster tilting subcategories. There
are many stable subcategories of mod f .l.Λ associated to elements in the Coxeter group-
s of the quivers. Their stable categories are 2−CY, and have cluster tilting objects. See
[GLS, BIRS] for details.

5. Stable categories of Cohen-Macaulay modules over three-dimensional complete local com-
mutative noetherian Gorenstein isolated singularity containing the residue field [BIKR].

We shall first decide a special kind of cotorsion pairs: t-structures. Recall that (X ,Y ) is a
t-structure in C, if Ext1(X ,Y ) = 0, C = X ∗ Y [1], X [1] ⊂X and Y [−1] ⊂ Y .
The first main result in this section is the following result.

Theorem 4.1. Let C be an indecomposable 2-CY triangulated category with a cluster tilting
object T . Then C has no non-trivial t-structures, i.e. the t-structures in C are (C, 0) and (0,C).

10



Proof. Let (X ,Y ) be a t-structure in C. Put T = addT . Then for each indecomposable object
Ti ∈ T , i ∈ I, there is a triangle

Xi
fi
−→ Ti

gi
−→ Yi[1]

hi
−→ Xi[1]

with Xi ∈ X ,Yi ∈ Y . Let R be the subcategory of C generated additively by Xi, Yi, i ∈ I. Then
T ⊂ R ∗ R[1]. We shall prove that R is a cluster tilting subcategory of C.
For any map α ∈ Hom(Yi[1],Y j[2]), consider the following diagram:

X j[1] T j[1] Y j[2] X j[2]

Xi Ti Yi[1] Xi[1]

- - -

- - -

?

�
�
�

�
�	

�
�
�

�
�	

gi

α

−g j[1]

hi

−h j[1]

β

The composition −h j[1] ◦ α ∈ Hom(Yi[1], X j[2]) � DHom(X j,Yi[1]) = 0, then α factors through
−g j[1]. So α ◦ gi = 0 due to Hom(Ti,T j[1]) = 0. Therefore α factors through hi, i.e. there is a
morphism β ∈ Hom(Xi[1],Y j[2]) such that α = β ◦hi. But Hom(Xi[1],Y j[2]) = 0, so α = 0. Then
Ext1(Yi,Y j) = 0. Dually, we have that Ext1(Xi, X j) = 0. By the definition of t-structure and 2-CY
property, we also have Ext1(Xi,Y j) = 0 and Ext1(Yi, X j) = 0. Hence R is a rigid subcategory.
Given an object M with Ext1(M, Xi) = 0, Ext1(M,Yi) = 0 for i ∈ I. Since T is cluster tilting,
there is a triangle M

w
−→ A

u
−→ B

v
−→ M[1] with A, B ∈ T . Since T ⊂ R ∗ R[1],

XA
fA
−→ A

gA
−→ YA[1]

hA
−→ XA[1],

XB
fB
−→ B

gB
−→ YB[1]

hB
−→ XB[1],

where fA (resp. fB) is the minimal right X −approximation of A (resp. B) and gA (resp. gB) is the
minimal left Y [1]−approximation of A (resp. B). Then the composition u ◦ fA factors through
fB, that is, there exists s such that fB ◦ s = u ◦ fA.

M A B M[1]

XA XB

- - -
? ?

-�

�
�
�

�
�	

s
r

fA fB

u v

Due to Hom(XB,M[1]) = 0, we have v ◦ fB = 0, then fB factors through u. Since any morphism
from XB to A factors through fA, then there is a morphism r ∈ Hom(XB, XA) such that fB =

u◦ fA◦r. Replace u◦ fA by fB◦ s, we have fB = fB◦ s◦r. Then s◦r is an isomorphism by the right

minimality of fB. Thus s is a retraction and we have the triangle XA
s
−→ XB

0
−→ XC[1] −→ XA[1],

where XC is a direct summand of XA. From fB◦ s and u◦ fA respectively, by the octahedral axiom,
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we have the following two commutative diagrams of triangles:

XA = XA

s ↓ fB ◦ s ↓

YB −→ XB
fB
−→ B

gB
−→ YB[1]

‖ 0 ↓ ↓ ‖ (∗)
YB −→ XC[1] −→ N −→ YB[1]

↓ ↓

XA[1] = XA[1]

and
M = M

w ↓ ↓

XA
fA
−→ A

gA
−→ YA[1]

hA
−→ XA[1]

‖ u ↓ ↓ ‖ (∗∗)

XA
u◦ fA
−→ B −→ N −→ XA[1]

v ↓ ↓

M[1] = M[1].

Since the morphism from YB to XC[1] in the third row of the diagram (∗) is zero, then N �

XC[1] ⊕ YB[1] ∈ R[1]. On the other hand, the morphism from M to YA[1] in the third column of
the diagram (∗∗) is zero due to Hom(M,YA[1]) = 0, then M[1] is isomorphic to a direct summand
of N, and then it is in R[1]. Hence M ∈ R. The functorially finiteness of R follows from that
the number of indecomposable objects (up to isomorphism) in it is finite and C is Hom-finite.
Therefore R is cluster tilting in C. By Corollary 3.11, R is indecomposable.
Now we replace T by R, repeat the proof above. Namely, we consider the following split trian-
gles:

Xi −→ Xi −→ 0
0
−→ Xi[1],

0→ Yi → Yi[−1][1]
0
→ 0.

In these triangles, Xi ∈ X , Yi[−1] ∈ Y . We have that the subcategory R′ generated by
Xi, Yi[−1], i ∈ I is a cluster tilting subcategory. It is an indecomposable by Corollary 3.11.
For any i, j ∈ I, Y j[−2] ∈ Y , then Hom(Xi,Y j[−1]) = Ext1(Xi,Y j[−2]) = 0. Note that
Hom(Y j[−1], Xi) = Ext1(Y j, Xi) � DExt1(Xi,Y j) = 0. Therefore Xi � 0 for all i or Yi � 0
for all i as R′ is indecomposable. Then R′ ⊆ Y or R′ ⊆X . Hence C = Y or C = X .

�

Remark 4.2. The above result is not true for 2−CY triangulated categories without cluster tilting
objects. For example: the derived category of coherent sheaves on an algebraic K3 surface is
2-CY and admits no cluster tilting objects. It admits a non trivial t-structure (the canonical t-
structure whose heart is the category of coherent sheaves). There are also examples (e. g. the
cluster category CA∞ of type A∞, see [HJ, KR, Ng]) that there are nontrivial t-structures in a
2-CY triangulated category admitting cluster tilting subcategories which contains infinitely many
indecomposables (up to isomorphism).
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Corollary 4.3. Let C be a 2-CY triangulated category with a cluster tilting object T and let
C = ⊕ j∈JC j be the complete decomposition of C. Then the t-structures in C are of the form
(⊕ j∈LC j,⊕ j∈J−LC) where L is a subset of J. In particular, each t-structure is stable and has a
trivial heart.

The following theorem is the second main result in this section, which gives a classification of
cotorsion pairs (equivalently torsion pairs) in 2−CY triangulated categories C with cluster tilting
objects. We note that in any 2−CY triangulated category C with a cluster tilting object, any
rigid subcategory I contains only finitely many indecomposables (up to isomorphism) [DK].
So we identify I with the object I obtained as the direct sum of representatives of isoclasses of
indecomposables in it. We also note that for any rigid subcategory I in C, the subquotient category
⊥(I[1])/I is again a 2−CY triangulated category with cluster tilting objects (see Theorem 4.7 and
Theorem 4.9 in [IY]).

Theorem 4.4. Let C be a 2-CY triangulated category admitting cluster tilting objects and I a
rigid subcategory of C. Let ⊥(I[1])/I = ⊕ j∈J I j be the complete decomposition of ⊥(I[1])/I. Then
all cotorsion pairs with core I are obtained as preimages under π : ⊥(I[1]) → ⊥(I[1])/I of the
pairs (⊕ j∈LI j,⊕ j∈J−LI j) where L is a subset of J. There are 2ns(⊥(I[1])/I) cotorsion pairs with core
I.

Proof. By Theorem 3.5 and Corollary 3.6 in [ZZ2], a pair (X1,X2) of subcategories of C is a co-
torsion pair with core I if and only if I ⊂Xi ⊂

⊥(I[1]), i = 1, 2, and (π(X1), π(X2)) is a t-structure
in ⊥(I[1])/I. Then by Corollary 4.3, the t-structures in ⊥(I[1])/I are of the form (⊕ j∈LI j,⊕ j∈J−LI j).
Therefore the cotorsion pairs with core I are the preimages under π : ⊥(I[1]) → ⊥(I[1])/I of the
t−structure (⊕ j∈LI j,⊕ j∈J−LI j) in ⊥(I[1])/I. �

Indeed, this correspondence is the same as that in Theorem II.2.5 in [BIRS] under the following
result: every cotorsion pair is symmetric, i.e.

Corollary 4.5. Let C be a 2-CY triangulated category admitting a cluster tilting object and let
(X ,Y ) be a cotorsion pair with core I. Then (Y ,X ) is also a cotorsion pair with the same
core.

Proof. By Theorem 4.4, (X ,Y ) = (π−1(⊕ j∈LI j), π−1(⊕ j∈J−LI j)) for some subset J, then (Y ,X ) =

(π−1(⊕ j∈J−LI j), π−1(⊕ j∈LI j)) is also a cotorsion pair with core I. �

Recall that (X ,Y ) is a co-t-structure in C, if Ext1(X ,Y ) = 0, C = X ∗Y [1] and X [−1] ⊂X ,
Y [1] ⊂ Y . Using Theorem 4.4 and Corollary 4.3, one can prove that there are no non-trivial
co-t-structures in an indecomposable 2-CY triangulated category with a cluster tilting object in
the similar way as [ZZZ]. Indeed, if (X ,Y ) is a co-t-structure in C, then (X ,Y ) is a cotorsion
pair by the definition of co-t-structure. By Corollary 4.5, (Y ,X ) is also a cotorsion pair. Since
Y is closed under [1] and X is closed under [-1], (Y ,X ) is a t-structure. Then by Theorem 4.1,
X = 0 or Y = 0.
In fact, we have the following more general result on t-structures or co-t-structures in a d−CY
triangulated category, generalizing a recent result in [HJY].

Proposition 4.6. Let C be an indecomposable d−CY triangulated category. If d ≥ 1, then the
co-t-structures in C are (C, 0) and (0,C). Dually, if d ≤ −1, Then the t-structures in C are (C, 0)
and (0,C).
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Proof. We only prove the case of d ≥ 1. Let (X ,Y ) be a co-t-structure in C. For any object
M ∈ X ∩ Y , we have Hom(M,M) � DExt1(M,M[d − 1]) = 0 by M ∈ X and M[d − 1] ∈ Y .
This implies the core of (X ,Y ) is zero. Then by Lemma 2.3, (X ,Y ) is a t-structure. Thus
X , Y are triangulated subcategories of C. For any X ∈ X ,Y ∈ Y , we have that Hom(X,Y) =

Ext1(X,Y[−1]) = 0 and Hom(Y, X) � DExt1(X,Y[d − 1]) = 0 by Y[−1],Y[d − 1] ∈ Y . Due to
C = X ∗ Y [1], we have C = X ⊕ Y . Therefore X = 0 or Y = 0. �

5 Mutations

In this section, all cluster tilting objects we considered are basic. We shall discuss the relation
between mutation of cotorsion pairs and that of cluster tilting objects contained in those cotorsion
pairs in a 2−CY triangulated category with a cluster tilting object. First we introduce a notion of
cluster tilting subcategories in a subcategory.

Definition 5.1. Let X be a contravariantly finite (or covariantly finite) extension-closed sub-
category of a triangulated category C and let D be a subcategory of X . We call that D is a
X −cluster tilting subcategory provided that D is functorially finite in X , and satisfies that for
any object M ∈ X , M ∈ D if and only if Ext1(D,M) = 0 if and only if Ext1(M,D) = 0. An
object D in X is called a X −cluster tilting object if addD is a X −cluster tilting subcategory.

When X = C, then C−cluster tilting subcategories are exactly cluster tilting in C. When X is
a contravariantly finite (or covariantly finite) rigid subcategory, then X is the only X −cluster
tilting subcategory.
From now on to the rest of the section, C denotes a 2−CY triangulated category with a cluster
tilting object, (X ,Y ) denotes a cotorsion pair with core I in C. We shall show that any clus-
ter tilting object containing I as a direct summand in C gives a X −cluster tilting object and a
Y −cluster tilting object respectively. First we prove some lemmas.

Lemma 5.2. Let C, (X ,Y ) and I be above. Then ⊥(I[1])/I = X /I ⊕ Y /I as triangulated
categories.

Proof. The proof of this lemma can be deduced from the proof of Theorem 4.4. �

Lemma 5.3. Let (X ,Y ) be a cotorsion pair with core I in a 2−CY triangulated category C with
a cluster tilting object. Then any map f : X → Y and any map g : Y → X with X ∈ X ,Y ∈ Y
factor through I.

Proof. This dues to the fact that the images of f and g under the projection π : ⊥(I[1]) →
⊥(I[1])/I are zero (since ⊥(I[1])/I = X /I ⊕ Y /I by Lemma 5.2). �

Lemma 5.4. Let C, (X ,Y ) and I be above. Let T be a cluster tilting object in C. Suppose T
can be written as T = TX ⊕ I ⊕ TY with TX ∈ X and TY ∈ Y . Then TX ⊕ I is X −cluster
tilting and TY ⊕ I is Y −cluster tilting.

Proof. We prove the assertion for X −cluster tilting, the proof for Y −cluster tilting is simi-
lar. Suppose that Ext1(TX ⊕ I, X) = 0 for X ∈ X , then Ext1(T, X) = 0 since Ext1(TY , X) �
DExt1(X,TY ) = 0, where the first isomorphism dues to 2−CY property and the second one dues
to that (X ,Y ) is a cotorsion pair. Hence X ∈ addT . It follows that X ∈ add(TX ⊕I). add(TX ⊕I)
is automatically functorially finite in X . Therefore TX ⊕ I is a X −cluster tilting object. �
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The following result gives the precise relation between the cluster tilting objects containing I as
a direct summand and the X −cluster tilting objects, Y −cluster tilting objects.

Proposition 5.5. Let C be a 2−CY triangulated category with a cluster tilting object, and (X ,Y )
be a cotorsion pair in C with core I. Then
1. Any cluster tilting object T containing I as a direct summand can be written uniquely as:
T = TX ⊕ I ⊕ TY , such that TX ⊕ I is X −cluster tilting, and TY ⊕ I is Y −cluster tilting.
2. Any X −cluster tilting object M (or Y −cluster tilting object N) contains I as a direct sum-
mand, and can be written as M = MX ⊕ I ( N = NY ⊕ I respectively). Furthermore MX ⊕ I⊕NY

is a cluster tilting object in C.
3. There is a bijection between the set of cluster tilting objects containing I as a direct summand
in C and the product of the set of X −cluster tilting objects with the set of Y −cluster tilting
objects. The bijection is given by T 7→ TX ⊕ I ⊕ TY .

Proof. 1. Let T be any cluster tilting object containing I as a direct summand, we write T as
T = I ⊕ T0. Then T0 ∈

⊥(I[1]), and by passing from ⊥(I[1]) to the quotient triangulated category
⊥(I[1])/I = X /I ⊕ Y /I (Lemma 5.2), we have that T0 = TX ⊕ TY , where TX ∈ X ,TY ∈ Y .
Therefore T = TX ⊕ I ⊕ TY . By Lemma 5.4, TX ⊕ I, TY ⊕ I are X −cluster tilting, Y −cluster
tilting respectively.

2. Let M be a X −cluster tilting object. Then by Ext1(M, I) = 0, we have that I ∈ addM, i.e. I
is a direct summand of M. Then M = MX ⊕ I. Similarly, any Y −cluster tilting object N can
be written as N = NY ⊕ I. Now MX ,NY are cluster tiltings in X /I,Y /I respectively, and then
MX ⊕ NY is a cluster tilting object in ⊥(I[1])/I since ⊥(I[1])/I = X /I ⊕ Y /I. It follows that
MX ⊕ I ⊕ NY is a cluster tilting object in C.

3. It follows from 1 and 2. �

We know that one can mutate cluster tilting objects to get new ones. In the following we shall
see that the mutation of cluster tilting objects containing I as a direct summand is related to the
mutation of cotorsion pairs introduced in [ZZ2]. We recall the notion of mutation of cotorsion
pairs in 2−CY triangulated categories. This notion is defined in a general triangulated category
in [ZZ2].
Let C be a 2−CY triangulated category with a cluster tilting object T . We denote by δ(M) the
number of indecomposable direct summands (up to isomorphism) of an object M. We assume
that δ(T ) = n.
Let (X ,Y ) be a cotorsion pair with core I. Then 0 ≤ δ(I) ≤ n [DK]. It follows from Lemma
2.4 that δ(I) = 0 if and only if (X ,Y ) is a t-structure in C, while δ(I) = n if and only if
X = Y = add(I) is cluster tilting in C. In the later case, I is a cluster tilting object in C.

Definition 5.6. Let C be an indecomposable 2−CY triangulated category with a cluster tilting
object T , and δ(T ) = n. Assume that 0 ≤ d ≤ n is an integer. A cotorsion pair (X ,Y ) with core
I is called a d−cotorsion pair if δ(I) = d.
Denote by CT Nd(C) the set of all d−cotorsion pairs.

From the definition above and Theorem 4.1, CT N0(C) = {(C, 0), (0,C)}. CT Nn(C) consists of
cluster tilting objects in C.

Throughout the remainder of this section, let D be a direct summand of I (maybe zero summand).
Denote byD = addD. Put:
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µ−1(X ;D) := (D ∗X [1]) ∩ ⊥(D[1]);
µ−1(Y ;D) := (D ∗ Y [1]) ∩ ⊥(D[1]);
µ−1(I;D) := (D ∗ I[1]) ∩ ⊥(D[1]).

The following proposition is proved in [ZZ2].

Proposition 5.7. With the assumption above, we have that (µ−1(X ;D), µ−1(Y ;D)) is also a
cotorsion pair with the core µ−1(I;D) in C. Moreover (µ−1(X ;D), µ−1(Y ;D)) ∈ CT Nd(C) if
and only if (X ,Y ) ∈ CT Nd(C).

Definition 5.8. We call the cotorsion pair (µ−1(X ;D), µ−1(Y ;D)) is aD−mutation of cotorsion
pair (X ,Y ). Sometimes denote this cotorsion pair by (X ′,Y ′), denote its core by I′.

Corollary 5.9. Let (X ,Y ) be a cotorsion pair with core I, and (X ′,Y ′) with core I′ be the
D−mutation of (X ,Y ). Then (X ′,Y ′) = (X ,Y ) if and only if I′ = I.

Proof. The ”only if” part is obviously. We prove the ”if” part. Suppose I′ = I. Then by Theorem
3.11(2) in [ZZ1], D = I. It follows that passing to the quotient category ⊥(I[1])/I, (X ′,Y ′) is
0−mutation of the t-structure (X ,Y ) in the quotient triangulated category ⊥(I[1])/I. By Corol-
lary 4.3, both (X ′,Y ′) and (X ,Y ) are stable, then (X ′,Y ′) = (X ,Y ) in this quotient cate-
gory. Hence (X ′,Y ′) = (X ,Y ) in C.

�

This corollary was proved for finite triangulated categories in [ZZ2].

Note that there are many choices for D. Two extreme cases are: when D = {0}, then the
D−mutation of (X ,Y ) is (X [1],Y [1]); when D = addI, then the D−mutation of (X ,Y )
is (X ,Y ) itself.
When D is a direct summand of I with δ(D) = δ(I)−1, theD−mutation is the usually one, which
was defined and studied for cluster tilting objects (subcategories) in [BMRRT, KR, IY], for rigid
objects(subcategories) in [MP], for maximal rigid objects(subcategories) in [ZZ1]. We call the
D−mutation with δ(D) = δ(I) − 1 just mutation, for simplicity. Denote this mutation by µI0 ,
where I0 is the missing indecomposable object of D in I.

Remark 5.10. For a cluster tilting object T , the mutation µ is an involution. But the mutation of
cotorsion pairs is not an involution in general (compare [MP]), see the following example.

Example 5. Let Q be the quiver 4 → 3 → 2 → 1, and C = Db(kQ)/τ−1[1], the cluster category
of Q, see the AR-quiver below. Set X = add(P1 ⊕P2 ⊕P3 ⊕S 2),Y = add(P2 ⊕P3 ⊕P4 ⊕P4[1]),
I = P2 ⊕ P3. Then (X ,Y ) is a cotorsion pair with core I. We mutate the cotorsion pair (X ,Y )
at P2 to get a new cotorsion pair (X1,Y1) with core I1, where X1 = add(E ⊕S 3 ⊕P3 ⊕P1),Y1 =

add(S 3 ⊕ P3 ⊕ P4[1] ⊕ P4), I1 = S 3 ⊕ P3. Now we continues to mutate (X1,Y1) at S 3. We get
another new cotorsion pair (X2,Y2) with core I2, where X2 = add(P2 ⊕ S 2 ⊕ P3 ⊕ E),Y2 =

add(S 2 ⊕ P3 ⊕ P4 ⊕ P4[1]), I2 = S 2 ⊕ P3. We conclude that (X2,Y2) , (X ,Y ).
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We define mutation quiver of cotorsion pairs in C. It is a quiver whose vertices are cotorsion pairs,
there is an arrow from the vertex to another vertex if the target cotorsion pair is a mutation of the
initial one. This quiver is denoted by M (C). It is not connected from Proposition 5.5. Denoted by
Md(C) the subquiver of M (C) consisting of vertices belong to CT Nd(C). M (C) =

⊔n
d=0 Md(C).

Note that if we replace the each double anti-arrows by an edge, then Mn(C) is the exchange graph
of cluster tilting objects in C.
Now we give the relation of mutation of cluster tilting objects containing I as a direct summand
with mutation of cotorsion pairs.

Proposition 5.11. Let (X ,Y ) be a cotorsion pair with core I in C, T = TX ⊕ I ⊕ TY a cluster
tilting object. Suppose (X ′,Y ′) is a D−mutation of (X ,Y ), I′ is the core of (X ′,Y ′). Then
theD−mutation T ′ of T is T ′X ′ ⊕ I′ ⊕ T ′Y ′ .

Proof. For D = addD, where D is a direct summand of I, we consider the subquotient category
⊥(D[1])/D. It is a triangulated category by [IY] with shift functor < 1 >. In this subquotient
category, (X ,Y ) is a cotorsion pair with core I in [ZZ2] and T = TX ⊕ I⊕TY is a cluster tilting
object by [IY]. The images of their D−mutations are (X ′,Y ′) = (X < 1 >,Y < 1 >), T ′ =

T < 1 >= TX < 1 > ⊕I < 1 > ⊕TY < 1 > respectively. It follows that TX < 1 >∈ X < 1 >,
TY < 1 >∈ Y < 1 >. Therefore T ′ = T ′X ′ ⊕ I′ ⊕ T ′Y ′ , where T ′X ′ ⊕ I′, T ′Y ′ ⊕ I′ are X ′−cluster
tilting object in X ′, Y ′−cluster tilting object in Y ′ respectively.

�

We state and prove the main result in this section.

Theorem 5.12. Let (X ,Y ) be a cotorsion pair with core I in a 2−CY triangulated category C
with a cluster tilting object. Let T = TX ⊕ I ⊕ TY be a cluster tilting object containing I as a
direct summand. Suppose that T0 is an indecomposable direct summand of T . We consider the
mutation µT0(T ) of T in T0.
1. If T0 is a direct summand of I, denoted add(I/T0) by D, then the D−mutation of T is T ′X ′ ⊕

I′ ⊕ T ′Y ′ , where (X ′,Y ′) = µT0(X ,Y ) is the mutation of (X ,Y ), I′ is the core of cotorsion
pair (X ′,Y ′).
2. If T0 is not the direct summand of I, then µT0(T ) = µT0(TX ⊕ I) ⊕ TY when T0 is a direct
summand of TX , and µT0(T ) = TX ⊕ µT0(I ⊕ TY ) when T0 is a direct summand of TY .

Proof. 1. The assertion follows from Proposition 5.10.
2. We will prove the case of that T0 is a direct summand of TX , the proof for the other case
is similar. For the minimal left T/T0−approximation of T0, say g : T0 → B, we have B ∈
add(TX ⊕ I) by Lemma 5.3. Then g : T0 → B is a minimal left (TX ⊕ I)−approximation. Extend
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g to a triangle T0
g
→ B→ T ′0 → T0[1]. It induces a triangle in the subfactor triangulated category

⊥(I[1])/I : T0
g
→ B → T ′0 → T0 < 1 > [IY]. It follows that T ′0 ∈ X /I and T ′0 ∈ X . Then

µT0(T ) = (T/T0) ⊕ T ′0 = T ′0 ⊕ (TX /T0) ⊕ I ⊕ TY = µT0(TX ⊕ I) ⊕ TY .
�

Remark 5.13. For any cotorsion pair (X ,Y ) with core I in C. From the theorem above, X (or
Y ) has weak cluster structure in the sense of [BIRS], i.e. the X −cluster tiltings TX ⊕ I are the
candidates of extended clusters, where I is the set of coefficients; one can mutate the X −cluster
tiltings at T0 to get a new X −cluster tilting object by the above theorem; and one also have
exchange triangles. There is a substructure of C induced by a X −cluster tilting object and a
Y −cluster tilting object: Let TX ⊕ I be a X −cluster tilting object, TY ⊕ I a Y −cluster tilting
object. Then TX ⊕ I⊕TY is the cluster tilting object in C by Proposition 5.4. We call that TX ⊕ I
and TY ⊕ I give a substructure of C (compare [BIRS]) if for any X −cluster tilting object T ′X ⊕ I,
Y −cluster tilting object T ′Y ⊕ I, both of which are obtained from TX ⊕ I and TY ⊕ I respectively
via a finite number of mutations, then the cluster tilting object T ′X ⊕ I ⊕ T ′Y in C can be obtained
from TX ⊕ I ⊕ TY via a finite number of mutations in C.

6 Hearts of cotorsion pairs

As an application of the classification theorem of cotorsion pairs, we determine the hearts of
cotorsion pairs in 2−CY triangulated categories with cluster tilting objects in this section. Hearts
of cotorsion pairs in any triangulated category were introduced by Nakaoka [N], which unify the
construction of hearts of t-structures [BBD] and construction of the abelian quotient categories
by cluster tilting subcategories [BMRRT, KR, KZ].
We recall the construction of hearts of cotorsion pairs from [N]. Recall that this construction
works for cotorsion pairs in any triangulated category C. In the second half of this section we
restrict our attention to 2−CY triangulated categories. Let (X ,Y ) a cotorsion pair with core I
in C. Denote by H the subcategory (X [−1] ∗ I) ∩ (I ∗ Y [1]). The heart of the cotorsion pair
(X ,Y ) is defined as the quotient categoryH/I, denoted byH .

It was proved that H is an abelian category [N]. There is a cohomology functor H = hπ from
C to H , where π is the quotient functor from C to C = C/I and h is a functor from C to H .
Those constructions were given in Proposition 3.4 and Proposition 4.2 in [AN] combined with
Construction 4.2, Proposition 4.3 and Remark 4.5 in [N]. For the convenience of reader, we recall
the definition of the functor h from [AN] as follows.
For any M ∈ C, there is a triangle YM → XM → M → YM[1] with XM ∈ X ,YM ∈ Y ,
since (X ,Y ) is a cotorsion pair. Then there is a triangle X′M[−1] → XM → Y ′M → X′M with
X′M ∈ X ,Y ′M ∈ Y , since (X [−1],Y [−1]) is a cotorsion pair. Composing the morphism from
X′M[−1] to XM and the morphism from XM to M, we have the following commutative diagram of
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triangles in C by the octahedral axiom, in which we get M̃ and sM : M → M̃:

X′M[−1] = X′M[−1]
↓ ↓

YM −→ XM −→ M −→ YM[1]
‖ ↓ sM ↓ ‖

YM −→ Y ′M −→ M̃ −→ YM[1]
↓ ↓

X′M = X′M

(?).

Using the definition of cotorsion pair (X [−1],Y [−1]) again, we have a triangle X′′M[−1]→ M̃ →
Y ′′M → X′′M and then we have another triangle Y ′′′M → X′′′M → Y ′′M → Y ′′′M [1] with X′′M, X

′′′
M ∈ X

and Y ′′M,Y
′′′
M ∈ Y . Compose the morphism from X′′′M to Y ′′M and the morphism from Y ′′M to X′′M, by

the octahedral axiom, we have the following commutative diagram of triangles in C, in which we
have M and tM : M → M̃:

Y ′′′M = Y ′′′M
↓ ↓

X′′M[−1] → M → X′′′M → X′′M
‖ tM ↓ ↓ ‖

X′′M[−1] → M̃ → Y ′′M → X′′M
↓ ↓

Y ′′′M [1] = Y ′′′′M [1]

(??).

The image of M under h is defined as M. Abe and Nakaoka proved that M ∈ H . It is easy to
see that up to isomorphisms in H , M does not depend on the choice of XM, X′M, X

′′
M, X

′′′
M and

YM,Y ′M,Y
′′
M,Y

′′′
M (See Section 4 in [AN] for details).

For any morphism f : M → N in C, there is a unique morphism f̃ in C such that the left square of
the following diagram commutate (Proposition 4.3 in [N]) and then there is a unique morphism
f in C such that the right square in the following diagram commutate (Remark 4.5 in [N]):

M
sM
→ M̃

tM
← M

f ↓ f̃ ↓ f ↓

N
sN
→ Ñ

tN
← N

(? ? ?).

The image of f under h is defined as f .

We state two simple facts followed from the constructions above.

Lemma 6.1. H(X ) = 0 and H(Y ) = 0 hold.

Proof. We give a proof for H(X ) = 0, H(Y ) = 0 can be proved dually. Let M be an object in
X . One can choose YM = 0. Then M̃ � Y ′M. So one can choose X′′M = 0. Then h(M) = M � X′′′M .
Note that X′′′M ∈ Y ∗ Y ⊂ Y by the triangle in the third column in the diagram (??). We have
that h(M) ∈ I and hence h(M) � 0 inH . �

Lemma 6.2. h|H = idH .
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Proof. By the definition of h, one only need to check that h(M) � M for any M ∈ H . In this
case, we have that XM ∈ I by Corollary 3.3 in [N]. One can choose Y ′M = XM and then M̃ � M.
By the dual, one can have that M � M̃. Thus this lemma holds. �

Let (X1,Y1) and (X2,Y2) be two cotorsion pairs with the same core I in a triangulated category
C. Denote by Hi the heart of (Xi,Yi), i = 1, 2. Let Hi = hiπ be the cohomology functor from
C to Hi given in [AN], and ιi be the inclusion functor from Hi to C, i = 1, 2. The composition
functors h1ι2 and h2ι1 are denoted by E and F respectively.

C -π C
��

�
��

��*
h1

H1

H
HHH

HHHj

h2

H2

���
�����
ι1

H
HH

H
HH

HY
ι2

?

E

6

F
��

��
��

��
��

���1

H1

PPPPPPPPPPPPPq
H2

Lemma 6.3. If H1(⊥(I[1])) = 0 and H1((I[−1])⊥) = 0, then EF ' idH1 .

Proof. For any M ∈ H1, we have the above commutative diagrams (?) and (??) with XM, X′M,
X′′M, X′′′M ∈ X2 and YM,Y ′M,Y

′′
M,Y

′′′
M ∈ Y2. Then h2(M) = M by the definition. The first and the

last morphisms in the third column of the diagram (?) and in the second column of the diagram
(??) factor through ⊥(I[1]) or (I[−1])⊥ respectively, by X2 ⊂

⊥(I[1]) and Y2 ⊂ (I[−1])⊥. Then
the image of these morphisms under H1 are zero. Applying the cohomology functor H1 to these
two triangles (in the third column of the diagram (?) and in the second column of the diagram
(??)), one has two isomorphisms inH1:

H1M
H1(sM)
−→ EM̃

and
EFM

H1(tM)
−→ EM̃.

Since M ∈ H1, so H1M = M by Lemma 6.2.
For any morphism f : M → N in H1, applying the functor h1 to the diagram (? ? ?), we have
the following commutative diagram inH1:

h1M
H1(tM)−1H1(sM)
−→ EFM

h1 f ↓ EF f ↓

h1N
H1(tN )−1H1(sN )
−→ EFN

.

Since M,N ∈ H1, then h1M = M, h1N = N and h1 f = f by Lemma 6.2. Therefore, idH1 ' EF.
�

From now on to the end of the section, we assume that C is a 2−CY triangulated category with
cluster tilting objects. The main result of this section is to determine the hearts of any cotorsion
pairs in C.
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Theorem 6.4. Let C be a 2-CY triangulated category with cluster tilting objects and (X ,Y ) be
a cotorsion pair in C with core I. Then we have an equivalence of abelian categories

H ' mod EndI,

and in particular, the hearts of any two cotorsion pairs with the same core are equivalent.

Proof. Denote by I the subcategory addI. Let (X1,Y1) be the cotorsion pair (I, ⊥(I[1])) and
(X2,Y2) = (X ,Y ). By Lemma 5.2, ⊥(I[1])/I = X /I ⊕ Y /I. Then by Lemma 6.1, we have
that H1(⊥(I[1])) = 0 and H2(⊥(I[1])) = 0. By the 2−CY property of C and Lemma 6.3, we have
EF ' idH1 and FE ' idH2 . Thanks to that the heart of (I, ⊥(I[1])) is equivalent to the module
category mod EndI [IY], we have the equivalenceH ' mod I. Note that both categoriesH and
mod I are abelian and E, F are additive functors. SoH and mod EndI are equivalent as abelian
categories. �

Example 6. Let Q be the quiver 4 → 3 → 2 → 1, and C the cluster category of Q. Set
I = add(P2[1]⊕P3[1]). Then the subcategory ⊥(I[1]) = add(P1[1]⊕P2[1]⊕P3[1]⊕P4[1]⊕I4⊕P1).
We mark the indecomposable objects in ⊥(I[1]) by � in the following AR-quiver of C.
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There are four cotorsion pairs with core I in this category, we list them together with their hearts
in the following and mark the indecomposable objects in each heart by ♣, ♦, ♥ and ♠ respectively
in order in the AR-quiver above.

Cotorsion pairs Hearts
(I, ⊥I[1]) add(P2 ⊕ P3 ⊕ S 3)
(⊥I[1], I) add(S 2 ⊕ I2 ⊕ I3)

(add(P2[1] ⊕ P3[1] ⊕ P4[1] ⊕ I4), add(P2[1] ⊕ P3[1] ⊕ P1[1] ⊕ P1)) add(P2 ⊕ P4 ⊕ I3)
(add(P2[1] ⊕ P3[1] ⊕ P1[1] ⊕ P1), add(P2[1] ⊕ P3[1] ⊕ P4[1] ⊕ I4)) add(S 2 ⊕ E ⊕ S 3)
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