
Author's personal copy

Journal of Complexity 29 (2013) 195–215

Contents lists available at SciVerse ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Vector-valued reproducing kernel Banach spaces with
applications to multi-task learning✩

Haizhang Zhang a,b,∗, Jun Zhang c

a School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China
b Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China
c Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 18 February 2012
Accepted 31 May 2012
Available online 20 September 2012

Keywords:
Vector-valued reproducing kernel Banach
spaces

Feature maps
Regularized learning
The representer theorem
Characterization equations

a b s t r a c t

Motivated by multi-task machine learning with Banach spaces, we
propose the notion of vector-valued reproducing kernel Banach
spaces (RKBSs). Basic properties of the spaces and the associated
reproducing kernels are investigated. We also present feature
map constructions and several concrete examples of vector-valued
RKBSs. The theory is then applied to multi-task machine learning.
Especially, the representer theoremand characterization equations
for theminimizer of regularized learning schemes in vector-valued
RKBSs are established.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to establish the notion of vector-valued reproducing kernel Banach
spaces and demonstrate its applications to multi-task machine learning. Built on the theory of scalar-
valued reproducing kernel Hilbert spaces (RKHSs) [3], kernel methods have been proven successful in
single taskmachine learning [10,14,29,30,33].Multi-task learningwhere the unknown target function
to be learned from finite sample data is vector-valued appears more often in practice. Refs. [13,25]
proposed the development of kernel methods for learning multiple related tasks simultaneously. The
mathematical foundation used there was the theory of vector-valued RKHSs [5,27]. Recent progresses
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in vector-valued RKHSs can be found in [7–9,38]. In such a framework, both the space of the candidate
functions used for approximation and the output space are chosen as a Hilbert space.

There are some occasions where it might be desirable to select the space of candidate functions,
the output space, or both as Banach spaces. Hilbert spaces constitute a special and limited class
of Banach spaces. Any two Hilbert spaces over a common number field with the same dimension
are isometrically isomorphic. By reaching out to other Banach spaces, one obtains more variety in
geometric structures and norms that are potentially useful for learning and approximation. Moreover,
training data might come with intrinsic structures that make them impossible or inappropriate
to be embedded into a Hilbert space. Learning schemes based on features in a Hilbert space may
not work well for them. Finally, in some applications, a Banach space norm is engaged for some
particular purpose. A typical example is the linear programming regularization in coefficient based
regularization for machine learning [29], where the ℓ1 norm is employed to obtain sparsity in the
resulting minimizer.

There has been considerable work in learning a single task with Banach spaces (see, for example,
[4,6,12,15,17,20,24,26,34,36,42]). The difficulty in mapping patterns into a Banach space and making
use of these features for learning mainly lies in the lack of an inner product in Banach spaces. In
particular, without an appropriate correspondence of the Riesz representation of continuous linear
functionals, point evaluations do not have a kernel representation in these studies. Semi-inner
products, a mathematical tool discovered by Lumer [23] for the purpose of extending Hilbert space
type arguments to Banach spaces, seem to be a natural substitute for inner products in Banach spaces.
An illustrative example is that wewere able to extend the classical theory of frames and Riesz bases to
Banach spaces via semi-inner products [40]. Semi-inner products were first used to machine learning
by Der and Lee [12] for the study of largemargin classification by hyperplanes in a Banach space.With
this tool, we established the notion of scalar-valued reproducing kernel Banach spaces (RKBSs) and
investigated regularized learning schemes in RKBSs [37,39]. There has been increasing interest in the
application of this new theory [19,31,32,41].

We attempt to build a mathematical foundation for multi-task learning with Banach spaces.
Specifically, we shall propose a definition of vector-valued RKBSs and investigate its fundamental
properties in the next section. Feature map representations and several concrete examples of vector-
valued RKBSs will be presented in Sections 3 and 4, respectively. In Section 5, we investigate
regularized learning schemes in vector-valued RKBSs.

2. Definition and basic properties

We are concerned with spaces of functions from a fixed set to a vector space. We shall allow the
space of functions and the range space both to be a Banach space. Our key tool in dealingwith a general
Banach space is the semi-inner product [16,23]. Recall that a semi-inner product on a Banach space V
is a function from V × V to C, denoted by [·, ·]V , such that for all f , g, h ∈ V and α, β ∈ C

1. (linearity with respect to the first variable) [αf + βg, h]V = α[f , h]V + β[g, h]V ;
2. (positivity) [f , f ]V > 0 for f ≠ 0;
3. (conjugate homogeneity with respect to the second variable) [f , αg]V = α[f , g]V ;
4. (Cauchy–Schwarz inequality) |[f , g]V | ≤ [f , f ]1/2V [g, g]1/2V .

A semi-inner product [·, ·]V on V is said to be compatible if

[f , f ]1/2V = ∥f ∥V for all f ∈ V ,

where ∥ ·∥V denotes the norm on V . Every Banach space has a compatible semi-inner product [16,23].
Let [·, ·]V be a compatible semi-inner product on V . Then one sees by the Cauchy–Schwarz inequality
that for each f ∈ B, the linear functional f ∗ on V defined by

f ∗(g) := [g, f ]V , g ∈ V (2.1)

is bounded on V . In other words, f ∗ lies in the dual space B∗ of B. Moreover, we have

∥f ∗
∥V∗ = ∥f ∥V (2.2)
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and

f ∗(f ) = ∥f ∥V∥f ∗
∥V∗ . (2.3)

Introduce the duality mapping JV from V to V ∗ by setting

JV (f ) := f ∗, f ∈ V .

We desire to represent the continuous linear functionals on the vector-valued RKBS by the semi-
inner product. However, the semi-inner product might not be able to fulfill this important role for an
arbitrary Banach space. For instance, one verifies that the continuous linear functional

µ(g) :=

∞
j=1

(−1)j
1
2j
g


1
2j


, g ∈ C([0, 1])

on C([0, 1]) endowed with the usual maximum norm cannot be represented as

µ(g) = [g, f ], g ∈ C([0, 1])

for any compatible semi-inner product [·, ·] on C([0, 1]) and any f ∈ C([0, 1]).
The above example indicates that the dualitymappingmight not be surjective for a general Banach

space. Other problems such as non-uniqueness of compatible semi-inner products and non-injectivity
of the dualitymappingmay also occur. To overcome these difficulties, we shall focus on Banach spaces
that are uniformly convex and uniformly Fréchet differentiable in this preliminary work on vector-
valued RKBSs. A Banach space V is uniformly convex if for all ε > 0 there exists a δ > 0 such that

∥f + g∥V ≤ 2 − δ for all f , g ∈ V with ∥f ∥V = ∥g∥V = 1 and ∥f − g∥V ≥ ε.

Uniform convexity ensures the injectivity of the duality mapping and the existence and uniqueness
of the best approximation to a closed convex subset of V [16]. We also say that V is uniformly Fréchet
differentiable if for all f , g ∈ V

lim
t∈R, t→0

∥f + tg∥V − ∥f ∥V

t
(2.4)

exists and the limit is approached uniformly for all f , g in the unit ball of V . If V is uniformly Fréchet
differentiable then it has a unique compatible semi-inner product [16]. The differentiability (2.4) of the
norm is useful to derive characterization equations for theminimizer of regularized learning schemes
in Banach spaces. For simplicity, we call a Banach space uniform if it is both uniformly convex and
uniformly Fréchet differentiable. An analogue of the Riesz representation theorem holds for uniform
Banach spaces.

Lemma 2.1 (Giles [16]). Let V be a uniform Banach space. Then it has a unique compatible semi-inner
product [·, ·]V and the duality mapping JV is bijective from V to V ∗. In other words, for eachµ ∈ V ∗ there
exists a unique f ∈ V such that

µ(g) = [g, f ]V for all g ∈ V .

In this case,

[f ∗, g∗
]B∗ := [g, f ]B, f , g ∈ B (2.5)

defines a compatible semi-inner product on B∗.

Let V be a uniform Banach space. We shall always denote by [·, ·]V the unique compatible semi-
inner product on V . By Lemma 2.1 and Eq. (2.2), the duality mapping is bijective and isometric from
V to V ∗. It is also conjugate homogeneous by property 3 of semi-inner products. However, it is non-
additive unless V reduces to a Hilbert space. As a consequence, a compatible semi-inner product is in
general conjugate homogeneous but non-additive with respect to its second variable. Namely,

[f , g + h]V ≠ [f , g]V + [f , h]V
in general.
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We are ready to present the definition of vector-valued RKBSs. LetΛ be a Banach space which we
shall sometimes call the output space and X be a prescribed set which is usually called the input space.
A space B is called a Banach space of Λ-valued functions on X if it consists of certain functions from X
toΛ and the norm on B is compatible with point evaluations in the sense that

∥f ∥B = 0 if and only if f (x) = 0 for all x ∈ X .

For instance, Lp([0, 1]), p ≥ 1 is not a Banach space of functions while C([0, 1]) is. We restrict
our consideration to Banach spaces of functions so that point evaluations (usually referred to as
‘‘sampling’’ in applications) are well-defined.

Definition 2.2. We callB aΛ-valued RKBS on X if bothB andΛ are uniform andB is a Banach space
of functions from X toΛ such that for every x ∈ X , the point evaluation δx : B → Λ defined by

δx(f ) := f (x), f ∈ B

is continuous from B toΛ.

We shall derive a reproducing kernel for so defined vector-valued RKBSs. Throughout the rest of
the paper, we let [·, ·]B and [·, ·]Λ be the unique semi-inner products and JB and JΛ the associated
duality mappings on B and Λ, respectively. For two Banach spaces V1, V2, we denote by M(V1, V2)
the set of all the bounded operators from V1 to V2 and L(V1, V2) the subset of M(V1, V2) of those
bounded operators that are also linear. When V1 = V2,M(V1, V2) is abbreviated as M(V1). For each
T ∈ M(V1, V2), we denote by ∥T∥M(V1,V2) the greatest lower bound of all the nonnegative constants
α such that

∥Tu∥V2 ≤ α∥u∥V1 for all u ∈ V1.

When T is also linear, this quantity equals the operator norm ∥T∥L(V1,V2) of T in L(V1, V2). In those
languages, we require that the point evaluation δx on a Λ-valued RKBS on X belongs to L(B,Λ) for
all x ∈ X .

Theorem 2.3. Let B be aΛ-valued RKBS on X. Then there exists a unique function K from X ×X toM(Λ)
such that

(1) K(x, ·)ξ ∈ B for all x ∈ X and ξ ∈ Λ,
(2) for all f ∈ B, x ∈ X, and ξ ∈ Λ

[f (x), ξ ]Λ = [f , K(x, ·)ξ ]B, (2.6)

(3) for all x, y ∈ X

∥K(x, y)∥M(Λ) ≤ ∥δx∥L(B,Λ)∥δy∥L(B,Λ). (2.7)

Proof. Let x ∈ X and ξ ∈ Λ. As δx ∈ L(B,Λ), we see that

|[f (x), ξ ]Λ| ≤ ∥f (x)∥Λ∥ξ∥Λ ≤ ∥δx∥L(B,Λ)∥f ∥B∥ξ∥Λ. (2.8)

The above inequality together with the linearity of the semi-inner product with respect to its first
variable implies that

f → [f (x), ξ ]Λ

is a bounded linear functional on B. By Lemma 2.1, there exists a unique function gx,ξ ∈ B such that

[f (x), ξ ]Λ = [f , gx,ξ ]B . (2.9)

Define a function K from X × X to the set of operators fromΛ toΛ by setting

K(x, y)ξ := gx,ξ (y), x, y ∈ X, ξ ∈ Λ.
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Clearly, K satisfies the two requirements (1) and (2). It is also unique by the uniqueness of the function
gx,ξ satisfying (2.9). It remains to show that it is bounded. To this end, we get by (2.8) that

∥K(x, ·)ξ∥B = sup
f∈B,∥f ∥B≤1

|[f , K(x, ·)]B | = sup
f∈B,∥f ∥B≤1

|[f (x), ξ ]Λ| ≤ ∥δx∥L(B,Λ)∥ξ∥Λ.

It follows that

∥K(x, y)ξ∥B ≤ ∥δy∥L(B,Λ)∥K(x, ·)ξ∥B ≤ ∥δx∥L(B,Λ)∥δy∥L(B,Λ)∥ξ∥Λ,

which proves (2.7). �

We call the above function K the reproducing kernel of B. It coincides with the usual reproducing
kernel when B is a Hilbert space and Λ = C, and with the vector-valued reproducing kernel
when both B and Λ are Hilbert spaces. We explore basic properties of vector-valued RKBSs and its
reproducing kernels for further investigation and applications.

Let (δx)∗ be the adjoint operator of δx for all x ∈ X . Denote for a Banach space V by (·, ·)V the
bilinear form on V × V ∗ defined by

(v, µ)V := µ(v), v ∈ V , µ ∈ V ∗.

Thus, (δx)∗ is defined by

(f , (δx)∗ξ ∗)B = (δ(x)(f ), ξ ∗)Λ = (f (x), ξ ∗)Λ = [f (x), ξ ]Λ, f ∈ B, ξ ∈ Λ. (2.10)

Proposition 2.4. Let B be a Λ-valued RKBS on X and K its reproducing kernel. Then there holds for all
x, y ∈ X and ξ, η, τ ∈ Λ that

[K(x, x)ξ , ξ ]Λ ≥ 0, |[K(x, y)ξ , η]Λ| ≤ [K(x, x)ξ , ξ ]1/2Λ [K(y, y)η, η]1/2Λ , (2.11)

∥K(x, y)∥M(Λ) ≤ ∥K(x, x)∥1/2
M(Λ)∥K(y, y)∥

1/2
M(Λ), (2.12)

K(x, ·)ξ = J−1
B (δx)

∗JΛ(ξ), (2.13)

K(x, y)(αξ) = αK(x, y)ξ for all α ∈ C, (2.14)

∥K(x, ·)ξ∥B ≤ ∥δx∥L(B,Λ)∥ξ∥Λ, ∥K(x, ·)ξ∥B ≤ ∥K(x, x)∥1/2
M(Λ)∥ξ∥Λ, (2.15)

(K(x, ·)ξ)∗ + (K(x, ·)η)∗ = (K(x, ·)τ )∗ whenever τ ∗
= ξ ∗

+ η∗, (2.16)

span {(K(x, ·)ξ)∗ : x ∈ X, ξ ∈ Λ} is dense in B∗. (2.17)

Proof. By (2.6),

[K(x, x)ξ , ξ ]Λ = [K(x, ·)ξ , K(x, ·)ξ ]B = ∥K(x, ·)ξ∥2
B ≥ 0, (2.18)

which proves the first inequality in Eq. (2.11). For the second one, we use the Cauchy–Schwarz
inequality of semi-inner products to get that

|[K(x, y)ξ , η]Λ| = |[K(x, ·)ξ , K(y, ·)η]B | ≤ [K(x, ·)ξ , K(x, ·)ξ ]1/2B [K(y, ·)η, K(y, ·)η]1/2B

= [K(x, x)ξ , ξ ]1/2Λ [K(y, y)η, η]1/2Λ .

It follows from (2.11) that

|[K(x, y)ξ , η]Λ| ≤ ∥K(x, x)ξ∥1/2
Λ ∥ξ∥

1/2
Λ ∥K(y, y)η∥1/2

Λ ∥η∥
1/2
Λ

≤ ∥K(x, x)∥1/2
M(Λ)∥K(y, y)∥

1/2
M(Λ)∥ξ∥Λ∥η∥Λ.

Since ∥K(x, y)ξ∥Λ = sup{|[K(x, y)ξ , η]Λ| : η ∈ Λ, ∥η∥Λ = 1}, we have by the above equation that

∥K(x, y)ξ∥Λ ≤ ∥K(x, x)∥1/2
M(Λ)∥K(y, y)∥

1/2
M(Λ)∥ξ∥Λ,

which proves (2.12).
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Turning to (2.13), we notice for each f ∈ B that

[f ,J−1
B (δx)

∗JΛ(ξ)]B = (f , (δx)∗JΛ(ξ))B = (δx(f ), ξ ∗)Λ = (f (x), ξ ∗)Λ = [f (x), ξ ]Λ,

which together with (2.6) confirms (2.13). Since the duality mappings are conjugate homogeneous,
we have by (2.13) that

K(x, ·)(αξ) = J−1
B (δx)

∗JΛ(αξ) = αJ−1
B (δx)

∗JΛ(ξ) = αK(x, ·)ξ ,

which implies (2.14).
Recall that the dualitymappingsJB andJΛ are isometric. Note also that a bounded linear operator

and its adjoint have equal operator norms. Using these two facts, we obtain from Eq. (2.13) that

∥K(x, ·)ξ∥B ≤ ∥(δx)
∗
∥L(Λ∗,B∗)∥ξ∥Λ = ∥δx∥L(B,Λ)∥ξ∥Λ,

which is the first inequality in (2.15). The second one follows immediately from (2.18).
Let ξ, η, τ ∈ Λ be such that τ ∗

= ξ ∗
+ η∗. By (2.13),

(K(x, ·)ξ)∗ + (K(x, ·)η)∗ = (δx)
∗ξ ∗

+ (δx)
∗η∗

= (δx)
∗(ξ ∗

+ η∗) = (δx)
∗τ ∗

= (K(x, ·)τ )∗.

Eq. (2.16) hence holds true.
For the last property, let us assume that there exists some f ∈ B that vanishes on

span {(K(x, ·)ξ)∗ : x ∈ X, ξ ∈ Λ}. Then

[f (x), ξ ]Λ = [f , K(x, ·)ξ ]B = (f , (K(x, ·)ξ)∗)B = 0 for all x ∈ X, ξ ∈ Λ,

which implies that f (x) = 0 for all x ∈ X . As B is a Banach space of functions, f = 0 as a vector in the
Banach space B. Therefore, (2.17) is true. The proof is complete. �

We observe by the above proposition that the reproducing kernel of a vector-valued RKBS enjoys
many properties similar to those of the reproducing kernel of a vector-valued RKHS. However, there
are many significant differences due to the nature of a semi-inner product. First, although for all
x, y ∈ X, K(x, y) remains a homogeneous bounded operator on Λ, it is generally non-additive. This
can be seen from (2.13), where JΛ or J−1

B is non-additive. Second, it is well-known that whenΛ is a
Hilbert space, a function K : X × X → L(Λ) is the reproducing kernel of someΛ-valued RKHS on X
if and only if for all finite ξj ∈ Λ and pairwise distinct xj ∈ X, j = 1, 2, . . . ,m,

m
j=1

m
k=1

[K(xj, xk)ξj, ξk]Λ ≥ 0. (2.19)

Although (2.19) still holds for the reproducing kernel of a vector-valued RKBS when m ≤ 2 and the
number field isR, itmay cease to be true once the number of sampling pointsm exceeds 2. An example
will be constructed in the next section. Finally, the denseness property (2.17) in the dual spaceB∗ does
not necessarily imply that

span {K(x, ·)ξ : x ∈ X, ξ ∈ Λ} = B. (2.20)

A negative example will also be given in the next section after we present a construction of vector-
valued RKBSs through feature maps. Before that, we present another important property of a vector-
valued RKBS.

Proposition 2.5. Let B be aΛ-valued RKBS on X. Suppose that fn ∈ B, n ∈ N converges to some f0 ∈ B
then fn(x) converges to f0(x) in the topology of Λ for each x ∈ X. The convergence is uniform on the set
where ∥K(x, x)∥M(Λ) is bounded.

Proof. Suppose that ∥fn − f ∥B converges 0 as n tends to infinity. We get by (2.15) that

∥fn(x)− f (x)∥Λ = sup
ξ∈Λ,∥ξ∥Λ=1

|[fn(x)− f (x), ξ ]Λ|

= sup
ξ∈Λ,∥ξ∥Λ=1

|[fn − f , K(x, ·)ξ ]B | ≤ sup
ξ∈Λ,∥ξ∥Λ=1

∥fn − f ∥B∥K(x, ·)ξ∥B

≤ ∥fn − f ∥B∥K(x, x)∥1/2
M(Λ).
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Therefore, fn(x) converges pointwise to f (x) on X and the convergence is uniform on the set where
∥K(x, x)∥M(Λ) is bounded. �

3. Feature map representations

Feature map representations form the most important way of expressing reproducing kernels. To
introduce feature maps for the reproducing kernel of a vector-valued RKBS, we need the notion of
the generalized adjoint [22] of a bounded linear operator between Banach spaces. Let V1, V2 be two
uniform Banach spaces with the compatible semi-inner products [·, ·]V1 and [·, ·]V2 , respectively. The
generalized adjoint T Ď of a T ∈ L(V1, V2) is an operator in M(V2, V1) defined by

[Tu, v]V2 = [u, T Ďv]V1 , u ∈ V1, v ∈ V2.

It can be verified that

T Ď
= J−1

V1
T ∗JV2 .

Thus, T Ď is indeed bounded as

∥T Ď
∥M(V2,V1) = ∥T ∗

∥L(V∗
2 ,V

∗
1 )

= ∥T∥L(V1,V2).

We are in a position to present a characterization of the reproducing kernel of a vector-valued RKBS.

Theorem 3.1. A function K : X × X → M(Λ) is the reproducing kernel of some Λ-valued RKBS on X if
and only if there exist a uniform Banach space W and a mapping Φ : X → L(W,Λ) such that

K(x, y) = Φ(y)ΦĎ(x), x, y ∈ X, (3.1)

and

span {(ΦĎ(x)ξ)∗ : x ∈ X, ξ ∈ Λ} = W∗. (3.2)

HereΦĎ is the function from X to M(Λ,W) defined byΦĎ(x) := (Φ(x))Ď, x ∈ X.

Proof. Suppose that K is the reproducing kernel of some Λ-valued RKBS B on X . Set W := B and
defineΦ : X → L(W,Λ) by

(Φ(x))(f ) := f (x), f ∈ B, x ∈ X .

To identifyΦĎ, we observe by the reproducing property (2.6) for all ξ ∈ Λ and f ∈ B that

[f ,ΦĎ(x)ξ ]B = [(Φ(x))f , ξ ]Λ = [f (x), ξ ]Λ = [f , K(x, ·)ξ ]B, x ∈ X, ξ ∈ Λ,

which implies thatΦĎ(x)ξ = K(x, ·)ξ for all x ∈ X and ξ ∈ Λ. Requirement (3.2) is fulfilled by (2.17).
By the forms ofΦ andΦĎ, we obtain that

Φ(y)ΦĎ(x)ξ = Φ(y)(K(x, ·)ξ) = K(x, y)ξ ,

which proves (3.1).
On the other hand, suppose that K is of the form (3.1) in terms of some mapping Φ satisfying the

denseness condition (3.2). We shall construct the RKBS that takes K as its reproducing kernel. For this
purpose, we let B be composed of functions from X toΛ of the following form

fu(x) := Φ(x)u, x ∈ X for some u ∈ W .

Since eachΦ(x) is a linear operator, B is a linear vector space. We impose a norm on B by setting

∥fu∥B := ∥u∥W , u ∈ W .

To verify that this is awell-defined norm, it suffices to show that the representer u of a function fu ∈ B
is unique. Assume that fu = 0. Then for all x ∈ X and ξ ∈ Λ,

(u, (ΦĎ(x)ξ)∗)W = [u,ΦĎ(x)ξ ]W = [Φ(x)u, ξ ]Λ = [0, ξ ]Λ = 0,
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which combined with (3.2) implies that u = 0. The arguments also show that B is a Banach space of
functions. Moreover, it is a uniform Banach space as it is isometrically isomorphic to W . Clearly, we
have for each x ∈ X and u ∈ W that

∥fu(x)∥Λ = ∥Φ(x)u∥Λ ≤ ∥Φ(x)∥L(W,Λ)∥u∥W = ∥Φ(x)∥L(W,Λ)∥fu∥B,

which shows that point evaluations are bounded onB.We conclude thatB is aΛ-valued RKBS on X . It
remains to prove that K is the reproducing kernel ofB. To this end, we identify the unique compatible
semi-inner product on B as

[fu, fv]B := [u, v]W , u, v ∈ W,

and observe for all u ∈ W and x ∈ X that

[fu, K(x, ·)ξ ]B = [fu,Φ(·)ΦĎ(x)ξ ]B = [u,ΦĎ(x)ξ ]W = [Φ(x)u, ξ ]Λ = [fu(x), ξ ]Λ,

which is what we want. The proof is complete. �

We call the Banach space W and the mappingΦ in Theorem 3.1 a pair of feature space and feature
map for K , respectively. The proof of Theorem 3.1 contains a construction of vector-valued RKBSs by
feature maps, which we pull out separately as a corollary below.

Corollary 3.2. Let W be a uniform Banach space and Φ : X → L(W,Λ) be a feature map of K that
satisfies (3.1) and (3.2). Then the linear vector space

B := {Φ(·)u : u ∈ W}

endowed with the norm

∥Φ(·)u∥B := ∥u∥W , u ∈ W

and compatible semi-inner product

[Φ(·)u,Φ(·)v]B := [u, v]W , u, v ∈ W

is aΛ-valued RKBS on X with the reproducing kernel K given by (3.1).

As an interesting application of Corollary 3.2, we shall show that a vector-valued RKBS is always
isometrically isomorphic to a scalar-valued RKBS on a different input space.

Corollary 3.3. If B is aΛ-valued RKBS on X then the following linear vector space B̃ of complex-valued
functions f̃ on X̃ := X ×Λ of the form

f̃ (x, ξ) := [f (x), ξ ]Λ, x ∈ X, ξ ∈ Λ, f ∈ B

is an RKBS on X̃ with the norm

∥f̃ ∥B̃ := ∥f ∥B, f ∈ B

and the compatible semi-inner product

[f̃ , g̃]B̃ := [f , g]B, f , g ∈ B.

The reproducing kernel K̃ of B̃ is

K̃((x, ξ), (y, η)) := [K(x, y)ξ , η]Λ, x, y ∈ X, ξ , η ∈ Λ.

Proof. It suffices to point out that B̃ is constructed by Corollary 3.2 via the choices

Λ := C, W := B, Φ(x, ξ) := (K(x, ·)ξ)∗, (x, ξ) ∈ X̃ .

The feature map satisfies the denseness condition by (2.17). �
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We shall next construct by Corollary 3.2 a simple vector-valued RKBS to show that the reproducing
kernel of a general vector-valued RKBS might not satisfy (2.19) or (2.20). Let p, q, r, s ∈ (1,+∞)
satisfy that

1
p

+
1
q

=
1
r

+
1
s

= 1. (3.3)

Here, for the sake of convenience in enumerating elements from a finite set, we set Nl := {1, 2, . . . , l}
for l ∈ N. For each γ ∈ (1,+∞) and l ∈ N, ℓlγ denotes the Banach space of all vectors u = (uj : j ∈

Nl) ∈ Cl with the norm

∥u∥ℓlγ :=


l

j=1

|uj|
γ

1/γ

< +∞.

The space ℓlγ is a uniform Banach space with the compatible semi-inner product

[u, v]ℓlγ :=

l
j=1

ujvj|vj|
γ−2

∥v∥
γ−2
ℓlγ

, u, v ∈ ℓlγ .

The dual element u∗ of u ∈ ℓlγ is hence given by

u∗
:=

vj|vj|γ−2

∥v∥
γ−2
ℓlγ

: j ∈ Nl

 , u ∈ ℓlγ . (3.4)

Non-completeness of the linear span of the reproducing kernel in B. We give a counterexample of (2.20)
first. Let m, n ∈ N. We choose the output space Λ and feature space W as ℓnp and ℓmr , respectively.
Thus, we have thatΛ∗

= ℓnq and W∗
= ℓms . The input space will be chosen as a set ofm discrete points

X := {xj : j ∈ Nm}. A feature map Φ : X → L(W,Λ) should satisfy the denseness condition (3.2).
We note by the definition of the generalized adjoint that this condition is equivalent to

span {Φ∗(x)ξ ∗
: x ∈ X, ξ ∈ Λ} = W∗, (3.5)

whereΦ∗(x) := (Φ(x))∗ for all x ∈ X .
Let us take a close look at Eq. (2.20). By Corollary 3.2, a general function in B is of the form

fu := Φ(·)u for some u ∈ W . Eq. (2.20) does not hold true if and only if there exists a nontrivial
u ∈ W such that

[K(x, ·)ξ , fu]B = [Φ(·)ΦĎ(x)ξ ,Φ(·)u]B = [ΦĎ(x)ξ , u]W = 0,

which in turn is equivalent to that span {ΦĎ(x)ξ : x ∈ X, ξ ∈ Λ} is not dense in W . We conclude
that to construct a Λ-valued RKBS for which (2.20) is not true, it suffices to find a feature map
Φ : X → L(W,Λ) that satisfies (3.5) but

span {ΦĎ(x)ξ : x ∈ X, ξ ∈ Λ} $ W . (3.6)

To this end, we find a sequence of vectorswj ∈ Cm and set

Φ∗(xj)ξ ∗
:= (ξ ∗)1wj, j ∈ Nm, (3.7)

where (ξ ∗)1 is the first component of the vector ξ ∗
∈ Cn. Since for each j ∈ Nm,Φ

∗(xj) is a
linear operator from Λ∗ to W∗ and both the spaces are finite-dimensional, Φ∗(xj) is bounded. We
reformulate (3.5) and (3.6) to get that they are respectively equivalent to

span {wj : j ∈ Nm} = Cm (3.8)

and

span {J−1
W wj : j ∈ Nm} $ Cm. (3.9)
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Here for a vector u = (uj : j ∈ Nm) ∈ Cm, we get by (3.4) that

J−1
W u =


uj|uj|

s−2

∥u∥s−2
ℓms

: j ∈ Nm


.

Therefore, the task reduces to the searching of anm × m nonsingular matrix A that becomes singular
when we apply the function t → t|t|s−2 to each of its components. We find two such matrices as
shown below

m = 4, s = 4, A1 :=

0 8 2 4
5 0 5 1
5 4 6 9
0 9 4 8

 , and m = 4, s = 5, A2 :=

9 9 9 9
8 6 0 2
6 9 2 1
7 4 9 9

 .
Non-positive-definiteness of the reproducing kernel of B. We shall give an example to show that (2.19)
might not hold true for the reproducing kernel of a vector-valued RKBS when the number m of
sampling points exceeds 2. In fact, we let m = 3 and B be constructed as in the above example
with {wj : j ∈ N3} to be appropriately chosen in the definition (3.7) of Φ∗. Our purpose is to find
wj ∈ C3 and ξj ∈ Λ, j ∈ N3 such that

3
j=1

3
k=1

[K(xj, xk)ξj, ξk]B < 0. (3.10)

We first note for all j, k ∈ N3 that
[K(xj, xk)ξj, ξk]Λ = [Φ(xk)ΦĎ(xj)ξj, ξk]Λ = [ΦĎ(xj)ξj,ΦĎ(xk)ξk]Λ

= [(ΦĎ(xk)ξk)∗, (ΦĎ(xj)ξj)∗]Λ∗ = [Φ∗(xk)(ξk)∗,Φ∗(xj)(ξj)∗]Λ∗ .

We shall choose ξj ∈ Λ so that ((ξj)∗)1 = 1 for each j ∈ N3. With the choice, we obtain by (3.7) and
the above equation that

3
j=1

3
k=1

[K(xj, xk)ξj, ξk]B =

3
j=1

3
k=1

[wk, wj]ℓ3s
.

The conclusion is that for (3.10) to hold, it suffices to findwj ∈ C3, j ∈ N3 that form a basis for C3 but
3

j=1

3
k=1

[wk, wj]ℓ3s
< 0.

Two examples are shown below

s = 4, [w1, w2, w3] =

4 −2 −3
3 −5 4
1 −1 1


, and s = 5, [w1, w2, w3] =

 3 2 −3
2 −3 3

−5 0 4


.

4. Examples of vector-valued RKBSs

We present several examples of vector-valued RKBSs in this section. The first one of them is
applicable to learning a sensing matrix.

4.1. The space of sensing matrices

Spaces involved in this example are all over the field R of real numbers. The input space and the
output space are chosen by X := Rd andΛ := Rn. The vector-valued RKBS B consists of all the n × d
real matrices. Each A ∈ B is considered to be a function from Rd to Rn with the point evaluation

A(x) := Ax, x ∈ Rd.

To find a norm that makes B a uniform Banach space, we first point out that a finite-dimensional
Banach space V is uniform if and only if its norm is strictly convex. For a proof of this simple fact, see,
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for example, [40]. Recall that ∥ · ∥V is said to be strictly convex if for all u, v ∈ V \ {0}, ∥u + v∥V =

∥u∥V + ∥v∥V always implies that u = αv for some α > 0. Strictly convex norms on B include
• column-wise norms:

∥A∥B := G(∥a1∥1, ∥a2∥2, . . . , ∥ad∥d), A ∈ B, (4.1)

where for each j ∈ Nd, aj is the j-th column of A and ∥ · ∥j is a strictly convex norm on Rn, and G is
a strictly convex function from Rd

+
to R+ := [0,∞) that is strictly increasing with respect to each

of its variables and is homogeneous in the sense that

G(αx) = αG(x) for all x ∈ Rd
+
and α ∈ R+.

It is straightforward to verify that under the above conditions, (4.1) is indeed a strictly convex norm
on B. An explicit instance is

∥A∥B := ∥(∥aj ∥ℓnp : j ∈ Nd)∥ℓdr
, A ∈ B, (4.2)

where p, r ∈ (1,+∞). One can easily transform a column-wise norm ∥ · ∥B into a row-wise norm
by equipping A ∈ B with ∥AT

∥B , where AT is the transpose of A.
• the p-th Schatten norm (see, Section 3.5 of [18]):

∥A∥B :=


min(n,d)

j=1

(σj(A))p
1/p

, A ∈ B, p ∈ (1,+∞),

where σj(A) is the j-th singular value of A. The p-th Schatten norm belongs to the class of matrix
norms that are invariant under multiplication by unitary matrices.

We shall look at the reproducing kernel of B when it is endowed with the norm (4.2) and the
output space Rn is equipped with the norm of ℓnγ for some γ ∈ (1,+∞). Let q, s be the conjugate
numbers of p and r , respectively. In other words, they satisfy (3.3). We proceed by (2.6) that

(Ax, ξ ∗)ℓnγ = [A, K(x, ·)ξ ]B = (A, (K(x, ·)ξ)∗)B, A ∈ B, x ∈ Rd, ξ ∈ Rn,

which implies that

(K(x, ·)ξ)∗ = ξ ∗xT , x ∈ Rd, ξ ∈ Rn. (4.3)
The dual element of A ∈ B is given by

A∗
=

1

∥A∥
r−2
B


a∗

j ∥aj∥
r−2
ℓnp

: j ∈ Nd


,

where a∗

j is the dual vector of aj in ℓnp . The reproducing kernel of B can be derived from the above
two equation. Its explicit form is too complicated to be presented. We shall see from the study of
regularized learning schemes in vector-valued RKBSs that the identification (4.3) of its dual is usually
more important.

4.2. Tensor products of scalar-valued RKBSs

Let n ∈ N and Bj, j ∈ Nn be scalar-valued RKBSs on an input space X . We let B be the tensor
product of Bj, j ∈ Nn. Thus, it consists of Cn-valued functions of the form f = (fj ∈ Bj : j ∈ Nn).
To define a norm on B, we choose functions N ,N ∗ from Rn

+
to R+ that are strictly convex, strictly

increasing with respect to each of the variables, homogeneous, and satisfy that x → N ∗(|x|) is the
dual norm of x → N (|x|) on Rn. Here, |x| := (|xj| : j ∈ Nn) for each x ∈ Rn. An example is

N (x) := ∥x∥ℓnp , N ∗(x) := ∥x∥ℓnq , x ∈ Rn
+
,

where p, q are a pair of conjugate numbers in (1,+∞). With such two gauge functions, we impose
the following norm on B

∥f ∥B := N (∥f1∥B1 , ∥f2∥B2 , . . . , ∥fn∥Bn), f ∈ B. (4.4)

Proposition 4.1. The tensor product space B with the norm (4.4) is a uniform Banach space.
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Proof. We first show that (4.4) defines a uniform convex norm on B. It is straightforward to verify
that it is a norm. Let ε be a fixed positive number and f , g ∈ B be such that ∥f ∥B = ∥g∥B = 1 and
∥f − g∥B ≥ ε. We have that

N (∥f1 + g1∥B1 , . . . , ∥fn + gn∥Bn) ≤ N (∥f1∥B1 + ∥g1∥B1 , . . . , ∥fn∥Bn + ∥gn∥Bn)

≤ N (∥f1∥B1 , . . . , ∥fn∥Bn)+ N (∥g1∥B1 , . . . , ∥gn∥Bn).

As all the norms on Rn are equivalent, N is continuous on Rn
+
, and vectors x ∈ Rn

+
satisfying

N (|x|) = 1 form a compact subset in Rn. We also recall that N is strictly increasing with respect
to each of its variables and |x| → N (|x|) is a strictly convex norm on Rn. We conclude from these
two facts and the above equation that B is uniform convex if there exists some positive constant ε′

independent of f , g such that

max{∥fj∥Bj + ∥gj∥Bj − ∥fj + gj∥Bj : j ∈ Nn} ≥ ε′

or

max{|∥fj∥Bj − ∥gj∥Bj | : j ∈ Nn} ≥ ε′.

Assume to the contrary that such a positive constant does not exist. It implies that for all β > 0, there
exist f , g ∈ B that satisfy ∥f − g∥B ≥ ε and

∥fj∥Bj + ∥gj∥Bj − ∥fj + gj∥Bj < β, |∥fj∥Bj − ∥gj∥Bj | < β for all j ∈ Nn.

Again, as any two norms on Rn are equivalent, the inequality ∥f −g∥B ≥ ε implies that ∥fk −gk∥Bk ≥

ε0 > 0 for some k ∈ Nn and some positive constant ε0 independent of f , g . The conclusion is that
there exist some k ∈ Nn and some positive constants M, ε0 > 0 such that for all β > 0, there exist
u, v ∈ Bk such that ∥u∥Bk ≤ M, ∥v∥Bk ≤ M and

∥u − v∥Bk ≥ ε0, |∥u∥Bk − ∥v∥Bk | < β, ∥u∥Bk + ∥v∥Bk − ∥u + v∥Bk < β. (4.5)

We shall show that the above equation contradicts the uniform convexity of Bk. We may choose
β so small that β < ε0/4. It follows from the first two inequalities of (4.5) that

∥u∥Bk ≥
ε0

4
, ∥v∥Bk ≥

ε0

4
. (4.6)

To proceed, we estimate that u
∥u∥Bk

−
v

∥v∥Bk


Bk

=

 u
∥u∥Bk

−
v

∥u∥Bk

+
v

∥u∥Bk

−
v

∥v∥Bk


Bk

≥
1

∥u∥Bk

∥u − v∥Bk − ∥v∥Bk

 1
∥u∥Bk

−
1

∥v∥Bk


≥
ε0 − β

∥u∥Bk

≥
3ε0
4M

.

By the uniform convexity of Bk, there exist a positive constant δ dependent on ε0,M and the space
Bk only such that u

∥u∥Bk

+
v

∥v∥Bk


Bk

< 2 − δ. (4.7)

Finally, we get by (4.5)–(4.7) that

∥u∥Bk + ∥v∥Bk − ∥u + v∥Bk

= ∥u∥Bk + ∥v∥Bk − ∥u∥Bk

 u
∥u∥Bk

+
v

∥v∥Bk

+
v

∥u∥Bk

−
v

∥v∥Bk


Bk
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≥ ∥u∥Bk + ∥v∥Bk − (2 − δ)∥u∥Bk − ∥u∥Bk∥v∥Bk

 1
∥u∥Bk

−
1

∥v∥Bk


≥ ∥u∥Bk + ∥v∥Bk +

∥u∥Bk − ∥v∥Bk

− (2 − δ)∥u∥Bk

≥ δ∥u∥Bk ≥
ε0δ

4
,

which contradicts to the third inequality of (4.5) as β can be arbitrarily small.
It is clear that B∗

= {(f ∗

j : j ∈ Nn) : f ∈ B} with the norm

∥(f ∗

j : j ∈ Nn)∥B∗ = N ∗(∥f ∗

1 ∥B∗
1
, . . . , ∥f ∗

n ∥B∗
n ).

Similar arguments to those above prove that B∗ is uniformly convex. By the fact (see [11]) that a
Banach space is uniformly Fréchet differentiable if and only if its dual is uniformly convex, B is
uniform. �

We next identify the reproducing kernel of B with the following norm

∥f ∥B :=


n

j=1

∥fj∥
p
Bj

1/p

, f ∈ B.

Let the output space Cn be equipped with the norm of ℓnr and let Kj be the reproducing kernel of
Bj, j ∈ Nn. The unique compatible semi-inner product on B is given by

[f , g]B :=
1

∥g∥p−2
B

n
j=1

[fj, gj]Bj∥gj∥
p−2
Bj
, f , g ∈ B.

The duality mapping on B is hence of the form

f ∗
:=


f ∗

j ∥fj∥
p−2
Bj

∥f ∥p−2
B

: j ∈ Nn


, f ∈ B. (4.8)

To find an expression for (K(x, ·)ξ)∗ for x ∈ X and ξ ∈ Cn, we deduce that

[f (x), ξ ]ℓnr =
1

∥ξ∥r−2
ℓnr

n
j=1

ξj|ξj|
r−2fj(x) =

1

∥ξ∥r−2
ℓnr

n
j=1

ξj|ξj|
r−2

[fj, Kj(x, ·)]Bj .

It follows that

(K(x, ·)ξ)∗ =


ξj|ξj|

r−2

∥ξ∥r−2
ℓnr

(Kj(x, ·))∗ : j ∈ Nn


, x ∈ X, ξ ∈ Cn. (4.9)

By Eqs. (4.8) and (4.9),

∥K(x, ·)ξ∥B =
1

∥ξ∥r−2
ℓnr


n

j=1


|ξj|

r−1

Kj(x, x)

q1/q

, x ∈ X, ξ ∈ Cn

and

K(x, y)ξ =

 ξj

|ξj|
Kj(x, y)

∥K(x, ·)ξ∥p−2
B |ξj|

r−1

∥ξ∥r−2
ℓnr

Kj(x, x)
p−2
2

1/(p−1)

: j ∈ Nn

 , x, y ∈ X, ξ ∈ Cn.

4.3. Translation invariant vector-valued RKBSs

A Cn-valued RKBS B on Rd is said to be translation invariant if translations are isometric on B,
namely, if for each f ∈ B and x ∈ Rd, f (· + x) ∈ B and ∥f (· + x)∥B = ∥f ∥B . It was proved in [35]
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that a scalar-valued RKHS is translation invariant if and only if its reproducing kernel is of the form
ψ(x− y) for some scalar-valued functionψ . For the Banach space case, as a reproducing kernel alone
does not determine its RKBS, we do not have such a characterization. Our purpose in this subsection
is to construct a class of translation invariant vector-valued RKBSs by the Fourier transform.

Denote by L1(Rd) the Banach space of Lebesgue measurable functions f on Rd equipped with the
norm

∥f ∥L1(Rd) :=


Rd

|f (x)|dx.

For ϕ ∈ L1(Rd), its Fourier transform ϕ̂ and inverse Fourier transform ϕ̌ are respectively given by

ϕ̂(t) :=
1

(
√
2π)d


Rd
ϕ(x)e−ix·tdx, t ∈ Rd

and

ϕ̌(t) :=
1

(
√
2π)d


Rd
ϕ(x)eix·tdx, t ∈ Rd.

Here x · t is the standard inner product on Rd.
To start the construction, we let φ be a nonnegative function in L1(Rd) with


Rd φ(x)dx = 1 and

denote by Lp(Rd, dφ), p ∈ (1,+∞), the Banach space of Lebesgue measurable functions f on Rd with
the norm

∥f ∥Lp(Rd,dφ) :=


Rd

|f (x)|pφ(x)dx
1/p

< +∞.

The feature space W is chosen as

W := {u = (u1, . . . , un) : uj ∈ Lp(Rd, dφ), j ∈ Nn}

endowed with the norm

∥u∥W :=


n

j=1

∥uj∥
p
Lp(Rd,dφ)

1/p

.

Its dual space W∗ is given by

W∗
= {w = (w1, . . . , wn) : wj ∈ Lq(Rd, dφ), j ∈ Nn}

with the norm

∥w∥W∗ :=


n

j=1

∥wj∥
q
Lq(Rd,dφ)

1/q

.

The bilinear form on W × W∗ is

(u, w)W =

n
j=1


Rd

uj(x)wj(x)φ(x)dx, u ∈ W, w ∈ W∗.

Moreover, the dual element of u ∈ W is

u∗
=

u∗

j ∥uj∥
p−2
Lp(Rd,dφ)

∥u∥p−2
W

: j ∈ Nn

 .
By Proposition 4.1,W is a uniformBanach space. Our featuremapΦ : Rd

→ L(W,Cn) is then defined
by

Φ(x)u := S(uφ)̂ (x), x ∈ Rd, u ∈ W,
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where S is an invertible n × n matrix and (uφ)̂ := ((ujφ)̂ : j ∈ Nn). The map Φ is well-defined as
f φ ∈ L1(Rd) for all f ∈ Lp(Rd, dφ) by the Hölder inequality. We also notice that Φ(x) is continuous
from W to Cn for each x ∈ Rd by the fact that

|(f φ)̂ (x)| ≤ ∥f φ∥L1(Rd) ≤ ∥f ∥Lp(Rd,dφ) for all f ∈ Lp(Rd, dφ).

One sees that the adjoint operatorΦ∗
: Rd

→ L(Cn,W∗) is given by

Φ∗(x)(η) =
e−ix·t

(
√
2π)d

STη, x ∈ Rd, η ∈ Cn.

Clearly, the denseness condition (3.5) is satisfied. The equivalent condition (3.2) hence holds true. We
obtain by Corollary 3.2 that

B := {fu := S(uφ)̂ : u ∈ W}

with the norm ∥fu∥B := ∥u∥W and compatible semi-inner product

[S(uφ)̂ , S(vφ)̂ ]B = [u, v]W =

n
j=1

1

∥v∥
p−2
W


Rd

uj(x)vj(x)|vj(x)|p−2φ(x)dx

is a Cn-valued RKBS. It is translation invariant because for all y ∈ Rd and u ∈ W

∥S(uφ)̂ (· + y)∥B = ∥S(e−iy·tuφ)̂ ∥B = ∥e−y·tu∥W = ∥u∥W = ∥S(uφ)̂ ∥B .

To understand the reproducing kernel of B, we present the dual space of B

B∗
= {S(u∗φ)̌ : u ∈ W}

with the norm, compatible semi-inner product and bilinear form

∥S(u∗φ)̌ ∥B∗ = ∥u∗
∥W∗ , [S(u∗φ)̌ , S(v∗φ)̌ ]B∗ = [v, u]W ,

(S(uφ)̂ , S(v∗φ)̌ )B = (u, v∗)W .

With these preparations, we identify by (2.6) that

(K(x, ·)ξ)∗ = S(v∗

x,ξφ)̌ , x ∈ Rd, ξ ∈ Cn,

where

v∗

x,ξ (t) :=
e−ix·t

(
√
2π)d

ST ξ ∗, t ∈ Rd

and ξ ∗ is the dual element of ξ in Cn under a strictly convex norm. By the above two equations,

(K(x, ·)ξ)∗(y) =
1

(
√
2π)d

SST ξ ∗φ̂(x − y), x, y ∈ Rd, ξ ∈ Cn.

We also derive that

K(x, y)ξ =

∥ST ξ ∗
∥

p−2
p−1
ℓnq

(
√
2π)d

S

 (ST ξ ∗)j

|((ST ξ ∗)j)|
p−2
p−1

: j ∈ Nn

T

φ̂(y − x), x, y ∈ Rd, ξ ∈ Cn.

We remark that when p = 2,Cn is endowed with the standard Euclidean norm ∥ · ∥, and φ is the
Gaussian function, K becomes the Gaussian kernel for Cn-valued RKHS

K(x, y) = SS∗ exp


−
∥x − y∥2

2


, x, y ∈ Rd,

which confirms the validity of the above construction.
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5. Multi-task learning with Banach spaces

Wediscuss the applications of vector-valued RKBSs to the learning of vector-valued functions from
finite samples. Specifically, suppose that the unknown target function is from the input space X to an
output space Λ and the observations of the function on given sampling points {xj : j ∈ Nm} ⊆ X are
available. The observation at xj, j ∈ Nm could be f (xj) or the application of some continuous linear
functional inΛ∗ on f (xj). And it is usually corrupted by noise in practice. To handle the noise and have
a good generalization error, we shall follow the regularizationmethodology. For notational simplicity,
let x := (xj : j ∈ Nm) ∈ Xm and f (x) := (f (xj) : j ∈ Nm) ∈ Λm. A general learning scheme has the
following form

inf
f∈B

Q (f (x))+ λΨ (∥f ∥B), (5.1)

where B is a chosen Λ-valued RKBS on X,Q : Λm
→ R+ is a loss function, λ is a positive

regularization parameter, and Ψ : R+ → R+ is called a regularizer. We are concerned with the
existence and uniqueness, representation, and solving of the minimizer of (5.1). Before moving on to
these topics, let us see some examples of learning schemes of the form (5.1):

– Regularization networks

Q (f (x)) :=

m
j=1

∥f (xj)− ξj∥
2
Λ, Ψ (∥f ∥B) := ∥f ∥2

B, (5.2)

where ξj ∈ Λ, j ∈ Nm are observed outputs of f at x. In general, one may use

Q (f (x)) = P(∥f (x1)− ξ1∥Λ, . . . , ∥f (xm)− ξm∥Λ), (5.3)

where P is a function from Rm
+

→ R+. A particular choice of P leads to the support vector machine
regression.

– Support vector machine regression

Λ := Rn, Q (f (x)) =

m
j=1

max(0, ∥f (xj)− ξj∥ℓn1
− ε),

where ε is a positive constant standing for the tolerance level.
– Spectral learning: when B is the space of sensing matrices introduced in the last section with a

unitarily invariant matrix norm, (5.1) is the special spectral learning considered in [2].

5.1. Existence and uniqueness

The weak topology is the weakest topology on a Banach space V such that elements in V ∗ remain
continuous on V . A sequence un ∈ V , n ∈ N, is said to converge weakly to u0 ∈ V if for each
µ ∈ V ∗, µ(un) converges to µ(u0). We call a regularizer Ψ : R+ → R+ admissible if it is continuous
and nondecreasing on R+ with

lim
t→∞

Ψ (t) = +∞. (5.4)

Proposition 5.1. If Q : Λm
→ R+ is continuous with respect to each of its variables under the weak

topology onΛ and Ψ is an admissible regularizer then (5.1) has at least a minimizer.

Proof. Arguments similar to those in the proof of Proposition 4 in [39] still apply to the vector-valued
case considered here. �

WhenΛ is finite-dimensional, any two topologies on it are equivalent. Thus, continuity under the
weak topology is equivalent to continuity with respect to the norm ofΛ.

Corollary 5.2. Let B be finite-dimensional. If Q : Λm
→ R+ is continuous with respect to each of its

variables and Ψ is an admissible regularizer then (5.1) has at least a minimizer.
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We next deal with the case when the loss function has the form (5.3).

Proposition 5.3. If P : Rm
+

→ R+ is continuous on Rm
+

and nondecreasing with respect to each of its
variables and the regularizer Ψ is admissible then

inf
f∈B

P(∥f (x1)− ξ1∥Λ, . . . , ∥f (xm)− ξm∥Λ)+ λΨ (∥f ∥B) (5.5)

has a minimizer.
Proof. Set

E(f ) := P(∥f (x1)− ξ1∥Λ, . . . , ∥f (xm)− ξm∥Λ)+ λΨ (∥f ∥B), f ∈ B

and ε0 := inff∈B E(f ). Using the arguments similar to those in [39],we can find a sequence fn ∈ B, n ∈

N that is weakly convergent to some f0 ∈ B, and some α > 0 such that ∥f0∥B ≤ α and ∥fn∥B ≤ α for
all n ∈ N. Moreover, for any ϵ > 0 there exists some N ∈ N such that for n > N ,

Ψ (∥fn∥B) ≥ Ψ (∥f0∥B)− ϵ. (5.6)

Since fn converges weakly to f0, by (2.6)

lim
n→∞

[fn(xj)− ξj, f0(xj)− ξj]Λ = [f0(xj)− ξj, f0(xj)− ξj]Λ for all j ∈ Nm.

It implies by the Cauchy–Schwarz inequality of semi-inner products that for any δ > 0 there exists
some N ′

∈ N such that for n > N ′

∥fn(xj)− ξj∥B ≥ ∥f0(xj)− ξj∥B − δ for all j ∈ Nm. (5.7)

Since

∥f0(xj)− ξj∥B, ∥fn(xj)− ξj∥B ≤ max{α∥δxj∥L(B,Λ) + ∥ξj∥Λ : j ∈ Nm}

and Ψ is uniformly continuous on compact subsets of Rm
+
and is nondecreasing with respect to each

of its variables, we get by (5.7) that

P(∥fn(x1)− ξ1∥Λ, . . . , ∥fn(xm)− ξm∥Λ) ≥ P(∥f0(x1)− ξ1∥Λ, . . . , ∥f0(xm)− ξm∥Λ)− ϵ

for sufficiently large n. This combined with (5.6) proves that f0 is a minimizer of (5.5). �
For uniqueness of the minimizer, we have the following routine result.

Proposition 5.4. If Q is convex on Λm and Ψ is strictly increasing and strictly convex then (5.1) has at
most one minimizer.
Proof. It is straightforward that the functionmapping f ∈ B toQ (f (x))+λΨ (∥f ∥B) is strictly convex
on B. �

We close this subsection with the following corollary to the above propositions.

Corollary 5.5. Let B be aΛ-valued RKBS on X. Then inff∈B E(f ) has a unique minimizer for the following
choices of regularization functionals:

E(f ) =

m
j=1

∥f (xj)− ξj∥
p
Λ + λ∥f ∥r

B, p ∈ [1,+∞), r ∈ (1,+∞),

E(f ) =

m
j=1

max(0, ∥f (xj)− ξj∥Λ − ε)+ λ∥f ∥r
B, r ∈ (1,+∞), ε > 0.

5.2. The representer theorem

We study the representation of the minimizer of (5.1) by the reproducing kernel K of B. The
result, known as the representer theorem in the scalar-valued and vector-valued RKHS cases, was
due to [21] and [25], respectively. For more references on this subject for the RKHS case, see [1,28]
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and the references cited therein. We established the representer theorem for scalar-valued RKBSs in
[37,39]. The representer theorem is closely related to the minimal norm interpolation. We start with
examining the latter problem.

Let x := (xj : j ∈ Nm) ∈ Xm be a fixed set of sampling points. Denote for each z := (ηj : j ∈ Nm) ∈

Λm by Iz the set of functions f ∈ B that satisfy the interpolation condition f (x) = z. We need two
notations for the proof of the representer theorem for the minimal norm interpolation. For a subset A
of Banach space V , A⊥ stands for the set of all the continuous linear functionals on V that vanish on A,
and for B ⊆ V ∗, ⊥B := {u ∈ V : µ(u) = 0 for all µ ∈ B}.

Lemma 5.6. Let z ∈ Λm. If Iz is nonempty then the minimal norm interpolation problem

inf{∥f ∥B : f ∈ Iz} (5.8)

has a unique minimizer. A function f0 ∈ B is the minimizer of (5.8) if and only if f (x) = z and

f ∗

0 ∈ span

(K(xj, ·)ξ)∗ : j ∈ Nm, ξ ∈ Λ


. (5.9)

Proof. Clearly, Iz is a closed convex subset of B. A minimizer of (5.8) is the best approximation in Iz
to the origin 0 ofB. It is well-known that a closed convex subset in a uniform convex Banach space has
a unique best approximation to a point in the same space. By this fact, (5.8) has a unique minimizer.
It is also trivial that f0 ∈ Iz is the minimizer if and only if

∥f0 + g∥B ≥ ∥f0∥B for all g ∈ I0.

By the characterization of best approximation by the semi-inner product established in [16], the above
equation holds if and only if

[g, f0] = 0 for all g ∈ I0,

which can be equivalently expressed as f ∗

0 ∈ (I0)
⊥. Note that g ∈ I0 if and only if

[g, K(xj, ·)ξ ]B = [g(xj), ξ ]Λ = 0 for all j ∈ Nm and ξ ∈ Λ,

which is equivalent to that

g ∈
⊥

(K(xj, ·)ξ)∗ : j ∈ Nm, ξ ∈ Λ


.

We conclude that f0 ∈ Iz is the minimizer of (5.8) if and only if

f ∗

0 ∈

⊥

(K(xj, ·)ξ)∗ : j ∈ Nm, ξ ∈ Λ

⊥
.

By the Hahn–Banach theorem, for each B ∈ B∗, (⊥B)⊥ = span B. The proof is hence complete. �

The above lemma enables us to prove the main result of the section without much effort.

Theorem 5.7. Suppose that (5.1) has at least aminimizer. If the regularizer is nondecreasing then (5.1) has
a minimizer that satisfies (5.9). If Ψ is strictly increasing then every minimizer of (5.1)must satisfy (5.9).

Proof. Let f ∈ B be a minimizer of (5.1). We let f0 be the minimizer of

min{∥g∥B : g ∈ If (x)}. (5.10)

Then ∥f0∥B ≤ ∥f ∥B and f0(x) = f (x). It follows that Q (f0(x)) = Q (f (x))whileΨ (∥f0∥B) ≤ Ψ (∥f ∥B)
as Ψ is nondecreasing. Therefore, f0 is a minimizer of (5.1). By Lemma 5.6, f0 satisfies (5.9).

Suppose that Ψ is strictly increasing and f ∈ B does not satisfy (5.9). Again, we let f0 ∈ B be
the minimizer of (5.10). As f does not satisfy (5.9), f ≠ f0 by Lemma 5.6. Thus, ∥f ∥B > ∥f0∥B . The
consequence is thatwhileQ (f (x)) = Q (f0(x)),Ψ (∥f ∥B) > Ψ (∥f0∥B) becauseΨ is strictly increasing.
Therefore, f cannot be the minimizer of (5.1). The proof is complete. �
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5.3. Characterization equations

We consider the solving of the regularized learning scheme (5.1) in this subsection. We try to
make use of the representer theorem. To this end, we note that the output space Λ is usually finite-
dimensional in practice. Let us assume that (5.1) has a unique minimizer f0, dim(Λ) = n < +∞, and
{e∗

l : l ∈ Nn} is a basis for B∗. In this case, we see by property (2.16) of the reproducing kernel K that
f0 has the form

f ∗

0 =

m
j=1

(K(xj, ·)ηj)∗ (5.11)

for some ηj ∈ Λ, j ∈ Nm. It hence suffices to find the finite model parameters ηj’s in order to obtain
f0. To this end, one may substitute (5.11) into (5.1) to convert the original minimization problem in a
potentially infinite-dimensional Banach space into one about the finitely many parameters ηj’s. We
next show how the reformulation can be done under the finite-dimensionality assumption on Λ.
As each ξ ∈ Λ is uniquely determined by {[ξ, el]Λ : l ∈ Nn}. We may rewrite the regularization
functional as

min
f∈B

R(([f (ξj), el]Λ : j ∈ Nm, l ∈ Nn))+ λΨ (∥f ∥B) (5.12)

for some function R : Cm×n
→ R+. By (2.5) and (2.6)

[f (ξj), el]Λ = [f , K(xj, ·)el]B = [(K(xj, ·)el)∗, f ∗
]B∗ .

For the regularizer part, we have by (2.2) that ∥f ∥B = ∥f ∗
∥B∗ . Therefore, the parameters ηj’s in (5.11)

are the minimizer of

min
τ∈Λm

R


(K(xj, ·)el)∗,

m
k=1

(K(xk, ·)τk)∗


B∗

: j ∈ Nm, l ∈ Nn



+ λΨ

 m
j=1

(K(xj, ·)τj)∗


B∗


.

Unlike the RKHS case, the above minimization problem is usually non-convex with respect to τ ∗

j or τj
evenwhenR andΨ are both convex. The reason is that a semi-inner product is generally non-additive
with respect to its second variable.

In some occasions, one is able to derive a characterization equation for the minimization problem
(5.1), which together with the representer theorem constitutes a powerful tool in converting the
minimization into a system of equations about the model parameters in the representer theorem.
We shall derive characterization equations for the particular example of (5.1)

min
f∈B

m
j=1

ϕ(∥f (xj)− ξj∥Λ)+ λΨ (∥f ∥B), (5.13)

where ξj stands for the observation of the target function at xj for j ∈ Nm, and ϕ is a chosen loss
function from R+ to R+. We shall assume that both ϕ and Ψ are continuously differentiable and

lim
t→0+

ϕ′(t)
t

= 0. (5.14)

For convenience, we make the convention that 0/0 := 0. The next two results hold for any Λ
regardless of its dimension.

Theorem 5.8. Let Ψ and ϕ be continuously differentiable on R+ with (5.14). A function f0 ≠ 0 is the
minimizer of (5.13) if and only if

λ
Ψ ′(∥f0∥B)

∥f0∥B

f ∗

0 +

m
j=1

ϕ′(∥f0(xj)− ξj∥B)

∥f0(xj)− ξj∥B

(K(xj, ·)(f0(xj)− ξj))
∗

= 0. (5.15)
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The zero function is the minimizer of (5.13) if and only if

∥T∥B∗ ≤ λΨ ′(0), (5.16)

where

T :=

m
j=1

ϕ′(∥ξj∥Λ)

∥ξj∥Λ
(K(xj, ·)ξj)∗.

Proof. The proof is similar to that for the scalar-valued RKBS case in [39]. One only needs to handle
the semi-inner product in vector-valued RKBSs carefully. �

In the sequel, we discuss the application of the above theorem to the regularization networks

min
f∈B

m
j=1

∥f (xj)− ξj∥
2
Λ + λ∥f ∥2

B . (5.17)

To this end, we say that the point evaluations on B at xj, j ∈ Nm are essentially linearly independent if
for all ηj ∈ Λ, j ∈ Nm

m
j=1

[f (xj), ηj]Λ = 0 for all f ∈ B

necessitates that ηj = 0 for each j ∈ Nm. By (2.6), δxj , j ∈ Nm are essentially linearly independent if
and only if

m
j=1

(K(xj, ·)ηj)∗ = 0

implies that ηj = 0 for each j ∈ Nm.

Corollary 5.9. Suppose that the point evaluations on B at xj, j ∈ Nm are essentially linearly independent.
Then f0 is the minimizer of the regularization network (5.17) if and only if it is of the form (5.11)where the
parameters ηj’s satisfy

ληj + f0(xj)− ξj = 0 for all j ∈ Nm. (5.18)

Proof. For the regularization network (5.17), (5.15) and (5.16) are equivalent to each other when
f0 = 0. By Theorem 5.8, f0 is the minimizer of (5.17) if and only if

λf ∗

0 +

m
j=1


K(xj, ·)(f0(xj)− ξj)

∗
= 0. (5.19)

Thus, f0 has the form (5.11). Since δxj , j ∈ Nm are essentially linearly independent, (5.19) is equivalent
to that the parameters ηj’s in (5.11) satisfy (5.18). The proof is complete. �

Similarly, one may substitute the representer theorem into the characterization equations (5.15)
and (5.18) to reduce the minimization problem to the solving of a system of equations about the
parameters ηj’s. Again, due to the non-additivity of a semi-inner product with respect to its second
variable, the resulting equations are generally nonlinear about the parameters. We conduct the
reformulation when Λ is of finite dimension n ∈ N and {e∗

l : l ∈ Nn} forms a basis for Λ∗. In this
case, (5.18) can be reformulated as

λ[ηj, el]Λ +


(K(xj, ·)el)∗,

m
k=1

(K(xk, ·)ηk)∗


B∗

= [ξj, el], j ∈ Nm, l ∈ Nn.

We shall leave the solution of the resulting non-convex minimization problem and nonlinear
equations about the parameters in the representer theorem for future study.
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