Appl. Comput. Harmon. Anal. 31 (2011) 1-25

Contents lists available at ScienceDirect

[ Applied and
omputational

Harmonic Analysis

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Frames, Riesz bases, and sampling expansions in Banach spaces via
semi-inner products ™

Haizhang Zhang*!, Jun Zhang

University of Michigan, Ann Arbor, MI 48109, USA

ARTICLE INFO ABSTRACT

Affiflff history: Frames in a Banach space B were defined as a sequence in its dual space 5* in some recent
Received 18 March 2010 references. We propose to define them as a collection of elements in B by making use of
Revised 24 September 2010 semi-inner products. Classical theory on frames and Riesz bases is generalized under this

Accepted 26 September 2010
Available online 1 October 2010
Communicated by Richard Gundy

new perspective. We then aim at establishing the Shannon sampling theorem in Banach
spaces. The existence of such expansions in translation invariant reproducing kernel Hilbert
and Banach spaces is discussed.

Keywords: © 2010 Elsevier Inc. All rights reserved.
Frames

Riesz bases

Bessel sequences

Riesz-Fischer sequences

Banach spaces

Semi-inner products

Duality mappings

Shannon’s sampling expansions

Reproducing kernel Banach spaces

Reproducing kernel Hilbert spaces

Gaussian kernels

1. Introduction

A main purpose of this paper is to provide a language for the study of frames and Riesz bases in Banach spaces, making
smoother the passage from Hilbert spaces. The motivation comes from the establishment of a Shannon sampling theorem
in Banach spaces of functions. To this end, we first redefine frames in Banach spaces via a compatible semi-inner product,
which is a natural substitute for inner products on Hilbert spaces. The classical theory of frames and Riesz bases for Hilbert
spaces is then generalized to Banach spaces. Although examples of frames with favorable properties will be implicitly
provided in Section 4, we leave out the explicit construction of useful frames for Banach spaces, hoping that our work could
set a foundation for such studies in the future.

We start with recalling the definition of frames and Riesz bases for Hilbert spaces. Let H be a separable Hilbert space
and I a countable index set. A frame for H is an indexed set of vectors {f;: j eI} € H for which there exist positive
constants 0 < A < B < +oo such that

Alf I < [ Fre oy < BIFllre forall f e .
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Here, | - |3 and (-,-) denote the norm and inner product on , respectively. And ¢2(I) is the Hilbert space of square-
summable sequences on I. For simplicity, a set {c«;: j €I} indexed by I will be abbreviated as {«;} throughout the paper.
A Riesz basis {f;} for H is a frame that is minimal in the sense that

fj¢span{fi: kel, k#j} foranyjel.

Frames and Riesz bases, as alternatives for orthonormal bases, bring more flexibility in representing elements in a Hilbert
space. They were first introduced for the purpose of studying nonharmonic Fourier analysis [10,38,44]. With the advent of
the theory of wavelets, they find wide applications in the construction of bases for signal and image processing, time fre-
quency analysis, and sampling theory [8,31]. We are particularly interested in its natural role in the complete reconstruction
of a function in a reproducing kernel Hilbert space (RKHS) from its samplings.

An RKHS on a set X is a Hilbert space H of functions defined on X such that for each x € X the linear functional of
point evaluation at x

&(f)=f®x), feH

is continuous [2]. By the Riesz representation theorem, there exists a unique function K : X x X — C such that {K(x,-): x €
X} CH and

fO=(fKx,"),y x€X, feH. (1.1)

The function K is called the reproducing kernel of H. Many things can be said about RKHS because of the existence of
a reproducing kernel (see, for example, [6,39,40,42,43]). As far as sampling is concerned, let us assume that there exist
sampling points x;j € X, j €I such that K(xj,-), j € I constitute a Riesz basis for . Then by the standard theory of Riesz
bases (see, for example, [8]), the frame operator S : H — H defined by

55 = (K. 0) K. e

jel

is bounded, self-adjoint, positive, and invertible. Applying the inverse S~! to both sides of the above equation and notic-
ing (1.1), we obtain the following sampling expansion on H

F =Y F&H(STKx.))(x). xeX. feH, (1.2)
jel

where the series converges absolutely, and uniformly on any subset of X where K(x, x) is bounded (see [2, p. 344]). When H
is the Paley-Wiener space of square-integrable functions on R whose Fourier transforms are supported on [—rm, ], and
xj = j, j € I =17, the reproducing kernel K is the sinc function and (1.2) becomes the celebrated Shannon sampling series.
The general formula (1.2) was first discovered by Nashed and Walter in [34]. Recent developments can be found in Refs.
[13,17,18,21,32]. One of the main purposes of this paper is to extend it to Banach spaces of functions. This goal motivates
the need of understanding the correspondence of Frames, Riesz bases, and RKHS in Banach spaces.

There have been definitions of frames and Riesz bases for a separable Banach space B [1,3,4,16]. Two Banach spaces are
said to be isomorphic to each other if there is a bijective bounded linear operator between them. Since it is no longer true
that two Banach spaces of the same dimension must be isomorphic to each other, it is important to choose the appropriate
sequence spaces in the definition of frames and Riesz bases for Banach spaces. With this consideration, the notion of BK-
spaces is needed. A BK-space X4 on I is a Banach space of sequences ¢ = {c;} € CT with the property that the coordinate
linear functionals ¢ — cj, j €I are continuous on Xj.

Definition 1.1. (See [1,3,4].) An indexed set {f;} € B is an Xy4-Riesz basis for B if span{f;} = B, Zje]lcjfj converges in B
for all c € X; and there exists 0 < A < B < +o0 such that

> cifi

iel

Allcllx, < < BJc|lx, forallce Xq. (1.3)

B

Due to the lack of an inner product in a general Banach space 3, a frame for 13 was defined as an indexed set of linear
functionals from the dual space B* in [1,3,4,16]. Specifically, {{¢;} € B* was called an Xy-frame for B if {uj(f)} € Xy for
every f € B and there exist constants 0 < A < B < 400 such that

Alflis < [{miH} x, <BIfls forall feB. (1.4)

Thus, according to the above definition, a frame for B consists of elements from the dual space B*, not of elements in
the original space BB as one might have expected. However, this inconvenience can be avoided using the tool of semi-inner
products [27] for Banach spaces.
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A semi-inner product on B is a function on B x B3, usually denoted by [-,-], such that for all f,g,heB and ¢ € C

. [f+ghl=[f.h1+I[g.h]
laf,gl=alf, gl [f,agl=alf, gl
. [f,fl1>0for f+#0,

CfL gl <If, flig. gl

Every Banach space B has a semi-inner product [-,-] that is compatible in the sense that (see [15,27])

[f, f12=|flg forall feB.

The striking difference between a semi-inner product [-,-] and an inner product is that [-,-] is nonadditive with respect
to its second variable unless it becomes an inner product [36]. Semi-inner products make possible the development of
Hilbert space type arguments in Banach spaces (see, for example, [26-28,37]). They have recently been applied to machine
learning. With the aid of semi-inner products, Der and Lee [9] studied hard margin classification in Banach spaces, and we
established the theory of reproducing kernel Banach spaces (RKBS) in a recent work [45]. The detailed definition of RKBS
will be introduced in Section 4. We present our definition of frames for Banach spaces via semi-inner products below.

Definition 1.2. Let [-,-] be a compatible semi-inner product on B. We call {f;} € B an Xy-frame for B if {[f, fj]} € X4 for
all f € B and there exist two positive constants A, B such that

Alfls <[{Lf. 1}l , <BIfls forall f € B. (15)

We shall discuss the connection of the above definition of frames with that in [1,3,4,16] in Section 2, where we shall
generalize the classical theory of frames and Riesz bases for Hilbert spaces to Banach spaces. Many of the results and
arguments for their proofs in Section 2 are merely translations of those in [3,4] in the language of semi-inner products and
duality mappings. Besides making the exposition of the paper self-contained, another reason for including the results and
proofs is that under the new language they seem to be natural extensions of the counterparts in Hilbert spaces. We shall
illustrate two such results here. Let B and X; have properties that will be described at the beginning of the next section.
Also denote by [-,-] a compatible semi-inner product on B. By properties 3 and 4 of semi-inner products, for each f € B the
function that sends g € 5 to [g, f] is a bounded linear functional on B. We shall denote this functional associated with f
by f* and call it the dual element of f. The mapping f — f* will be called the duality mapping from 3 to 3*. The following
two results will be proved in Proposition 2.13 and Theorem 2.15 respectively:

1. An indexed set {f;} € B is an X4-Riesz basis for B if and only if it is minimal in 5 and {f]’."} forms an X7-frame for B*.
2. If {f;‘} is an X7-Riesz basis for B* then there exists a unique Xy-Riesz basis {g;} for B such that

lgj. fill=6jk. J.kel,

where §;  is the Kronecker delta, and

F=YIf fgj,  f*=) lg; f1f] forall feB.

jel jel

In Section 3, we shall investigate the conditions for the frame operator on Banach spaces to be invertible. A frame {f;}
for a Hilbert space H has the remarkable property that (f, fj)7 are the most economical coefficients for a decomposition of
f eH into S_lfj, where S is the frame operator associated with {f;}. We shall also establish this result for Banach spaces
in Section 3. Our main focus is on Section 4, where we discuss sampling expansions of the form (1.2) in RKBS. Examples
based on existing research on weighted Paley-Wiener spaces [29,30,35] and generalized interpolating refinable function
vectors [19,23,24] will be presented. The main finding of the paper is the negative result that such expansions do not exist
for some common translation invariant RKBS. In particular, as a corollary of this fact, the RKHS of the Gaussian kernels on
RY do not possess a complete sampling expansion (1.2). The last section is devoted to the discussion of finite-dimensional
Banach spaces. Especially, we shall present a nonlinear Gram-Schmidt process to generate a Riesz basis for B whose dual
elements automatically form a Riesz basis for B*.

2. Frames and Riesz bases via semi-inner products

We start with introducing necessary preliminaries on semi-inner products, and desired properties of the Banach space B
and BK-space X, under consideration.

Let B be a separable Banach space and [-,-] a compatible semi-inner product on 3. We require that 3 be reflexive and
strictly convex. In other words, (8*)* = B, and whenever || f + gllg = ||fllg + ||gllg where f,g#0 then f =«ag for some
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o > 0. An important consequence [12] is that the duality mapping from B and B* is bijective. In other words, for every
linear functional @ € B* there exists a unique f € B such that

wn(g) = f*(g)=1g, f1 forallgenB. (2.1)

We also note that the duality mapping is isometric, namely,

|f*|g-=1flis forall feB. (2.2)
Furthermore, it was observed in [15] that the function [-,-], : B* x B* — C defined by
[f*.g"],:=lg.fl. f.geB (2.3)

is a compatible semi-inner product on B*,

Let I be a countable index set that has been well-ordered. We shall denote by I,;, n € N, the subset of the first n indices
in I. If #1 < +o0 then I, =1 for n > #I. The notation Xy will always be reserved to denote a BK-space on I. We shall also
require that the canonical unit vectors e, j € I form a Schauder basis for Xg. In other words, every ¢ € X4 equals Zjeﬂ cjej
in the sense that

C—ZCJ'E’]'

jeln

lim
n—oo

= O’
Xd

and the coefficients in a decomposition of ¢ into e; are unique. By a result in [25], the dual space Xj of Xg is also a
BK-space of sequences d = {d;} € C such that

d(c) = chdj, ce Xy, deXj.
jel
For instance, if Xq =¢P(I), 1 < p < +oo then X = ¢9(I), where 1/p+1/q = 1. We impose several more crucial assumptions

on Xy, which are satisfied by ¢P(I), p € (1, +00). Specifically, we require that X4 be reflexive, the canonical unit vectors ej,
j el form a Schauder basis for X} as well, if d = {d;} € CT satisfies

Zdej (2.4)

jel
converges for every ¢ € Xy then d € X7, and if the above series converges for all d € X then ¢ € Xg.
The above notations and requirements about the spaces B and X; are assumed throughout the rest of the paper.

2.1. Frames

We shall see that the lower bound inequality in Definition 1.1 and the upper bound inequality in Definition 1.2 each lead
to a new object in Banach spaces, whose precise definitions are given below.

Definition 2.1. An indexed set {f;} is called an Xg-Bessel sequence for B if {[f, f;]} € X4 for all f € B. It is said to be an
Xg4-Riesz—Fischer sequence for B if for all c € X4 there exists some f € BB such that

f, fil=cj, jel (2.5)

One might replace Xy by X3, B by B*, or both in Definitions 1.1, 1.2, or 2.1 to obtain other definitions. For instance, we
get by (2.2) and (2.3) the following useful fact.

Lemma 2.2. Let { f;} C B. Then {f;‘} is an Xj-frame for B* if and only if {[f;, f1} € X for all f € B and there exist two positive
constants A, B such that

Allfiis < |{Lf, f1}]

X5 <B|fllg forall f eB. (2.6)

The purpose of this subsection is to explore the properties of frames, Bessel sequences and Riesz-Fischer sequences,
and relationships among them. Before moving on, let us make connections with the existing definitions [1,3,4,16] of frames
and Bessel sequences in Banach spaces, and the classical ones [8,10,31,44] for Hilbert spaces. We shall discuss frames only.
Recall that in Refs. [1,3,4,16], an Xy-frame for B consists of elements w; € B, j €I that satisfies {i1j(f)} € X4 for all f e B
and Eq. (1.4). One sees from (2.1) that {f;} is an Xy-frame for B satisfying Definition 1.2 if and only if {f;‘} is an Xy-frame

for B in the sense of [1,3,4,16]. When [-,-] is an inner product on B and X4 = X} = £2(I), by
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[f.gl=lg. fl. f.geB,

{fj} is an Xy-frame for B if and only if {f]?‘} is an X7-frame for B*. Example 5.3 in Section 5 illustrates that this in general
does not hold if B is a Banach space.

We work toward our goal by starting with Bessel and Riesz-Fischer sequences. The results below generalize the classical
one for Hilbert spaces (see, for example, [44]).

For an indexed set {f;} € B, we introduce two linear operators U : B — C! and V : B* — C! by setting

uf:={lf.fjl}. feB (2.7)

and

Vw ={u(fp}, meB*

One observes that

V(f)={lf;. f1}. feB.

Using the operator U, Definition 1.2 might be abbreviated as {f;} € B is an Xy-frame for B if and only if Uf € Xy for all
f eB and

Allflls < Uflx; < Bl fls. (2.8)

Similar formulations hold for X4-Bessel sequences for B, X7-frames for B*, and X7-Bessel sequences for B*.

Proposition 2.3. If { f;} is an X4-Bessel sequence for B then there exists some B > 0 such that

I{Lf. £}, <BIfls forall f eB. (2.9)

If {fj} is an X4-Riesz-Fischer sequence for 3 then there is some A > 0 such that for every c € X, there exists f € B that satisfies (2.5)
and

Al flis < llclix,- (2.10)

Proof. Suppose that {f;} is an Xy-Bessel sequence for 3, that is, Uf € Xy. Then it is obvious that U has a closed graph. By
the closed graph theorem, U is bounded. Thus, (2.9) holds true for some B > 0.
Let us deal with the second claim. Let {f;} be an Xg-Riesz-Fischer sequence for B, and C the set of all the elements

f € B such that f}‘(f) =0, j el Clearly, C is a closed subspace of B. We denote for each f € B by ]‘ the element f +C

in the quotient space B/C. Introduce a mapping T : X4 — B/C which sends c € Xy to f where f is some element in B
satisfying (2.5). Clearly, T is well-defined and has a closed graph. It is hence bounded. In other words, for each ¢ € Xy there
exists g € B satisfying {[g, f;]} =c and

Aliglis/e < llclix,-
Since B is reflexive, there exists h € B such that (see [5, p. 133])

lg —hlls =inf{|g — '] 5: W' e C} = 1Zlls/c.

By the above two equations, f := g — h satisfies our requirements. O
There is a characterization of Riesz-Fischer sequences that is easy to apply.

Proposition 2.4. An indexed set { f;} is an Xq-Riesz-Fischer sequence for B with (2.10) if and only if

def}k

jel

Alld]ixs < (2.11)

B*

for all d e X with at most finitely many nonzero components.

Proof. Suppose that {f;} is an X4-Riesz-Fischer sequence for B with (2.10). Let d € X4 be of finitely many nonzero compo-
nents. We find ¢ € Xy with

> cid;

jel

lclix, =1 and = lldllx;-
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By the assumption, there exists some f € B with (2.5) and || f||g < 1/A. We get that

Y e;| =[S0 g (Zdjf;‘)m‘gnfng Y djf; Y dif

jel jel jel jel jel

1
<=
A

B* B*

Combining the above two equations yields (2.11).
On the other hand, suppose that (2.11) holds true for all d € X4 with finitely many nonzero components. Let C = span{f;f}
and define a linear functional v on C by setting for each d € X} with finitely many nonzero components

v(Zdjf;">:Zdjcj.

jel jel
By (2.11),
1
D _dje| < ldlixg llelix, < liellxg | > diff| (212)
jel jel B

which implies that v is bounded. We extend v by the Hahn-Banach theorem to be on the whole space 3*. The resulting
linear functional on B* is still denoted by v. By (2.12), its norm ||v||g= is bounded by ||c| x,/A. Since B is reflexive, there
exists f € B such that

1

I fllg=Ivip= < ZIICIde (2.13)
and

<Zdjf}">(f) = V<Zdjf}‘> =) djcj.

jel jel jel

In particular, the above equation implies that

fiHh=1f fil=cj, jel (2.14)
We conclude by (2.13) and (2.14) that {f;} is an X4-Riesz-Fischer sequence for B with (2.10). O

We then study the two inequalities in the definition of frames. The following proposition shows that the lower bound
inequality leads to a completeness condition in the dual space.

Proposition 2.5. Let { f;} C B. If there exists a positive constant A such that

Alflis <[{Lf. fil}llx, forall feB (2.15)
then

span{ff}=B". (2.16)
Similarly, if for some A > 0

Alflis <[{Lf5. fl}]x, forall feB
then there holds

span{ f}} = 5. (217)

Proof. We shall rely on the well-known fact that a subset Y’ of a Banach space Y satisfies spanY’ =Y if and only if there
does not exist a nonzero u € Y* that vanishes everywhere on Y’. Suppose that (2.15) holds true. We assume to the contrary
that (2.16) is not true. By the fact and the reflexivity of B, there exists some nonzero f € B3 such that

[f,fj]:f(f;k)zo forall jel,

which leads by (2.15) to the contradiction that || f||g = 0. The second claim can be proved similarly using the additional fact
that B*={f*: feB}. O

Let us turn to the upper bound inequality.
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Proposition 2.6. A subset { f;} € B forms an X4-Bessel sequence for B3 satisfying (2.9) if and only iije]I dj f;‘ converges in B* for all
d € X% and
d

Zdif*

jel

< Blld] x;- (2.18)

Proof. (See, also, Proposition 3.2 of [3] and Proposition 2.2 of [4].%) Suppose that {fj} is an Xg-Bessel sequence for B
satisfying (2.9). Let d € X}j. We estimate for positive integers m > n that

dYodiff| = sup | D djfy (f)‘ = sup djLf. fil
jElm\In B* fEB HfHBSl ]EI \1 fEB, HfHBg] jElm\ln
> djej sup  |{LF, £y,
jerm, X; feB.|flp<1
> djej| B (2.19)
j€lm\In X3

As e; form a Schauder basis for X7, || Zjelm\ln dj@jl‘x; goes to zero as m, n tend to infinity. As a result, Zjeﬂ djf;( converges
in B*.
Let & > 0. Then for large enough n,

Zd e;j

jel

< ldllx; + &

Xi
Using the same technique as that engaged in (2.19), we obtain for such n that

Zd f* Zd e;

jely jely

B(lldllx; +¢).

é‘
Eq. (2.18) follows immediately from the above equation.
Conversely, assume that Zjeﬂ djf]?‘ converges in B* for all d € X and (2.18) holds true. Then

lim Zd,[f f,]_hm(Za] )(f) <11m > dif )(f)_<Zdj )(f) feB.

Jeﬂ jely jely jel

By our requirements on X4 and X}, {[f, fjl} € Xq for all f € B. We also estimate by (2.18) for every d € X} that

Y dilf, £l = (Zdjf}k>(f)‘§ Zdjfj

jel jel jel

Nl < Blidlx; /15,

from which (2.9) follows. The proof is complete. O

Let {f;} be an X4-Bessel sequence for B. One can see from the above proof that if Xy and X] possess the additional
property that for all c € X4 and d € X}, series (2.4) converges absolutely then Zje]l djf;‘ converges unconditionally in B*.

In other words, Zjeﬂ djf]’.“ converges to the same element in B* independent of the arrange of the summation order. The
observation applies to most of the convergence in the paper and we shall not point it out explicitly any more.
We have a parallel result for X}-Bessel sequence for B*.

Proposition 2.7. Let { f;} € B. Then {ff} C B is an X3-Bessel sequence for B*, that is, {[ f;, f1} € X} for all f € BB and there exists
B > 0 such that

Hes5 S

if and only ifzje]1 cjfj converges in I3 for all c € X4 and

<B|fllg foral feB

2 The proof provided here can be considered as a translation of those of Proposition 3.2 of [3] and Proposition 2.2 of [4] in the language of semi-inner
products and duality mappings. We shall not repeat this footnote.
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Y ocifi

jel

< Bllclixg-
B

By Proposition 2.6, if {f;} is an X4-Bessel sequence for B then U is a bounded linear operator from B to X4 and its
adjoint U* : X% — B* has the form

Utd=Y d;ff, deX;. (2.20)
jel
Proposition 2.7 implies that if {f;‘} is an X7-Bessel sequence for B* then V is bounded from B* to XJ and V*: Xy — B is
of the form

V= "cjfj, ceXa. (2.21)
jel

There is a characterization of Xy-frames for B and Xj-frame for B* in terms of U* and V*, respectively.

Lemma 2.8. A sequence { f;} is an Xy-frame for BB if and only if the operator U is bounded from BB to Xy and has a bounded inverse on
R ). Likewise, {f;‘} is an X}-frame for B* if and only if V is bounded and possess a bounded inverse on R(V).

Proof. The results are straightforward reformulations of the definitions. O

We remark that U is bounded and has a bounded inverse on R(U) implies that R(U) is closed in Xg4. Thus, if { f;} is an
Xg4-frame for B then R(U) is a closed subspace of Xg.

Proposition 2.9. A sequence { f;} is an Xy-frame for B if and only if U* defined by (2.20) is bounded and surjective from X7 to B*.
Similarly, {f;."} is an X3-frame for B* if and only if V* given by (2.21) is bounded and surjective from X4 to B.

Proof. (See, also, Theorem 2.4 of [4].) The results follow from Lemma 2.8 and the fact that a bounded linear operator
between two Banach spaces has a bounded inverse on its range if and only if its adjoint is surjective. O

2.2. Riesz bases

Recall Definition 1.1 of X4-Riesz bases for B. By the definition, {f]’?‘} is an X7-Riesz basis for B* if and only if span{f]’.“} =
B*, Z]d djf;‘ converges in B* for all d € X} and there exists 0 < A < B < +o0 such that

Zdiff

jel

Alld|x; < < B|ld|ly; foralld e Xj. (2.22)

B*

It is straightforward that an Xy-Riesz basis for B must be a Schauder basis. We next show that a Riesz basis automatically
generates a frame in the dual space.

Proposition 2.10. If {f}‘} is an Xj-Riesz basis for B* satisfying (2.22) then {f;} is an Xy-frame for B satisfying (1.5). On the other
hand, if { fj} is an X4-Riesz basis for B satisfying (1.3) then {f;‘} is an X}-frame for B* satisfying (2.6).

Proof. (See, also, Corollary 2.5 of [4].) We shall only provide the proof for the first result. Suppose that {f]*} is an X7-Riesz
basis for B* satisfying (2.22). Eq. (2.22) implies that U* given by (2.20) is bounded from X} to B* and has a bounded inverse
on R(U*). Thus, R(U*) is closed in B*. This together with spﬁ{f;“} = B* implies that U* is surjective. By Proposition 2.9,
{fj) is an Xg-frame for B. By (2.22), U* is also injective. Therefore, U* is bijective from X} to B*. As a result, U is bijective
from B to Xy. That the X}-Riesz basis {f]?‘} for B* and the Xg-frame {f;} for B share the same bounds A, B follows from
the fact that

Wuil=Juf and U=t =[] =) (2.23)

The proof is complete. O

We next give a characterization of Riesz bases. To this end, we note by the Hahn-Banach theorem that {v;} C V is
minimal in a Banach space Y if and only if there exists wj e Y*, j el such that

wj(vg) =8k, Jj. kel
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Proposition 2.11. Let { f;} € B. Then {f;‘} C B* is an Xj-Riesz basis for B* satisfying (2.22) if and only if{f;‘} is minimal in B* and
{fj} is an X4-frame for B satisfying (1.5).

Proof. (See, also, Proposition 2.7 of [4].) Suppose first that {fj’."} C B* is an Xj-Riesz basis for B* satisfying (2.22). By
Proposition 2.10, (1.5) holds true. Assume to the contrary that {f;‘} is not minimal, that is, there exists some j € I such that

fi cspan{fi: kel, k+# j}.
Then there exists d" € X}, n € N, with d;? =0 and d}; # 0 for at most finitely many indices k € I such that
. n ek _ f%
i S = .
kel
We get by (2.22) that

, mneN,
B*

Alld" —d™|

PRI I

kel kel

xj <

which implies that d" converges to some d € X as n — oo. Since d’} =0 for every n € N and coordinate functionals are
continuous on X7, dj = 0. We reach that

f]* - Z dkf/;k:O,
kel k#j
which contradicts (2.22).

Conversely, suppose that {f} is minimal and (1.5) holds true. By Proposition 2.5, span{f;} = B*. Note that Eq. (1.5)
implies that f; form an X4-frame for B. By Propositions 2.6 and 2.9, Z]-E]I djf;‘ converges in B* for all d € X3, [[U*|| < B
and U* is surjective. That {fj’.“} being minimal implies that U* is also injective and is hence bijective. Thus, U is bijective as
well. The first inequality in (2.22) then follows from Eq. (2.23). O

Another characterization of Xj-Riesz bases for B* is given below.
Proposition 2.12. An indexed set {f]’."} is an X3-Riesz basis for B* if and only ifspan{fjf‘} = B* and U is surjective onto Xg.

Proof. If {f;‘} is an Xj-Riesz basis for B* then by Proposition 2.10, U is bounded from B to X4. Moreover, U* is bijective.
So is U. In particular, U is surjective. On the other hand, suppose that spTl{f;‘} = B* and U is surjective onto Xy. Then U
is injective and by the closed graph theorem, U is bounded. Thus, U is bounded and bijective. It follows that U* is bounded
and bijective as well. Therefore, {f;‘} is an X7-Riesz basis for B*. O

The following result about X;-Riesz bases for B can be proved in a similar way.

Proposition 2.13. A sequence { f;} is an Xy-Riesz basis for B satisfying (1.3) if and only if f; are minimal in B and {f]?‘} is an X7-frame
for B* satisfying (2.6).

2.3. Reconstruction

Let {f;} be an Xy-frame for 3. By Lemma 2.8 and the remark following it, U : B — X given by (2.7) is bounded linear,
injective, has a closed range R(U) and a bounded inverse on R(U). We are concerned with the reconstruction of an element
f € B from its data Uf e Xy. Following [16], we call {f;} a Banach frame for B if there exists a bounded linear operator
T : X4 — B such that

TUf=f forall f ehB. (2.24)

We say that R(U) has an algebraic complement in Xy if there exists another closed linear subspace C of Xy such that
Xq=R(U) ®C in the sense that R(U) N C = {0} and for every c € X, there exists ¢c; € R(U) and ¢y € C such that c =
€1+ 2. By a result in [16] (see, also, [3,4]), an Xy-frame {f;} for B is a Banach frame if and only if R(U) has an algebraic
complement in Xy. If Xy = ¢2(I) then every closed linear subspace C of it has an orthogonal complement, which is an
algebraic complement of C. As a consequence, every ¢2(I)-frame for B is a Banach frame. Conversely, if every closed linear
subspace of X; has an algebraic complement then Xy must be isomorphic to an Hilbert space [5].

Assume that R(U) has an algebraic complement in Xy and T is a bounded linear operator from Xy to B satisfying (2.24).
Setting g; :=Tej, j €I, we obtain for each f € B that
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f=TUf= T(Z[f, file j) =Y If. fil(Tep) =) "If. filg). (2:25)
jel jel jel
It is observed for all ¢ € Xy that

> cigj =HT<chej>H < T Hlelx,-
B B

jel jel

Moreover, (2.24) implies that T is surjective onto B. Thus, every element in B must be of the form Zjeﬂ cjg;j for some
¢ € Xy. By Proposition 2.9, {g}‘} is an X7-frame for B. We hence reach the following result.

Theorem 2.14. If { f;} is an Xy-frame for B and R(U) has an algebraic complement in X then there exists an X7-frame {g;f} for B*
such that

f=Y_1f.filg; forallfeB (2.26)
jel
and
f*=>"lgj, f1f} forall f €B. (2.27)
jel

Proof. It remains to prove (2.27). By (2.26),

g (NH=If.81=)_If fillgj.g] forall f,geB. (2.28)
jel

We estimate that there exists some B > 0 such that for all m,ne N

( > [gj,g]fj‘>(f)‘=

j€lm\In

> lgj.gllf. £l

j€lm\In
> g, gle;
j€Tm\In

<iss £y,

Y lgj. glej
X

Jj€lm\In

< Bl fls

)

"
X4

which implies that Zjeﬂn lg;, g]f]’.“ converges in 3* as n — oco. By (2.28), it converges to g*. Eq. (2.27) is hence proved. 0O

If additionally, f;‘ are minimal then by Proposition 2.11, {f]’.*} is an Xj-Riesz basis for B*. Moreover, we have in this

case that U is bijective. Thus, the only T : X; — B satisfying (2.24) is U~!. We then get that gji= U*]ej are minimal. By
Proposition 2.13 and Theorem 2.14, {g;} is an X4-Riesz basis for 5. We draw the conclusion below.

Theorem 2.15. If { f;} is an Xy-frame for B for which {f]’f} is minimal in B* then there exists a unique X4-Riesz basis {g;} for BB such
that there hold (2.26), (2.27), and

[gj fkll =38k, kel (2.29)
Proof. It remains to prove (2.29). By (2.26),

gi=> [ filg.

kel

Since {g;j} is minimal, we obtain (2.29). O
3. The standard reconstruction operator

It is well-known that if B is a Hilbert space and {f;} C B is an £2(I)-frame for B then the operator S : B — B defined
by

Sf=>_If. filfj, feB (31)
jel

is bijective and bounded. As a consequence, there holds
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F=)If.fj157'fj, feB (3.2)
jel
The purpose of this section is to examine conditions for the above reconstruction strategy to hold in separable Banach
spaces.

Let us return to the Banach space setting. For (3.1) to be a well-defined bounded linear operator from B to itself, we shall
assume that the operator U : B — X, defined by (2.7) and the operator V* : X3 — B defined by (2.21) are both bounded.
By Propositions 2.6 and 2.7, the operator U* given by (2.20) is bounded from X7} to B* and fj’.k form an X7-Bessel sequence
for B*.

We first present necessary and sufficient conditions for the operator S given as (3.1) to be bijective. Before that, it is
worthwhile to point out that when B is a Banach space, that {f;} is an X4-frame for B alone in general is insufficient to
guarantee the bijectivity of S. We shall construct in Example 5.3 an Xg-frame {f;} for a finite-dimensional B for which
span{fj} # B. As a consequence, the operator S is not surjective in this example.

Theorem 3.1. Suppose that U : B — Xy defined by (2.7) and V* : X4 — B by (2.21) are bounded. Then the operator S given by (3.1)
is bijective and bounded if and only if{fj’.*} is an X}-frame for B*, { f;} is an Xq-frame for B, and { f;} is an R(U)-Riesz basis for B.

Proof. Note that S = V*U. Thus, S is bounded. Suppose that S is bijective. Then V* is surjective, which implies by Proposi-
tion 2.9 that f;‘ form an X7-frame for B*. Since $* = U*V and S* is bijective as S is, U* is surjective from X} to B*. Again,
by Proposition 2.9, f; constitute an X4-frame for B. As a result, R(U) is a closed subspace of X;. For the third condition,
let us study the operator V*. By S = V*U, V* is surjective from R(U) to B. Also, by the injectivity of S and U, V* must
be injective on R(U). We hence obtain that V* is a bounded bijective linear operator from the Banach space R(U) to B.
By the open mapping theorem, {f;} is an R(U)-Riesz basis for B.

On the other hand, suppose that {f;."} is an Xj-frame for B*, {f;} is an Xg-frame for B, and {f;} is an R(U)-Riesz basis
for B. Then U is injective and V* is injective on R(U). It follows that S is injective as well. Finally, S is surjective as V* is
surjective from R(U) to B. O

When S is bijective, one immediately has the reconstruction formula (3.2). This fact is stated in the following proposition.

Proposition 3.2. If the bounded linear operator S given by (3.1) is bijective then there holds (3.2) and

Fr=Y U5 ST =) (ST fi. f1ff. feB (33)

jel jel
Proof. Suppose that S is bijective. We get by the definition of S and the continuity of S~! that

f=s7'sH=s" (Z[f, fj]fj) =Y If.fi1S7'fj. feB.
jel jel
As the adjoint of S, S* of the following form is also bijective:
S f*=Y_Ifi, f1ff, feB.
jel
Applying (5*)~1 = (S~1)* to both sides of the above equation yields the first equality in (3.3). By (3.2), there holds for all
f,ge B that
[g. f1=) [g. FI[S' . f).
jel
which implies that
=Y 1875 f1f}. feB
jel

The proof is complete. O

A remarkable property of an arbitrary ¢2(I)-frame {f;} for a Hilbert space B is that [f, f;] are the most economical
coefficients for a decomposition of f € BB into Sflfj. Specifically, if c # {[f, fil} € £2(I) satisfies that

F= Yo 34

jel
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then

lellea > |{Lf, fj]}”ﬂ(m'

We shall prove a similar property for frames in a separable Banach space B. The following fact was proved in [41] for
semi-inner products and extended to generalized semi-inner products in [46].

Lemma 3.3. Let [-,-]x, be a compatible semi-inner product on Xy. Then Xy is strictly convex if and only if whenever [cq, c2]x, =0
and ¢y # 0 then |[c1 + c2llx, > lIc2llx,-

We shall use [-,-]x, to denote a compatible semi-inner product on Xg. Recall that for each c € Xy, ¢* denotes its dual
element in X} determined by

() =[c, C]Xd, c’ € Xg.

Proposition 3.4. Suppose that the bounded linear operator S defined by (3.1) is bijective. Let f € B. If Xy is strictly convex and
{Lf, fjl}* € R(V) then

ety > [{LF, £l (3.5)
forany c #{[f, i1} € Xq satisfying (3.4).
Proof. Suppose that X, is strictly convex, {[f, fj1}* € R(V), and c # {[f, f;1} € X4 satisfies (3.4). By (3.2),

Y (ci—1f. fi)fi= 5<Z(Cj —[f, fj])s_]fj> =S(f-fH=0.

jel jel

In other words, ¢ — Uf € K(V*), the kernel of V*. Since each element in C(V*) vanishes on R(V) (see [5, p. 168]) and
(Uf)* e R(V), we get that

[c—Uf,Uflx, = (Uf)*)(c—Uf)=0.
By Lemma 3.3,
lellx, =€ =UNH +UF [y, > 1UflIx,
which is (3.5). O
Back to the discussion of the conditions ensuring the bijectivity of S. In the most convenient case when R(U) = Xy,

we observe by Theorem 3.1 that S is bijective if and only if {f;} and {fj‘} are respectively an Xy-Riesz basis for B and an
Xjj-Riesz basis for 5*. One has the following conclusion under there two conditions.

Corollary 3.5.If { f;} and { f ]’."} are respectively an X4-Riesz basis for B and an X7 -Riesz basis for B* then S defined by (3.1) is bijective
and bounded. Furthermore, there hold (3.2), (3.3), and

[S7'fj. f] =8jk. J.kel
4. Complete sampling expansions in Banach spaces

Let B be a separable Banach space of complex-valued functions defined on a prescribed set X. Based on the results
established in the previous sections, we shall consider the complete reconstruction of a function f € B from its sampled
data

Izf:={f&xp: jel},

where Z := {x;: jel} € X is a sampling set and I is a countable index set as before. Our study of such reconstruction from
sampling in Banach spaces will be confined to an ideal framework that satisfies the following requirements:

(i) Only finite amount of data can be handled in practice. Thus, for each f € B, Zz f should be of finite “energy” so that it
is approximable from its finite subsets. For this reason, we shall require that Zz f belong to some BK-space X, for all

feB.
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(ii) The sampling process Zz : B — Xg should be stable. This implies that if there is a small perturbation f of f in B with
||f||l3 < 8, where § measures the noise level, and we end up sampling fs := f + f then Zz(fs) is expected to be close
to Zz f in Xg4. In other words, the sampling operator Z= : 3 — X4 should be bounded.

(iii) We aim at recovering every f € B from its sampled data Zz f. The recovery process should be stable as well. Therefore,
Tz should possess a bounded inverse on its range.

(iv) Sampling should not be redundant, which implies that there should not exist some j €I so that for each f e B, f(x;)
can be obtained from {f(x): k €, k # j}. We shall elaborate on this requirement later.

Note that (i)-(iii) can be summarized into that Zz(3) € X4 and

Allflls<IZzflix, <Blfls forall f B, (4.1)

where A, B are two positive constants. The second inequality above together with that coordinate functionals are continuous
on X4 implies that for every j € I, the point evaluation functional dy; is continuous on . In the search of a suitable sampling
set Z for B, it would hence be convenient to assume that 8 is continuous on B for all x € B. In a recent article [20],
a Banach space B of functions on X where point evaluation functionals are always continuous was called a reproducing
kernel Banach space. In our work [45], to ensure the existence of a reproducing kernel, an RKBS was required to have
two more crucial properties: uniform Fréchet differentiability and uniform convexity. A normed vector space C is uniformly
Fréchet differentiable if for all x, y € C with x#0

i Ix+tyllc — lixllc
m —F——
teR, t—0 t

exists and the limit is uniform on S(C) x S(C), where S(C) :={x € C: ||x||c = 1}. We say that C is uniformly convex if for all
& > 0 there exists a § > 0 such that

X+ yllc<2—6 forallx,y e S(C)with |x—y|c>¢

For simplicity, C is said to be uniform if it is both uniformly Fréchet differentiable and uniformly convex. In this paper,
we call B a reproducing kernel Banach space (RKBS) on X if it is a uniform Banach space of functions on X where point
evaluations are always continuous linear functionals on B. Translation invariant RKBS on Euclidean spaces are the main
subject of this section. Before introducing them, let us briefly give an explicit example of RKBS that is not an RKHS. The
space E2, p € (1, 400), T > 0 consisting of all entire functions f on C of exponential type at most t for which

1/p
I llge = (/|f(t)|pdt) < 400
R

is an RKBS. In fact, there is a constant C depending on p and 7 only such that (see [44, p. 99])
|fx+iy)| < Ce”J’|||f||]Ep forallx,y e R, f e EL.

It follows from the above two equations that E? is a Banach space isometrically isomorphic to a closed subspace of LP(R).
Consequently, E? is uniform, and is thus an RKBS on C. When p = 2, the space is not a Hilbert space.

In this section, we shall be satisfied with the assumption that 3 is an RKBS on X. There are some useful consequences
following this assumption. Firstly, B has a unique compatible semi-inner product [-,-] [15]. Secondly, B is reflexive, strictly
convex, and its dual B* is also uniform [7]. Most importantly of all, by the arguments in the proof of Theorem 9 in [45],
there exists a unique function G : X x X — C such that G(x,-) € B for all x € X and

f@)=[f,Gx, )] forallxe Xand f €B. (4.2)

By virtue of the above equation, we call G the s.i.p. reproducing kernel of 3. Set
Gz:={G(xj,): jel} and G%:={G(xj,)*: jel}.

By (4.1) and (4.2), the requirements (i)-(iii) are equivalent to saying that Gz forms an Xy-frame for B. The fourth require-
ment (iv) implies that G% are minimal in B*. Conversely, assume that

G(xj,)* e span{G(x,)*: keI, k+# j} forsome jel

Then for all f € B, f(x;) could be approximated by finite linear combinations of f(x), k € I\ {j}. It is hence unnecessary
to sample at the point x; from the practical point of view. We would like our ideal sampling framework to contain no
redundant sampling points. Therefore, G% should be minimal in 3*.

To conclude the above discussion, we observe from Proposition 2.11 that by an ideal sampling framework for B, we seek
a sampling set Z C X such that there exists some BK-space Xy for which G% is an Xj-Riesz basis for B*. Once such a
sampling set exists, one obtains by Theorems 2.14, 2.15, and Corollary 3.5 a series of sampling expansions in the Banach
space B.
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Theorem 4.1. Let B be an RKBS on X and Z = {x;} € X.

(1) If Gz is an Xg-frame for B and Tz (B) has an algebraic complement in X4 then there exists an X3-frame {g}‘} for B* such that

fx) =Zf(xj)gj(x) forall feB, xe X. (4.3)
jel

(2) If G% is an Xj-Riesz basis for B* then the above g; are unique and form an X4-Riesz basis for 3. Moreover,

gjxk) =68k, J.kel
(3) If Gz and G%; are respectively an X4-Riesz basis and X-Riesz basis for I3 and B* then the operator S : B — I3 defined by

(SHX) =Y FxPGxj,x), xeX, feB (44)
jel
is bijective and bounded. Furthermore,

FO = FEH(ST'Gxj.))x) forall feB, xeX. (4.5)

jel

The sampling expansion (4.3) was formulated in [20]. When B is an RKHS, the formula (4.5) was first discovered in [34],
and further explored in [13,17,18,21,32].

We aim at ensuring the uniqueness of {g;} C B satisfying (4.3). For this sake, we call a subset Z C X an Xy-Riesz sampling
set for B if G% is an Xj-Riesz basis for B*. If, in addition, Gz is an Xg-Riesz basis for B, then we call Z a double Xq-Riesz
sampling set for B. By Theorem 4.1, a double Xj-Riesz sampling set enables us to reconstruct functions in 5 from their
sampling by the standard reconstruction operator (4.4). If 13 is a Hilbert space then a Riesz sampling set is automatically
a double Riesz sampling set. In the rest of this section, we shall discuss the existence of Riesz sampling sets in translation
invariant RKBS and RKHS.

We start with feature map representations of the s.i.p. reproducing kernel of RKBS. The following result was from [45].

Lemma 4.2. Let W be a uniform Banach space and ® a mapping from X to VV such that

span®(X) =W, span(cD(X))* =W*. (4.6)
Denote by [-,-1yy the unique compatible semi-inner product on W. Then BB := {[u, @ (-)]yy: u € W} equipped with

[u. 2] [v. 2O, ] = [w, v (47)
and B* .= {[®(-), ulyy: u € W} with

[[@2O).u]yy, [2C), V] ] g = [V, ulwy (4.8)
are RKBS. And B* is indeed the dual of B with

(@O, vl ([w. 2O)]yy) =, viw, u,vew. (4.9)
Moreover, the s.i.p. reproducing kernel G of I is given by

G,y =[e®, 2], xyeX. (4.10)

We shall construct translation invariant RKBS on RY, d € N according to the above lemma. Let p,q € (1, 400) with
1/p+1/g=1, and ¢ a nonnegative Borel measurable function on R? satisfying

/¢>(t)dt=1. (4.11)
Rd
The feature space will be chosen as LZ(]R") consisting of Borel measurable functions u on R? for which

1/p
lullpp o) = </|u(t)|"¢(t)dt> < +o0.
Rd

The semi-inner product on Lg(Rd) has the form
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[u,v]Lg(Rd): = u(t)\Tt)|v(r)|p’2¢(t)dt, u,veLg(Rd). (4.12)

vl
Lg(Rd)Rd

The feature map @ : RY — Lf; (RY) is given by

D()(t) ;= ex(t) :==ei*D teR? xeRY,
where (-,-) denotes the standard inner product on RY. The dual space of L(’;(Rd) is Li(Rd). One obtains by (4.11) and (4.12)
that for each x € R?, the dual function of ey in L‘;(Rd) is given as
(ex)* =e_x.
Thus, it is clear that the completeness condition (4.6)
span® (R?) = Lg (RY),  span(®(RY))" = LZ, (RY)
is satisfied. With these choices, functions f in B have the form
f(x) :/u(t)e*“x’f)(p(t) dt, xeR! uelb(RY) (413)
Rd
with the norm

15115 = g ey- (414)

Lemma 4.2 tells us that B is an RKBS on RY. This fact can actually be verified directly without much effort. Firstly, by (4.14),
B is isometrically isomorphic to L:;(Rd). Therefore, B is uniform as Lg(Rd) is. Secondly, we note by the Hdélder inequality

that for all x € RY,
1/p 1/q
| f )] <f!u<r>|¢(t)dr=/|u<t)|¢<t)”P¢(t>”qdr< </|u(t>|”¢(t)dt) </¢<t)dt)
R4 R R4 R4

= ||Uu = s
” ”]_g(Rd) ”f”B

which implies that point evaluations are bounded on 5.
Functions in B can be characterized in terms of their Fourier transforms. Define the Fourier transform & of u € L'(RY)
by
(€) ::fu(t)e*"@'f) dt, &eRe
Rd

The inverse Fourier transform i of u € L' (RY) is hence given by

/u(t)ei(é’t) dt, &eRY.
R4

@)l

Let us assume that the Fourier transform and its inverse have been extended to temperate distributions by the duality
principle [14]. We also set for each function g on R?

2 1= {t e R%: g(t) #£0}.

With these definitions and notations, we observe that

B= {feC(]Rd): 25 € 2y, %eLg(Rd)} (4.15)
with the norm
||f||B=H£ . feB,
¢ LD (RY)

The semi-inner product on B is of the form
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[f,g]=[£,§} . (4.16)
o & LD (R
By (4.10), we identify the s.i.p. reproducing kernel G of B as

G, y) =lex, eyl o) = / eCIOgydt =y —x, xyeR” (417)

Rd

One can verify directly by (4.16) that G given above indeed is the s.i.p. reproducing kernel for B. Another obvious fact is
that B is translation invariant in the sense that for all f € B and xg € RY, the function f(- — x¢) € B and

| FC—x0)] 5= fll5-
As an example, we remark that when p =2 and ¢ is a Gaussian function
¢ (t) ! e‘m teRY >0
= i, , 0 >0,
(4o )i/?

where |t]| := (¢, £)1/2, B is the RKHS Hg, of the Gaussian kernel

Go (x.y) :=exp(—cllx—y|I?). x,yeR" (4.18)

Let 5 be an RKBS given by (4.15) with the s.i.p. reproducing kernel G of the form (4.17) and I an infinite countable index
set. The main theme of this section is on the existence of Riesz sampling sets {x;} C RY for /3. We point out below that this
question can be reformulated into one in the feature space of G.

Lemma 4.3. Let B and G be given as in Lemma 4.2 through a feature map @ : X — W satisfying (4.6). Then Z C X is an X4-Riesz
sampling set for B if and only if (@ (2))* is an X}j-Riesz basis for W*. Consequently, if B and G are respectively given by (4.15) and

(4.17) then Z = {x} C RY is an X4-Riesz sampling set for 3 if and only if {e_x;} forms an X-Riesz basis for LZS(}Rd).

We shall use the above lemma and existing research [29,30,35,44] on complete interpolating sequences in Paley-Wiener
spaces to give a positive example of RKBS where Riesz sampling sets exist. Following these references, we call Z = {x;} an
Xg4-complete interpolating sequence for B if there exist positive constants A < B such that

Alflls < [{F&p}ly, <BIfls forall fes

and for all ¢ € X there is some f € B such that f(x;) =cj, j € I. Note that the first conditions is equivalent to that {G(x;, -)}
is an Xy-frame for B while the second one implies that {G(x;, -)} forms an X-Riesz-Fischer sequence for B. Therefore, we
obtain by Propositions 2.4 and 2.11 the following simple fact, which to some extent justifies the notion of Xy-Riesz sampling
sets by connecting it to a known concept.

Lemma 4.4. An indexed set {x;} is an X4-complete interpolating sequence for B if and only if it is an X4-Riesz sampling set for B.

Example 4.5. Let p =2, [ =7, and ¢ = x[_r 7], the characteristic function of [—m,7]. Then B = IEJZT is the Paley-Wiener
space of square-integrable functions on R that are bandlimited to [—m, w]. By the well-known Kadec’s }l-theorem, if for
some nonnegative constant L

1
|x]'—]'|<L<Z, jez (4.19)
then ey; form a Riesz basis for L2([—m,m]). By Lemma 4.3, Z = {x;} satisfying (4.19) is a Riesz sampling set for IE?T More
Riesz sampling sets for Ef, can be formed by the zeros of an entire function of sine type (see [44, p. 172]). For a complete

characterization, see [35]. The Kadec's theorem was generalized to the space EZ, 1 < p < +oo0, in [29]. Let g be such that
1/p+1/q=1. 1t was proved there that xj € R, j € Z satisfying

1 1
|xj—j|<L<min{—,—}, JeZ (4.20)
2p 2q
is an ¢P(Z)-complete interpolating sequence for E-. By Lemma 4.4, such sequences are £P(Z)-Riesz sampling sets for EE.
A characterization of ¢P(Z)-complete interpolating sequences, thus of ¢” (Z)-Riesz sampling sets was established in [29].

The next positive example is based on the study of interpolating refinable function vectors in the wavelets theory [19,
23,24].
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Example 4.6. Set N, :={1,2,...,n} for eachneN. Let r e N and {¢;: j € N;} be a set of compactly supported continuous
functions on R. The BK-space Xy consists of all the sequences ¢ ={cj € C: jeN;, ke Z} such that

r 1/p
lellx, = (ZZ |c,-k|") < +o0.

j=1keZ

We require the function vector {¢; : j € N;} be stable in LP(R) [24] in the sense that there exists 0 < A < B < +o0 such that
for all c € Xy

DY i =k

j=1keZ

Allclixg < < Bllcllxg- (4.21)

LP(R)

It was proved in [24] that {¢;: j € N;} is stable in LP(R) if and only if {(Z;j (& +2km): ke Z}, j € N, are linearly independent
for all £ € R. We also impose the generalized interpolation property [19] that

-1
¢j(T +k> =d0k0j1, J,1eN, keZ. (4.22)

Let B be the closure in LP(R) of span{¢;(- —k): j € N;, k e Z}. We verify that it is an RKBS. As a closed subspace of
LP(R), B is uniform. We then notice by (4.21) that functions f in B are of the form

f=>"> cupjx—k), xeR (4.23)

j=1keZ

where ¢ € Xgy. Since ¢; are compactly supported, for each x e R, {¢j(x —k): jeN;, ke Z} € X}]. By the Holder inequality
and the stability condition (4.21), we get for functions f of the form (4.23) that

1
|f@)| < llcllx, [{#jx —k): jeN, keZ}| x; < ZH{qu(x—k): jeN, keZ}|

w1715

Therefore, point evaluations are continuous on 3, which proves that B is an RKBS.
We claim that {% +k: jeN;, keZ} is an X4-complete interpolating sequence for B, thus by Lemma 4.4, an X;-Riesz
sampling set for B. Firstly, it is clear by (4.22) that for all ¢ € Xy the function (4.23) satisfies

i—1
f(JT +k>:cjk, jeN;, keZ.

This equation also implies that

1 i—1 . 1
E||f||B<H{f<]—+k)i jeN, kez} <4 Ifls.
r A

Xd

which concludes our example.

Let us turn to our main purpose of proving nonexistence of Riesz sampling sets for some common RKBS B of the
form (4.15). Firstly, the nonexistence can result from an inappropriate choice of the BK-space Xy. This is explained in the
following lemma.

Lemma 4.7. It is necessary that B and Lf; (RY) are isomorphic to a closed subspace of X4 in order for BB to have an X4-Riesz sampling
set.

Proof. Suppose that Z = {x;} is an X4-Riesz sampling set for B. Then G(xj, -) constitute an X4-frame for B. As a result, B
is isomorphic to a closed subspace of X; through the operator U = Zz. Since by Lemma 4.2 B is isometrically isomorphic
to its feature space L;(Rd), L(’;(]Rd) must be isomorphic to the same subspace of X3. O

Proposition 4.8. Let p # 2. If there exists some xo € RY such that ¢ (xo) > 0 and ¢ is continuous at xo then B does not have any
£P (I)-Riesz sampling set regardless of the choice of p’ € (1, +00).

Proof. Assume to the contrary that 5 has an 27 ()-Riesz sampling set. Since ¢ is continuous and positive at xg, there exist
some a < b € R and positive constants o < 8 such that

a <)< p forallte[a,b] .
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Introduce a linear mapping T : LP([a, b]) — LZ (RY) by setting

d
THO :={f(t1), t € [a, b,

0, otherwise.

Direct computations yield the estimate that
(b =)V PP 1o a ey < ITFlypgay < (b =@V BYPY flip .-

It follows that LP([a, b]) is isomorphic to a subspace T(LP([a, b])) of Lg(Rd). By Lemma 4.7, LP([a, b]) must be isomorphic
to a subspace of ¢P'(I). However, this is possible if and only if p = p’ =2 (see [11, pp. 179-180]), contradicting p #2. 0O

Secondly, Riesz sampling sets can still not exist if ¢ is continuous and positive on the whole RY, no matter how the
BK-space Xy is chosen. We start the proof of this main result by revealing a general phenomenon, which when B is the
Paley-Wiener space IEI?, has long been known (see, for example, [44, p. 179]).

Theorem 4.9. Let X be a metric space with the distance D, and I3 an RKBS on X with the s.i.p. reproducing kernel G. If the function
x — G(x,-)* is uniformly continuous from X to B* then any X,-Riesz sampling set {x;} C X for B must be separated in the sense that

D(xj,xx) >8>0 forall j#£kel

for some positive constant é.

Proof. Suppose that {x;} is an Xy-Riesz sampling set for B. In other words, G(xj,-)* form an X7-Riesz basis for B*. By
Theorem 4.1, there exists an Xy-Riesz basis {g;} for B such that

gi(xk) =8k, JjFkel (4.24)
Being a Riesz basis, {g;} satisfies

A<lgjlls<B, jel (4.25)
for some positive constants A, B. We get by (4.24) and the reproducing property (4.2) that for all j #k

(G(xj. )" = G, ) )(g) = [2). G(xj. )] — ). Gk, )] = g5 (%)) — gj(xi) = 1. (4.26)
We obtain from Eqgs. (4.25) and (4.26) that

1
1G(x). )" = G, )| 5o = 5 forallj#kel

Since x — G(x, -)* is uniformly continuous from X to B*, {x;} must be separated in X. O

The next lemma will pave our way to prove the main theorem. The result in the one-dimensional case d =1 is well-
known. We follow the idea in [44, p. 162].

Lemma 4.10. If {x;} is separated in RY then {ex;} is an £2(I)-Riesz-Fischer sequence for L([—a, a]%) provided that a is sufficiently
large.

Proof. Let || - || be the norm on R? defined by

lItlloo := max{|t;|: | € Ng}.

Since {x;} is separated, there exists some y > 0 such that

lxj — Xklloo =y forall j#kel (4.27)

We shall make use of a technical lemma proved in [33] that for all ke N
0 k ; 2!
H K . — —
inf{ || 1 _aqp: ¥ €Coll-a.al), ¥(O) =1} = Lt

where Cﬁ([—a, a]) denotes the set of k-times continuously differentiable functions on R that are supported on [—a, a]. By
this result, we may find a nonnegative ¥ € Cé‘”z)([—a, a]) such that
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U (0)=1 (4.28)
and
@+2) 2011
ey <2 gz @+ 2 (4.29)
Since ¢ is nonnegative, by (4.28),
U@|<1, &eRr (4.30)
Using integration by parts, we obtain by (4.29) that
5 6)] < [y @+ L 2 d+2)! 431
W@M\mﬂﬁw |bwmrww”wﬂ(+)qé¢a (431)
We shall then rely on Proposition 2.4. Let {c;} € C have at most finitely many nonzero components. Set
d
() =[]ve), ter’
=1
where t; is the I-th component of t. Clearly,
2 1 2
/ Z}mjm>mmr——-/ > ciex; (0| w(o)dt. (4.32)
[—a.ald jel L"C([fa,a])[_a,ajd jel
We further estimate by (4.28) that
2
Y cie O WO dt=>"1ciPEO) + DY " leiGl P (% —x))
[—a.a jel jel jel k#j
>3 IeilP =D 1eP Y |@ e —xp))- (433)
jel jel k#j
It remains to estimate for each j el
> |# = x|
ke j
Fix j € L. For the sake of simplicity, assume that x; = 0. Divide the whole space R? into the union of Vi, m=0,1,2,...,
where
Vo:={xe RY: [1x]o0 < 2y}, Vi i={xe R 2™y < [[X]loo < 2™yl meN.
Note that any two distinct x;’s in Vy; are separated at least by y under the norm || - ||. By estimating the volume, we

obtain that there exists a positive constant « such that
(2m+1 + 1)dyd _ (zm _ 1)dyd

yd < a(2’"+2)d

#{k:kel, k#j, xk € Vp} <«

and

#{k: kel, k# j, xx € Vo} <a3d < a4,

Note that for x; in V™, m >0,

% — Xjlloo > 2"y,
implying by (4.30) and (4.31) that

d+2
- 1 2 d |
[ o= 2)| < s G @ 2

We now get by the above four equations that
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2d+2 2d+2

0

7 . m+2 _a d+1
Z|W(X}<—X1)|SQZ Wu‘“’z( +2)!—§4 v )d+2(d+2)'
k2] m=0

The above equation together with (4.32) and (4.33) yields that if a is large enough so that

2+
1> g4d+l

3 (ya )d+2 d+2),

then {ey;} is an ¢2(I)-Riesz-Fischer sequence for L?([—a,a]?). O
We are finally in a position to prove the main result of the section.

Theorem 4.11. Let BB be given by (4.15). If ¢ is continuous and positive everywhere on RY then regardless of the choice of X4, B does
not have any X4-Riesz sampling set.

Proof. Assume that there exists a BK-space Xy for which B has an X;-Riesz sampling set {x;} RY. Since B is isomorphic
to the feature space L;(Rd) through the feature map @ (x) := ey, x € RY, we get by Lemma 4.2 that

|G )" =Gy, )*

s =& =l e = /|e_i(x't) —e WO fpmde <27 /’ei(x_y’t) —1lpmdr.
Rd d

Standard arguments show that x — G(x, -)* is uniformly continuous from R? to B*. Thus, {x j} must be separated by Theo-
rem 4.9.
We then apply Lemma 4.3 to obtain that {e_y;} forms an Xj-Riesz basis for Li(]Rd). In particular, its linear span is dense

in L;(Rd). We claim that span{e_y,} is dense in LI([—a,a]?) for all a > 0. To see this, let f € L([—a,a]%). By the continuity
and positivity of ¢ on RY, there exist positive constants «, 8 such that

a<pt)<p, tel[-a,al’.

Thus, fX|_g a0 € L;(Rd). Let £ > 0. As span{e_y;} is dense in L;(Rd), we can find ]‘ € spanfe_x;} such that

”f - fX[fa,a]d ”Lg(Rd) < al/qg'

We estimate from the above two equations that

||f f”Lq([ —a,ald) = ||f fX[ aq]d”LQ([ a,a]®) < ||f fX[ —a,a)d ”Lq(Rd)

Therefore, spanfe_;} is dense in L9([—a, a]?) for all a > 0. By the Holder inequality, span{e_y;} is dense in L'([—a, a]?) for
all a> 0.
We shall prove that span{e_y;} is then dense in L%([—a, a]9) for all a > 0. Assume that this is not true for some a > 0.

Then there is a nontrivial f € L%([—a, a]?) such that the entire function of exponential type a

F(z):= / e!@D fydt, zeCH

[~a,a

vanishes on {—x;}. Take any b > 0 and any nontrivial h € L2([—b, b]%). Define

H(z):= / e @On(tydt, zecC!
[~b.b]¢

and set L:= FH. Then L is of exponential type a +b. By the Paley-Wiener theorem [14], Lis supported on [—a — b, a+ b]4.
Moreover, [ is the convolution of f and h, and hence belongs to L>°(RY). Therefore,

1 ix,t7 d
Lo = FOH( = &5 / d®OL () dr. xR
[—a—b,a+b)d

vanishes on {—x;}, contradicting that span{e_y;} is dense in L'([—c, c]%) for all ¢ > 0.



H. Zhang, ]. Zhang / Appl. Comput. Harmon. Anal. 31 (2011) 1-25 21

We now complete the proof. Add one more point y to {—x;} that is different from any —x;j, j € I. Then the result-
ing sequence is still separated. By Lemma 4.10, for large enough a > 0, {ey,e_;: j €I} is a Riesz-Fischer sequence for

L%([—a, a]9). As a result, there exists some nontrivial function f e L%([—a, a]?) such that

f, ey)LZ([_a,a]d) =1, f, e—xj)LZ([_a,a]d) =0, jel

This contradicts the fact established in the last paragraph that span{e_;} is dense in L2([—a,a]?) foralla>0. O

As a corollary to the above theorem, we get that the RKHS of the Gaussian kernels (4.18) do not have a Riesz sampling
set. Therefore, Shannon type sampling expansions do not exist in such spaces, despite that they all consist of entire functions
of finite order.

In the search of Riesz sampling sets, the two fundamental hurdles raised in Proposition 4.8 and Theorem 4.11 should be
avoided. For the first one, one might choose the feature space as a proper subspace of LP spaces. To overcome the second
one, one might consider giving up completeness and seeking Riesz bases for subspaces of the RKBS. For studies in RKHS
along the latter approach, see, for example, [32,34,39,40]. Favorable properties of the original RKHS, for instance, translation
invariance, are generally missing from the resulting subspaces.

5. Finite-dimensional Banach spaces

In this section, we let B be a normed vector space of finite dimension n and discuss results that hold true in this special
case. Set X4 :=C" equipped with an arbitrary norm. We first examine the assumptions about B and X, that were imposed
at the beginning of Section 2. Thanks to the finite-dimensionality condition, we shall see that most of them become true
automatically.

Note that any two norms on a finite-dimensional vector space are equivalent. As a consequence, 3 and X, are reflexive
as there is always an equivalent norm that makes them into a Hilbert space. They are complete for the same reason. The
canonical unit vectors ej, j € Ny form a basis for Xq and Xj. A basis for a Banach space of finite dimension is of course a
Schauder basis. Therefore, the assumptions on the sequence space X; and its dual space are all satisfied.

As far as B is concerned, the condition we shall need is for the duality mapping from B to B* induced by a compat-
ible semi-inner product on B to be bijective. To investigate this desired property, we recall the introduction [15,27] of a
compatible semi-inner product on B. Set for each f € B

JIr={neB* lulp=flls, w(H)=Iflsluls}.

By the Hahn-Banach theorem, Jy is nonempty for every f € B. A compatible semi-inner product can be defined only in
the following way. Select for each g € B some g € Jg and set

[f»g]-zﬂg(f) fOl”allf,gEB.
The duality mapping from B to B* induced from such a compatible semi-inner product is thus given by f*:=uy, or in
terms of the semi-inner product,

[ @) =nr@=Ig fl, geb.
Since B is reflexive, a result due to James [22] states that we are always able to find an appropriate s for each f € B so
that the duality mapping is surjective onto B*. Therefore, it remains to check its injectivity. We point out that there exist
finite-dimensional Banach spaces for which the duality mapping fails to be injective. Set B := £!(N3). Then B* = £*°(N3).
For f:=(1,2,1) and g:= (2,1, 1), we observe that

Jr=TJg={4.4,9}

Thus, the duality mapping is not injective for this space.
To ensure the injectivity of the duality mapping, we impose the requirement that B be strictly convex. We claim that B*
is then strictly convex as well. Assume that there exist w, v € B*\ {0} such that

I+ vz = llpls: + vis:-

Let f € B be a nonzero element such that

m+v)()=lIn+vislfls.
We observe that

L+ < O]+ O] <l flls + Ivis I flls = (Iellss + Vi)l f 5.

By the above three equations,
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w() =l fllz, v =Ivislfls.

which implies that both w/||u|p+ and v/||v| g+ are the image of f/| f|lz under the duality mapping. Since B is strictly
convex, the duality mapping is injective. Consequently,

_ llpllis
vl

The claim is hence true. Therefore, B* is uniformly convex. Since a normed vector space is uniformly Fréchet differentiable
if and only if its dual is uniformly convex [7], B3 is a uniform Banach space.
We start with characterizing frames in B.

V.

Proposition 5.1. Let 3 be of finite dimension and X an arbitrary BK-space. Then any finite sequence { f;} C B is an Xy-Bessel sequence
for B. It is an X4-frame if and only if (2.16) holds true.

Proof. Since any linear operator from a finite-dimensional Banach space must be bounded, there exists some B > 0 such
that

luHly, <BlIfls, feB,

which implies that f; form an X4-Bessel sequence for B.

Suppose that (2.16) holds true. It follows that the operator U is injective. Since the range R(U) of U is finite-dimensional,
it is a closed subspace of Xj. This together with the boundedness of U implies by the open mapping theorem that U has a
bounded inverse on R(U). By Lemma 2.8, {f;} is an Xy4-frame for B.

On the other hand, assume that (2.16) is not true. Then there exists a nontrivial v € B** such that v(f]’.") =0, j el Since
B is reflexive, there exists nontrivial f € B such that

v(w) = u(f) forall ue B*.

We hence reach that

[f. f1=F1(H=v(f)=0, jel

Consequently, f; do not form an Xg4-frame for 5. The proof is complete. O
Likewise, one obtains by (2.2) and (2.3) the following result.

Proposition 5.2. Let B3 be finite-dimensional. Then any finite sequence {f;‘} C B* is an X}-Bessel sequence for B*. It is an X7-frame
if and only if there holds (2.17).

We next present the promised example showing that {f;} being a frame for 13 does not necessarily imply that { f ]T"} is a
frame for B*. The sequence {f;} used below was constructed in [45] by the Matlab for a different purpose.

Example 5.3. We investigate 13 := ¢3/2(N3) with the semi-inner product
3
172 —
[a,b]:= Ibll{> > ajbjlbjI~"/%, abeB
=1

and the following sequence in B:

(4,811 ~ (1,64,0) _(25,25,9)

h="33g173 27 (513)13” 3T

(5.1)
Then

ff=2,91), f3=(1,8,0), f3=(5,53). (5.2)

It can be verified that span{f;’, f;, f3} = B* while span{f, f2, f3} & B. By Propositions 5.1 and 5.2, for any BK-space Xg,
{f1, f2, f3} is an Xy-frame for B but {f, f;, f3} is not an Xj-frame for B*.

Turning to Riesz bases, we have a simple observation.

Lemma 5.4. A sequence fj, j €I forms an Xq-Riesz basis for 13 if and only if #1 = dim B and f; are linearly independent.
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Proof. By Propositions 2.13 and 5.2, {f;} is an Xg-Riesz basis for B if and only if f; are linearly independent and
span{fj}=B. O

Let n = dim B. For simplicity, suppose that I = N,. By the above lemma, any basis {f;} for B is an X4-Riesz basis for B
regardless of the choice of the sequence space X;. However, as we have seen from Example 5.3, this does not guarantee
that f;f form an X7-Riesz basis for B*. The reason is that f;“ might fail to be linearly independent. We shall propose a
nonlinear Gram-Schmidt algorithm of producing a sequence {h;} € B from an arbitrary basis {f;} for B so that {h;} and
{h;f} are an Xgy-Riesz basis for B and X7-Riesz basis for B*, respectively. The constructed sequence is designed to satisfy

thihd =8k 1<j<k<n. (53)

The algorithm bases on the characterization of best approximation proved by Giles [15] that f, g € 3 satisfies || f + «g|g >
I flig for all « € C if and only if [g, f]=0.
The algorithm starts by setting

_ h
1:=—.
Il f1ll
Assume that h;, 1 < j <k have been constructed such that
hj,hl=68;;, 1<j<I<k (5.4)
and
span{h;: 1< j <k} =span{f;: 1< j<k}. (5.5)

We next construct hyq. Let g, be the element in span{f;: 1< j <k} such that

I fier1 — gklls = min{|| fiy1 — glls: g € span{fj: 1< j<k}}.

According to the characterization of best approximation due to Giles,

(g, fiy1 — 8] =0 forall g e span{f;: 1< j<k}.

By (5.5), there exist constants «; € C, 1< j <k such that g, = Z’]‘»21 ajhj, where o are uniquely determined by

k
[h,, fis1 — Zajh,} =0, 1<I<k (5.6)
j=1

By (5.5) and the linear independence of f;,

k
Srs1 —Zajhﬁéo-

=1
We then set
k
fierr =2 i1 ajh;j
k :
I fisr — 25 jhjlis

Clearly, (5.4) and (5.5) are preserved when k is updated to k + 1 therein. Successively applying the construction until k =n,
we obtain a basis {hj: j e Ny} for B satisfying (5.3). The algorithm is said to be nonlinear as Eqgs. (5.6) are in general
nonlinear with respect to «;. This is because that a semi-inner product is nonadditive with respect to its second variable
unless it reduces to an inner product [36].

We fulfill a main purpose of the section by proving that for the basis {hj: j € N;} generated by the above algorithm, hjf
form an Xj-Riesz basis for B*.

hig1 =

Proposition 5.5. The above described Gram-Schmidt algorithm generates from an arbitrary basis {f;: j € Np} for B a sequence
{hj: j € Np} such that {hj: j e Ny} and {h;f: Jj € Ny} are an Xg4-Riesz basis for B and X7 -Riesz basis for B*, respectively.

Proof. The generated sequence {h;: j e N} remains a basis for B. In particular, it is linearly independent. By Lemma 5.4,
it is an Xy-Riesz basis for . It remains to show that h;f are linearly independent as well. Assume to the contrary that they
are linearly dependent. Consequently, there exists some p € B**\ {0} such that
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w(hg) =0, keN,.

Since B is finite-dimensional, it is automatically reflexive. Thus, there exist constants o, j € N, all of whose are not zero
such that

[Z ajh,-,hk] :h,’;(z ajhj) =un(hf)=0, keN,.

jeNy jeNp

Successively letting k=n,n—1,..., 1 in the above equation yields by (5.3) that o; =0 for all j € Ny, a contradiction. O

By contrast to the negative result in Section 4, we close the paper by showing that a finite-dimensional RKBS always has
a Riesz sampling set.

Proposition 5.6. A finite-dimensional RKBS possesses an X4-Riesz sampling set for any BK-space Xg.

Proof. Let B be an RKBS on X with finite dimension n and s.i.p. reproducing kernel G. By (4.2),
span{G(x,)*: xe X} =B*.

Since dim B* = dim B = n, the above equation implies that there exist n points x; € X, j € N, such that G(x;,)*, j e Ny, are
linearly independent. As a result,

span{G(xj, )*: jeN,} =B* (5.7)
By (5.7), | - | : B— R, defined by

fl= ey, FeB

is a norm on J. Since B is finite-dimensional, this norm is equivalent to the original one on B. It implies that G(x;,-),
j €Ny form an X4-frame for B. This together with the linear independence of G(xj, -)*, j € N, prove that {x;: je Ny} is an
X4-Riesz sampling set for B. O
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