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Abstract We present a network flow model to compute
transport, through a pore network, of a compositional
fluid consisting of water with a dissolved hydrocar-
bon gas. The model captures single-phase flow (below
local bubble point conditions) as well as the genesis
and migration of the gas phase when bubble point
conditions are achieved locally. Constant temperature
computational tests were run on simulated 2D and 3D
micro-networks near bubble point pressure conditions.
In the 2D simulations which employed a homogeneous
network, negligible capillary pressure, and linear rela-
tive permeability relations, the observed concentration
of CO, dissolved in the liquid phase throughout the
medium was linearly related to the liquid pressure.
In the case of no gravity, the saturation of the gas
phase throughout the medium was also linearly related
to the liquid pressure; under gravity, the relationship
became nonlinear in regions where buoyancy forces
were significant. The 3D heterogeneous network model
had nonnegligible capillary pressure and nonlinear rel-
ative permeability functions. While 100 % of the CO,
entered the 3D network dissolved in the liquid phase,
25 % of the void space was occupied by gas phase and
47 % of the CO, exiting the outlet face did so via the
gaseous phase after 500 s of simulation time.

K. A. Chang (X)

Department of Applied Mathematics, National Pingtung
University of Education, Pingtung, Taiwan, 90003
Republic of China

e-mail: chang@mail.npue.edu.tw

W. B. Lindquist

Department of Applied Mathematics and Statistics,

Stony Brook University, Stony Brook, NY 11794-3600, USA
e-mail: b.lindquist@stonybrook.edu

Keywords Network flow model - Gas genesis -
Carbon dioxide sequestration - Compositional flow

Mathematics Subject Classifications (2010) 65C20 -
68020 - 76Q05 - 76S05 - 76T10

1 Introduction

Injection of supercritical CO, into a formation contain-
ing saline water results in dynamic two-phase flow, with
the phases separated by a moving front. Behind the
front, a CO,-saturated aqueous phase remains, which
can migrate over slower time scales. The reactive capa-
bilities of this CO;-saturated brine phase are of great
concern to sequestration technology. Simulations using
network flow models [26, 30-32] indicate that, due
to the natural heterogeneities in porous media, bulk
reaction rates are much slower in situ than predicted
by laboratory-determined rate laws. In addition, if this
saturated brine phase migrates into regions where pres-
sures fall below bubble point conditions, a gas phase
will form. The production of a gas phase has the poten-
tial to reduce reaction rates even further by limiting the
available volume of reactive fluid and/or by impeding
the motion of the brine phase.

Independent of reactive effects, the genesis and mi-
gration of gas formation produces its own potential
risk factors. Anthropogenic emissions of carbon diox-
ide have contributed to rising mean global temper-
atures [3, 15, 44]. With a maximum worldwide CO,
storage capacity estimated at 10*-2-10° Gt CO, [10],
sequestration of CO, in deep saline aquifers is now a
heavily researched strategy to reduce atmospheric CO,
emissions [4-7, 14,20, 23, 24, 35]. The potential to store
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massive amounts of subsurface CO, must be evaluated
relative to the potential risks of gas phase production
and release. A massive release of a gas phase can be
hazardous; more than 1,700 people were killed due to a
sudden CO; eruption from Lake Nyos in Cameroon in
1986 [18, 27].

Field experiments, which are expensive in both time
and money, are being augmented by an extensive ar-
senal of laboratory experiment, numerical simulation
(e.g., [12]), and semi-analytic approaches (e.g., [33])
to increase our understanding of sequestration. The
simulations depend on adequate geochemical models
in order to understand the mechanisms that govern
the chemical reaction, transport, and transformation of
the injected CO, over different length and time scales.
There are a number of oil industry standard codes (e.g.,
Eclipse [38, 39]) capable of performing compositional
(phase change) simulations at the field scale. Our inter-
est is to develop such simulation capability at the pore
scale with twin goals of understanding pore level detail
as well as computing bulk behavior at the core scale.

At the pore scale, network models have been used
extensively to investigate (1) single and multiphase flow
[1, 8, 11, 13, 16, 19, 21, 22, 25, 28, 34, 36, 40] including
determination of absolute and relative permeability
[9, 29, 41, 42], (2) specific studies of bubble transport
[43] and recently, (3) reactive flow [26, 30] relevant to
geological sequestration of CO,. Network models have
not, as yet, addressed the modeling of phase creation
and subsequent transport. In this paper, we develop a
network model with which to investigate the genesis
and migration of a gas phase. The mathematical model
is described in Section 2; the numerical algorithm is
formulated in Section 3; and the results of 2D and 3D
computational tests are presented in Section 4. Final
discussion is presented in Section 5.

2 The mathematical model

The model contains two main components: fluid trans-
port equations which follow from conservation of mass
for each species and phase equilibrium conditions for
the liquid and gas phases.

2.1 Mass conservation

In this model, liquid and gas phases involving two
chemical species, H,O and CO,, are considered. Let
s; be the saturation of the liquid phase and s, be the
saturation of the gaseous phase. By definition,

s +sg=1. (1)
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We assume that the liquid phase remains incompress-
ible, with H,O being the dominant species in the liquid
phase. Therefore, the concentration of water in the
liquid phase, Cy, 0., is always Cy,0,1 = Cw, where Cy =
1/18 mol cm™ is the concentration of liquid water.
Let Cyy0.6, Ceo,:ts and Ceoyig denote the concentrations,
respectively, of H,O in the gaseous phase, CO, in
the liquid phase, and CO, in the gaseous phase. The
total molar concentrations of water, my,,, and carbon
dioxide, mc, , are defined as

mHzO = (SICHz();l +SgCH2();g) and
mCOQ = (leCOZ;l +SgCC02;g)- (2)

Conservation of mass of individual species asserts that,
applied to each individual pore,

d(mMy,0)
V=2 =10Cio1 + QCriorglin
- [Qchzo;l + QgCHZO;g]oul + SH207 (3)
and
d(mco,)
V% = [Qlccoz;l + Qgccoz;g]in

- [Qlccoz;l + Qgccoz;g]auz + Scoz» (4)

where V is the volume of the pore, Q; and Qg denote
the liquid and gas volumetric flow rates (cm? s71), [-];,
and [-],,, correspond to the total mass change rates (mol
s~!) at the inflow and outflow boundaries of the pore,
and Sy, and S, are respective mass rate (mol s~')
source terms. The flow rates Q; and Qg through an
individual channel are given by

0, = —Ap,A(P, — pp,G2), p=1g, ®)

where A, is the channel conductivity of phase p; p,
and P, are the density and pressure of phase p; G is
the gravitational constant; and z is vertical position. A
buoyancy force is described implicitly in the model. The
gas phase flow rate can be reexpressed as

Qp = —AAl(Pg — 01G2) + (0Gz — p G2)]. (6)

The last term explicitly expresses the buoyancy forces,
which will dominate at low flow rates (P, — oGz ~ 0).

The density of each phase is modeled to change with
dissolved CO,,

pp = 18.015C, 0. p + 44.098Cc0,.p, p =1, g, (7)

where 18.015 and 44.098 are (to five significant digits)
the respective molecular weights of water and carbon
dioxide.

For later use, we note that for steady-state, axisym-
metric, single phase flow of an incompressible fluid
of viscosity v, the volumetric flow rate Q through a
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channel of constant circular cross section is given by the
Hagen-Poiseuille equation,

=7 (®)

where r and L are the radius and length of the channel,
respectively, and A P is the pressure drop in the flow
direction. Equation 8 identifies the fluid conductivity of
a circular channel as A = (nr*)/8v L. Identifying A =
nr? as the cross-sectional area of the channel, x = r?/8
can be interpreted as an intrinsic permeability of a
circular channel.

2.2 Phase pressure, partial pressure, and chemical
potential equilibrium

At equilibrium, the pressure difference between the gas
and liquid phases satisfies

P, = P + P~ 9)

where P¢ is the capillary pressure, and we have assumed
the liquid phase to be the wetting phase. Assuming
perfect wetting, the capillary pressure is given by the
Young-Laplace equation,

PC=2y/r, (10)

where y is the surface tension and r is the radius of
curvature of the gas bubble. The surface tension is
evaluated by the Eotvos rule,

YV =k(T.—T). 11)

where Vy = 18 ml mol ™! is the molar volume of water,
T, = 374 °C is the critical temperature for water and k
=2.1-10"7 J K~! mol~%?3 is a constant. Evaluation of P¢
requires an estimate for ». With V being the volume of
a pore then s,V is the volume of the gas in the pore.
As our network model employs spherical pores, the
radius of curvature, r, of a gas bubble will not exceed
(3s,V/4k)'/3. While we compute s, for each pore, our
model does not distinguish individual gas bubbles in
any pore; therefore, we compute P° using the estimate
r= (3s,V/4)' .

Compared to the rate at which the liquid phase
typically flows through a geologic porous medium, the
rate of CO, dissolving in, or escaping from, water is fast.
Therefore, the model assumes that gas phase partial
pressures remain in equilibrium while concentration
changes take place.

The solubility of carbon dioxide in water depends on
local pressure and temperature. At constant temper-
ature, more CO, can be dissolved in water confined
at higher pressure. For a pore network at constant
temperature, if CO;-saturated water from a higher

pressure pore flows into a lower pressure pore, phase
equilibrium requires some CO; to come out of solution,
producing a gas bubble in the downstream pore.

The gas phase contains two species, CO, and water
vapor. The total pressure of the gas phase is

Py = sz:g + PHzO:g’ (12)

where Peo,.¢ and Py, are partial pressures of CO,
and H,O in the gas phase, respectively. Our model
assumes the gas phase is ideal; therefore, Pc,., and
Py,0,¢ follow the ideal gas law,

Pcoz;g = Ccoz;gRT, PH20:g = CHQO;gRTa (13)

where R is the gas constant.

Under equilibrium conditions between the liquid
and gas phases, the chemical potential of CO; in the
liquid phase is equal to that of CO; in the gas phase,
ie.,

5 coy;l
1+ RTIn (—)

C0y;l Cﬁzo;l + CCOz;l
CCOzlgRT
P )

co,

= MC@OZ;g + RTIn ( (14)
where “?Oz:l = —385.98 kJ mol~! and ,uCGOZ;g = —394.36
kJ mol~! are the chemical potentials of CO, in the lig-
uid and gas phase, respectively, at standard conditions
(298 K, 1 bar pressure [2]) and P¢, = 1 bar. Similarly,
the chemical potential of H,O in the liquid phase is
equal to that of H,O in the gas phase,

Cu,o:1
=) Hy O3
4+ RTIn| ——————
Huoi <CH20;I + Ccoz;l>

CHQO;gRT>
- )

HyO

= M}?zo;g + RTIn < (15)
where p0 ;= —273.13 kI mol~" and p) , , = —228.57
kJ mol~!.

The model contains six unknowns, s;, g, Ci,o:g
Cco,:1, Ceoy:g and Py and six equations, Eqgs. 1, 3, 4, 14,
15, and 5, for Q. Solution of this nonlinear system is
described in the next section.

3 Numerical model

The numerical model employs sequential solution for
the pore pressures, saturations, and concentrations at
each time step. The challenge in computing saturations
and concentrations is to satisfy both mass conserva-
tion and phase equilibrium. This is done by updating
species concentrations first due to transport followed
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by a phase-change (flash) calculation for equilibrium
concentrations and saturations in each pore.

3.1 Pressure solution

Update of the pressure solution assumes known phase
and species concentrations in each pore. The pressure
solution separates the pores into three categories—a
pore either contains: (1) both liquid and gas phases; (2)
liquid phase only, oversaturated with dissolved COp;
or (3) liquid phase only, undersaturated with dissolved
CO,.

For a category 1 pore, under the assumption of phase
equilibrium,

Py = Pi+ P° = (Cuyorg + Ceoyi0) RT. (16)

Let Cg)z, ; be the critical concentration of CO, that
starts to generate a gas bubble in a pore of liquid
pressure P;. As shown in Appendix A,

o 11074 (P = P)(T)) +2y1Cw
CCOZ;[ B 1074(K(102(T) —-P)—-2y (17

For a category 2 pore (Ceo,. > CE’OZ; 1), the liquid phase
pressure is evaluated as

CH N
P = P, = PO(T)——1%
1 4 w( )CH20;1+ CCOZ
C
+ Koo, (T) <2 (18)

—’
CHZO;I + C(‘oz

as explained in Appendix B (where Cc, is defined).

Under the assumption that the liquid phase is incom-
pressible, a category 3 pore satisfies the divergence free
condition, 7 - O; = 0 which, applied to pore i in discrete
form, is from Eq. 5,

Y Ayl(Pri = Prj) = piGlzi = 2)1 = 0,
j=1

(19)

where: j indexes pores connected to i; n is the total
number of pores connecting to i; A;; is the conductivity
of the liquid phase; P,; and Pp; are the pressure of
the liquid phase in pores i and j, respectively; and z;,
z; are the z-coordinates of the two pores. The solution
of the linear system of Eq. 19, employing, as boundary
conditions, the pressure values at the inlet and outlet
pores of the network and the (concentration deter-
mined) pressures for category 1 or 2 pores, provides
values of P; for all category 3 pores.
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3.2 Transport update of concentrations

Assuming the source terms Sy, and S, are zero (no
reactions), the first order difference approximations to
Egs. 3 and 4 are

‘ mi sl — [mﬁl;(l)]i

i =

At

- Z Ql;ij[CHzo;l]i+ Z Qg;ij[cﬁzo;g]i

01.ij>0 Qy.ij>0

+ Z Ql;ij[CHzo:l]j_'_ Z Qg;ij[CHzo;g]j (20)

01,ij<0 Qg:ij<0
and

v [y — [m2 ); _
' At

— Z OrijlCeo,uli + Z OQg.ijl Coyigli

Or;j>0 Qp:ij>0

+ Z Ql;ij[ccoz;l]j+ Z Qg;ij[ccoz;g]j 3(21)

Or;j<0 Qg.ij<0

where V; is the volume of pore i; [m*©d]; is the
total molar concentration of species « in pore i at the
new (old) time-step; and [C,;,]; is the concentration of
species « in phase p =/, g in pore i. Q,.;; is the phase
p volumetric flow rate between pores i and j and is
defined by

OQpiij = —Dpiijl (Pp;j — Ppi) — ppGlzj— 2], p=1g.
(22)

In network modeling of two-phase flow, it is common
to model the phase channel conductivities A ,.;; by vari-
ations on the Hagen—Poiseuille form to account for sur-
face tension effects and noncircular geometry. As our
code tracks s, and not the number or size of (possibly
many) individual gas bubbles that may form in a single
pore, we have chosen to model A,.; as a function of
sp, the latter taking its value from the upstream pore.
Specifically, borrowing from the macroscopic model,
we write

pij = i Ay (23)
vpLij
where «;; = rizj/ 8 is the intrinsic permeability and A;; =
nr? is the cross-sectional area of the channel of radius
r;j and length L;;, and v, is the fluid viscosity. k,,(s}) is
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a “relative” permeability that we model as a function of ~ where
phase saturation. 0.3L: Voo (so.: )
. . . ) i (s i+ S a)

The solution of the system of Eqs. 20 and 21 givesup- Al o = A l; (lng 4g; ) ; ) (26)
dated values for [meey i and [m}56 ;. Due to numerical heliel g\ gtrhie [Brgiie
finite precision effects, the value of [mﬁi'g]i may exceed and

o h the val f [m"]; i tt .
Cyw. In such cases, the value o [mHzO], is reset to Cy Vil — ) (sgi — Sge)
A[i,(‘FL = i M (27)
e w

3.3 Phase equilibrium update of concentrations

Following transport update of the molar concentra-
tions, the value of the total molar concentration, the
value [mggg]i in pore i falls into one of two cases: (case

1) [m"*]; = Cw, the molar density of H,O; or (case 2)

HyO

[mggg]? < Cy. For case 1, under the assumption that
Ci,0:1 = Cw, Eq. 2 has a single solution, s; = 1, sg = 0.
In this case, all CO, in the pore must be dissolved in the
liquid phase, hence Ceo,. = m’c’g’: As the pore has no
gas phase, Cco,;; and Cy,o;; have indeterminate value
and do not couple into further computations either in
this pore or its neighbors.

In case 2, Eq. 2 has solutions 0 <s; <1 and 0 <
sg < 1, i.e., the gas phase forms. Once the gas phase
has formed, the concentrations of CO, and H,O in the
gas phase must satisfy Egs. 1, 2, 14, and 15. The phase
equilibrium calculation solves this nonlinear system for
each pore by Newton’s method to obtain pore values

for s/, 8¢, Ciiyo:g> Ceoyits and Ceoy -

3.4 Stability and time-step control

For computational stability and efficiency, the propa-
gation time, At, is recomputed each time-step. A prop-
agation time interval, A¢;, which insures that the total
mass of H,O flowing from a pore i, belonging to either
category 2 or 3, does not exceed the total mass of H,O
in the pore, is estimated by

Af; < min ((L,‘]‘ +ri+ rj)KrlAij (Lij +ri+ rj)KrgAij)
- Ql;ij Qg;i/'

(24)

where: Lijis the length and A;; the cross-sectional area
of the channel between pores i and j; and r; and r; are
the radii of pores i and j. The relative permeabilities,
ky and kg, are functions of s; and s,; the values for s;
and s, are taken from the upstream pore. Condition 24
does not apply to pores of category 1. As shown in
Appendix C, the stability criterion for pores of category
1 is estimated as

Al‘l S min(Ati,parabv Ati,(TFL)v (25)

(Terms in Egs. 26 and 27 are defined in Appendix C).
The global propagation time, At, is set as the minimum
over all At; in Egs. 24 and 25,

At = L min At;, (28)
14

where the factor, A, is used to enforce stability by

compensating for some of the approximations used

in the derivations of Eqs. 24, 26, and 27. Numerical

computation shows that a value of A = 0.9 is necessary

in our simulations.

4 Numerical results

Three test computations were performed. The first two
computations were performed on a two-dimensional,
regular lattice representation of a rectangular porous
medium of size 3.78-107' x 1.7-1072 x 3.78 - 107!
cm?®. The domain, which had a porosity of 10.86 %, con-
tained 400 pores regularly distributed on a 20 x 1 x 20
lattice. Pores were labeled with 2-D (x, z) coordinates,
with the source pore labeled (0, 0). Each pore was
assumed to be spherical, with radius of 5.4 - 1073 cm.
The length of each channel was 1.89 - 1072 c¢m; the cross
section area of each channel was circular, of radius
2.514-10~* cm.

A “quarter five-spot” flow scenario was imposed on
this simulated micro-channel network; all side bound-
aries were sealed to flow, with input to the network
occurring in the lower left corner pore and output at the
upper right pore. Flow was driven by a pressure drop,
the input pore was held at 1.02 bars. The outlet pore
was connected through a fictitious channel to a fluid
reservoir held at a pressure of 1 bar. (The cross section
area of the fictitious channel was the same as that of
any domain channel, while the length of the fictitious
channel was the same as the radius of the outlet pore.)
Under these conditions, the initial injected flow rate
was 1.562 - 1072 cm s~

The computations were performed under isother-
mal conditions at 50 °C, yielding the values Ko, (T) =
22.655 bar and P? (T) = 4.1278 - 1072 bar. With a value
of y = 48.588 dyn cm~!, the characteristic value of cap-
illary number in the 2D computations was 1.758 - 1075,
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We therefore ignored the capillary pressure term P¢ in
the 2D network computations. The pore space was ini-
tially filled with pure water. A carbon dioxide solution,
having a dissolved CO, concentration of 2.5132 - 1073
mol cm~? (as determined from Eq. 31 using P; = 1.02
bar) was injected from the source pore (0, 0). The
relative permeabilities were chosen to be linear, «,, =
SP (p = l’ g)

Gravity was ignored in the first computation, sim-
ulating flow in a horizontal micro-domain. In the ab-
sence of gravity, the solution obeys the symmetry of
the quarter-five-spot pattern. The solubility of CO,
throughout the domain lies in the range 2.47 - 10~ mol
cm ™ (corresponding to a pore pressure of 1 bar) to
2.51 - 1072 mol cm~? (corresponding to a pore pressure
of 1.02 bar).

Gas phase first formed in pores (0, 1) and (1, 0)
at 130.25 s (i.e., at f#y3025) after initial injection (Un-
der the symmetry of the computation, the results for
pores (0, 1) and (1, 0) are identical). The CO; solution
reached the outlet pore at ¢, go0. Gas phase formed in
the outlet pore at 9 379. By £23 700, the flow had reached
steady-state everywhere, with each pore occupied by
gas phase. s, values near the outlet were 3.4 %, those

C 107 mol/cm3)

co,y, 1 (

52
51
2.5
49
48
47

2
2
2
2
2

distance (cm)

(b)

Fig. 1 Contour maps of a Cco,;; and b s, at steady state in the
horizontal 2D computation
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Fig. 2 a Cco,;; and b s, versus P; for all pores in the computa-
tional region at steady-state conditions for the 2D computation
with no gravity

near the source were 0.44 %. Figure 1 presents Ceoyl
and s, contour maps of the entire network at steady
state; showing the symmetry of the computation.

As shown in Fig. 2, at steady state a strong lin-
ear dependency of Ce,,; and sg on P; exists through-
out the domain. The linear dependence of Cco,.
with P; can be understood as follows. Under condi-
tions of negligible capillary pressure, Eq. 36 holds.
Equation 36 can be inverted to Ceo,: i = Cy,ou( P —
Py, (T))/((Kco,(T) — Py)). Under isothermal and lig-
uid incompressibility assumptions, Cy, 0./, Kco,(T), and
Pow(T) are constant and Cc,; is only a function
of P;. To first order approximation, Ceo,.; ~ aP;—
b, where a= Cy,0:/Kco,(T) ~2.45-107 and b =
aP°(T) ~ 1.01-10~*. A least squares fit to the data in
Fig. 2a gives a = 2.68201(2) - 1073 and b = 2.2249(2) -
10~#, where the numbers in parenthesis indicate one
standard deviation error (e.g., 2.68201(2) stands for
2.68201 £ 0.00002).

For the dependence of s, on Py, the fit to the data in
Fig. 2b gives s, = —2.1430(4) P; 4+ 2.1860(5). We have
not, as yet, been able to explain this linear relationship
analytically which, as noted below, breaks down when
buoyancy effects become important.
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For the computation with gravity, once the gas phase
forms, buoyancy effects break the quarter-five-spot
symmetry of the solution. As a consequence of buoy-
ancy, CO, breakthrough occurs at later time (#9 602 ) and
at higher gas saturation, and steady-state conditions

are reached slightly later (as buoyancy counters driving
pressure to reduce the effective velocity). The loss of
symmetry is demonstrated in Fig. 3a—c which compare
steady-state values of Pj, Cco,.;, and s, along the top and
right boundaries.

For the computation with gravity, under steady-
state conditions, the linear dependence of Cc,,.; on
P, is preserved (Fig. 4), with least squares fit val-
ues of a = 2.68202(3) - 1073 and b = 2.2250(3) - 1074, in
agreement with the non-gravity case. Figure 5 examines
the relationship between s, and P; in the computa-
tional region. Gas accumulates on the top boundary
(j=19) producing a nonlinear relationship between
s¢ and P; (Fig. 5a). Somewhat surprisingly, the s; -
P, relation is reasonably characterized by a linear fit,
5, = —2.004(5) P; 4 2.045(5), for all points in the upper
triangular regioni — j=p,p =—18,—17,--- , 1,2, j <
19 (Fig. 5b). The retention of approximately linear
behavior in the upper triangular region with a sharp
change to nonlinear behavior along the top boundary
of the domain is not understood at this point. More
expected is the linear to nonlinear transition behavior
apparent in the s, - P; relationship in the lower triangu-
lar region, i — j=¢q,q =3, ---, 19, (Fig. 5¢) depending
on whether pores lie on the main source-sink diagonal,
or lie on the bottom or right side boundaries.

An area of interest for CO, sequestration is the stor-
age capacity of a network. Table 1 contrasts the CO,
bulk storage capacity and escape rates for this simple
2D network. There are slight differences evident, even
in this small domain size, due to the influence of gravity.

The third calculation was performed on a 3D lattice
representation of a rectangular porous medium of size
0.378 x 0.378 x 0.378 cm>. The domain contained 8,000
pores regularly distributed on a 20 x 20 x 20 lattice.
Each pore was assumed to be spherical; pore volumes
were assigned from a log-normal distribution, having

1.017 T
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right boundary x
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I 5,
2 1.0085 | % 1
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1 L L
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distance (cm)
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=2 T
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ME 8y,
| ]
P 2.485 s
= s
3 ®
@] ®
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35 6000 0 0 o i
@°°° ©° o0 o o
< .
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0 X rightboundary ~
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()

Fig. 3 a P;, b Cco,,, and ¢ sg as functions of pore position on
the top and right boundaries at steady-state conditions for the 2D
computation with gravity. Distance (x-axis) is measured from the
source

0.00252
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Q
—
o
ME
= 0.002495 |
—
N
&
o
UU
0.00247
1.01 1.02
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Fig. 4 Cco,; versus P; for all pores in the computational region
at steady-state conditions for the 2D computation with gravity
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steady-state conditions for the 2D computation with gravity

mean value uy, = —6.42 (log base 10) and standard
deviation o, = 0.51. Since very small pores dominate
the determination of the numerical time-step, the pore
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Fig. 6 Cco,. (color scale; mol ecm™3) and sq (solid spheres)
plotted along the central vertical plane (i,10,k) of pores (open
spheres) and channels in the 3D computation. The volume of the
solid spheres is proportional to s,. The inlet face is to the left, the
outlet face to the right

volume distribution was truncated, disallowing pores
with volume less than 2.0-10~7 cm?®. The resultant
realization of 8,000 pores had mean pore volume of
7.6 -10~7 cm?® and a porosity of 10 %.

The channel connecting pores i and j was assumed
to be a circular pipe of radius r; and length L; =
d —r;—r; (where d is the lattice spacing and r; and
r;j are the radii of pores i and j, respectively). Fol-
lowing Li et al. [30], we assumed that channel’s (sin-
gle phase) Hagen—Poiseuille water conductivity, A;; =
(nrj;)/(SvlLij), obeyed a log-normal distribution cor-
related with the volumes V; and V; of pores i and j,
respectively, as described in Appendix D. From each
computed value of Aj;j, the channel radius r; (and
hence A;; and «;;) were computed. Following Fourar
and Lenormand [17], the relative permeabilities for the
liquid and gas phase, «,; and k.., were modeled as «,; =
0.557(3 — 5;) and k,, = sz,, respectively.

The computation was also run at 50 °C. The pore
space was filled initially with pure water. A line-drive
injection was simulated. Water, fully saturated with
carbon dioxide (inlet reservoir pressure 1.56 bar, CO,
concentration 5.4795-1073 mol cm™3), was injected
at a constant flow rate, QO = 8.14476-107° cm?® s~!
(4.46285 - 1077 mol CO, per sec) into the network
through the x = 0 boundary face pores. The boundary
faces in the y— and z— directions were sealed to flow.
The simulation was run for 500 s (i.e., to #500).

Table 1 2D network of

p co Bulk s, Stored CO5 (mol cm™3) Escape rate (mol s~1)
steady-state (O, storage Gas phase Liquid phase Gas phase Liquid phase
capacity and escape rate -

w/o gravity 1.70 % 6.690 - 1078 2.662- 107 2.590 - 10712 1.502- 10710
w gravity 1.59 % 6.266- 1078 2.665 - 1074 2.557 - 10712 1.474.10710
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Fig. 7 Bulk s, versus time in the 3D network. The inset plots
shows detail over the range t40p to ts00

Figure 6 plots s, along the central horizontal plane
of pores (i, 10, k) at 1499 (the online figure plots both
Cco,. and g, but the print figure plots only s,). Gas
bubbles predominate in pores in the outlet half of the
computation. Figure 7 plots the bulk value of s, versus
time for the network. Gas phase first formed at fss.
At t435, the gas phase reached the outlet and free gas
began exiting. Figure 8 plots the amount of CO; in the
network as a function of time in the gas and liquid
phases. The inset plots in Figs. 7 and 8 indicate that
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Fig. 8 Total CO; in the a gas and b liquid phases versus time in
the 3D network. The inset shows detail from #4 to t500

the apparent steady-state condition reached after #4¢ is
characterized by small oscillations.

To understand these oscillations, consider pore
(10,10,15). Figure 9a—c display P;, Cco,:;, and sg versus
time from #,¢ to #164 in this pore. At t162.08, Cco,:1 (6.194 -
1073 mol cm~?) exceeded the bubble point condition
and gas phase formed. During formation of the gas bub-
ble, P; spiked in the pore. During the expansion phase
of the gas bubble, (#162.08 t0 t162.15) P; and Ceo,; declined
while s, increased. From #6).15 t0 #6377, P; underwent a
slow decrease; s, decreased as well (the gas phase began
to dissolve). The gas phase disappeared at 163 77; after
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Fig. 9 a P;,b Cco,., and ¢ s, values in pore (10,10,15) from #,6,

to f164 in the 3D network
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Fig. 10 s; value in pore (10,10,15) from t to 225 in the 3D
network

which, Ceo,.; quickly increased. Figure 10 displays s, in
pore (10, 10, 15) over the period typ— t225. The cyclic
formation/disappearance of the gas phase in the pore
is apparent. Between t490 and #sq0, the number of pores
containing gas phase varied by 0.2 % due to this cyclic
behavior.

From #4990 to ts09, the bulk gas saturation in the
network averaged 25.12 %. This corresponded to a
network bulk storage capacity for CO, of 3.74 - 10~
moles cm™ (99.62 % in the liquid phase and 0.38 %
in the gas phase). With small variation due to the cyclic
behavior, CO, transported through the outlet face at
the (injection) rate of 4.46 - 10~7 mol s~! but with 47 %
of the exiting CO; in the gas phase (53 % in the liquid
phase).

5 Discussion

The micro-model simulations performed here were
run near bubble point pressure conditions. Despite
the small size of the 2D micro-model simulated, small
differences induced by buoyancy effects were detected.
The linear dependence of Ceo,;; on P at steady-state
conditions which holds, under the assumptions dis-
cussed, both with and without gravity provides a means
of estimating CO, storage capacity in the liquid phase.
In the no-gravity scenario, s, is also linearly related to
pressure, and thus also amenable to estimation.

In the 3D micro-model simulation, we have con-
centrated on bulk (core-scale) observations of the gas
phase and CO, released by the network under bubble
point conditions. While 100 % of the CO, entered the
3D network dissolved in the liquid phase, after 500 s of
simulation time, 25 % of the void space was occupied by
gas phase and 47 % of the CO, exiting the outlet face
did so via the gaseous phase. We are still working on
understanding the precise mechanism for the observed

@ Springer

cyclic behavior of gas bubble formation in some pores.
Ultimately, the behavior must reflect the fact that the
stability of a gas bubble in a pore requires a sufficient
concentration of dissolved CO, in the liquid phase
which, in turn, depends on the net flux of dissolved CO,
into the pore.

A number of improvements to this model need to be
pursued. The regular rectangular networks considered
here must be replaced by more geometrically realis-
tic geologic pore networks as provided by, e.g., X-
ray computed tomographic images. Diffusion of the
CO; has been ignored; it can be included in Eq. 4
as a finite difference approximation to the standard
diffusion model. The explicit nature of the current dis-
cretized numerical method results in a restrictive time
step which severely increases the cpu time required
to reach steady-state conditions. To handle larger net-
works more effectively, an implicit method needs to be
considered.

The use of a relative permeability to describe com-
petitive flow of the gas and liquid phases through chan-
nels is based upon our tracking s, and not the num-
ber/sizes of individual gas bubbles. There are geometric
forms for the phase conductivities [37, 45] that should
be investigated as alternatives.
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Appendix A

Assume a gas bubble with radius » has formed in a CO,
solution. Equations 14 and 15 can be rewritten

Ccoz;l (29)

Ceorio RT = Keo, (T) ——25
028 €2 CHZ();I + Ccoz;l

CHZO;I

Curoo RT = P (T)——22
o8 v CH20;1 + C(toz;l

(30)

° _,©
where KCOZ (T)= Péoz e(Mcoz;/(T) Koy (TH/RT and POW(T) _

=) e
P,’;zoe(“”zoi’m Higo MVRT ot P be the pressure of

the liquid phase surrounding the bubble. Under equi-
librium conditions, from Egs. 9 and 12, we have

P} = Pcoyg + Puyog — P (31)
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By Egs. 10, 12, 29, and 30,

Cw
(CW + C(rjoz;[)

r
Coy;l

(Cw + CL

coz;l)

P} = P}(T)

+ Keoyu(T) —2y/m, (32)

where CZOZ; ; 18 the CO; concentration dissolved in the
liquid phase surrounding the bubble and y is the sur-

face tension of water. Solving for Ceoyut gives

, (P = P)(T) +2y]Cw
28T P (Keop(T) — P)) =2y

(33)

If P} is constant, C{‘,oz;l is the solubility of CO, with
a gas bubble (radius r) in liquid of pressure Pj. The
derivative of Eq. 33 with respect to r,

dCiy, =2y Cw (Ko, (T) — PY(T))
dr [r(Keo (T) = P) =2y

(34)

is negative; the solubility, CZOZ;I, increases as the ra-
dius, r, of the bubble decreases, with CgOZ;l — 00 as
r — 2y [(Kco,(T) — Pp). Thus, under a constant liquid
pressure of P;, a bubble with radius 2y /(Kco,(T) — P))
is the minimal-sized gas bubble formed.

In our computation, we impose a minimal bubble
radius of 10~* cm. Therefore, the critical concentration
that starts to generate a gas bubble in a pore of liquid
pressure P; is

o _ 107 = P(T)) +271Cw
Coont = 904 (Keqn(T) ~ P) - 27 )

Appendix B

The evaluation of the liquid pressure for a pore which
contains oversaturated carbon dioxide solution is based
upon the following argument. First, assume that a
sealed container, volume V, equipped with a movable
piston contains gas and liquid phases comprised of
the two species H,O and CO,. Assume the vessel is
sufficiently large so that capillary effects are negligible
(a planar interface exists between the gas and liquid
phases).

The pressure of the gas phase is given by Eq. 12 with
Pco,. and Py, evaluated from Eq. 13 using Egs. 29
and 30. Under equilibrium conditions and planar inter-
faces between the liquid and gas phases, the pressures

of gas and of liquid phases satisfy P, = P;. The pressure
of the liquid phase can then be expressed as

CHQO;Z

P = P°(T)——12%
! v CHZO;l + Ccoz;l

Con..
n KCOZ(D% (36)

Hy 051 + Ccoz;l '

The volumes of the gas and liquid phases are V, =
s,V and V; =s;V. The total molar mass of CO, in
the container is M,y = V(sgCu,0:4 + 51Cco,:1). Consider
moving the piston inward, forcing all of the gas phase
to dissolve into the liquid. Let Ceo, = M/ Vi. Then
Cco,:t = Ceo, assg — 0. As Py in Eq. 36 is a continuous
function of Cco,/, then, as s; — 0,

CH ol
P — p&(]’)#
! CHzO;l + Ccoz

Ccoz

+ Keo, (T) =———F7—.
2 CHzO;l + Cc02

(37)
Once sg = 0, if increased pressure is exerted on the
piston, P still increases but C,,; remains at the value
Cco, and the liquid becomes undersaturated solution.
Therefore, P; in Eq. 37 is the minimum liquid pressure
required to maintain a dissolved CO, concentration of
Cco,- We use Eq. 37 as the liquid pressure for any pore
containing any oversaturated CO, solution.

Appendix C

Consider a pore in a 1-D, horizontal (gravity free)
network flow model. Assume the CO, solution flows
through the network from left to right. The left-hand
channel to the pore is characterized with length L,
cross-sectional area A, intrinsic permeability «;, and
relative permeabilities «,;;; and kg1 ; the right-hand
channel is characterized analogously. The relative per-
meability functions are evaluated using respective up-
stream pore saturations.

If the pore is category 1, consider Eq. 29 for the gas
phase. As the water phase is assumed incompressible,
Cw = Ci,yo = 1/18, and, as Ceo,.1 K Ciyo:, Eq. 29 can
be approximated by

Ccoz;l
Cw

Ceoyg RT ~ Keo, (T) (38)

Solving for Ceo,. gives

Ccoyit @ aCeo,.q, Where o = RTCyw/Keo,(T). (39)
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Applying Eq. 39 to Eq. 2 gives
Meo, = 510Ccoy:g 4 SCc0y;g = (510 + 5g) Ceo,y - (40)

Applying Eqs. 39 and 40 to Eq. 21 for this pores gives,

V((sl + sg)cg))new — ((s; + sg)Cg)Old
At

[« ALk Cr AP n kL Apkrg 1 Co1 APy
v Ly Vg Ly

KR ARKrg; RCg:r APgR
Ug LR

B [KRARKrl;RCl:R APy n ] (41)
Vi LR
All concentrations in Eq. 41 refer to CO, concentra-
tions (i.e., Cg.p = Ceo,ig:r )- The terms &1, Cpir, L1,
ki, Ar, and AP, are evaluated at left quantities
while the terms k. g, Cp.r, Lr, kr, Ag, and AP g are
evaluated at right quantities. In particular, note: «,p. 1.
and C,.; are the relative permeability and concentra-
tion of the neighboring pore to the left of this pore;
AP,.; is the pressure drop between the left (upstream)
neighbor and this pore; «,,. g and C),. r are the relative
permeability and concentration of this pore; and A P, g
is the pressure drop between this pore and the right

(downstream) neighbor.

Since P; + P°= Py =(Cco,:4+Ciyo.e)) RT~Ceo,:g RT,
then AP, = RTAC.o, g and AP, = RTACco,q — AP,
Defining L = (L + Lg)/2, employing the above sim-
plifications for A P, and A P; and applying Eq. 39 to the
right-hand-side of Egs. 41, 41 can be further simplified
as

v ((s1 + 59) C)"™" — (510 + 5¢)Cg)*'
At
_ LKLALKrl;L CI;LAPI;L LKLALKrg;L Cg:LAPg;L
B uLp L veLp L

B (LKRARKrl;R CirAPLR

LKRARKrg:R Cg:RAPg;R
v LR L

ngR L

_ RTL|:(KLALKrl;L‘1 Co. L ACg L 4

kL ALkrg L Co1.ACg L
vlLp, L

vgLp L

Lk rat Co:RAC.
*AR< rrii e Cg RACgR

LKRKrg; R Cg:RACg;R
vy LR L

vg LR L

L KLALKr L Cg;LAPi _ KRARK: RO Cg;RAP‘I'2
vyl L vy LR L

(KLAL Cg;LACg;LT‘L> _ (KRAR Cg;RACg;RrR)
— RTI2 3 L Lgr L
L
_ E kL Apkn.p, Co L AP _ kRARK R Cg;RAPR
vy Ly L Ly L
(42)
Krl:qQ Krg:

where I, = =4 4 84 g — [ R.

vy Vg
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After some manipulation, Eq. 42 becomes

V(Sla + sg)new[cgew _ C;ld]
At
CoM (510 + 50)"" — (5100 + 5)°]
At
(Cg:LACg:L _ Cg;RACg;R)
L

+V

~ RTL*X,
L

X — X
+ RTLCygACy g8 —
L \Y

Lo YL — YR
2 )

(43)

where

X, =

KLAL Krl; LO + Krg: L
L, v v )’

KRAR (Kn.RX  KrgR
Xr = + &2,
V] Vg

Lg
KLALKr[;LCg;LAPLL
Yo = ,
Ly
KRARKr[;RCg;RAPLk
Yr= .
Lg

Eq. 43 can be viewed as a linear combination of the two
equations

(sper-s)"™ (Clev — ngd)

%
At
Co. . ACg 1 _ Ce.rRACg R
¥ RTLX — (44)
and

CoMl(siar + 59" = (510 + 5]
At
Cg;RACg;RXL—XR LO[YL—YR
L L v L

~ RTL?

(45)

Replacing s; with 1 —s,, recognizing that C‘C’é’i; o and

C,. r are identical notations, and employing some trivial
manipulation, Eq. 45 can be rewritten as

new __ sold

Vvl — Q)%

~ (RTLAC i — Le Yuc¥a ) el ~ 2wk

SgiL—Sg:R VI SgL—SgR L
~ L (AP rX—aY )= APgRXR—aYR) Sg.1—Sg.R ) (46)
Vi(Sg:L.—Sg:R) L
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Equation 44 is a discrete approximation to the para-
bolic equation

aC
V(sie + 5¢) B_Ig

3 (Cy2e
KLAL (K L0 KrgL ( gaL)
~ —RTL? NG
Ly ( vy - Vg ) aL “7)

Equation 47 is a second-order parabolic equation. As
our numerical discretization is an explicit method, the
stability criterion for Eq. 47 satisfies

KLALPg(VgKrl;La + UlKrg;L)
(sg +si0)Vvgu L

' Atparab c, (48)

for some constant, c. Based upon several 1-D com-
putations, varying the flow rate over five orders of
magnitude, we find empirically that ¢ & 0.3. Thus,
03L1.Vvev(sg + si0)
KLALPg;L(VgKrl;La + 1)lKrg;L)

A tparab =

. (49)

Equation 46 is a discrete approximation to the first-
order hyperbolic equation

as
(1- oe)Va—tg
I (WAPgrX —aY)— (VAPgrXgr—aYR) %
V(Sg. . —Sg:R) oL
(50)

The stability criterion of Eq. 50 follows the CFL condi-
tion

vV —a)(Sg:r — Sg:1)
(AP rX —aY)— (APgrXgr—aYg)|’

(1)

Since the propagation step time must satisfy both
Eqgs. 49 and 51,

Atep, <

At = min(Atparab, Aler).

(52)

For the stability of 2D or 3D network calculations,
assume the carbon dioxide solution flows into pore i
through n channels and flows out from pore i through
m channels. Let Q;,.; j (j= 1,2, -- -, n) be the total con-
centration of CO, flowing from pore j into pore i and
let Qourix (k=1,2,---,m) be the total concentration
of CO; flowing out from pore i into pore k. Let C,,; and
P,.; be the CO, concentration and pressure of phase p
(p =1, g) in pore j respectively; «,,, pp and v, be the
relative permeability, density, and viscosity of phase p;
k, Ajj, and L;; be the intrinsic permeability, the cross-
sectional area, and the length of the channel between
pore i and pore j; z; be the pore center position in the

vertical direction; and G be the gravitational accelera-
tion. Similar to Eq. 22,

Qinsij =
(Cl;j"if"rlA (Pri — Pr.j) — pG(zi — 2;)
— i
vy Lij
4 CaiKikrg Aij(Pg;i — Pgj) = pgG(zi — Zj)) ’
Vg Ly
(53)
where P, ;> P,; (p=1,g)and
Qoul;i,k -
_ ( Cuikikrt  (Pri = Pri) — prG(zi — 26)
vy ! Lik
+ Cg;iKikKrg A (Pg;i - Pg;k) - ,OgG(Zi - Zk)) ’
Vg Lik
(54)

where P, < P, (p=1,8).

Let e be the pore such that Q;,.;. = max — ... y Qin:i
and w be the pore such that
Milk—i ... m Qourik- From Eq. 21,

Qout;i,w =

(gl — [mZg ] & S
V[_% = Z Qi j + Z Qout;i, j- (55)
j= =

Consider the maximum CO, mass change,

[mnew]i _ [mold]i

V}% = (nQin;i,e + onut;i,w)
. [nKi,eAi,eKrl;i,eCl;e API;i,e
B Vi Lie
+ nKi,eAi.eKrg;i,ng:e APg;i,e]
Vg Li,e
_ |:mKi,wAi,wKrl;i,wCl;w Af)l;i,w
Vi Li,w
i mKi,wAi,wKrg;i.w Cg;w APg;i'wj|
Ug L,"w ’
(56)

where «yp.ie.krp:iw (p =1, g) are the relative permeabil-
ities for phase p flowing through the channels con-
necting pores i to e and i to w, and AP, AP,y
are the pressure drops for phase p between pores i, e
and i, w. Since Y\ Qinij+ D4l Qourik < NQinsie +
mQouriw, any At that is stable for Eq. 56 is also stable
for Eq. 55. Equation 56 is an effective 1D statement;
from Egs. 49, 51, and 53 we infer

0.3L,-,6V,<vgv,(sg;i =+ S[;ia)

Atparab <
parab = s
nKi,eAt}ePg(VgKrl;i,ea + VlKrg;i,e)

(57)
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v Vil — O{)(Sg'i - Sg'e)
Atlery < : : 58
CFL = Me _ Mw ’ ( )
and
At = min(A[parab’ Aler), (59)

where

Me = VIAPg;i,er - Cg;eAPiC,eYe’
Mw = VIAPg;i,wa - Cg;iAPEwYun

nKi,eAi,e Krl;i,e® Krgiie
- + 9
L. v Vg

mKi,wAi,w Krl;iw® Krg;i,w
Xw = + s
Liy v Vg

O”’”Ci,el4i,e/(rl;i,e
VlLi,e

Appendix D

Let X;; =logA;. X;; was sampled from a correlated
normal distribution having mean sy, and standard de-
viation oy, given by

0;
Py = s+ p=(YVij = ), o5 =031 =pH.  (60)
Y

Here, Yj; = logV; +logV; is a Gaussian-sum random
variable having mean value puy =2uy and standard
deviation oy = v/20y, and p is a correlation coefficient.
Values chosen for the free variables were uy = —10.1,
ox = 1.0, and p = 0.9.
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