A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods

Xinghui Zhong Brown University Chi-Wang Shu Brown University

Numerical Analysis and Scientific Computing mathscidoc:1610.25068

Journal of Computational Physics, 232, 397-415, 2013
In this paper, we investigate a simple limiter using weighted essentially non-oscillatory (WENO) methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving conservation laws, with the goal of obtaining a robust and high order limiting procedure to simultaneously achieve uniform high order accuracy and sharp, non-oscillatory shock transitions. The idea of this limiter is to reconstruct the entire polynomial, instead of reconstructing point values or moments in the classical WENO reconstructions. That is, the reconstruction polynomial on the target cell is a convex combination of polynomials on this cell and its neighboring cells and the nonlinear weights of the convex combination follow the classical WENO procedure. The main advantage of this limiter is its simplicity in implementation, especially for multi-dimensional meshes. Numerical results in one and two dimensions are provided to illustrate the behavior of this procedure.
discontinuous Galerkin method, WENO limiter
[ Download ] [ 2016-10-12 10:42:45 uploaded by chiwangshu ] [ 714 downloads ] [ 0 comments ]
@inproceedings{xinghui2013a,
  title={A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods},
  author={Xinghui Zhong, and Chi-Wang Shu},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20161012104245610755186},
  booktitle={Journal of Computational Physics},
  volume={232},
  pages={397-415},
  year={2013},
}
Xinghui Zhong, and Chi-Wang Shu. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. 2013. Vol. 232. In Journal of Computational Physics. pp.397-415. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20161012104245610755186.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved