Discrete Radon transforms and applications to ergodic theory

Alexandru D. Ionescu University of Wisconsin, Madison, Madison, WI, U.S.A. Elias M. Stein Princeton University, Princeton, NJ, U.S.A. Akos Magyar University of Georgia, Athens, Athens, GA, U.S.A. Stephen Wainger University of Wisconsin, Madison, Madison, WI, U.S.A.

TBD mathscidoc:1701.331983

Acta Mathematica, 198, (2), 231-298, 2006.3
We prove$L$^{$p$}boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and$L$^{$p$}ergodic theorems for certain families of non-commuting operators.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:33:50 uploaded by actaadmin ] [ 71 downloads ] [ 0 comments ] [ Cited by 10 ]
@inproceedings{alexandru2006discrete,
  title={Discrete Radon transforms and applications to ergodic theory},
  author={Alexandru D. Ionescu, Elias M. Stein, Akos Magyar, and Stephen Wainger},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203350601682692},
  booktitle={Acta Mathematica},
  volume={198},
  number={2},
  pages={231-298},
  year={2006},
}
Alexandru D. Ionescu, Elias M. Stein, Akos Magyar, and Stephen Wainger. Discrete Radon transforms and applications to ergodic theory. 2006. Vol. 198. In Acta Mathematica. pp.231-298. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203350601682692.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved