Extension theorems, non-vanishing and the existence of good minimal models

Jean-Pierre Demailly Département de Mathématiques, Institut Fourier, Université de Grenoble I Christopher D. Hacon Department of Mathematics, University of Utah Mihai Păun Institut Élie Cartan, Université Henri Poincaré

Algebraic Geometry mathscidoc:1701.01004

Acta Mathematica, 210, (2), 203-259, 2011.2
We prove an extension theorem for effective purely log-terminal pairs ($X, S$+$B$) of non-negative Kodaira dimension $${\kappa (K_X+S+B)\ge 0}$$ . The main new ingredient is a refinement of the Ohsawa–Takegoshi$L$^{2}extension theorem involving singular Hermitian metrics.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:34:00 uploaded by actaadmin ] [ 125 downloads ] [ 0 comments ] [ Cited by 16 ]
@inproceedings{jean-pierre2011extension,
  title={Extension theorems, non-vanishing and the existence of good minimal models},
  author={Jean-Pierre Demailly, Christopher D. Hacon, and Mihai Păun},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203400674689770},
  booktitle={Acta Mathematica},
  volume={210},
  number={2},
  pages={203-259},
  year={2011},
}
Jean-Pierre Demailly, Christopher D. Hacon, and Mihai Păun. Extension theorems, non-vanishing and the existence of good minimal models. 2011. Vol. 210. In Acta Mathematica. pp.203-259. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203400674689770.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved