On the spectral synthesis property and its application to partial differential equations

Kanghui Guo Department of Mathematics, Southwest Missouri State University

TBD mathscidoc:1701.332763

Arkiv for Matematik, 30, (1), 93-103, 1990.9
Let$M$be a ($n$−1)-dimensional manifold in$R$^{$n$}with non-vanishing Gaussian curvature. Using an estimate established in the early work of the author [4], we will improve the known result of Y. Domar on the weak spectral synthesis property by reducing the smoothness assumption upon the manifold$M$. Also as an application of the method, a uniqueness property for partial differential equations with constant coefficients will be proved, which for some specific cases recovers or improves Hörmander's general result.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:35:36 uploaded by arkivadmin ] [ 141 downloads ] [ 0 comments ] [ Cited by 2 ]
@inproceedings{kanghui1990on,
  title={On the spectral synthesis property and its application to partial differential equations},
  author={Kanghui Guo},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203536886587572},
  booktitle={Arkiv for Matematik},
  volume={30},
  number={1},
  pages={93-103},
  year={1990},
}
Kanghui Guo. On the spectral synthesis property and its application to partial differential equations. 1990. Vol. 30. In Arkiv for Matematik. pp.93-103. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203536886587572.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved