Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach

Bernd Stratmann Mathematisches Institut der Universität Göttingen, Bunsenstraße 3-5, Göttingen, Germany

TBD mathscidoc:1701.332843

Arkiv for Matematik, 33, (2), 385-403, 1994.9
We introduce and study the Jarník limit set ℐ_{σ}of a geometrically finite Kleinian group with parabolic elements. The set ℐ_{σ}is the dynamical equivalent of the classical set of well approximable limit points. By generalizing the method of Jarník in the theory of Diophantine approximations, we estimate the dimension of ℐ_{σ}with respect to the Patterson measure. In the case in which the exponent of convergence of the group does not exceed the maximal rank of the parabolic fixed points, and hence in particular for all finitely generated Fuchsian groups, it is shown that this leads to a complete description of ℐ_{σ}in terms of Hausdorff dimension. For the remaining case, we derive some estimates for the Hausdorff dimension and the packing dimension of ℐ_{σ}.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:35:46 uploaded by arkivadmin ] [ 216 downloads ] [ 0 comments ] [ Cited by 7 ]
@inproceedings{bernd1994fractal,
  title={Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach},
  author={Bernd Stratmann},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203546877234652},
  booktitle={Arkiv for Matematik},
  volume={33},
  number={2},
  pages={385-403},
  year={1994},
}
Bernd Stratmann. Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach. 1994. Vol. 33. In Arkiv for Matematik. pp.385-403. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203546877234652.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved