# MathSciDoc: An Archive for Mathematician ∫

#### TBDmathscidoc:1701.332875

Arkiv for Matematik, 35, (2), 299-311, 1996.3
Let (\$X, L\$) be a polarized 3-fold over the complex number field. In [Fk3], we proved that\$g(L)≥q(X)\$if\$h\$^{0}(\$L\$)≥2 and moreover we classified (\$X, L\$) with\$h\$^{0}(\$L\$)≥3 and\$g(L)\$=\$q(X)\$, where\$g(L)\$is the sectional genus of (\$X, L\$) and\$q\$(\$X\$)=dim\$H\$^{1}(\$O\$_{\$X\$}) the irregularity of\$X\$. In this paper we will classify polarized 3-folds (\$X, L\$) with\$h\$^{0}(\$L\$)≥4 and\$g(L)\$=\$q(X)\$+1 by the method of [Fk3].
```@inproceedings{yoshiaki1996on,
title={On polarized 3-folds (\$X, L\$) with\$g(L)=q(X)\$+1 and\$h\$^{0}(\$L\$)≥4},
author={Yoshiaki Fukuma},
url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203550971508684},
booktitle={Arkiv for Matematik},
volume={35},
number={2},
pages={299-311},
year={1996},
}
```
Yoshiaki Fukuma. On polarized 3-folds (\$X, L\$) with\$g(L)=q(X)\$+1 and\$h\$^{0}(\$L\$)≥4. 1996. Vol. 35. In Arkiv for Matematik. pp.299-311. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203550971508684.