The triviality of the 61-stem in the stable homotopy groups of spheres

Guozhen Wang Shanghai Center for Mathematical Sciences; University of Copenhagen Zhouli Xu University of Chicago

Algebraic Topology and General Topology mathscidoc:1705.02002

We prove that the 2-primary $pi_{61}$ is zero. As a consequence, the Kervaire invariant element $\theta_5$ is contained in the strictly defined 4-fold Toda bracket $\langle 2, \theta_4, \theta_4, 2 \rangle$. Our result has a geometric corollary: the 61-sphere has a unique smooth structure and it is the last odd dimensional case — the only ones are $S^1, S^3, S^5$ and $S^{61}$. Our proof is a computation of homotopy groups of spheres. A major part of this paper is to prove an Adams differential $d_3(D_3) = B_3$. We prove this differential by introducing a new technique based on the algebraic and geometric Kahn-Priddy theorems. The success of this technique suggests a theoretical way to prove Adams differentials in the sphere spectrum inductively by use of differentials in truncated projective spectra.
Adams spectral sequences, Atiyah-Hirzebruch spectral sequences, Stable homotopy groups, cell diagrams, smooth structures
[ Download ] [ 2017-05-30 08:54:15 uploaded by xuzhouli ] [ 308 downloads ] [ 0 comments ]
@inproceedings{guozhenthe,
  title={The triviality of the 61-stem in the stable homotopy groups of spheres},
  author={Guozhen Wang, and Zhouli Xu},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170530085415416484755},
}
Guozhen Wang, and Zhouli Xu. The triviality of the 61-stem in the stable homotopy groups of spheres. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170530085415416484755.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved