Entanglement contour and modular flow from subset entanglement entropies

Qiang Wen Shing-Tung Yau Center of Southeast University

Theoretical Physics mathscidoc:1908.39003

Journal of High Energy Physics, 05, (018), 22, 2020
The Entanglement contour function quantifies the contribution from each degree of freedom in a region $\mathcal{A}$ to the entanglement entropy $S_{\mathcal{A}}$. Recently in \cite{Wen:2018whg} the author gave two proposals for the entanglement contour in two-dimensional theories. The first proposal is a fine structure analysis of the entanglement wedge, which applies to holographic theories. The second proposal is a claim that for general two-dimensional theories the partial entanglement entropy is given by a linear combination of entanglement entropies of relevant subsets inside $\mathcal{A}$. In this paper, we further study the partial entanglement entropy proposal by showing that it satisfies all the rational requirements proposed previously. We also extend the fine structure analysis from vacuum AdS space to BTZ black holes. Furthermore, we give a simple prescription to generate the local modular flows for two-dimensional theories from only the entanglement entropies without refer to the explicit Rindler transformations.
quantum entanglement, gauge/gravity duality
[ Download ] [ 2019-08-26 21:07:16 uploaded by wenqiang ] [ 122 downloads ] [ 0 comments ]
@inproceedings{qiang2020entanglement,
  title={Entanglement contour and modular flow from subset entanglement entropies},
  author={Qiang Wen},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20190826210716339469463},
  booktitle={Journal of High Energy Physics},
  volume={05},
  number={018},
  pages={22},
  year={2020},
}
Qiang Wen. Entanglement contour and modular flow from subset entanglement entropies. 2020. Vol. 05. In Journal of High Energy Physics. pp.22. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20190826210716339469463.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved