Morphing is the process of changing a geometric model or an image into another. The process generally involves rigid body motions and non-rigid deformations. It is well known that there exists a unique conformal mapping from a simply connected surface into a unit disk by the Riemann mapping theorem. On the other hand, a 3D surface deformable model can be built via various approaches such as mutual parameterization from direct interpolation or surface matching using landmarks. In this paper, a numerical methods of 3D surface morphing based on deformable model and conformal mapping is demonstrated.
We take the advantage of the unique representation of 3D surfaces by the mean curvatures $H$ and the conformal factors $\lambda$ associated with the Riemann mapping and build up the deformation model by consistently registering the landmarks on the conformal parametric domains. As a result, the correspondence of the $(H, \lambda)$ between two surfaces can be defined and a 3D deformation field can be reconstructed. Furthermore, by composition of the M\"obius transformation and the 3D deformation field, a smooth morphing sequence can be generated over a consistent mesh structure via the cubic spline homotopy. Several numerical experiments on the face morphing are presented to demonstrate the robustness of our approach.