We study categories associated to a decorated marked surface S_△, which is obtained from an unpunctured marked surface S by adding a set of decorating points. For any triangulation T of S_△, let Γ_T be the associated Ginzburg dg algebra. We show that there is a bijection between reachable open arcs in S_△ and the reachable rigid indecomposables in the perfect derived category perΓ_T. This is the dual of the bijection, between simple closed arcs in S_△ and reachable spherical objects in the 3-Calabi-Yau category D_{fd}(ΓT), constructed in the prequel (Qiu in Math Ann 365:595–633, 2016). Moreover, we show that Amiot’s quotient perΓ_T/D_{fd}(ΓT) that defines the generalized cluster categories corresponds to the forgetful map S_△→S (forgetting the decorating points) in a suitable sense.