In this paper we describe a machinery for homological calculations of representations of FI_G, and use it to develop a local cohomology theory over any commutative Noetherian ring. As an application, we show that the depth introduced by the second author coincides with a more classical invariant from commutative algebra, and obtain upper bounds of a few important invariants of FI_G-modules in terms of torsion degrees of their local cohomology groups.