We prove the BMV (Bessis, Moussa, Villani, [1]) conjecture, which states that the function $${t \mapsto \mathop{\rm Tr}\exp(A-tB)}$$ , $${t \geqslant 0}$$ , is the Laplace transform of a positive measure on [0,∞) if$A$and$B$are $${n \times n}$$ Hermitian matrices and$B$is positive semidefinite. A semi-explicit representation for this measure is given.